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ABSTRACT

Motivation: Structural information of macromolecular complexes pro-

vides key insights into the way they carry out their biological functions.

Achieving high-resolution structural details with electron microscopy

requires the identification of a large number (up to hundreds of thou-

sands) of single particles from electron micrographs, which is a labori-

ous task if it has to be manually done and constitutes a hurdle towards

high-throughput. Automatic particle selection in micrographs is far

from being settled and new and more robust algorithms are required

to reduce the number of false positives and false negatives.

Results: In this article, we introduce an automatic particle picker that

learns from the user the kind of particles he is interested in. Particle

candidates are quickly and robustly classified as particles or non-

particles. A number of new discriminative shape-related features as

well as some statistical description of the image grey intensities are

used to train two support vector machine classifiers. Experimental

results demonstrate that the proposed method: (i) has a considerably

low computational complexity and (ii) provides results better or

comparable with previously reported methods at a fraction of their

computing time.

Availability: The algorithm is fully implemented in the open-source

Xmipp package and downloadable from http://xmipp.cnb.csic.es.

Contact: vabrishami@cnb.csic.es or coss@cnb.csic.es

Supplementary Information: Supplementary data are available at

Bioinformatics online.
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1 INTRODUCTION

Electron Microscopy (EM) is a key tool to study the structure

and function of biological macromolecules at a medium–high

resolution. Single particle analysis is an EM modality in which

multiple copies of the same macromolecule are simultaneously

imaged into a single micrograph. Particles from several hundreds

or even thousands of micrographs are commonly employed in a

structural study. The standard data processing workflow of

single particle reconstruction includes: particle selection, particle

alignment, particle classification, three-dimensional (3D)

reconstruction and model refinement (Chen and Grigorieff,

2007; Sorzano et al., 2012). Different views of a specimen are

required for the 3D reconstruction of a complex, but these views

suffer from low signal-to-noise ratio (SNR) (due to low-dose

imaging) (Glaeser, 1971), low contrast (due to close to focus

conditions), and image deformations (due to the microscope ab-

errations). It is generally accepted that high resolution can only

be achieved with thousands of projection images, so that the 3D

reconstruction algorithm can compensate for these challenging

imaging conditions. In particular, there is generally a direct re-

lationship between the number of selected particles and the max-

imum achievable resolution (Henderson, 1995). Manually

identifying that number of particles is not just time consuming

and laborious, but also an error-prone process. A robust

automatic particle picker (APP) algorithm is, therefore, indis-

pensable to enhance the technique’s throughput.
As the selection of several thousands of particles from low-dose

micrographs is the first and one of the crucial steps towards a high-

resolution reconstruction, a large amount of effort has been made

by researchers to develop accurate methods for APP. These meth-

ods have been classified into groups by different authors (Mallick

et al., 2004;Nicholson andGlaeser, 2001;Zhu et al., 2004).Among

them, the classification byNicholson andGlaeser (2001), suggests

a general categorization into template matching-based and

feature-based approaches. Template matching-based methods

(Chen and Grigorieff, 2007; Huang and Penczek, 2004; Ludtke

et al., 1999; Plaisier et al., 2004; Roseman, 2003; Sigworth,

2004; Wong et al., 2004) calculate the cross-correlation (or any

other measure of similarity) between a set of templates and a

micrograph image to seek for particle candidates. Templates are

obtained either from different projections of an initial 3D volume

(Huang andPenczek, 2004;Wong et al., 2004) or fromanumber of

manually picked particles (Hall and Patwardhan, 2004; Roseman,

2003). Instead of using all templates (either from different projec-

tions of an initial 3D volume or froma number ofmanually picked

particles), which severely increases the processing time, other

alternatives can be employed, such as eigenimages of templates

(Sigworth, 2004) or some form of an average of each template

cluster (Wong et al., 2004). In feature-based approaches, particles

are sought through the calculation of some prominent geometric

and/or statistical features of the particle images (Arbeláez et al.,

2011; Hall and Patwardhan, 2004; Langlois et al., 2011; Mallick*To whom correspondence should be addressed.
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et al., 2004;Ogura andSato, 2004; Sorzano et al., 2009;Volkmann,
2004; Yu and Bajaj, 2004; Zhao et al., 2013; Zhu et al., 2003).

Feature-based methods can be reference-free or learning-based.

In the former, features corresponding to particles are known to
fall within a certain region of the feature space and, therefore, no

training is necessary and the algorithm can start picking particles

straightaway; in the latter, however, a set of particles and non-
particles are required to train a classifier which is then able to

distinguish between particles and non-particles based on the train-
ing features. Although reference-free methods require less effort

from the user, they are of limited applicability, because the space

region corresponding to particle features has to be known a priori.
We previously introduced a feature-based APP method

(Sorzano et al., 2009) that learns features from the user selected
particles via a continuous learning phase (the algorithm is avail-

able in the open-source package Xmipp 2.4). In a manual picking

step, a small dataset of particle and non-particle images is formed
to train an ensemble naive Bayesian classifier. Once the classifier is

trained, it suggests new particles in a new micrograph. The user

supervises this result by discarding the wrongly picked particles
and identifying the disregarded ones. This feedback information is

then submitted to the classifier which is updated to accommodate

this new information. This semi-automatic picking is continued
on several micrographs until the user is satisfied by the results. At

this point, the trained classifier carries out the selection of the

particles in the remaining micrographs in a fully automatic way.
In this article, we introduce an APP method that follows the

general learning structure of Sorzano et al. (2009), but major im-
provements are made to increase speed and accuracy. Our new

feature vector is completely different from the previous method

and consists of a number of geometrical and statistical features; it
is robust to noise, very fast to compute andmost of its features are

rotationally invariant. Instead of Naive Bayesian (NB), we now

use a support vector machine (SVM) as the base classifier due to
its interesting properties, like high generalization capabilities and

small training/classification time. In order to reduce the number

of false positives, two SVM classifiers are used: one for discrimi-
nating between particle candidates and non-particle objects and

the other for checking if a particle candidate recognized by the

first classifier is a real particle or not. In contrast to Sorzano et al.
(2009), which explores a big search space for particles, the pro-

posed method limits the search space to the peaks obtained from

the cross-correlation of the micrograph with some pre-computed
templates. Templates are generated during the manual picking

step by clustering [the clustering algorithm is described in

Sorzano et al. (2010)] the hand-picked particles and selecting
the average of each cluster. As the correlation with all orientations

of the template noticeably increases the computation time, a ro-

tationally averaged template can be used instead. The algorithm
has been successfully tested on three experimental datasets and

compared with our previous algorithm (which had, in turn, been

compared with other approaches), resulting in a more than an
order of magnitude decrease in computing time while achieving

even better performance.

2 METHODS

There are three crucial steps in the proposed algorithm: identifying initial

possible locations of particles, locally characterizing the image by means

of a low-dimensional feature vector and classifying each location as

particle or non-particle. In this section, we go through the details of

each step.

2.1 Identification of possible particle centres

In principle, each pixel of a micrograph has the potential to be the centre

of a particle. In practice, checking each pixel is rather time consuming,

and so the number of possible candidates to evaluate must be reduced.

Therefore, we cross-correlate the input micrograph with suitable tem-

plates to make an initial guess about the candidate particle positions.

In this way, not only the search space is noticeably reduced, but also

the rate of false positives. During the training phase, we cluster manually

picked up particles into a few number of classes using an algorithm simi-

lar to the one described in Sorzano et al. (2010). The number of clusters

can be increased or decreased dynamically to facilitate user’s ongoing

control on the quality of the templates. These templates are correlated

with the input micrograph at all possible orientations (at each location of

the correlation map, we should keep the maximum observed correlation

for all templates and all orientations). If the particle is relatively globular,

the calculation of the correlation map can be further accelerated by sub-

stituting the template by its rotational average, avoiding in this way the

need to correlate with all possible orientations.

Local maxima of the correlation map are possible candidate locations

for being at the centre of a particle. We further reduce this candidate set

by ranking local maxima according to their correlation values and keep-

ing only a portion of the local maxima with a value higher than a small

threshold. This portion may not be the same for all datasets, and basically

depends on the density of particles within the micrographs.

We should note that the cross-correlation with a template in our

approach is just a first step to have a set of possible candidates, but

that in no way do we rely on this cross-correlation for further processing

of these candidates into particles and non-particles. In fact, the chosen

threshold for local maxima is small enough such that even particles that

were related to excluded templates could still be detected at this initial

step (Fig. 1). In most practical cases we have found that the use of only

one template is generally enough. For instance, in Figure 1, only a single

class representative has been azimuthally averaged and cross-correlated

with the micrograph, to identify the local maxima. In this figure, picking

Fig. 1. Micrograph from the KLH training dataset with cross-correlation

peaks superimposed. The peaks have been obtained by cross-correlation

of a single class representative and the micrograph. Colours show the

energy of each peak by black as lowest and red as highest
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10% of local maxima (with the highest cross-correlation values) results in

local maxima with minimum value of 0.27 and maximum value of 0.98.

As can be seen, at the location of each particle a local maximum with a

specific energy can be observed. Still, this behaviour depends on the

practical case at hand, and consequently, the number of templates is

dynamic, so if the result is not satisfactory the user can request for

more templates.

2.2 Feature extraction

We compute a feature vector at each location previously identified as a

candidate for particle centre. This vector is used by the classifier in the

next step to distinguish between particles and non-particles. Two prop-

erties have been sought for the feature vector: being robust to noise (due

to the low SNR in the micrographs) and being rotationally invariant (to

save computational time and avoid having to look for the particles in

all possible orientations). We use a feature vector that is robust to noise

and most of its features are rotationally invariant. it is made of three

subsets of features: the first two feature subsets are sensitive to the

particle shape, whereas the third one encodes the particle grey intensi-

ties. The first and third feature subsets are rotational invariant but not

the second one.

2.2.1 Particle shape description at different frequencies Micrographs

are submitted to a filter bank with Nh raised cosine band pass filters to

decompose them into several sub-band images in order to being able later

on to extract features associated to particular frequencies (Fig. 2). The

filtered micrograph by the kth (k ¼ 1, . . . ,Nh) filter, MkðrÞ (i.e. kth sub-

band image) is computed by

MkðrÞ ¼ FT�1fMðRÞHkðRÞg, ð1Þ

where FT�1 is the inverse Fourier transform and MðRÞ and HkðRÞ show

the Fourier transform of the micrograph and kth Fourier filter in the

filter bank, respectively. R is the two-dimensional (2D) spatial frequency,

and r is the spatial coordinate within the image. Each raised cosine band

pass filter has a particular width �R and a decay of �R (see the last image

in column B of Fig. 2). The low-pass filter in the filter bank is defined by a

transfer function given by

H1ðRÞ ¼

1, R � �R

1
2 1þ cos �ðR��RÞ

�R

� �� �
, �R5R � �R þ �R

0, R4�R þ �R

8<
: ð2Þ

where R is the modulus of R. The kth band pass filter (k ¼ 2, 3, . . . ,Nh)

is defined by the transfer function HkðRÞ defined as

0, R � ðk� 1Þ�R � �R
1
2 1þ cos �ðR�ðk�1Þ�RÞ

�R

� �� �
, ðk� 1Þ�R � �R5R � ðk� 1Þ�R

1, ðk� 1Þ�R5R � k�R

1
2 1þ cos �ðR�k�RÞ

�R

� �� �
, k�R5R � k�R þ �R

0, R4k�R þ �R

8>>>>>><
>>>>>>:

ð3Þ

Let us concentrate now on a given particle within a micrograph. We

will refer to this boxed image as IðrÞ. Let us call IkðrÞ the corresponding

boxed image extracted from MkðrÞ. By considering r as the distance from

the image centre in the direction of �, we express this boxed, filtered image

in polar coordinates, Ikðr, �Þ and compute the cross-correlation function

of pairs of Ikðr, �Þ images [this step has been partially inspired by Schatz

and van Heel (1990)]. Note that the cross-correlation is rotationally in-

variant in 2D polar coordinates (see proof in Supplementary material).

Let us define  kk0 ð�r,��Þ as the cross-correlation function between

polar, sub-band images Ikðr, �Þ and Ik0 ðr, �Þ, as below

 kk0 ð�r,��Þ ¼
X
r

X
�

Ikðr, �ÞIk0 ðrþ�r, � þ��Þ, ð4Þ

where Ik0 ðr, �Þ is shifted over Ikðr, �Þ by �r ([0, rp], where rp is the radius of

the particle), and by �� (½�180
�

, 180
�

�) along r and �, respectively (see

column D in Fig. 2). In particular, for each k, we calculate  kk0 for k
0 ¼ k

(autocorrelation; k ¼ 1, . . . ,Nh), k0 ¼ kþ 1 (k ¼ 1, . . . ,Nh � 1) and

k0 ¼ kþ 2 (k ¼ 1, . . . ,Nh � 2). The autocorrelation of a given band is

related to the particle shape, and the cross-correlation between sub-bands

reveals the linear relationships between the shapes at two different

frequency bands. We can see in Figure 3 an example of how these

cross-correlation functions can, indeed, distinguish between particles

and non-particles. From this figure, it is clear that cross-correlation func-

tions for particles (first row) are quite different from those for non-

particles (second row). It is worth mentioning that, for the sake of

speed up, we just consider the 2D projections and not the original 3D

object. According to this, cross-correlation functions are not rotationally

invariant in 3D, and therefore we need to have enough projections from

different orientations to fully cover the projection space.

The cross-correlation functions of the training set of particles for a

particular combination kk0 are highly redundant and can be easily com-

pressed using principal component analysis (PCA) (Pearson, 1901). There

are as many  kk0 images as candidate particles, which is a number in the

many thousands. This is the set from which the PCA basis is extracted

(there are, therefore, as many PCA’s as all combinations of k and k0). For

each  kk0 image, we keep its projection onto the first Nb PCA vectors as

features to be used during the classification step. Note that the PCA basis

is calculated for the kk0 cross-correlations of the training dataset of par-

ticles. This means that the kk0 cross-correlations of non-particles will be

poorly represented by this PCA basis. In this way, the dimensionality

reduction itself is presumed to have a positive impact on the classification

accuracy. An example of these bases can be seen in Figure 4, where four

eigenvectors are shown for each cross-correlation function.

2.2.2 Particle shape description in a particle-adapted rotational
invariant subspace Ponce and Singer (2011) proposed to calculate

an image basis that is adapted to the kind of images being studied and

their in-plane rotations. They do this by calculating the PCA of a set of

images and all their possible rotations. We apply this principle to extract

some features from boxed particles or particle candidates [this idea is

partially the same as in Dube et al. (1993)]. Given the training particles

provided by the user, we first align them into a few templates using a

process similar to that described in Sorzano et al. (2010). Then, we com-

pute the PCA basis associated to these templates (Fig. 5) to form a ro-

tational invariant subspace (the basis of this subspace is able to reproduce

any 2D rotation of particle images). We keep the first Nrb projection

coefficients onto this basis as part of the feature vector. Note that the

subspace that is spanned by these vectors is rotationally invariant, but not

the basis itself. Therefore, particles with different 2D orientations have

different coefficients but still can be efficiently approximated using this

basis. Again, this basis has been especially designed to represent good

particle images; consequently, non-particles will be poorly represented by

the basis helping the classifier to perform its task.

2.2.3 Particle intensity Desired particles are assumed to follow a

specified pattern of intensity distribution once the boxed image is normal-

ized to have zero mean and unit power (Sorzano et al., 2004). For

instance, particles in the carbon region are normally discarded. To cap-

ture the intensity features desired by the user we calculate the mean, the

SD as well as Ni equidistributed deciles of the intensity histogram.

2.2.4 Feature vector We collect all these features into a feature vector

that characterizes the boxed image to be classified. The vector size

is 3NbðNh � 1Þ þNrb þNi þ 2. By default, we suggest to use

Nb ¼ 4, Nh ¼ 6 (�R ¼ 0:025, �R ¼ 0:02 in digital frequencies normalized

to 0.5),Nrb ¼ 20 andNi ¼ 9. This produces a feature vector of dimension

91. In practice, we have observed that these choices provide generally good

results on all the tested datasets. The values of the parameters depend on
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both properties of the micrographs and particles. For instance, for a low

defocus set of micrographs, we need a higher value of Nh to extract the

information of higher frequencies, whereas for smaller particles we should

increase Nb and Nrb to be able to regenerate them from the basis.

2.3 Classification

Distinguishing between particles and non-particles is, in general, a com-

plex task due to the low contrast and low SNR present in the micro-

graphs. Additionally, the problem is complicated by having to distinguish

between particles and damaged particles, contaminated particles, partly

formed particles, etc., which, in general we will denote as ‘errors’. We use

non-linear, binary support vector machines (SVMs) (Boser et al., 1992;

Cortes and Vapnik, 1995) as classifiers due to their good performance in

other classification problems [it is particularly used successfully in APP by

Arbeláez et al. (2011); Zhao et al. (2013)], their robustness to noise and

their speed. The general idea of the SVM classifier is to find an optimum

hyperplane in an n-dimensional space by which two different classes are

distinguishable. LIBSVM (Chang and Lin, 2011) is an efficient and

widely used implementation of the SVM. This package suggests a variety

of kernels to perform the non-linear classification. We use this package

with a radial basis function (RBF) kernel to gain a high accuracy in our

classification (see Supplementary material for an introduction to SVM).

We use two SVM classifiers. The first classifier is responsible to

discriminate between particle objects and any other kind of objects

(non-particles and errors). Because of the similarity between errors and

particles, the output of the first classifier is not so accurate, and some

errors are labelled as particles. Therefore, to reduce the false positives to a

feasible extent, the second classifier is dedicated to just focus on distin-

guishing particles from errors. This strategy was already used by Sorzano

et al. (2009). Figure 6 shows the behaviour of the classifier for three types

of objects. As can be seen, the first classifier passes the error, but the

Fig. 2. Particle shape description at different frequencies. First, Nh bandpass filters (column B), with a width of �R and a decay of �R (see the last image

in this column), are applied to the input micrograph (column A) and boxed images are extracted at the location of particles or particle candidates

(column C). Sub-band images for the particle (column C) are converted to polar form, and cross-correlations between different sub-bands are

calculated (column D). �� ½ð�180
�

, 180
�

Þ� and �r ([0, rp], where rp is the radius of particle) are shifting parameters to slide one polar image on one

another. The indexes below each cross-correlation (column D) refer to the polar images that form it. Parameters for this figure are

Nh ¼ 6, �R ¼ 0:025, �R ¼ 0:02, rp ¼ 25 (see the main text)

Fig. 3. Particle shape description at different frequency bands: cross-cor-

relation among sub-bands for a particle (a) and non-particle (b). The

indexes below each cross-correlation refer to the k and k0 sub-bands.

Note the important differences between particles and non-particles for

the functions (1, 1), (2, 2), (3, 3), (1, 2), (1, 3), (2, 3) and (2, 4)
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second classifier rejects it. In fact, the learning process follows the same

steps as in the algorithm by Sorzano et al. (2009). First, the user picks all

particles from the first micrograph and they are clustered in order to

construct particle templates. All non-selected locations are assumed to

correspond to non-particles and some of them will be later used to train

the classifiers. This manual step can be continued with more micrographs

to expand the training set. It is worth pointing out that none of the

classifiers are trained at this point.

Once the training set is large enough (empirically, at least 30 training

particles are required), the process enters a supervised phase. The rota-

tionally invariant subspace as well as the PCAs for the polar, sub-band

cross-correlations are calculated on the training particles. Then, feature

vectors are calculated for the manually selected particles and non-

particles. Finally, the first classifier is trained using this data. At this

point, the algorithm tries to automatically pick the next micrograph in

the list of micrographs that was not previously manually picked. After

suggesting possible particle locations, the user can correct the results by

adding those missed particles (false negatives) and removing wrongly

picked particles (false positives). After being corrected by the user, the

first classifier is retrained using all previous information plus the new set

of false negatives and false positives. The second classifier is trained to

distinguish between all particles known so far and the set of false posi-

tives. This process can be repeated several times on more micrographs till

the performance of the classifiers is not further improved by user correc-

tions. This ongoing learning process is particularly interesting because the

classifiers carefully adapt to the user’s preferences.

When the user is satisfied with the performance of the classifier during

the semi-supervised phase, he can go to a fully automatic particle picking

mode, in which all micrographs that have not been picked yet are auto-

matically picked (in parallel). At the end of this process, the user can

supervise the result and eliminate wrongly picked particles or add missed

particles.

3 RESULTS

We applied our APP method on three datasets to assess the

speed and accuracy of the proposed algorithm for micrographs

with different contrast, density and particle shape and size. These

Fig. 6. Behaviour of the classifiers for three types of objects. The first

classifier may classify errors as particles, but the second classifier is

designed to remove errors from the final result

Fig. 4. First four eigenvectors corresponding to the PCA of the cross-

correlation functions between two sub-band images for manually picked

particles of the KLH dataset. The index under each group of four images

shows the contributed sub-band images (kk0, in the text)

Fig. 5. Eigenvectors (Ponce and Singer, 2011) corresponding to a given

template, (a) Given particle template. (b) First 20 eigenvectors of the

template that generate a rotational invariant subspace
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datasets are: KLH (keyhole limpet haemocyanin), adenovirus

and helicase. All the experiments were done with the same

fixed parameters (Nb ¼ 4, Nh ¼ 6, Nrb ¼ 20 and Ni ¼ 9) on a

single core of a CPU Intel Core i5, 64 bits, 2.53GHz (of a stand-

ard laptop with 4 gigabytes of RAM).
To show the results in a quantitative way, we have used the

performance metrics introduced by Langlois and Frank (2011).

If TP is the number of true positives, FP the number of false

positives and FN the number of false negatives, then these met-

rics are defined as

� Precision¼ TP
FPþTP

� Recall¼ TP
FNþTP

� F-measure¼ 2� precision�recall
precisionþrecall

Precision shows the fraction of picked particles by the algo-

rithm that is real particles, and recall indicates the fraction of

true particles that are picked by the algorithm. F-measure is a

harmonic mean to summarize both recall and precision.

3.1 KLH dataset

This dataset was produced as a general benchmark for APP by

Zhu et al. (2003). It includes 82 micrographs of KLH particles.

A Phillips CM200 TEMwas used to record the micrographs on a

2K� 2K CCD Tietz camera at a magnification of 66 000� and

a voltage of 120 kV. The sampling rate at this magnification was

2.2 Å/pixel.

In the 3DEM Benchmark site (http://i2pc.cnb.csic.es/3dem

benchmark) the dataset has been split into two datasets: one

with 30 micrographs for training and another one with 50

micrographs for testing. We set the size of particles to 200

pixels, and processed 10% of the local maxima of the correlation

map.
To evaluate the connection between the number of particles

and accuracy metrics, we calculated precision, recall and F-meas-

ure for the test dataset after training the classifier with different

numbers of true particles of the training dataset. Figure 7 shows

how these three parameters change as the number of training

particles is increased. As can be seen in this figure, precision,

recall and F-measure of the algorithm are increased if we keep

training the classifier with more and more particles. Training

with more than 173 particles (13 micrographs), a precision

range of [80.0, 85.2] and a recall range of [73.1, 77.8] are achiev-

able. F-measure ranges as a summary of precision and recall in

the interval [77.53, 80.06]. Since there is a trade-off between recall

and precision, F-measure looks smooth, and changes in a small

range.
Training the algorithm with 39 manually picked particles took

3.5 s. After training, the algorithm needs 1 s to suggest new par-

ticles on each new micrograph and 2.5 s to retrain after being

corrected by the user. Picking particles from 50 micrographs of

the test dataset took 51 s, without any parallelization (however,

current Xmipp implementation can benefit from multiple CPUs

by concurrently picking different micrographs).
According to the 3DEM benchmark, our previous APP

method was capable of selecting particles with an average time

of 47 s, precision rate 80.94% and recall rate 68.59%. For the

new algorithm, the precision and recall rates are reported as

85.16% and 74.81%, respectively, and the average processing

time for each micrograph is 1 s. Therefore, the proposed algo-

rithm is very fast and produces accurate results compared with

our previous algorithm (Sorzano et al., 2009) as well as with the

reported results in the APP challenge (Zhu et al., 2004).
Figure 8 shows the result of the algorithm for one micrograph

of the test dataset with nine particles. In this figure, nine green

squares show the selected objects, from which one long particle

with ‘þ’ symbol is a false positive. One particle, marked with ‘�’

symbol, is missed from the final result.

3.2 Adenovirus dataset

In this experiment we examined the reliability of our method by

means of a set of micrographs (Pérez-Berná et al., 2009) that has

lower contrast but higher density and a larger particle size than

the KLH dataset (Fig. 9).

Fig. 8. The result of the algorithm for one micrograph of the KLH

dataset with nine particles. Nine objects are boxed in green as particles.

There is one false positive and one false negative, which are identified by

þ and �, respectively

Fig. 7. Three accuracy metrics for the automatic selection of particles

from the KLH test dataset according to the number of particles used

to train. The vertical axis shows the values for precision (blue), recall

(red) and F-measure and the horizontal axis shows the number of training

particles
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Adenovirus type 2 is an icosahedral mammalian virus with a

molecular mass of 150 MDa, and consists of genomic DNA and

structural proteins. Samples were vitrified in liquid ethane, and a

FEI Tecnai G2 FEG microscope at working voltage of 200 kV

was used to analyse the samples. Micrographs were recorded on

a film at a magnification of 5000�, and digitized in a Zeiss

Photoscan TD scanner using a step size of 7mm, which provided

a sampling rate of 1.4 Å (particle size at this sampling rate is 600

pixels). True particles for this dataset were manually identified by

Pérez-Berná et al. (2009).
Like in the previous experiment, the original 305 micrographs

are divided into a training dataset with 30 micrographs and a

test dataset with 275 micrographs (these two datasets can be

obtained from http://i2pc.cnb.csic.es/3dembenchmark/). The

sizes of the micrographs are not the same, but we know that

40005height515 000 and 40005width512 000 pixels. The

dimensions of the micrographs were internally reduced by a

factor of 4. We examined 90% of the local correlation

maxima, and assumed that one template was enough for the

cross-correlation.

We used 334 particles and 690 non-particles from the first

14 micrographs to fully train the classifier. The classifier was

used to automatically pick the particles of the test dataset. This

experiment resulted in picking 9216 particles with precision rate

92.17% and recall rate 90.24%. Figure 9b shows the result of the

automatic picking for one micrograph of this dataset. As it can

be seen in this figure, the algorithm picks 115 particles from this

micrograph and particles close to or inside the carbon parts are

rejected.
The average processing time per micrograph was 34 s, which is

more than for the KLH dataset because it is more dense (90% of

the local maxima are checked) and the size of the micrographs

and particles were twice and three times larger than the KLH

dataset ones, respectively.

3.3 Helicase dataset

In this section we work with the complex of a helicase and its

loading factor with a total molecular mass of 0.39 MDa (V.A.

et al., unpublished data). This dataset consists of 160 micro-

graphs of size 4046� 4046. The CCD of a JEOL JEM-2200FS

microscope with magnification 50 000� and voltage 200 kV pro-

vided digital micrographs with pixel size 2.16 Å.
The rather dense micrographs of this dataset (the average

number of particles in each micrograph is 572) (Fig. 10b) as

well as the small particle size make them particularly difficult.

Additionally, contrast is especially low due to the cryo-EM con-

ditions. This in-house dataset is not published yet, and no bench-

mark is available in order to check the accuracy quantitatively,

therefore the result is given qualitatively.
We set the size of particles to 100 pixels, and processed 90% of

the local maxima to ensure that no particle was missed. To train

the classifier, 1037 positive and 2510 negative samples were ex-

tracted from the first two micrographs, and then for the third

micrograph the algorithm automatically picked 874 particles in

50 s. Figure 10 shows the result for the third micrograph of this

dataset, qualitatively in agreement with user expectations.

4 DISCUSSION AND CONCLUSION

In this article, we proposed an APP algorithm that identifies

particles from electron micrographs more accurately and faster

compared to our previous method by Sorzano et al. (2009),

already one of the best performing methods. A set of robust

shape-related and statistical features are extracted from particle

candidate locations (that are distinguished by cross-correlation

between the templates and micrograph) and a two-stage classi-

fier decides if each feature vector is a particle or not. Like in

Fig. 9. Automatic selection for one micrograph of the adenovirus data-

set, (a) The template for cross-correlation. (b) The micrograph with 115

automatically selected particles

Fig. 10. Automatic selection for the third micrograph of the helicase

dataset, (a) The template for cross-correlation; (b) 874 automatically

picked particles from the micrograph
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Sorzano et al. (2009), the learning process of the classifier is
continuous to grab the features of the user desired particles,
and the second stage of the classifier is used to concentrate just

on making distinctions between particles and errors, which are
very similar to particles. Experimental results for three datasets
show that this algorithm is able to select particles accurately even

from low-contrast and highly dense micrographs.
The feature vector includes three types of features. This feature

vector is robust to noise and has a high discrimination power, so

that the classifier can distinguish between particles and non-
particles. Having two types of features for shape description at
the same time helps us to reduce the probability of producing

partially similar feature vectors for particles and non-particles.
For instance, in case of the KLH dataset, the descriptors at dif-
ferent frequencies are not adequate to properly distinguish be-

tween side and top views of the particle. On the other hand, the
calculated shape descriptors from rotational invariant subspace
are not sufficient to separate errors very similar to the side views

of the particle. As a summary, these two types of features con-
spire efficiently to decrease the false positive rate. Statistical fea-
tures are also important to catch the properties of the intensity

distribution, and prevent the APP from picking particles from
the carbon parts of micrographs. The role of this type of feature
is clearer for helicase and adenovirus datasets, where more par-

ticles lie in dark areas of the micrographs. In Supplementary
material, the classification power of the individual features is
assessed in depth.

To decrease false positives as much as possible, a two stage
SVM classifier is used to classify the feature vectors: the first
stage to separate particles and non-particles, and the second

stage to remove errors (very similar to particles) from the
output of the previous stage. Each SVM component of the clas-
sifier is capable of performing the separation with an accuracy of

490% (see Supplementary material). The second component of
the classifier plays an important role in reducing the false positive
rate (e.g. 15% of wrongly selected particles were discarded by the

second classifier in the KLH dataset).
There are six parameters that can be set by the user: number of

sub-bands, PCA basis, rotational PCA basis, consecutive sub-

bands to be correlated, templates and percentage of local
maxima in correlation map to keep. Although these parameters
help the user to achieve the highest possible accuracy, they can

result in complexity. To moderate this complexity, the value of
the first four parameters is set by default, so that the user can
focus on adjusting the last two parameters (number of templates

and percentage of local maxima to keep).
Regarding the particularities of the datasets, KLH is a dataset

with highly contrasted particles, but there are two sources of

errors that make it challenging. First, a few background objects
and also noisy top views that present features similar to the ones
of the particles. Second, KLH can polymerize to some degree.

The second classifier is in charge of removing these polymerized
particles, and keeping, at the same time, the recall rate at a rea-
sonable level.
For the adenovirus dataset, our algorithm achieved a better

accuracy than for the KLH dataset. The reason is that, although
the micrographs are denser and have samples with lower con-
trast, the similarity between particles and non-particles is not as

high as in the KLH dataset. The second classifier rejects just 3%

of the outputs of the first one. Difficult cases in this dataset are

those particles located on carbon areas, which are efficiently

distinguished by statistical features.
The speed of the algorithm was examined for the three data-

sets. According to the density of micrographs, it can go from 1 s

to 50 s. Most computations are related to feature extraction, es-

pecially the shape descriptors. In order to eliminate this bottle-

neck and improve the speed even more, in our implementation

particle candidates are divided between different threads. In add-

ition to this, the automatic selection of particles from micro-

graphs is performed in parallel. In this way, our APP is

extremely fast and can be executed in a very short time.
This algorithm is included in Xmipp 3.0 and downloadable

from http://xmipp.cnb.csic.es. The APP is accessible through

the protocols described by Scheres et al. (2008).
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