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a b s t r a c t

We describe a fast and accurate method for the reconstruction of macromolecular complexes from a set
of projections. Direct Fourier inversion (in which the Fourier Slice Theorem plays a central role) is a
solution for dealing with this inverse problem. Unfortunately, the set of projections provides a non-
equidistantly sampled version of the macromolecule Fourier transform in the single particle field (and,
therefore, a direct Fourier inversion) may not be an optimal solution. In this paper, we introduce a
gridding-based direct Fourier method for the three-dimensional reconstruction approach that uses a
weighting technique to compute a uniform sampled Fourier transform. Moreover, the contrast transfer
function of the microscope, which is a limiting factor in pursuing a high resolution reconstruction, is
corrected by the algorithm. Parallelization of this algorithm, both on threads and on multiple CPU's,
makes the process of three-dimensional reconstruction even faster. The experimental results show that
our proposed gridding-based direct Fourier reconstruction is slightly more accurate than similar existing
methods and presents a lower computational complexity both in terms of time and memory, thereby
allowing its use on larger volumes. The algorithm is fully implemented in the open-source Xmipp
package and is downloadable from http://xmipp.cnb.csic.es.

& 2015 Elsevier B.V. All rights reserved.
1. Introduction

Single-Particle Analysis (SPA) is an Electron Microscopy (EM)
method wherein the three-dimensional (3D) structure of a biolo-
gical complex is determined from projections at random orienta-
tions of multiple instances of the specimen. Each projection is a
two-dimensional (2D) projection of the 3D complex with a ran-
dom spatial orientation that is additionally modulated by the
Contrast Transfer Function (CTF) of the microscope. Upon de-
termination of the orientation parameters, an inversion procedure
yields a 3D volume that is compatible with the original projec-
tions. However, noisy imaging conditions, CTF effects, errors in
orientation parameters, and a finite number of discrete projections
not covering the whole spatial domain under study makes this
ro Nacional de Biotecnología-
Fax: þ34 91 585 4506.
inversion problem nontrivial [1]. Many approaches have been
proposed to solve this ill-posed inversion, which can be categor-
ized into three classes: algebraic, Weighted Back-Projection (WBP),
and direct Fourier methods.

Algebraic methods treat this inversion problem as a system of
linear equations where well-established algebra methods are
employed to find the solution. In other words, the problem is
formulated as p Wv¯ = ¯ , where the 3D object is decomposed into a
finite set of basis functions whose coefficients are lexicographically
stored in a vector v̄, p̄ is a vector with the values of all of the
projections' pixels, and W encodes the weight of each of the basis
functions onto each pixel. The Algebraic Reconstruction Technique
(ART) [2] and Simultaneous Iterative Reconstruction Technique
(SIRT) [3] are iterative approaches to solve this system of equa-
tions. The general idea behind these methods is to iteratively
improve an initial volume by comparing each of the experimental
projections with the projections from the current volume, thereby
attempting to compensate for this difference. Although algebraic

http://xmipp.cnb.csic.es
www.elsevier.com/locate/ultramic
http://dx.doi.org/10.1016/j.ultramic.2015.05.018
http://dx.doi.org/10.1016/j.ultramic.2015.05.018
http://dx.doi.org/10.1016/j.ultramic.2015.05.018
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ultramic.2015.05.018&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ultramic.2015.05.018&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ultramic.2015.05.018&domain=pdf
mailto:coss@cnb.csic.es
http://dx.doi.org/10.1016/j.ultramic.2015.05.018


V. Abrishami et al. / Ultramicroscopy 157 (2015) 79–8780
methods have the potential to be applied to many different types
of reconstructions [1] and to incorporate a variety of constraints
[4], they suffer from a high computational complexity. In the SPA
field, the introduction of blobs as spherically symmetric basis
functions by [5] was one of the most efficient efforts towards a fast
algebraic reconstruction, but it is still more computationally ex-
pensive compared to the two other aforementioned groups.

WBP [6,7] is the most intuitive method used to reconstruct a
3D object from its 2D projections based on the concept of the
Fourier slice theorem. For a set of projections with known or-
ientations, each projection is back-projected across the objective
volume from its position in the projection space defined by its
orientation. The superposition of all of these back-projections
provides an estimation of the original 3D object. To account for the
angular distribution of projections, these methods use a weighting
function in Fourier space. Weighted back-projection methods are
faster than algebraic methods, but they perform poorly in cases
where large angular gaps exist, and they have been shown to
underperform algebraic methods in a number of cases [5,8].

Based on the central slice theorem, direct Fourier reconstruc-
tion (DFR) methods try to obtain the 3D Fourier transform of an
object directly from the 2D Fourier transform of its projections, so
that an estimation of the original 3D object can be quickly ob-
tained through an inverse 3D Fast Fourier Transform (FFT). In
practice, the irregularity of the spatial distribution of the fre-
quency of samples in the set of projections in experimental SPA
studies makes the direct use of the inverse FFT unfeasible. Thus, an
additional interpolation step is required to obtain the 3D Fourier
transform of the object on a regular grid. The so-called gridding
algorithm is an alternative method introduced by Penczek et al. [9]
into the SPA field; this method was originally developed by Jack-
son et al. [10] to efficiently estimate the 3D Fourier transform in a
regular grid of points using irregularly distributed samples in
Fourier space. This algorithm uses an interpolation kernel; in our
case this kernel is a modified Kaiser-Bessel (MKB) window func-
tion (also known as a blob). The gridding-based direct Fourier
method can yield resolutions higher than the algebraic methods
(and clearly weighted back-projection methods) in a fraction of
their computing time.

Frequency samples from different projections mainly con-
centrate at the center of the 3D frequency domain, and their
sparsity increases as we move away from the center. If no
weighting scheme were employed, samples close to the 3D Fourier
origin would be over-represented with respect to points away
from the origin. In general, the sample values must be corrected by
a weight function before inverting the Fourier transform of the
volume. An accepted method in SPA to perform this weighting task
is to use the volume of the Voronoi region [9] around each Fourier
sample. This region is a polyhedron associated with each sample
such that the distance between this sample and any point in the
polyhedron is shorter than the distance from these points to any of
the remaining samples. However, computing Voronoi cells is time
consuming (particularly for SPA, where the algorithm has to
handle millions of Fourier samples).

An alternate algorithm for obtaining the weighting function
was proposed by Matej and Lewitt [11] for Positron Electron To-
mography (PET). This approach seeks appropriate weights at each
Fourier sample so that it participates with the right weight during
the interpolation of regular points. The algorithm begins with the
initial weights of the samples and uses convolution with a kernel
to iteratively refine these weights. Their proposed method is
practical for PET where the geometry of data is known and the
number of sampling points is not large, but not for SPA where such
conditions are not met.

In this paper, we introduce a gridding-based direct Fourier
three-dimensional reconstruction in SPA following the method
suggested by Matej and Lewitt [11] in PET. Our method follows the
same iterative scheme for computing the weights, but we estimate
the weights at each Fourier sample by evaluating a function in-
stead of storing the collection of weights (which would become
impractical in SPA). The proposed approach follows the general
idea of Scheres [12], but differs in the way that the weights are
calculated. Finally, our algorithm has an additional novel step to
compensate for the trilinear interpolation of weights in Fourier
space (described in Section 2.4), which improves the resolution of
the final reconstruction. The CTF correction is applied during 3D
reconstruction and is crucial for a high-resolution structure
determination.

We compared the proposed reconstruction algorithm with the
algorithms from the SPARX package [13] and the RELION package
[12]. In the method by Zhang et al. [13], the projections are first
padded to 2 times their original size (default value in the im-
plementation), and then the Nearest Neighbor (NN) interpolation
is used to calculate the target 3D Fourier volume. Finally, a
weighting function using Bracewell's “local density” [14] is com-
puted to correct the value for each voxel of the 3D Fourier volume.

The experiments showed that our approach is a superior
method for 3D reconstruction in terms of accuracy, speed, and
memory usage. The new algorithm is fully implemented in the
open-source Xmipp package and is downloadable from http://
xmipp.cnb.csic.es.
2. Material and methods

2.1. Preliminaries

The goal of the gridding-based direct Fourier method is to
approximate frequency samples on a regular 3D Cartesian lattice
F RD3 ( )¯ from the measured samples of the 3D frequency domain

F QD3 ( )^ ¯ as

F R CTF Q F Q K Q dQR , 1D D3
1

3( ) ( ) ( )∫ ¯( ¯) = ¯ ^ ¯ − ¯ ¯
( )

−

where R̄ is the frequency coordinate within the regular 3D grid
and K is the kernel function by which the integration is accom-
plished. We recommend using a kernel function with some ap-
pealing attributes, such as finite size, bell-shaped decay, and dif-
ferentiability at the borders. The modified Kaiser-Bessel (MKB or
blob) is considered to be the best kernel for gridding interpolation
by several authors [10,11,15,16]. Matej and Lewitt [16] generally
assessed the optimal values for the parameters of the MKB to
achieve a reconstruction with good quality. We use an MKB with
the same parameter values suggested in their paper. CTF correc-
tion is incorporated during interpolation by dividing each irregular
sample by CTF Q1( )¯− , where CTF Q( )¯ is the value of the CTF at

frequency Q̄ (as a practical implementation issue, this division is
performed as long as the CTF is above a given threshold).

Under experimental conditions, a limited number of projec-
tions from the specimen are available. Therefore, the discrete form
of the integral in Eq. (1) should be considered because measure-
ments are only available at a finite set of frequencies Q Ri{ }∈ ¯ . To
obtain a discrete form of Eq. (1), the integral is substituted by a
summation as shown

F R CTF F K wR R R R R ,
2

3D
i

1
i 3D i i i( ) ( ) ( ) ( )∑( ¯ ) = ¯ ¯ ¯ − ¯ ¯^

( )
−

where w Ri( )¯ is the weighting factor for the i-th irregular sample. It
is important to note that the weighting function is a substitution
for dQ̄ within Eq. (1). In fact, the value of each irregular sample
should be corrected by the weighting factor and the related CTF
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value before participating in the interpolation of the points on the
3D regular grid because the distribution of the samples in Fourier
space is non-uniform. If no weighting scheme was applied, the
regular points close to the origin would contribute more to the
summation and the points further away would contribute less,
generating undesired artifacts and yielding the wrong reconstruc-
tions. In Penczek et al. [9], this weight is proportional to the
volume of the Voronoi regions around each experimental Fourier
sample.

In the following sections, we describe in detail our iterative
algorithm for obtaining the weighting function.

2.2. Calculation of the weighting function

In this section, we propose a numerical iterative approach for
computing the weighting function w R(¯ ) based on the method
introduced by Matej and Lewitt [11] for PET. In their method, the
weighting coefficients are computed for each sample in the 3D
frequency space. Because the PET scanner geometry is fixed, this
calculation can be performed once and the result can be stored for
subsequent reconstructions. Additionally, due to the scanner
characteristics the number of Fourier samples is relatively low
compared to the number of samples in 3DEM. However, this al-
gorithm is not applicable to SPA, where hundreds of thousands of
projections of several hundred pixels may exist per side with no
prior knowledge about their angular distribution. Thus, the algo-
rithm has to compute the weighting coefficients for a large num-
ber of samples (in the order of billions) for each new set of pro-
jections, which is not efficient in terms of both time and storage
complexity. Our proposed method is adapted to SPA to overcome
these issues.

The proposed approach begins with an initial weighting func-
tion that is initialized as a constant function of value 1 as

w R 1. 30 ( ¯) = ( )( )

Then, this weighting function is refined through a number of
iterations by evaluating Eq. (2) with F R 1D i3 ( )¯ = at the locations
specified by the projection directions until the reconstructed
function F RD3 ( )¯ is as close to 1 as desired (formally that the Che-

byshev norm of the function F R 1D3 ( )¯ − is smaller than ε,
F R 1D3 ( ) ε∥ ¯ − ∥ <∞ ). Then, the refined weighting function can effi-
ciently remove the effect of non-uniformity by multiplying it by
the estimated Fourier Transform of the 3D object.

To iteratively refine the weights, we first evaluate Eq. (2) to
compute c Rn 1 ( )¯( + ) at the position of each point on the 3D regular
grid, as below

c R w R K R R ,
4

n

i

n
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where w Rn
i( )¯( ) is the interpolated weight from w Rn ( )¯( ) of the n-th

iteration at the position of the i-th input sample. We use trilinear
interpolation to interpolate w Rn

i( )¯( ) from w Rn ( )¯( ) . c Rn 1 ( )¯( + ) is the
evaluation of Eq. (2) when all samples have a value of 1 and there
is no CTF.

After computing Eq. (4) at the position of each frequency point
on the 3D regular grid, the algorithm updates the weights from the
previous step by dividing them by the obtained convolution in Eq.
(4):
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After a number of iterations, the points in c Rn ( )¯( ) converge to
values close to one and the weighting function reaches stability. At
this point, w Rn ( )¯( ) can be used to correct the values of regular
samples to overcome the non-uniformity problem. Note that
w R

K R
1 1

Ri i
( ) ( )
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( )

∑ ¯ −
. Substituting this value into Eq. (2) results in
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that is the well-known formula for a kernel interpolator. In this
way, we see that our method goes beyond kernel interpolation by
further guaranteeing that the different weights result in a constant
interpolated function when the input samples are constant.

Note that Eq. (5) is similar to Eq. (A3) in Scheres [12]. However,
there are some important differences: (1) the motivation of Eq. (5)
and Eq. (A3) of Scheres [12] is different. In our algorithm the
weights are constructed as a way of discretizing the convolution in
Eq. (1), while in Eq. (A3) of Scheres [12] the weights are meant to
represent the inverse of the denominator in Eq. (3) of Scheres [12];
(2) Eq. (A3) has a term Ω that is far from trivial and is not present
in Eq. (5); (3) the starting values of both sets of weights (w R0 ( )¯( ) in
our algorithm and the corresponding starting point in Relion) are
different, so that both sets of weights become increasingly dis-
similar as the iterations increase (due to reason 2, the iterative
step is also different); and (4) our iterative scheme normally
converges in 2–3 iterations, while the scheme in Relion is normally
run for 10 iterations, probably reflecting a larger distance between
the starting and finishing sets of weights.

2.3. Compensation for the convolution kernel

Eq. (1) represents a convolution in Fourier space of a function
given by its samples F RD i3 ( )¯ and the kernel K R( )¯ . This is equivalent
to a multiplication in real space of the function f rd3 (¯) and the in-
verse Fourier transform of the kernel k r(¯). This means that we
need to divide by k r(¯) to recover the function representing the
macromolecular complex. This is a well-known effect that is al-
ready handled by the standard gridding algorithm. In our im-
plementation, the kernel function in Fourier space is given by the
MKB function with parameters a (the width of the kernel), α (a
smoothness parameter),m (the order of the Bessel function), and n
(the dimension in which the kernel is defined, in our case n¼3),
whose definition is
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Note that R is the module of the frequency vector R̄ and Im is the
modified Bessel function of the 1st type and order m. The inverse
Fourier transform of the kernel is
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where Jm is the Bessel function of order m.

2.4. Compensation for the interpolation in Fourier space

It is important to note that we used trilinear interpolation to
estimate w Ri( )¯ from w R( )¯ in frequency space, which is equivalent
to the convolution in 3D Fourier space by a trilinear kernel.
Compensating for this interpolation kernel is extremely important
because the 3D reconstruction is otherwise masked in real space
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by the inverse Fourier transform of the interpolation kernel, re-
sulting in a loss of intensity as the diameter of the macromolecule
being reconstructed increases. None of the previously published
works on Fourier gridding that performed any type of interpola-
tion of the weights in Fourier space (i.e., Scheres [12]) mention this
effect. To the best of our knowledge, the trilinear kernel does not
have a known inverse Fourier transform, but can be approximated
by a spherically symmetric kernel [17] whose shape in Fourier
space is defined as

⎧⎨⎩K R
R R

R
1 0 1
0 1.i( ) = − ≤ ≤

>

This convolution in Fourier space must be corrected in real
space by dividing by the function

⎛
⎝⎜

⎞
⎠⎟k r

r
r
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.i

2π
π

( ) = ( )

2.5. Parallelization of the algorithm

The processing time of the algorithm depends on the number
and size of the projections, which may amount to hundreds of
thousands of projections with several hundred pixels per side for
SPA. However, most of the processing steps can be accomplished
independently on each projection image, which makes the algo-
rithm naturally suitable for parallelization to achieve higher pro-
cessing speeds. Parallelization of the algorithm has been per-
formed at two levels: at the level of multiple processors dis-
tributed over several computing nodes using the Message Passing
Interface (MPI) [18] and at the level of threads executing in the
same node using the POSIX threads [19].

Three major computations are discernible in our proposed re-
construction algorithm: FT of projection images, FT of the 3D ob-
ject on a regular grid, and calculation of the weighting function.
The rest of this section explains our approach for parallelizing each
of the aforementioned steps.

Considering a multicomputer and multithreaded scenario, our
algorithm acts as follows. First, a master process is created at one
of the cluster nodes (computer). This process (master) spawns
other processes (slaves) at different nodes in the cluster using MPI
tools. The master process is in charge of assigning tasks to the
slaves and coordinating them. It is also responsible for gathering
results from the slaves and building up the final, complete 3D
reconstruction. Once the slaves are spawned, they initialize their
local memory structures to hold 3D grids and FTs. Upon in-
itialization, they spawn on their own a series of threads that will
be used locally to make use of multiple processors and/or cores.
Once these initialization steps are completed, the slave informs the
master that it is ready to process. Then, the master communicates
back to the slave the range of projections it will have to process.
Finally, each slave will proceed independently to build a partial 3D
regular grid based on this set of projections using threads to speed
up the process.

The computation of the FT of each projection image can be
performed independently without any interference, with an ex-
pected speedup for this step growing almost linearly with the
number of available processor/cores. When executing in multi-
threaded mode, each thread computes the FT of a projection image
and retains it in its memory. Note that at this step, the threads do
not continue with another projection image, but instead share
their local FTs with the other threads to jointly compute the effect
of their local irregular samples on the final interpolation of the 3D
regular grid. Thus, each thread is responsible for processing a
number of rows of the image and uses the MKB window function
to estimate the impact of each sample in these rows on each
regular sample. After finishing with the local FTs for all threads,
new projection images are loaded by threads to continue with the
same process until no more projection images are available. It is
worth mentioning that the number of rows to process can be re-
duced by avoiding exploration at certain resolutions. To ensure the
highest performance, row processing is dynamically balanced.
Usually, many more rows than threads will exist, but not all rows
will necessarily represent the same workload (see previous sen-
tence). If the number of rows is equally distributed to the existing
threads, some threads could finish their assigned tasks while
others are still running. Thus, rows to be processed are dynami-
cally assigned as threads finish processing previously assigned
rows. This mechanism must be arbitrated to avoid the same rows
being processed by different threads. To allow this, synchroniza-
tion is accomplished by defining a shared bit array in which each
bit shows whether a row has already been processed.

Finally, the master will ask for the interpolated values of the 3D
grid estimated by each node and sum them up to obtain the final
interpolated 3D grid. This grid must now be weighted before
proceeding to perform the inverse FT and obtain the final 3D
reconstruction.

To obtain weights, after computing the 3D regular grid we use
the same parallelization strategy to compute the weights on a
regular grid. The only difference here is that now all of the nodes
should retain the total weights at the position of the 3D regular
grid to compute the convolution in Eq. (4). For this mechanism,
each node computes the weights at the position of the regular grid
points by mean of its projection images and waits until the rest of
the nodes have also completed this task. At this point, all nodes
combine their values orchestrated by the master node. Then, in the
next iteration of weight refinement these corrected weights are
used by the processors to compute Eq. (5).

Finally, the master node carries both the interpolated 3D reg-
ular grid and weighting function. Then, the final 3D reconstruction
is obtained by applying the weighting function and an inverse FFT.
The schema of our parallel framework for computing the inter-
polated 3D regular grid is presented in Fig. 1.
3. Results

We compared the proposed reconstruction method with two
other well-known methods: (1) NN direct inversion implemented
in SPARX [13] and (2) RELION DFR [12]. These methods were
compared in terms of accuracy, memory complexity, and the time
required for execution. Two asymmetric test objects were used to
achieve this goal: first, a 70S ribosomal subunit as an instance of a
small complex and second, a DNA-origami object as a good re-
presentative of a large complex. Different data sets (set of pro-
jections) with specific properties (i.e., noise in projections, noise in
angular assignment, and CTF-affected) were made for each test
object to examine the robustness of each method.

To evaluate the accuracy of each reconstruction method, we
used the Fourier Shell Correlation (FSC) criterion calculated with
respect to the ground truth, which is the standard quality mea-
surement in single particle analysis. All experiments were run on a
cluster with 28 nodes, each with two Intel Xeon E5405 running at
2 GHz and with 16 GB of RAM memory.

3.1. 3D reconstruction of the 70S ribosome

In this experiment, we compared the reconstruction results of
the proposed method with the results from RELION and SPARX
using different data sets that were generated from simulated
projections with specific characteristics corresponding to the 70S
ribosomal subunit (PDB ID: 3V2D) represented on a cube of size



Fig. 1. Parallelization strategies. The two levels of parallelization of the proposed algorithm, including multiple threads and multiple processors are shown. The algorithm
can be executed on several nodes of a cluster (multi-CPU parallelism) with several threads (multi-thread parallelism).

Fig. 2. Comparison of the reconstruction methods using noise-free projections of
the 70S ribosome. FSC curves for the 3D reconstructions of the 70S ribosome using
a set of 10,000 noise-free projections applying the following reconstruction algo-
rithms: the proposed method (XMIPP), RELION method [12], SPARX method [13],
ART and WBP.
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174�174�174 voxels (the sampling rate was 1.5 Å/pixel).
We applied the three reconstruction algorithms (with the ex-

ception of the first experiment) to five sets of simulated projec-
tions. The first data set is a set of noise-free projections of the test
object, the second and third sets comprise projections con-
taminated by noise in angles and noise in pixel values, respec-
tively, the fourth set contains a set of projections for coarser an-
gular sampling (i.e., when the Crowther frequency is lower than
the Nyquist frequency), and the fifth set contains CTF-affected
projections.

We used default parameters for each method in these experi-
ments. All methods use a padding factor of 2, and in our tests we
set 0.01ε = .

3.1.1. Projections without noise
For this experiment, we applied five reconstruction algorithms

to a set of N¼10,000 free of noise projections: our proposed al-
gorithm, RELION method [12], SPARX method [13], ART, and WBP.
In Fig. 2, we show the FSC curves for the five reconstructions
compared to the known ground truth (the 70S ribosome subunit at
atomic resolution with a sampling rate of 1.5 Å/pixel). In this fig-
ure, the horizontal axis shows the spatial frequency and the ver-
tical axis shows the FSC values. This figure shows that the RELION
method reaches higher FSC values than the SPARX method, while
our proposed gridding-based DFR method is slightly more accu-
rate at all frequencies than either method. Although the difference
is not large, it proves the validity of our approach. It is obvious
from this figure that the RELION, SPARX and XMIPP methods are
able to yield larger FSC values for higher resolution than the ART
and WBP methods.
For this reconstruction, the serial implementation of our pro-
posed method requires 13 min and 40 s, while it takes 5 min and
37 s for RELION and 20 min and 44 s for SPARX using one core of
the CPU. In Fig. 3, we show how increasing the number of threads
can decrease the required computational time for our proposed
method to one-fourth of the SPARX and half of the RELION



Fig. 3. Multi-thread implementation comparisons. Computational time required
for the 3D reconstruction of the 70S ribosome from a set of N¼10,000 noise-free
projections applying the proposed (XMIPP) and RELION reconstructions using
different numbers of threads.

Fig. 5. Comparison of the reconstruction methods using CTF-affected projections of
the 70S ribosome. FSC curves for the reconstructions of the 70S ribosome generated
from N¼10,000 projection images affected by 10 different sets of CTF parameters
using our proposed reconstruction method (XMIPP), RELION method [12], and
SPARX method [13]. The CTF parameters include: physical pixel size of 3.54 Å,
microscope voltage of 300 kV, spherical aberration of 2.0 mm, amplitude contrast
of 0.1, and different defocus values.
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reconstruction methods (2 min and 63 s using 8 CPUS). Note that
although RELION supports threads, its parallel implementation
does not improve the execution time significantly in this case (the
threads simply compute the Fourier transform of the projections).
As shown in this figure, increasing the number of threads reduces
the computational time; however, more than eight threads make
no or little improvement due to the required time for the in-
itialization and synchronization of the threads.

In Fig. 4, we show the average execution times of 10 in-
dependent runs for the proposed method and the SPARX method
(note that RELION implementation does not support multi-CPU
parallelization) using different numbers of nodes (cluster com-
puting parallelism). From this figure, it is evident that increasing
the number of nodes improves the computational time for both
methods. Indeed, increasing the number of nodes by a factor of
two increases the speedup by a factor of two (which is ideal). It is
obvious from this figure that the parallel implementation of our
algorithm is faster than the parallel implementation of SPARX
Fig. 4. Multi-computer implementation comparisons. The required computational
time for the parallel execution of the proposed reconstruction method and the
SPARX method for reconstructing the 70S ribosome using a set of 10,000 noise-free
projections utilizing different numbers of CPUs.
(approximately twice as fast for more than 2 CPUs because our
implementation uses one node as a coordinator). Additionally our
parallel implementation is scalable, while this does not apply to
the parallel implementation of SPARX (increasing the number of
CPUs from 4 to 8 provides approximately the same execution
time).

3.1.2. CTF applied projections
In this experiment, we modified the entire N¼10,000 simu-

lated projections using 10 different sets of CTF parameters (each
consequent 1000 particles have the same CTF parameters) with a
physical pixel size of 3.54 Å, microscope voltage 300 kV, spherical
aberration of 2.0 mm, amplitude contrast of 0.1, and different de-
focus values. We calculated the 3D maps for the three algorithms
by enabling the CTF correction. The results for our method
(XMIPP), RELION [12] and SPARX [13] with CTF correction are
shown in Fig. 5. As seen in this figure, our algorithm can properly
correct for the CTF, thereby maintaining the previously demon-
strated pattern of providing slightly better results than the other
two methods.

3.1.3. Projections with noise
In this test, which is closer to an experimental case, we in-

troduced two different types of noise into the simulated projec-
tions to generate two sets of noise-corrupted projections. First, a
Gaussian noise with a signal-to-noise ratio of approximately
0.8 was added to the pixels of the noise-free projections. Second, a
Gaussian noise with zero mean and variance of 0.5° was applied to
each projection direction to take into account angular inaccuracies.
For each data set, N ¼10,000 projections were generated.

Similar to the previous experiment, we performed the re-
construction for each data set using our method (XMIPP), RELION
[12] and SPARX [13] to evaluate the resilience of each re-
construction algorithm to noise. In Figs. 6 and 7, we compare the
reconstruction results of these three methods in two situations:
using projection images contaminated by noise in pixel intensities
and using projection images contaminated by noise in angular
assignments. From this figure, it is clear that there is a region of
low frequency at which the FSC values are larger for the proposed



Fig. 6. Comparison of the reconstruction methods using projections of the 70S
ribosome contaminated by pixel noise. FSC curves for the reconstructions of the
70S ribosome generated from N¼10,000 projection images contaminated by pixel
noise using our proposed reconstruction method (XMIPP), RELION method [12],
and SPARX method [13].

Fig. 7. Comparison of the reconstruction methods using projections of the 70S
ribosome contaminated by angular noise. FSC curves for the reconstructions of the
70S ribosome generated from N¼10,000 projection images contaminated by an-
gular noise using our proposed reconstruction method (XMIPP), RELION method
[12], and SPARX method [13].
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method; at the same time, the proposed method is significantly
faster than the SPARX method and faster than RELION when more
than two threads are used.

3.1.4. Projections with coarser angular sampling
In this experiment, we used coarser angular sampling to

compare the proposed method with two other methods when
larger gaps are introduced into Fourier space. First, we generated
N¼500 evenly distributed projections (according to the Crowther
frequency). For simplicity in the analysis, these projections were
generated by fixing the azimuthal and in-plane rotation angles and
simply changing the tilt angle. Three more datasets with N¼250,
N¼100, and N¼50 projections were generated in the same man-
ner, and three reconstructions methods were applied to each data
set as in the previous experiments. The obtained FSC curves re-
sulting from each reconstruction method for these three data sets
are shown in Fig. 8. The FSC curves for the data set with 500
projections (Fig. 8a) are close to the curves shown in Fig. 2 (with
the FSC valley at a low frequency for SPARX and RELION). However,
when we decrease the number of projections to 250 (Fig. 8b), all of
the methods show slightly lower values for the higher frequency,
although the effect is more noticeable for the SPARX method. Fi-
nally, by further decreasing the number of projections to 100 and
50 (as shown in Fig. 8c and d, respectively), we notice that our
reconstruction method shows remarkably higher FSC values
(especially for higher frequencies) compared with the other two
methods (note that RELION uses the same default values for
gridding interpolation as the proposed method). These experi-
ments show that our algorithm is more robust to gaps in the
Fourier space.

3.2. 3D reconstruction of a 3D DNA-origami object

The purpose of this experiment is to determine how each re-
construction algorithm can manage memory for a large complex.
For this purpose, the model of a discrete DNA object [20] (PDB ID:
2YMF) of size 400�400 (sampling rate 1.2 Å/pixel) was
considered.

As in the previous experiment, we simulated N¼10,000 pro-
jections at random orientations of this complex and used the
proposed method (XMIPP), RELION method [12], and SPARX
method [13] for the reconstruction. Due to the large size of this
complex, neither the SPARX nor RELION reconstruction algorithms
(with one CPU core) nor the parallel implementation of the pro-
posed algorithm can be executed on our machine (with 16 giga-
bytes of RAM memory). However, we can take advantage of the
multi-thread implementation of our algorithm to use the process
resources efficiently without a lack of memory.

To accomplish this reconstruction, our method requires 1 h and
29 min with only one CPU core. Using our multi-threaded im-
plementation, the execution times for different number of threads
were computed as: 42 min and 72 s for two threads, 24 min and
83 s for four threads, and 15 min and 48 s for eight threads. Each
execution time was obtained using the average of ten independent
runs.
4. Conclusions

In this paper, we introduced a weighting function for gridding-
based DFR in SPA based on the method published for PET by Matej
and Lewitt [11] to discard the artifact connected with the non-
uniformity of samples in the Fourier space. This accurate and fast
weighting function corrects the values of frequency samples on a
3D regular grid to compensate for the uneven distribution of
projection images before applying the final inverse FFT to recover
the original 3D object. The CTF correction is performed during the
reconstruction to correct for the effects of the CTF. The im-
plementation of the proposed algorithm supports two paralleli-
zation frameworks: multi-thread parallelization and multi-com-
puter parallelization. These parallelization frameworks allow our
approach to efficiently take advantage of all cores of a node and
nodes of a cluster to more quickly produce the final 3D re-
construction. When multi-computers run out of memory due to
the large size of the complex (this happens when multiple MPI
processes attempt to run on the same node because memory
needs are multiplied by the number of processes), multi-thread
implementation can still be employed to take advantage of mul-
tiple processing resources (here, the memory requirements, re-
gardless of the number of threads, are the same as the require-
ments for a single MPI process). We compared our gridding-based
DFR with two well-known methods in the field (the method of



Fig. 8. Comparison of the reconstruction methods using a set of projections with larger angular sampling of the 70S ribosome. FSC curves for the reconstructions of the 70S
ribosome generated from N¼500 (a), N¼250 (b), N¼100 (c), and N¼50 (d) projection images generated by an even angular sampling of the object (fixing the azimuthal and
in-plane rotation angles for simplicity) using the proposed method (XMIPP), RELION method [12], and SPARX method [13].
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Zhang et al. [13] implemented in SPARX and the RELION re-
construction method [12]) using data sets (sets of projections) of
two test objects: the 70S ribosome as a small complex and a DNA-
origami object as a large complex. The FSC to the known ground
truth was used to compare the reconstruction results of these
methods. The proposed method achieved slightly higher FSC va-
lues compared with the two other approaches for both the noise-
free and noise-contaminated projections. However, the proposed
method showed significantly higher values (especially for higher
frequencies) compared to the other two methods for data sets
with a coarser angular sampling (i.e., when the Crowther fre-
quency was lower than the Nyquist frequency), which confirmed
that the proposed approach could achieve more accurate re-
constructions when there was a large gap in the Fourier space; this
property should be further analyzed for its use in Tomography.
Comparing the execution time of each algorithm for reconstruct-
ing the 70S ribosome shows that our algorithm is approximately
twice as fast as RELION and SPARX when more than two CPUs are
used. For the 3D DNA-origami object with a large size, the SPARX
and RELION reconstruction methods ran out of memory in our
machine with 16 GB of memory, while our multi-threaded im-
plementation could improve the reconstruction speed by effi-
ciently using processing resources. This lower memory require-
ment allows the proposed algorithm to work with larger volumes,
which is in demand in the field.

This algorithm is included in Xmipp 3.1 under the name re-
construct_fourier and is downloadable from http://xmipp.cnb.csic.es.
The program is accessible through the protocols described by [21].
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