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The introduction of direct detection devices in cryo-EM has shown that specimens present beam-induced
motion (BIM). Consequently, in this work, we develop a BIM correction method at the image level, result-
ing in an integrated image in which the in-plane BIM blurring is compensated prior to particle picking.
The methodology is based on a robust Optical Flow (OF) approach that can efficiently correct for local
movements in a rapid manner. The OF works particularly well if the BIM pattern presents a substantial
degree of local movements, which occurs in our data sets for Falcon II data. However, for those cases in
which the BIM pattern corresponds to global movements, we have found it advantageous to first run a
global motion correction approach and to subsequently apply OF. Additionally, spatial analysis of the
Optical Flow allows for quantitative analysis of the BIM pattern. The software that incorporates the
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new approach is available in XMIPP (http://xmipp.cnb.csic.es).

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

The single-particle analysis (SPA) technique is able to yield
three-dimensional (3D) structural information for biological com-
plexes at near atomic resolution by combining many thousands
of projection images obtained using transmission electron micros-
copy (TEM) (Frank, 1996). To achieve high-resolution results in
SPA, the characteristics of the image-recording medium are of
great importance. Traditionally, electron microscopy images were
either recorded on photographic film or with scintillator-based
charge-coupled device (CCD) cameras. Each of these two types of
detectors offered certain advantages and disadvantages. Film was
the preferred recording medium for high-resolution information
but required manual scanning of the micrographs, thus limiting
automation of processing. Scintillator-coupled CCDs permitted
high-throughput image acquisition, allowing full integration
between the electron microscope and image-processing software
packages. However, scintillator-coupled CCDs record photons, not
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electrons, and the conversion of electrons to photons comes at
the expense of resolution loss at high spatial frequencies (Frank,
2006). This “status quo” limitation has been overcome recently
by the new generation of “direct detection devices” (DDDs), first
introduced as academic prototypes in 2005 (Milazzo et al., 2005)
and offered commercially in 2010 (Jin and Bilhorn, 2010). These
sensors detect electrons directly and provide sharper images and
higher signal-to-noise ratios (SNRs) (Bammes et al., 2012). Addi-
tionally, the fast image acquisition rate of these DDD detectors,
ranging from 16 to 400 images per second (Bai et al., 2013;
Bammes et al., 2012; Li et al., 2013b), makes it possible to study
the behavior of frozen hydrated specimens as a function of electron
dose and rate. Therefore, it has become clear that biological speci-
mens in a solid matrix of amorphous ice move during imaging,
resulting in “beam- induced motion” (BIM) (Brilot et al., 2012),
which is a critical experimental “resolution barrier” in cryo-elec-
tron microscopy (Glaeser and Hall, 2011). The subsequent intro-
duction of DDDs has cleared a path to obtaining reconstructions
at close-to-atomic resolution for a broad range of specimens. How-
ever, the number of reported works that use DDDs is currently not
large, and therefore, certain basic questions on BIM characteriza-
tion remain unanswered. In general, BIM is expected to induce pat-
terns of local movement, although the degree of locality and the
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extent of the movement itself are varying widely in different
reports (Bai et al., 2013; Booth et al., 2004; Campbell et al., 2012;
Li et al,, 2013a,b).

In Bai et al. (2013), results for the Falcon II (FEI) are presented
using two test samples: the prokaryotic and eukaryotic ribosome.
The authors report a movie processing workflow in which an initial
3D map (which disregards BIM) is first obtained and subsequently
used to estimate an initial alignment from different frames by
applying a statistical refinement method (Scheres, 2012). In their
work, the authors report a high degree of local sample movements
(see Fig. 1bin Bai et al. (2013)). The algorithm proposed in Bai et al.
(2013) produces high-resolution information, but it requires the
specimen images to be detected and picked up from the initial
video frames, which is a challenge for small particles. However,
in Li et al. (2013b), the authors showed results for the K2 Summit
(Gatan) direct electron-detection camera and achieved ~3.6-A res-
olution in their 3D map of an archaeal 20S proteasome (~700 kDa
and dihedral D7 point group symmetry) using 10,000 particles. The
alignment method used in Li et al. (2013b) consists of a pure in-
plane drift correction in which a step of the sub-frame translational
alignment is introduced by dividing each frame into a number of
sub-frames (normally 3 x 3 sub-frames, each of 2000 x 2000 pix-
els). This approach is fast if running on GPUs (typically, it takes
approximately 10-20 s to process 16 frames of 3876 x 3876 pix-
els), and at the end, an “average” micrograph is generated for each
movie via the summation of all corrected frames. The output is
easy to connect with standard processing workflows in use in the
field because the DDD “video” is transformed into a “micrograph”.
The method is certainly appropriate for global sample movements
but is not the best option if the sample motion is local. However, by
achieving close to atomic resolution, Li et al. (2013b) convincingly
showed that for their data, the majority of the motion to be cor-
rected was global, especially if the first few frames were discarded
(see Fig.4b and e in Li et al. (2013Db)). At the same time, we note the
difference from the results in Bai et al. (2013) and Campbell et al.
(2012) in which the authors report a high degree of local sample
movements, as previously mentioned. Recently, in Scheres
(2014), another method for BIM compensation was introduced that
operates over sets of previously picked particles by fitting them to
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line trajectories along the frames of the stack. Moreover, Wang
et al. (2014) introduced an approach that corrects the motion of
boxed particles using the running averages of the frames and cal-
culating the cross-correlations between each frame and the sum
of the previously aligned frames, starting at the end of the expo-
sure and working backwards towards the beginning. In this work,
we do not enter into a discussion of the nature of BIM itself, but
instead, we concentrate on a new image- processing approach that
aims to achieve the following objectives: (1) obtain an in-plane
“BIM corrected” image that integrates all frames and is computed
directly from the stack without performing a particle picking step,
and (2) provide fast, objective and quantitative characterization of
BIM that accounts for both global and local BIM patterns. Naturally,
this integrated image can be used in any of the standard image-
processing workflows in cryo-EM as if it were a traditional
micrograph.

The proposed method is based on an advanced Optical Flow
approach (abbreviated as “OF” in this work) using a pyramidal
implementation of the Lucas-Kanade (LK) algorithm (Lucas and
Kanade, 1981) with iterative refinement (Bouguet, 2001), which
makes the approach quite robust to high levels of noise (Vargas
et al,, 2014). In essence, OF works best at a local level and is there-
fore particularly suited for those cases in which the BIM pattern
presents a high degree of local movements, as in the Falcon II data
sets used in this work. If the BIM pattern is characterized primarily
by global movements, OF will have only a minor effect on the final
average. Still, even for those latter cases, we have found it advan-
tageous to use the Li et al. (2013b) method combined with OF,
by running the Li method followed by the second method to obtain
an additional level of refinement and a highly intuitive graphical
representation of the total BIM pattern.

2. Methods

Our proposed method is based on a regularized Optical Flow
approach. The input is a video composed of a set of unaligned
low dose frames, and the output is a single image obtained by aver-
aging the resulting motion-corrected frames.
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Fig.1. Diagram of the proposed Optical Flow method: The required steps for alignment of a video with 16 frames using the proposed Optical Flow method.
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2.1. Optical Flow approach

Optical Flow is a method used in computer vision to obtain the
local motion field between two image frames taken at times t and
t+ At (Horn and Schunck, 1981). Let us assume that an arbitrary
pixel at time t, with coordinates given by (x, y) and intensity I(x,
y, t) moves between two consecutive frames to a new position
(x+ Ax, y + Ay) with changed intensity I(x+ Ax, y + Ay, t+ At).
Assuming that the movement is small, we can expand the intensity
map at t+ At as given by:

ol ol ol
I(x+Ax,y+Ay,t+At):I(x,y,t)+§Ax+@Ay+aAt (1)

We assume that brightness constancy equation holds, which is

given by:

I(x+ Ax,y + Ay, €+ Ab) = 1(x,9, ) 2)

This restriction assumes that the brightness of an object does
not significantly change between two consecutive frames, an
assumption that is not problematic in our case because the expo-
sure of each frame within the movie is the same. Expression (1)
can be rewritten using the brightness constancy equation as:

ol ol ol

e u+ y v+ i 0 (3)
where u=4*and v = i—{ correspond to the velocity components or
local shift components per unit time (assuming that t is only a
frame index in our case, but taking into account the temporal infor-
mation, we can actually retrieve the velocity components). The LK
method assumes that the displacements between images are small
and approximately constant within a neighborhood of the point
(X0, ¥o) under consideration. Thus, the Optical Flow equation can
be assumed to apply for all pixels (X, ¥) within a window or neigh-
borhood centered at (xo, y,), and in that case, the motion (velocity)
vector (u, v) at the point (xo, ¥,) must satisfy:

IX("’C y)”‘*"y(%v y)Z/: _It(%> 5;) (4)
with Iy, I, and I equal to , & and g, respectively. Note that for a

window or neighborhood composed of N,, = N, x N, pixels with
N,, larger than two, Eq. (3) gives an over-determined set of N,
equations. Therefore, we obtain the displacements between images
t and At at (xo, ¥,) by:

L(x1, y1)  L(X1, Y1) —I(x1, ¥1)

U(Xo, ¥Yo)
_ (5)
S o v(Xo, Yo) o
L(Xn, Yn)  Ly(Xn, YN) —It(Xn, YN)

which is of the form AX =b. We can obtain X through the
Moore-Penrose pseudo-inverse of A, described concisely as:

X = (A'A) " (A"D) (6)

We observe that Eq. (6) is valid only if A"A is invertible, which is
true if I and I, are different from zero in the neighborhood of the
point (xo, ¥;), a condition that is satisfied in our case because of the
high noise in our frames. From a practical point of view, to avoid
instabilities in the inversion of AA, it is recommended that a small
number (approximately 0.1) is added to the diagonal elements
(Bouguet, 2000).

2.2. Optical Flow with pyramidal decomposition and iterative
refinement

The Optical Flow approach presented is the standard LK
approach (Lucas and Kanade, 1981). This approach works well if

the pixel displacements between the frames are sufficiently small
to allow approximation using the first-order Taylor expansion
shown in Eq. (3). However, this restriction is severe and can almost
never be verified. A possible method for overcoming this limitation
is to use the LK approach multiple times, leading to a new Lucas-
Kanade Optical Flow approach with iterative refinement. The con-
ceptual workflow of this iterative process is presented in the fol-
lowing for the case of two consecutive images I; and I,:

(1) Estimate the local shifts Ax and Ay at each pixel using the LK
Optical Flow approach presented in Section 2.1.

(2) Warp one image toward the other using the previously esti-
mated shifts.

(3) Repeat steps (1) and (2) N; times, where N; is the number of
iterations selected.

Suppose that the LK approach is applied between two consecu-
tive images I; and I, and that shifts Ax and Ay are computed
between them. Next, we focus on a certain pixel (i, j), and the cor-
responding shifts at that pixel are Ax(i, j) = 2 and Ay(i, j) = 3 pix-
els, for example. In this case, applying warping to I (i, j)
corresponds to changing this intensity value to I(i + Ax(i, j),j+
Ay(i, j)) = L(i+ 2, j+ 3) = I,(i, j), where the superindex I denotes
one Optical Flow iteration. Obviously, this warping process must
be performed for all pixels using the associated shifts Ax and Ay,
which is practically performed using cubic interpolation. If the
so-obtained values of Ax and Ay are accurate, after applying the
second step (warping), the two images I; and I; will be approxi-
mately equal. Therefore, if the LK algorithm is applied again on
these two images (step 3), we obtain Ax =~ 0 and Ay =~ 0 at every
pixel. Note that following our notation, we must rewrite these shift
maps as Ax! =~ 0 and Ay' =~ 0 because we have applied one extra LK
iteration. Moreover, we observe that in experimental cases, it is
usually not possible to obtain Ax' =~ 0 and Ay' =~ 0, and additional
iterations will be necessary. Therefore, after the kth iteration, the
brightness constancy equation is expressed as follows:

I((x + AX5) + AX (y + AYF) + Ay 4+ AL = I(x,y, 1) (7)

Without loss of generality, we assume that At =1 and that
Ax* = ukAt = u¥ and Ay* = v*At = v*. The final displacement
vectors computed from this iterative scheme correspond to:

N; N;
A=) A, Ay =) A (8)
k=1 k=1

with N; as the number of iterations used. The LK with iterative
refinement allows the algorithm to provide good results in cases in
which the movements are not sufficiently small to directly use the
Taylor expression shown in Eq. (1).

An important consideration for the LK Optical Flow algorithm
with iterative refinement presented is that the window or neigh-
borhood size must be specified. As intuitively expected, the choice
of this window size introduces a trade-off between accuracy and
robustness of the approach. In this work, accuracy relates to the
local sub-pixel systematic error that is achieved, and robustness
refers to the insensitivity of the approach with respect to distur-
bances, i.e., noise and outliers. In a nutshell, large window sizes
provide more robustness but less accuracy. Additionally, to handle
large motions between the images, it is necessary to use large inte-
gration windows. To solve this trade-off, Bouguet (2000) presented
a pyramidal implementation of the iterative LK algorithm intro-
duced above that substantially reduces the dependency on the
window size. This approach is based on performing an iterative
LK Optical Flow approach recursively over different resolution rep-
resentations of the input images, known as pyramids, which are
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obtained by successively down-sampling the images. We rank
these image pyramid representations from coarse to fine resolu-
tions (note that the images with highest resolution are the input
images) and subsequently perform the iterative LK approach with
a fixed window size, beginning with the images with lowest reso-
lution and moving towards those with highest resolution. This
approach first provides a coarse and rather robust estimation of
the motion (velocity) vectors (uo, vo) from the low-resolution pyr-
amids. These vector fields are used as an initial guess for the next
Optical Flow estimation using the next higher-resolution pyrami-
dal representation images. This process is followed recursively
until the highest-resolution images (input images) are used.
Observe that this pyramidal implementation of the LK Optical Flow
algorithm with iterative refinement provides a clear advantage
because the integration window size can remain fixed and small,
thus ensuring high accuracy and robustness. In Section 3.3, we
present the details of the strategy we use in this work to select
the window size for each case.

2.3. Proposed Optical Flow approach for DDD frame alignment

In cryo-EM, the types of images in which we are interested are
characterized by notably low SNRs. As a consequence, we must add
additional robustness against noise to the standard LK Optical Flow
with the pyramidal decomposition and iterative refinement
(LKPDI) presented in Section 2.2 (Bouguet, 2000). To this end, we
have designed a sequential processing workflow, which attempts
to maximize the signal and minimize the noise at each step of Opti-
cal Flow estimation.

Because the movie frame images are characterized by notably
low SNRs, it is not possible to directly obtain reliable shift maps
between consecutive frames. To improve the Optical Flow results,
we follow a coarse-to-fine alignment process. To this end, we first
obtain the average of all frames within the movie, which is initially
established as the first estimation of the corrected movie average
image. Subsequently, the frames are divided into two sets by
grouping frames that are consecutive in time, and the average
image of each set is computed. Observe that the first estimation
of the corrected movie average as well as the obtained average
images of each set have high SNRs at low resolution. As a conse-
quence, if we align these average images with respect to the avail-
able corrected movie average, we obtain robust but coarse shift
estimations. Using these shifts, a new corrected average can be
estimated, and each of the frame sets can be divided in two again.
Therefore, we once again perform the same process between the
obtained average images of each group and the available corrected
movie average using the previously obtained shifts as initial
guesses. As a result, we obtain improved shift estimation in each
refinement process. Therefore, the proposed alignment approach
consists of a coarse-to-fine estimation of the shifts, which
improves the robustness of the method with respect to noise in
the images.

In the following, we introduce a more detailed description of the
proposed method from a mathematical point of view. We first
introduce the notation and subsequently describe the algorithm.

Let I; be the ith frame in the stack, ):j’-‘ be the unaligned average of
the jth subgroup of the frames in the kth iteration (how these sub-
sets are formed will be described later), £* be the aligned average in
the kth iteration obtained using all images and, finally, let ijk be the

aligned average of the images belonging to the subset j in iteration
k. Next, the Optical Flow algorithm is described as follows:

1. For k =1, the algorithm computes the average of all N una-
ligned frames X! = (ZLL) and initializes the refined average

estimation as X! = X!, Next, k is updated as k=k+ 1, and for
k > 1, the following iterative process is executed.

2. Images are split into 2¥~ subgroups, and the unaligned average
of each group is computed. Therefore, there are 2¢~! averages

with  N/2¥'  images in each average such that
ZJ’-‘ = ( s 1i>, where sk = N/2¥1. Note that for k=2, the

i=(j—1)sk+1
set is divided into two groups, and for each group, we obtain
the unaligned averages X? and X2.

3. Next, we compute the LKPDI optical flows between the new set

of unaligned averages Z]’-‘ and the corresponding set of aligned

images computed in the previous iteration 1. The result,
which is a map of shift vectors centered at each pixel that aligns

=¥ with Z¥1, is known as OF}. The estimation of OF} requires an

initial guess; our algorithm uses OFJ(‘/’Zijmodz for k > 2 and a zero-
valued matrix of displacement or shift vectors for k = 2.
4, Using the obtained shift vector matrix (OF}‘), the averages ZJ’-‘ are

aligned; we refer to these aligned averages as fj’-‘. A new

corrected average is computed as Tk = ij:k] (Z6)/2% If the
groups contain more than one frame, Steps 2 to 4 are repeated.

Fig. 1 shows a diagram of the proposed approach for a movie
composed of 16 frames. This procedure is applicable to movies
with a number of images that is not a power of 2 by simply read-
justing the appropriate indices. Note that this alignment strategy
improves the robustness of the approach against noise, and at
the same time, it reduces other potential issues, such as the valid-
ity of the brightness constancy equation due to radiation damage
or changes in brightness resulting from mass loss during exposure.

3. Results

This section presents a collection of tests using both simulated
and experimental data. To obtain the optical flow, we used the
OpenCV (Bradski, 2000) (Open Source Computer Vision Library)
implementation of the Lucas-Kanade dense Optical Flow (in which
the Optical Flow is computed for all pixels), which provides both
CPU and GPU execution modes. For the LK algorithm, we set the
number of iterations to 10 and the number of scales to 6 as con-
stant values for all datasets and also separately optimized the win-
dow size for each dataset (the details of how to obtain the window
size are described in Section 3.3). The algorithm was executed on a
single GeForce GTX 690 GPU card with two Kepler GPUs as well as
in CPU mode. Typically, the GPU-based execution time is only
approximately three times faster than in CPU execution mode,
clearly showing that I/O has a large detrimental impact on the
GPU performance.

3.1. Simulations

We used computer simulations to test a subset of the basic fea-
tures of the newly proposed algorithm. In particular, in this simpli-
fied system, we aimed to study two different situations: (1) global
versus local movements, i.e., the ability of the method to compen-
sate for both global and local movements, and (2) random versus
drift-like movements, i.e., the ability to recover information when
the movement in between frames is random and when it displays a
certain directionality (a drift-like effect).

In all cases, we compared the results obtained by OF with the
results provided by the Li et al. (2013b) alignment approach for
two different cases. Note that because the output of our method
is an integrated image, we cannot easily compare the proposed
method with that of Bai et al. (2013), for which the output is a
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3D reconstruction. In the first case, we applied the Li et al. (2013b)
alignment method using the entire collection of image frames (Li
Global), and in the second, we divided the images (i.e., the frames)
into nine overlapping sub-images and aligned each of them inde-
pendently, as suggested in Li et al. (2013b), to render the method
more robust with respect to local sample movements (Li Local).
For the simulation, we used one frame of a movie provided in Bai
et al. (2013) with a size of 4096 x 4096 pixels that were cropped
to 3876 x 3876 pixels (because of the presence of artifacts at the
borders). Depending on the type of the simulation, we applied glo-
bal or local shifts (random or drift-like) to this frame, and added a
random Gaussian noise to each simulated frame, thus creating a
series of movies. In all cases, the shifts were randomly drawn from
a uniform distribution with zero mean and a variance of 2 pixels.
The SNR of each frame in the different simulated movies is 0.5.

3.1.1. Global versus local movements

3.1.1.1. Global movements. In this case, we added the same move-
ment to each pixel of the simulated frames. Thus, we composed
a simulated movie formed by sixteen unaligned frames. The differ-
ent applied shifts are shown in Table ST with reference to the shifts
of the tenth frame, i.e., AX; = (Ax; — Ax19) and Ay; = (Ay; — Ayqo)-
Note that for a stack of size 16, Li’s implementation considers the
tenth frame as the reference by default and provides all other shifts
with respect to this frame. For this movie, we applied OF using a
window size of 25 pixels as an input parameter. In turn, the align-
ment approach presented in Li et al. (2013b) was executed using
the entire image and also dividing the frames into nine overlapping
sub-images of size 2048 x 2048 pixels, as suggested in Li et al.
(2013b). The resulting shifts (mean shifts) are quite similar to
the theoretical shifts, as shown in Table S1. An analysis of the
root-mean-square error (rms) between the computed and the the-
oretical displacements provides average rms values of 0.0048 and
0.011 for Li Global, 0.0027 and 0.011 for Li Local, and 0.032 and
0.042 for OF, respectively, in pixel units. As expected, in this case,
Li’s method provides slightly better results than OF because it is
essentially a global alignment approach, whereas OF is a local
approach. However, we observe that even in this unfavorable case,
the proposed OF approach provides notably accurate and precise
results (on the order of 1072 pixels), indicating that the two meth-
ods behave the same in practical terms.

3.1.1.2. Local movements. For this case, we used the same starting
image as in the previous case but introduced local shifts between
frames. For simplicity, the local shifts were introduced only in x
as given by the expression:

0, i=1,
i = {4sin (2m(3+4:)), i#1 ®

where Ax; are the local shifts, (N¢, Ng) are the number of rows and
columns, i is the number of the frame within the movie, and N is the

1

number of frames that compose the movie. The reason for this sim-
ulation with only local movements in the x-axis was to provide a
precision estimation for the alignment approaches (how well the
shifts are recovered when the theoretical shifts were exactly zero),
thus avoiding such synthetic effects as quantization and interpola-
tion while maintaining the added noise.

Fig. 2(A) displays a graphical plot of the theoretical shifts intro-
duced by Eq. (9), for i =1, with reference to the shift of the tenth
frame given by AX; = (Ax; — AXqo). In the same manner, Fig. 2B
presents the shifts AX; recovered by OF, and Fig. 2C displays the
results from Li Local. In this simple graphical representation, it is
clear that 2B is rather similar to 2A, but 2C is markedly different.
In more quantitative terms, we computed the mean of the rms
errors between the theoretical and obtained shifts, obtaining 5.26
pixels for Global Li, 4.04 pixels for Local Li; 0.1 pixels for OF along
x; and 0.19 pixels for Global Li, 0.20 pixels for Local Li, and 0.02 pix-
els for OF along y. As observed from this analysis and Fig. 2, in this
local-shift case, the results obtained from OF are considerably bet-
ter than those provided by the Li approach, as expected by the rela-
tionship between the two methods. Additionally, we observe that
the OF results along the y-axis are significantly better than the
results along the x-axis because of quantization and interpolation
effects and because the OF approach assumes the shifts are the
same within a window, which is obviously true for the shifts along
the y-axis but not true along the x-axis.

3.1.2. Random versus drift-like movements

The goal of this test was to evaluate the performance of the
Optical Flow approach in those cases in which the movement in
between frames was random compared with the cases in which
the movement had a certain level of directionality along the stack.
We were particularly interested in this question because both the
OF and Bai et al. (2013) method use a first step of averaging the sets
of frames without correction, and the quality of this uncorrected
average would be quite different if the frames moved randomly
than if the frame movement had a certain directionality. In the for-
mer case, the uncorrected average would “only” appear as an iso-
tropically blurred version of the ideal image, a rather intuitive type
of degradation that is easy to address computationally, whereas in
the latter case, the result would be a rather artifactual image that
might preclude further steps of processing. For simplicity, we con-
sidered global movements (i.e., in which the entire frame moves in
the same direction) such that the only variable remaining was the
directionality of the movement along the stack. We studied three
cases: random movements, movements with restricted direction-
ality, and drift-like movements.

The first case addressing random movements was discussed
under Section 3.1.1.1, and clearly, our newly proposed method
was shown to perform quite well. The second case (movements
with restricted directionality) was simulated by applying different
shifts between frames, where the directions of the shifts were

0
-0.2
0.4
-0
-0,
-1
-1

1
-1

B3

~

Lo
PO a

&

Fig.2. Recovered simulated local shifts using optical flow: graphical representation of theoretical and recovered local shifts along x referred to the shift of the tenth frame
(Ax; — Axy0). Theoretical shifts in x (A). Shifts obtained by OF (B) and Li Local (C), respectively.
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drawn from a Gaussian distribution with a zero mean and a stan-
dard deviation of 0.4 radians or 23 degrees to generate a stack of
16 frames. Note that the shifts along the stack are cumulative; each
shift is the sum of the previous shifts and the current shift. The
Optical Flow method with different window sizes was applied to
this stack. For a window size of 50 pixels, we obtained the best
rms on the x- and y-axes of 0.2518 and 0.0146 pixels, respectively.
Note that although we were still able to recover the shifts with
good accuracy, the results were worse than in the previous case.
Finally, in the third case, we considered the situation in which all
shifts accumulated in exactly the same direction, and in this case,
we clearly were not able to recover the movements, even if large
window sizes were applied (note that the Li method was not
affected by this drift-like effect and performed well in this case).

3.2. Experimental results

In this section, we present the results obtained by applying our
proposed algorithm to different datasets, each taken from different
specimen samples imaged on different microscopes and cameras,
to assess the robustness of the proposed method under experimen-
tal conditions.

A key issue in comparing the performance of different algo-
rithms is the use of a good comparison metric. This metric should
provide objective results while ideally offering simple and rapid
calculation such that multiple tests can be performed. Thus far,
most of the published works on DDD have concentrated on explor-
ing the best resolution achievable from a certain dataset when pro-
cessed in a number of different ways. Indeed, this ideal describes
the “ultimate” comparison metric, but it is clearly neither simple
nor fast to calculate. Additionally, it is difficult to distinguish
whether an improvement originates from the movie processing
procedure or the 3D reconstruction iterative process. As a method
of mitigating this problem, we analyzed the effect of misalignment
(initial or “residual” misalignment) on the power spectral density
(PSD) of the final “corrected” average. We present this analysis in
the Appendix. An interesting result is that the shapes of the CTF
envelope and of the spectral signal-to-noise ratio (SSNR) represent
notably good performance metrics. Indeed, residual errors in the
alignment correction translate into a dampening of these metrics
such that we can judge the quality of the correction (how small
the residual misalignment was) by comparing them and looking
for the case in which this dampening is most reduced. Assuming
axial astigmatism to be minimal in these high-quality datasets,
we calculated frequency radial averages, resulting in 1D curves
that can be easily analyzed. In all cases, we compared the results
of OF with those of both the Local and Global Li approaches in
terms of alignment accuracy and execution speed.

3.2.1. Ribosome dataset

In this case, we used two different movie stacks previously
reported in Bai et al. (2013) and made publicly available at
(http://www.ebi.ac.uk/~ardan/aspera/em-aspera-demo.html). The
names of the movie stacks as deposited are “15_movie_gc_win-
dow.mrcs” and “205_movie_gc_window.mrcs”, and both corre-
spond to images of the Saccharomyces cerevisiae 80S ribosome.
The images were recorded on a FEI Falcon II direct electron detec-
tor with nominal magnification of 59,000x at a working voltage of
300 kV, resulting in a pixel size of 1.77 A (the size of the ribosome
at this sampling rate is approximately 150 pixels).

We processed these movies with both the Li Global and Li Local
approaches as well as with the proposed OF method using a window
size of 150 pixels. The results are presented in Fig. 3A and B, which
show the 1D profiles of the CTF envelope and SSNR functions
obtained for “205_movie_gc_window.mrcs” and “15_movie_gc_
window.mrcs”, respectively. As expected, both the Li and OF

approaches improve the results compared with the direct average
of the unaligned frames. However, OF clearly provides better results
(higher envelope and SSNR) than the Li approach for low and high
frequencies. In Fig. 3C, we present a comparison between the peri-
odogram (i.e., the modulus-squared of the discrete Fourier trans-
form) of the initial uncorrected average (left) and that obtained by
the application of the Optical Flow approach (right).

As a new piece of information, in Fig. 4, we present the vector
fields obtained by OF corresponding to the movements that each
pixel undergoes between frame 1 and frame 2 for the two test
cases (see Movie S1 for a representation of the vector fields for
all consecutive frames). In this figure, the information of the shifts
is coded using the Hue, Saturation and Value (HSV) of the color. As
the hue value varies from 0 to 1.0, the corresponding colors vary
from red, through yellow, green, cyan, blue, and magenta and back
to red such that red values actually occur at both 0 and 1.0. As the
saturation varies from 0 to 1.0, the corresponding colors (hues)
vary from unsaturated (shades of gray) to fully saturated (no white
component). As value or brightness varies from O to 1.0, the corre-
sponding colors become increasingly brighter. In our case, the hue
gives information on the direction of the movement, and the satu-
ration gives information for the magnitude. As observed from these
movies, the orientation map is locally smooth, and the displace-
ment pattern is clearly non-global, as originally reported (Bai
et al., 2013). A simple and intuitive analysis of the movements
among all of the movie frames is presented in Fig. 5 (as applied
to the results shown in Movie S1). The information on the pixel
movement is coded both in Cartesian and polar representations
in which a number of circles are shown. The position of the center
of each circle corresponds to the mean displacement between two
consecutive frames calculated by averaging the pixel’s displace-
ments in x and y over all of the pixels within the frame as provided
by the corresponding vector fields. In turn, the area of the circle
represents the compound standard deviation in x and y, i.e,

\/0% + 0%, where ¢ and ¢} are the variances in the x- and y-axes,

respectively. Note that for the sake of this representation, we con-
sider that the shifts along the x- and y-axes behave as random vari-
ables that are independent such that we can obtain the standard
deviation of the sum as the square root of sum of the variances.
Consequently, the position of the center of the circle represents
the “global” (mean) displacement, and its area represents the
pixel-to-pixel differences with respect to this mean displacement.
In other words, the area is related to the amount of local versus
global movements between two frames. It is clear from Fig. 5A
and B that the global movements between frames are within a frac-
tion of a pixel and that there is a certain directionality in the
between-frame movement. We comment on this observation and
subsequent plots later in this manuscript together with the results
for additional cases presented.

The execution time for a stack of this dataset is 123 s using OF,
50 s using the Li Local approach, and 20 s using the Li Global method.

3.2.2. Influenza virus RNP dataset

In this experiment, we used a stack of influenza virus ribonu-
cleoprotein (RNP) (unpublished data) consisting of 70 frames col-
lected with a FEI Falcon II direct electron detector at the MRC
with a pixel size of 2.26 A. The total exposure time was 4 s.

As in the previous experiment, we obtained the integrated
image using the simple average, Li Local, Li Global, and OF. A com-
parison of these methods using the CTF envelope as well as the
SSNR is shown in Fig. 6A. As shown in this figure, OF presents a
higher accuracy compared with that of the other methods. In
Fig. 6B, the uncorrected (left) and corrected (right) periodograms
are shown together, and in Fig. 6C, an analysis of inter-frame
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movements is presented. Fig. 6C clearly shows that in this stack,
the movements between frames are virtually random.

The total processing time for this stack is 5 min and 17 s for OF,
1 min and 25 s for Li Global, and 4 min and 17 s for Local Li.

3.2.3. Archeal 20S proteasome

In this work, we also tested the OF procedure on image stacks
recorded using a K2 Summit camera operated in super-resolution
counting mode. Images were recorded from frozen-hydrated
archaeal 20S proteasome, as described previously (Li et al,
2013a). Briefly, each image stack consists of 24 sub-frames with
a pixel size of 1.22 A. The total exposure time is 5 s. Because it is
an electron counting camera, the K2 Summit requires that images
are recorded with a low dose rate in the camera, resulting in a long
exposure time (Li et al., 2013a). Different from the previously pre-
sented images recorded with Falcon II, images recorded with K2
Summit in this work often contain drift-like motion in addition
to charge-induced motion.

As in all previous cases, the stacks were directly processed with
the newly proposed Optical Flow approach. However, in this case,
we obtained results quite similar to those presented in Section 3.1.2
for the case of drift-like movements. In essence, the shape of the
envelope function did not improve despite the use of rather large
windows. At this stage, we explored the use of the Li et al.
(2013b) method as a pre-processing step prior to OF (note that Li
method is not perturbed by the possible accumulation of shifts in
similar directions, as shown in Section 1.3.2). Furthermore, we
incorporated into OF the information on inter-frame global move-
ments provided by the Li et al. (2013b) method, resulting in a com-
bined new method that provides a clear and intuitive tool for
representing the complete BIM pattern from the vector fields.

We extended this analysis to the processing of a large set of K2
frame stacks and consistently found that the corresponding BIM
pattern had a substantially higher level of global versus local
movements. Naturally, for those cases in which the degree of local
BIM pattern was higher, the improvements due to the application
of OF were more significant. Still, in all cases, the application of OF
after the Li method provided a quantitative understanding of the
BIM pattern of the stack via analysis of the corresponding vector
fields, as presented in previous plots in polar and Cartesian
coordinates.

Following the previous reasoning, we first applied the Li Global
method to remove global movements, followed by OF to correct for
possible remaining local movements. The resulting shapes of the
CTF envelope and SSNR functions are shown in Fig. 7A for a win-
dow size of 150 pixels, and clearly, the application of OF after Li
Global improved the results only slightly. A comparison between
the periodograms corresponding to the uncorrected (left) and fully
corrected (right) stack average is shown in Fig. 7B. Furthermore,
this dataset illustrates the power of the vector fields as a new
and convenient diagnostic tool for analysis of BIM patterns. Addi-
tionally, in Fig. 7C, we show Cartesian and polar plots in which it
is immediately noticeable that there is a strong directionality of
the frame-to-frame global movement (the points are concentrated
in a small slice in polar coordinates) and that the amount of this
movement is larger than in any of the previous cases. Additionally,
the area of the circles is notably small, even considering the change
of scale in the radial variable required to properly represent larger
shifts, further indicating that the ratio of global versus local move-
ments was higher in this case than in previous ones.

Application of Li Global followed by Optical Flow on a typical
stack of this dataset required 5 and a half minutes of processing.
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Fig.6. Comparison and analysis of the alignment result for the influenza virus RNP dataset: comparison of the envelopes of the CTF (in logarithmic scale) as well as the SSNR
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size of 150 pixels (A). The periodogram for the uncorrected (left) and corrected averages (right) (B), and the analysis of the movements between consecutive frames (C).

3.2.4. Specimen images presenting fixed-noise patterns

A fixed-noise pattern is present in a non-negligible proportion
of the stacks (Li et al., 2013b; Shigematsu and Sigworth, 2013),
making pertinent the analysis of the behavior of the newly pro-
posed Optical Flow approach under these circumstances. Accord-
ing to first principles, we expect that a pattern present in the
same manner in all frames would pose problems for the Optical
Flow approach because it could drive the local movement detec-
tion towards the detection of no movement at all. We envisioned
two possible solutions: (1) perform a type of filtering to attenuate
the fixed-noise pattern or (2) first use Li Global to perform a coarse
frame alignment that would “unalign” the fixed-noise pattern
between the frames and subsequently apply Optical Flow. We con-
centrated on the second approach and obtained good results.
Fig. 8A presents a comparison of the CTF envelopes and SSNR using
Li Global, Li Local and Li Global + OF (window size = 150 pixels),
and Fig. 8B shows the periodogram of an uncorrected stack average
that presents a clear fixed-noise pattern that is removed by the
combined procedure Li Global + OF. Finally, Fig. 8C displays an

analysis of the movements between frames of this stack. Note that
in cases with strong fixed pattern noise but without a significant
global motion in each stack, our approach will not provide good
results.

3.3. Selection of the window size parameter

All methods contain parameters, and their selection generally
has important effects on the method’s behavior. For our Optical
Flow approach, and as initially introduced in the mathematical
presentation, the most important parameter is the window size.
Indeed, the window size represents the (square) neighborhood
used to calculate the Optical Flow at that point, and movements
are expected to be constant within that window.

The practical approach to calculating the window size for each set
of videos has been to first run the algorithm on several videos using
different window sizes ranging from 25 to 500 pixels, and second, to
choose the window size that provides the highest integral over the
1D profile of the CTF envelope function. As an example, we consid-
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ered one micrograph (“205_movie_gc_window.mrcs”) of the data-
set from Bai etal. (2013).In Fig. 9, we show the values of this integral
for different window sizes. As observed in this figure, the maximum
integral value can be obtained for a window size of 150, which is set
as the “default” window size of the method because it works well in
most practical cases.

4. Discussion and conclusion

Direct detection devices represent a significant step forward for
3DEM, and at the same time, they allow high-resolution and auto-
mation to be achieved. These sensors provide sharper images with
higher SNRs. Additionally, the rapid image acquisition rates of
these DDDs detectors allow us to “see” biological specimens mov-
ing in their solid matrix of amorphous ice, a phenomenon referred
to as beam-induced motion (BIM). Several approaches have been
proposed to correct for these sample movements (Bai et al.,
2013; Campbell et al., 2012; Li et al., 2013b; Wang et al., 2014).
The method shown in Li et al. (2013b) consists of a frame drift-like
correction with a degree of robustness to local movements pro-
vided by the use of sub-frame alignment; the output of each pro-
cessed movie is a corrected averaged micrograph obtained from

the aligned frames. In (Bai et al., 2013) the alignment method is
quite different because it works with the individual specimens
detected and extracted from the frames, as does the method of
Scheres (2014). This approach allows in-plane and out-of-plane
local movement correction at the expense of requiring individual
specimen detection.

In this work, we proposed a frame alignment approach that can
correct for local sample movements in a rapid and efficient man-
ner. The approach is based on a robust Optical Flow workflow,
which has been tested with simulated and experimental data and
compared with the method of Li et al. (2013b) and obtained
satisfactory results. The input of the proposed algorithm is a set
of unaligned frames (movie), and the output is a corrected aver-
aged micrograph, as in the Li et al. (2013b) approach. The approach
assumes that the particle movement is local, invertible and
smooth, which in mathematics is known as a diffeomorphism.
Note that the proposed model assumes that the displacements
between images are equal within a window that typically has a
value of approximately 150 pixels.

Additionally, to characterize the BIM pattern in the sample, a
movie with the vector field of the movements between frames is
also provided, which can be further analyzed using intuitive 2D
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representations that show frame-to-frame movements, where the
location of the center of each circle is given by the mean of the
movements in the x- and y-axes and the area is described by the
square root of the sum of variances along these axes.

A shortcoming of the proposed method is that it is especially
sensitive to the consistency of the frame-to-frame direction of
movement. Indeed, if the movements between frames are similar
to a unidirectional drift, then the average of the uncorrected frames
creates an effect that might translate into averaging of a particle in
a frame with background in another frame in the extreme case of
small particles and large movements. Still, this effect can be recov-
ered by combining the methods of Li and Optical Flow such that by
applying the Li method, we first calculate the global movement
between frames, and using the Optical Flow approach, we (1)
compensate for local movements and (2) calculate a BIM pattern
characterization with the use of the vector fields.

Note that our approach (as well as Li’s) corrects for local in-
plane movements at the image level, and it cannot incorporate
out-of-plane movements (i.e., known in practical terms as rocking).
However, the expected extent of out-of-plane rotations and their
impact on resolution may not be large, especially for small speci-
mens. Indeed, for a specimen whose outer diameter was 150 A,
rocking of +2.5 degrees would translate into a 3-A shift at the
periphery. Furthermore, the experience presented in Li et al.
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(2013b) indicates that for small specimens, it may be impossible to
apply particle-based correction methods (i.e., Bai et al. (2013)) due
to the inability to detect the particles in the individual frames,
making the approach presented in this work the method of choice
to: (1) correct for in-plane local displacements prior to specimen
detection, especially for local movements, and (2) characterize
the BIM pattern with the aid of the vector fields. In much the same
way, for larger particles for which rocking might be a problem, the
initial use of OF might provide partially corrected frames that
could significantly increase the speed of convergence of any indi-
vidual specimen image-based correction approach.

In addition toits ability to efficiently correct for local movements,
OF also provides a rather direct, simple and intuitive characteriza-
tion of the BIM pattern with the aid of the vector fields and their
associated graphical polar representations. Indeed, this analysis
can indicate the amount of global versus local movements as well
as its magnitude and directionality. For instance, a simple compari-
son of the plots shown in Figs. 5-7 shows that the ratio of global ver-
sus local movements is much larger for the 20S proteasome recorded
on a K2 than for both the ribosomes or the influenza RNPs recorded
on a Falcon II. Whether this observation represents a general trend
associated with certain imaging conditions cannot be determined
from this reduced set, but we are certainly provided with the appro-
priate tools to perform this type of wide-range analysis in a system-
atic and clear manner. Still, the accumulated experience gathered in
the different laboratories contributing to this work tends to indicate
that indeed, the Falcon Il data present a larger degree of local distor-
tions than the K2 data, making the Optical Flow approach particu-
larly powerful for Falcon II data sets, whereas for K2 data, the
additional improvement is reduced. We observe that this contrast-
ing behavior may not be so unexpected because the detection mech-
anisms of both cameras are different. The K2 camera operates with
low dose rates and large acquisition times, whereas Falcon Il works
with high doses obtained at short camera acquisition times.

Moreover, new figures of merit have been proposed to compare
the different alignment results (uncorrected average, Li-Global and
Local, and OF). Indeed, and as presented in the Appendix, the effect
of summing the unaligned frames is an additional modulating term
in the PSD. Therefore, the contrast transfer function (CTF) envelope
and the SSNR functions are sensitive to these between frame mis-
alignments typical of DDDs.

Finally, in future work, we will explore the possibility of using
the proposed alignment approach in tomography, thus improving
the quality of each tilt-pair image by alignment of the frames com-
posing the movie. Note that this case is especially challenging
because of the reduced SNR of these images.

All of the methods presented are publically available as a com-
ponent of XMIPP (http://xmipp.cnb.csic.es) (de la Rosa-Trevin
et al., 2013).
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Appendix A

In this Appendix, we analyze the effect of frame misalignment
on the PSD of the image resulting from summation of all frames
in a stack. Because different noise models could be considered,
we differentiate between “deterministic” and “random” noise. In
the first case, we show that the envelope of the CTF is a notably
good indicator of the extent of misalignment, whereas in the sec-
ond case, both the envelope of the CTF and the SSNR are good indi-
cators of frame misalignment.

Deterministic noise

In this section, we analyze the effect of frame misalignment for
the case in which noise is modeled as a deterministic signal that
affects all frames, e.g., the situation for certain of the ice contribu-
tions to the frame image. We consider an ideal “micrograph” given
by I(x, y). However, I(x, y) is never experimentally measured in a
DDD movie; instead, its recording is fractionated into N frames
with local and smooth shifts between frame i and i+ 1 given by
8. i(x, y) and g, ;(x, ). Therefore, we can recover I(x, y) using a
corrected average of the different frames as:

N
I(%, ) = (1/N)Y _I(x — g (%, ),y — &.:(x, ¥)). (A1)
i=1
Note that if the shifts are smooth, we consider that they are con-
stant in small image patches. Therefore, if we divide the images into
M small pieces, each image patch given by index m € [1,M] can be
calculated as

N
I"(x, y) = (1/N)Y_IT'(x = X5,y = ¥5)- (A2)
i=1

Next, we calculate the Power Spectrum Density (PSD) of each patch
2

N
PSD™(X, Y) = '(1 /N)> FT[I"(x = X0, Y — Yoi)]
i=1

2

'(1/1\1 éX, YZe <”fxx°’* Vy“’) (A3)

where we assumed that FT[I{"(x, y)] = (X, Y), Nc and Ng are the
number of columns and rows of the image, respectively, and
(X, Y) are the frequency coordinates. If we further develop Eq.

(A.3), we obtain
( XX0x+NRYYO|))

*

( 1/N)( XN:e ( Xx01+NRYyol>> _ (l/N2)|é(X, Y)|2
i=1

PSD™(X, Y) = ((1 IN)EX, Y)

i=1

i=17=1,i#i

(N ey o (R -sgoegon o >> — (1N?)[E(X, V)12
N N 27‘[
(N + 222 oS ( (xm — xTX + Ne (ym — y{;})Y)) (A4)

i=1 i'>i
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In Periodogram averaging, we assume that the PSD of the entire
micrograph is the average of the PSD of all patches:

PSD(X, Y)=(1/M) ZPSD"’ X, V)=1 /Mz

m=1
<1/N2 [&X, V)] <N+ZZZCOS< xm xg})X+?V—7:(yg}/—yg;)Y>>>

i=1 i'>i
M

= (1/MN?)|&(X, Y)\ZZ<<N+ZZZCOS< xg",.)x+12\,—:(yomi, —yg;)v)»
m=1

(A.5)

i=1 i'>i

If there is no shift between frames, the ideal PSD is given by
PSD(X, Y) = [&(X, V).
Thus, we can rewrite the actual PSD (Eq. (A.5)) as

PSD(X, Y) = ¥(X, Y)PSD(X, Y) (A.6)

where ¥(X, Y) collects all of the terms that are different from the
ideal PSD. Note that if there are no shifts between the different
frames, all cosines in Eq. (A.5) are equal to 1, and ¥(X, Y)=1.
Otherwise, if there are shifts, then necessarily 0 < W(X, Y) < 1.
Taking into account that the ideal PSD is given by

PSD = PSDy (X, Y)|CTF(X, Y)|* + PSD.(X, Y) (A7)

where CTF(X, Y) corresponds to the CTF, and ﬁSVDb(X, Y) and
PSD4(X, Y) refer to the PSD before and after CTF, respectively
(Sorzano et al., 2007; Vargas et al., 2013), by substituting Eq. (A.7)
into Eq. (A.6), we obtain:

PSD(X, Y) = (X, Y) (ﬁsT),,(x Y)|CTF(X, Y)* + PSDq(X, Y)>

= PSD, (X, Y)|CTF(X, Y)[?

+W¥(X, Y)PSD,(X, Y)
(A.8)

From Eq. (A.8), we can extract several conclusions. The first and
most obvious is that the misalignments have a direct effect on the
CTF consisting of an additional modulation term. The effective CTF
is given by:

Y) = VPX, YIEXX, Y)siny(X, Y) (A9)

Moreover, observe that ¥(X, Y) is not isotropic in general. Addi-
tionally, we note from Eq. (A.8) that the misalignment modulation
function ¥ (X, Y) affects the CTF envelope and the background noise

PSD, at the same time, although there is no effect on the CTF phase
term (X, Y).. We observe that the SSNR (Booth et al., 2004), which
is estimated from the radially averaged CTF envelope divided by the
noise curve (the baseline that passes through the zeroes in the CTF)
is not adequate for characterizing good or bad frame alignments
because it is insensitive to ¥ (X, Y). Consequently, a good approach
to analyzing the frame alignment quality is to study the decay in an
“effective” CTF envelope function that corresponds to

= VPX, Y)EX, Y)

In the remainder of the paper, we refer to this “effective” CTF enve-
lope as the CTF envelope

(A.10)

Random noise

We consider this case if noise is modeled as a random event
added to each frame. Up to (A.2), there is no difference between
the deterministic and the random case. However, when we calcu-
late the PSD of the mth patch, we should calculate it in the correct
manner for random signals. Let us assume that each patch has a

deterministic component Ijy(x,y) and a random component
&' (X,¥),
N
1/N ledx xOxvy YOz 1/N 28
i=1
— Xoi Y — Yoi)- (A3)

Thus

2
PSD™(X, Y) = |(1/N) ZFT[I,d (X = Xoi, ¥ = Yoi)]

(1/N)P5D\(X, Y) = (1/N)[eX, )P

2
(N + ZZZ cos (N—n XM — XX +N—7I: (A —yo"})Y>>

i=1 i'>i

+ (1/N)PSD,(X, Y) (A4)

Next, we calculate the PSD of the entire micrograph

PSD(X, Y) = (1 /M)XM:PSD”‘(X, Y) = (1/MN?)[¢(X, Y)P?

m=1

M
Z<<N+ZZZCOS< (xgy — X&)X+$V7§(Y$fyg)y>>>

m=1 i=1 i'>i

+ (1/N)PSD,(X, Y) (A5)

Compared with the deterministic case, we write
PSD(X, Y) = W(X, Y)PSD(X, Y) + (1/N)PSD,(X, Y)
= PSDyW(X, Y)|CTF(X, Y)[*
+W(X, Y)PSD,(X, Y) + (1/N)PSD(X, Y) (A6)
The SSNR becomes
PSD, (X, Y)|CTF(X, Y)[?
¥(X, Y)PSDq(X, Y) + (1/N)PSD,(X, Y)
PSD,(X, Y)|CTF(X, Y)P
PSDa(X, Y) + s PSDe (X, Y)

SSNR(X, Y) =

(A7)

The degree of misalignment is encoded in the ¥ (X, Y) term. As the
misalignment increases, W(X, Y) approaches 0, as does the
SSNR(X, Y). In this case, both the envelope and the SSNR serve as
good measures of misalignment. As suggested by Wang et al.
(2014), note that the noise appears to be a mix of deterministic
and random noise for DDD movies.

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in
the online version, at http://dx.doi.org/10.1016/j.jsb.2015.02.001.
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