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Resumen 
 

En el Sistema Global de Posicionamiento - más conocido por sus siglas GPS, 

procedentes del inglés ‘Global Positioning System’ - los equipos destinados a uso civil 

ofrecen precisiones cuya exactitud depende, en su mayor parte, de la calidad en la 

medida de la distancia existente entre el receptor y cada uno de los satélites. Este 

parámetro se obtiene mediante el seguimiento de los códigos transmitidos en las señales 

procedentes de los satélites y, en general, se suele denominar ‘pseudo-rango’ o medida 

de código. 

 

Los pseudo-rangos no son representaciones fieles de las distancias reales entre el 

receptor y los satélites ya que existen fuentes de error degradando la calidad de dichas 

medidas. Por ejemplo, la propia atmósfera altera las trayectorias que describen las 

señales satelitales provocando curvaturas que prolongan los trayectos, este efecto se ve 

reflejado en las medidas de distancia. Por otro lado, las derivas de los relojes, tanto del 

receptor como de cada uno de los satélites, y el propio ruido generado en los equipos 

receptores son causas también de errores en las medidas resultantes que afectan, a su 

vez, a los resultados de posicionamiento obtenidos. Por consiguiente, las medidas de 

código son relativamente ‘ruidosas’. 

 

En el proceso de ‘adquisión’ de la señal GPS, el receptor no sólo realiza un seguimiento 

de los códigos contenidos en las frecuencias emitidas por los satélites sino que también 

monitoriza la fase con la que dichas frecuencias son interceptadas. Las medidas de fase 

ofrecen precisiones milimétricas siendo mucho menos ruidosas que los ‘pseudo-rangos’; 

además, de ellas también se puede extraer información sobre las distancias existentes 

entre el receptor y los satélites. En contraposición, dichas medidas de fase se ven 

afectadas por ambigüedades que deben ser estimadas si se desea obtener medidas 

absolutas de distancia a los satélites. Como ejemplo ilustrativo, se podría relacionar las 
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medidas de código con una cinta que únicamente posee marcas métricas y las fases con 

una cinta que sólo presenta marcas milimétricas. 

 

Los algoritmos convencionales que los receptores GPS emplean para estimar su 

posición procesan únicamente medidas de código, esto es, los ‘pseudo-rangos’. Desde 

las primeras investigaciones realizadas en 1982 por Ron Hatch [3.7], varios métodos 

han sido propuestos para incorporar también las medidas de fase en el proceso de 

posicionamiento. Esta técnicas de integración de medidas GPS se denominan algoritmos 

CSC (del inglés carrier smoothing code) y se aplican ya sea directamente sobre los 

‘pseudo-rangos’ [4.2] [4.13] [4.10] [4.6] [4.4] [4.3] o indirectamente durante el cómputo 

de la posición del receptor empleando, en algunos casos, filtros Kalman [4.19] [4.18] 

[4.14] [4.11]. 

 

Este proyecto nace con el objetivo de estudiar dichas técnicas CSC que combinan las 

medidas ruidosas de código con las medidas más precisas pero ambiguas derivadas de 

las fases de portadora para obtener así mejores precisiones en el cálculo de la posición 

del receptor. Con este fin, se ha realizado un proceso exhaustivo de documentación para 

posteriormente implementar varias técnicas CSC y evaluar, de este modo, sus efectos 

sobre el cálculo de las posiciones. 

 

El desarrollo del proyecto se ha llevado a cabo en el seno del Fraunhofer IIS con sede 

en Nuremberg (Alemania). En dicho centro se está diseñando un simulador GPS que 

procesa la ‘solución de navegación’, esto es, la posición, velocidad y hora local de un 

receptor GPS, valiéndose de medidas tomadas de las señales satelitales que éste 

intercepta. Con el presente proyecto se han realizado mejoras incorporando nuevas 

funcionalidades tales como los algoritmos CSC anteriormente mencionados. 

 

Realizar simulaciones en un entorno GPS requiere de herramientas que faciliten el 

procesado de álgebra matricial, señales digitales y teoría de control; por ello se ha hecho 

uso de un lenguaje de programación de alto nivel como es MATLAB. 
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Los resultados experimentales de estos estudios ofrecen mejoras apreciables de la 

precisión con la que las posiciones del receptor GPS son estimadas. Concretamente, se 

ha conseguido estabilizar y reducir el error en estas estimaciones por debajo de los 2 

metros. 
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Abstract 
 

The accuracy of positioning services for civil use provided by the Global Positioning 

System (GPS) equipments depends to a great extend on the quality of the measured 

satellite-to-user distances. These measurements are obtained by tracking the codes 

embedded on signals broadcast by GPS satellites; they are generally referred to as 

pseudo-ranges or code observations.  

 

Pseudo-ranges do not exactly represent the actual distances between satellite and user 

since several sources of errors degrade the quality of these measurements. For example, 

the radio signals broadcast by GPS satellites suffer refractions and reflections as they 

cross the atmosphere causing bending of the signal paths; this effect affects the 

measurement of satellite-to-user distances. Furthermore, satellite and receiver clock 

deviations and the noise generated on the receiver equipment itself are also causes of 

erros in measurements. Therefore, code measurements, i.e. the pseudo-ranges, are 

relatively ‘noisy’. 

  

Besides code measurements, the phase of the gathered carrier frequency is also sampled 

within GPS receivers. This data is also considered as a very fine and precise 

measurement of satellite-to-user distance. Therefore, since the first statements posed by 

Ron Hatch in 1982, several techniques have been studied and performed; these try to 

integrate the GPS pseudo-ranges together with phase data in order to achieve better 

accuracies while computing positions within the GPS receivers. The present study was 

focused on these integration approaches that blend together GPS code and carrier 

measurements. The aim was initiated to assess if better positioning outcomes could be 

obtained when performances are adjusted by these integration approaches. These 

integration techniques are referred to as carrier smoothing code (CSC) algorithms and 

they are applied either directly on pseudo-ranges or while computing receiver position.  
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The most widely adopted strategy to combine these GPS measurements is a recursive 

filter that “smoothes out” the noise on pseudo-ranges with the aid of carrier-phases. 

This algorithm was firstly described by Ron Hatch in 1982 [3.7] and improvements 

have also been posed during the last decade [4.2] [4.13] [4.10] [4.6] [4.4] [4.3]. 

However, these filtering schemes are relatively susceptible to information losses or 

alterations in code measurements. A number of strategies have thus been posed to 

improve these aspects providing higher robustness and unbiased filtering based on 

Kalman filters [4.19] [4.18] [4.14] [4.11]. 

 

During the first years of the 21st century, an ensemble of GPS simulation packages was 

developed in the Satellite Navigation Department at Fraunhofer IIS Nürnberg 

(Germany). Those investigations were aimed at simulating a GPS navigation processor 

that computes the “navigation solution” (that is, the receiver’s position, velocity and 

time) with the aid of real GPS collected by gathering satellites signals within GPS 

receivers. In the present study, enlargements of this simulation packages have been 

developed in order to perform different CSC algorithms. The aim was to theoretically 

study and analyse different CSC schemes in order to implement some of them and 

compare test results in terms of positioning accuracy.  

 

Because GPS simulation requires a broad spectrum of tools covering matrix algebra, 

digital signal processing, control theory, and navigation algorithms, a high-level 

programming language was considered. In that way, the simulation packages 

implemented while performing these studies have been developed and tested with 

MATLAB R2006a. Test results have shown that the implemented CSC schemes can 

reduce the error in position estimates below 2 metres. 
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The goal of this Master’s Thesis 
 

The present study was focused on the integration of GPS code and carrier measurements 

by means of carrier smoothing code (CSC) algorithms. The aim was initiated to assess 

if better positioning outcomes could be obtained when performances are adjusted by 

these CSC approaches.  

 

The goal of this work is the design of different CSC algorithms that combines the 

advantages of both code- and carrier-based measurements to obtain better accuracies in 

the estimation of position.  

 

The analysis of possible algorithms should be done by using a high-level programming 

language like MATLAB, from The Mathwoks. 
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Chapter 1 

Introduction  
 

 

“I’m astounded by people who want to ‘know’  
the universe when it’s hard enough to find  

your way around Chinatown.” 
 

Woody Allen 

 

 

Using today’s state of the art satellite navigation systems, you can pinpoint your 

location anywhere on Earth with an accuracy of less than fifteen meters. Currently, the 

most used system available to the general public is the NAVSTAR Global Positioning 

System (GPS), which has been fully functional since mid-1994. GPS handsets can 

provide positioning (latitude, longitude, and altitude) and timing services to civilian 

users on a continuous worldwide basis. This technology has become a mainstay of 

many transportation systems, reinforcing navigation for aviation, ground, and maritime 

operations. Life-saving missions carried out by disaster relief and emergency services 

depend upon GPS for location and timing capabilities. Everyday activities such as 

banking and mobile phone operations are facilitated by the accurate timing provided by 

GPS. Perhaps someday navigation systems will find extremely useful applications, such 

as replacing seeing-eye dogs and guiding motor vehicles. 

 

 

Figure 1 GPS Applications – Mount Everest 
height measurement. The current accepted 
Everest’s height (8848 meters) was arrived at in 
1954 by an Indian Surveyor named B.L. Gulatee. 
In 1998, the American Everest Expedition used 
GPS equipments to achieve more accurate 
measurements. Recent investigations have 
revealed a new height at 8844.43 meters. 
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Though the overall performance of GPS can claim to excel in significant aspects, such 

as availability to users, reliability or cost, position accuracy is also a relevant facet in 

some areas such as military, aviation or land surveying applications; even scientific 

investigations use the precision of GPS measurements  (an example of GPS application 

is shown in Figure 1). 

 

Conventional stand-alone GPS equipments depend on code measurements, referred to 

as pseudo-ranges, to derive a proper positioning solution. This measurement type is 

yielded while the receiver tracks the ranging codes embedded on GPS satellite 

broadcast signals. In fact, a pseudo-range is considered as a relatively “corrupted” 

approximation of the distance between the GPS receiver and a satellite in view (which is 

called range in GPS terminology – see Figure 2). 

 

 

 
 

Figure 2 Satellite-to-user ranges in GPS terminology 
 

 

Error sources affecting reliability of code measurements degrade the accuracy of 

positioning solutions. In fact, the most important causes of inaccuracies are the noise 

generated within the receiver electronics, atmospheric phenomena and possible drifts of 

satellites and receiver oscillators. Even the multipath effects bring down the efficiency 

of the obtained pseudo-ranges. The combined effect of all these error sources affects the 

accuracy of positioning results. 
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Besides pseudo-ranges, the relative phase between the received carrier and a reference 

oscillator within GPS equipments is also tracked. This measurement can be considered 

as a very fine and precise range measurement but, with all, there is no information 

about the absolute phase, that is, the most significant whole cycles (see Figure 3). In 

fact, the resolution of these carrier-based measurements offers higher positioning 

accuracies when combined with pseudo-ranges. As an analogy to illustrate this fact, 

carrier-phases can be considered as the millimetre marks in a tape measure while code 

pseudo-ranges would correspond to the metre marks.  

 

 

 
 

Figure 3 Pseudo-ranges and carrier-phase measurements in GPS terminology 
 

 

The present study was focused on the integration of these two types of GPS observables 

(code and carrier-based) to enhance positioning accuracies. This work was aimed at 

researching different filtering schemes that blend together these quantities in such a way 

that many of the errors affecting positioning results are eliminated or, at least, 

minimized. Specifically, a group of techniques have been considered in order to reduce 

or “smooth” the noise on pseudo-ranges with the aid of the gathered carrier-phases. The 

performance of several schemes was compared in order to find proper methods to 

incorporate GPS carrier phases into the navigation solution process. These methods are 

referred to as carrier smoothing code pseudo-ranges techniques. They are applied either 

directly on pseudo-ranges or while computing receiver position. Analysis of the derived 

positioning accuracies is also exposed. 
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During the first years of the 21st century, an ensemble of GPS simulation packages 

using the popular and versatile MATLAB programming language were developed in the 

Satellite Navigation Department at Fraunhofer IIS Nürnberg (Germany). Those 

investigations were aimed at simulating a GPS navigation processor that computes the 

“navigation solution” (that is, the position, velocity and time) with the aid of data 

collected by gathering satellites signals within GPS receivers.  

 

In the present study, extensions of this simulation packages have been developed under 

the supervision of Lucila Patiño Studencki. The research and development was done in 

early 2007 and attempted to implement positioning algorithms that combine GPS 

pseudo-range and carrier-phase measurements, that is, code and carrier-based 

observables (see the following Figure 4).   

 

 

 
 

Figure 4 Image of GPS Matlab Simulator 2007 
 

 

An ensemble of GPS real data, captured under the Receiver Independent Exchange 

Format (RINEX) Version 2.10, were considered to achieve more realistic outcomes. 

The implemented MATLAB Tool aims at reading GPS data from RINEX files and 

deriving a navigation solution by applying convenient corrections on measurements and 

estimating satellite locations. 
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This report is structured as follows. Chapter 1 consists of a brief introduction to the 

main objects in these studies. In Chapter 2, basic GPS positioning concepts are 

introduced and the main aspects in terms of processing the navigation solution (i.e. the 

receiver’s position) are highlighted. Chapter 3 is focused on GPS measurements 

mathematical models and sources of errors affecting empirical data. Chapter 4 brings 

proposals to combine GPS measurement types in order to reduce the errors affecting 

these quantities; in this context, the concept of “smoothing” in range and position 

domains is exposed. Finally Chapter 5 overviews test results and the achieved 

improvements in terms of position accuracy. 
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Chapter 2 

Navigation – GPS Positioning 
 

 

“I must down to the seas again,  
to the lonely sea and the sky, 

And all I ask is a tall ship  
and a star to steer her by …” 

 
John Masefield - Sea Fever 

 

 

The word navigate is derived from the Latin roots navis, meaning boat, and agire, 

meaning to guide or direct. Navigational techniques have been applied over the ages in 

many different civilizations; all involve locating one’s position compared to known 

locations, such as the stars.  

 

On the age of the ancient sailors, the sun and the stars were useful references to allocate 

the ships on their journeys by means of navigational techniques. As early as 1519, on 

the voyage organized by Magellan to circumnavigate the globe, the crew was equipped 

with “sea charts, a terrestrial globe, wooden and metal theodolites1, wooden and wood-

and-bronze quadrants, compasses, magnetic needles, hourglasses and timepieces” 

(according to “The American Practical Navigator” written by Nathaniel Bowditch in 

1802). With these instruments, and great personal skills, sailors could estimate the 

ship’s speed, direction, and even latitude.  

 

The technology of the twentieth century placed artificial stars in the sky, the well-

known satellites. They “shine” all the time radiating signals that provide far more 

information than the sailors of old ever got from the stars. In this way, accurate 
                                                 
1 Theodolites are instruments for measuring both horizontal and vertical angles, as used in triangulation methods. 
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estimates of position, velocity, and even local time are freely available to all 

instantaneously thanks to global satellite navigation systems such as NAVSTAR Global 

Positioning System (GPS). 

 

GPS represents the fulfilment of several technologies, which matured and came together 

in the second half of the 20th century. In particular, stable space-borne platforms, ultra-

stable atomic frequency standards, spread spectrum signalling, and microelectronics 

are the key developments in the achievement and success of GPS. These technologies 

have been integrated and applied to implement an ancient idea of positioning: 

trilateration, a way of location by measuring distances from known reference points.  

 

This chapter deals with the general principles of GPS, a brief introduction to this 

satellite navigation system is exposed together with the essential processes of GPS 

positioning. In the following figure, a conceptual view of this satellite network is 

shown. 

 

 

 

 

Figure 5 NAVSTAR GPS satellite network – image courtesy of cnice.mec.es 
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2.1 The Global Positioning System - GPS 

 

Our ancestors did also manage to keep from getting lost. As a result, monumental 

landmarks were erected and detailed maps were laboriously drafted. Also, sailors 

learned how to read the stars in the sky at night. Today, things are much easier; we are 

living in an “Age of Technology” and pocket-sized equipments that provide user 

location service are available for less than 100 euros. Nowadays, not more than a GPS 

handset and a “line of sight” towards the sky are needed for location. 

 

According to the GPS general public education website [2.5], created by the U.S. 

Government, the Global Positioning System (GPS) is “a U.S. space-based 

radionavigation system that provides reliable positioning, navigation, and timing 

services to civilian users on a continuous worldwide basis – freely available to all”. The 

United States Department of Defence (DoD) developed and implemented this satellite 

network as a military navigation system, but soon it was available for civilian users as a 

common good (Ronald Reagan, 1983).  

 

GPS is vast and expensive but the basic concepts are quite intuitive. It is made up of 

three parts (called segments): a constellation of MEO2 satellites orbiting the Earth; a 

group of ground control and monitoring stations; and the GPS receivers owned by users.  

 

GPS satellites broadcast precise microwave signals from space that are subsequently 

picked up and identified by the receivers. Each receiver then processes the information 

embedded on those gathered signals in order to provide a three-dimensional location 

(latitude, longitude, and altitude) plus local time. 

 

In this section, each of the GPS segments is briefly commented. Positioning techniques 

and the structure of the broadcast GPS signals are mentioned in sections 2.2 and 2.3. 

                                                 
2  The Medium Earth Orbit (MEO) is the region of space around the Earth above low Earth orbit (LEO -
2,000 kilometres) and below geostationary orbit (GEO -35,786 kilometres). 
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2.1.1 GPS space segment: satellites 

 

The GPS satellite constellation was originally designed for 24 satellites, each 8 

distributed along three circular orbital planes, but it was finally modified to 6 planes 

with 4 satellites each. The orbits are arranged so that, at any time, at least 6 satellites are 

always within a user-to-satellite line of sight from almost everywhere on Earth’s surface 

(see Figure 6).  

 

Each of these solar-powered satellites circles the globe at an altitude of approximately 

20,200 kilometres (orbital radius of 26,600 km), making two complete rotations every 

sidereal day3.  

 

Nowadays, there are 31 actively broadcasting satellites in the GPS constellation 

(September 2007). The additional satellites improve the precision of GPS receiver 

calculations by providing redundant measurements. 

 

 

 
 

Figure 6 NAVSTAR GPS satellites and orbits for 27 operational satellites on September 29, 1998, 
satellite positions at 00:00:00 9/29/98 with 24 hours (2 orbits) of ground tracks to 00:00:00 9/30/98 – image 
courtesy of University of Colorado at Boulder – Department of Geography 

                                                 
3 The sidereal day is defined to be the length of time for the vernal equinox to return to your celestial meridian. The 
solar day is defined to be the length of time for the Sun to return to your celestial meridian (1 sidereal day = 
23.9344696 hours). 
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2.1.2 GPS control segment: ground stations 

 

The flight paths of GPS satellites are tracked by a group of ground stations belonging to 

the US Air Force and the National Geospatial-Intelligence Agency (NGA). The job of 

this segment is the maintenance of satellites in their proper orbits through occasional 

command maneuvers, and the adjustments of clocks on board, achieving a precision 

within a few nanoseconds.  

 

Six worldwide monitor stations check the exact altitude, position, speed, and overall 

health of the orbiting satellites. In addition, a “Master Control Station” uses this 

collected information to predict the behaviour of each satellite’s orbit and clock. The 

predicted data is up-linked to the satellites for transmission back to users. Figure 7 

shows the locations of these ground stations.  

 

As mentioned before, the control segment ensures that GPS satellite orbits and clocks 

remain within acceptable limits. Checks are performed by each station twice a day (as 

the satellites complete their journeys around the earth). In that way, a group of ground 

antennas are used to track the satellites and upload the corrections to each satellite. 

 

 
 

Figure 7 Map of the GPS Control Segment – image courtesy of Federal Aviation Administration 
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2.1.3 GPS user segment: receivers 

 

When people talk about “a GPS”, they usually mean a GPS receiver. Individuals may 

purchase GPS handsets that are readily available through commercial retailers. The job 

of this kind of equipments is to allocate four or more of the GPS satellites “in view”, 

figure out the distance to each, and use this information to deduce its own location. This 

operation is based on a simple mathematical principle called trilateration that uses 

measurements of distances to satellites (i.e. the known locations) in order to derive an 

estimation of position.  

 

The present study was focused on the algorithms implemented at receiver site and used 

to allocate GPS users, i.e. to estimate the receiver’s position. Therefore, the main topic 

in this report is the GPS receiver. The principal concepts about how this type of 

equipments works are commented together with the data broadcast by satellites and 

processed at receiver site in order to allocate both satellites (the reference points) and 

receiver (the user’s equipment). 

 

In the following figure, a general view of the three mentioned GPS segments is shown. 

 

 
 

Figure 8 General view of the three GPS segments: Space, Control and Users. 
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2.2 GPS positioning: how a GPS receiver works 

 

In order to allocate themselves, GPS receivers estimate the positions of several 

reference points (i.e. the satellites) that, together with distances in between, are 

processed to estimate the required position by means of “trilateration”  methods.  

 

In GPS terminology, distances to satellites are known as ranges. These quantities are 

estimated within receiver equipments by determining the “one-way signal transit time” 

from satellite to receiver in a process known as time-of-arrival (TOA) ranging.   

 

Both trilateration and TOA methods are briefly introduced in the following sections. 

 

2.2.1 Trilateration 

 

GPS receivers compute their positions in two or three dimensional space frames by 

using this mathematical process. In fact, triangulation sounds more familiar; both are 

methods one can use to determine relative positions of objects using the geometry of 

triangles. Angle measurements, together with at least one known distance and two 

reference points, are used to allocate a subject in terms of triangulation. However, to 

derive a position in terms of trilateration, the distances between reference points and 

the object to be localized are required.  

 

Generally, at least three reference points are used to accurately and uniquely determine 

the relative position of an object in a two-dimensional plane (2D) by means of 

trilateration. GPS positioning is a three-dimensional process (3D), in that case 

trilateration can be a little tricky; therefore a brief introduction of 2D methods is shown 

before 3D procedures.  
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2-D Trilateration 

 

The concept of 2D trilateration is easy to understand through an example.  

 

Consider a car driving through an unfamiliar country. A road sign indicates that the car 

is 500 km from a city. In fact, this is not of much help because the car could be 

anywhere on a circle around this city with a radius of 500 km. A shepherd the driver 

stops says that there is another city 450 km away. Now the driver is in a better position 

to find his location - he is at one of the two intersecting points of the two circles 

surrounding each of the located cities. If he could also get the distance between his car 

and another place he can pinpoint his position very precisely, as the three resultant 

circles can intersect each other at just one point. This is the principle behind 2D 

trilateration. Figure 9 below illustrates this example. 

 

 

C

B

450 km

B

500 km

A

 
 

Figure 9 GPS Positioning – 2D Trilateration 
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3-D Trilateration 

 

The fundamental concepts are the same for 2D and 3D trilateration, but it is a little 

trickier to visualize. Considering that the radii from the previous 2D trilateration 

example go in all directions, a series of spheres (instead of circunferences) is thus 

formed around the predefined points (see Figure 10). Therefore, the location of an 

object has to be defined with reference to the intersecting point of these three resultant 

spheres. 

 

The first two spheres intersect in a perfect circunference. Then, the sphere linked to a 

third reference point would intersect this circunference at just two points. Additionally, 

one of the two intersection points can be ruled out assuming the Earth as the fourth 

required sphere (see Figure 10). 

 

GPS receivers however take into account four or more satellites to improve accuracy 

and provide extra information such as altitude of the object and local time. The 

reference frame considered for the computation of the receiver’s position will be the 

earth-centered, earth-fixed (ECEF) frame. 

 

 
 

Figure 10 GPS Positioning – 3D Trilateration 
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2.2.2 Ranging using time-of-arrival (TOA) measurements 

 

Together with trilateration methods, GPS receivers utilize a concept referred to as time-

of-arrival (TOA) ranging in order to determine satellite-to-user distances (i.e. the 

ranges). In this context, the time it takes for a signal transmitted by a satellite to reach a 

receiver is measured and multiplied by the speed at which this signal propagates to 

obtain an estimation of the distance in between. Consequently, by measuring 

propagation times of signals broadcast from multiple emitters at known locations, the 

receiver can determine its position by means of trilateration methods. 

 

For example, consider the case of a mariner equipped with a GPS handset trying to 

determine his/her position from a group of satellites in view. Assume that the satellites 

contain accurate clocks on board and the mariner’s handset has an approximate 

knowledge of the satellite positions on their orbits. Furthermore, satellite broadcast 

signals are assumed to be emitted precisely on specified time marks and clocks aboard 

are considered to be perfectly synchronized to the receiver’s clock. In this scenario, the 

GPS handset notes the elapsed time from each time mark until the signal is intercepted; 

this time measure is thus the propagation time it took for the signal to leave satellite and 

travel to the receiver’s antenna. Signals broadcast by GPS satellites are radio waves, 

considering that all forms of electromagnetic radiation travel at the speed of light, the 

mariner could estimate the distance to the satellite (i.e. the range) by multiplying the 

measured propagation time (i.e. the TOA measurement) by this quantity.  

 

It is worth highlighting that a perfect synchronization between clocks in receiver and 

emitter sites is required in order to derive appropriate one-way range measurements by 

means of TOA processes; otherwise, the effects of possible clock offsets need to be 

taken into consideration to perform a correct measurement of the satellite-to-user 

distance. 
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In some literature, the GPS signal propagation time is referred to as signal transmit 

time. This quantity varies between 70 and 90 ms approximately. For example, if the 

satellite signal took 75 ms to reach the mariner’s GPS receiver, the distance to the 

satellite is therefore about 22484,434 km. 

 

Common clock offsets and compensations 

 

In the example above, the clock within the mariner’s GPS handset was assumed to be 

precisely synchronized with those aboard satellites. However, this might not be the case. 

For example, consider that the clock on mariner’s equipment is advanced by 1 ms with 

respect to the satellites time base (that is, it believes that the time mark is occurring 1 

ms earlier). Hence, the measured propagation time intervals will be larger by 1 ms due 

to this time deviation (see Figure 11 to observe the effects on position certainty).  
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Figure 11 Effect of receiver clock offset (ε) on position certainty 
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The 1ms time deviation shown in Figure 11 affects equally all satellite measurements 

(the same incorrect time base is being applied) and equates to a distance error of 

299.792 km. GPS receivers consider this common clock offset as an unknown together 

with the three position coordinates of receiver. Therefore, measurements taken from a 

fourth satellite are required to solve for this fourth parameter. 

 

Effects of independent measurement errors on position certainty 

 

Even in the above hypothetical scenario, the TOA measurements would not be perfect 

due to errors in signal path caused by atmospheric effects and other interfering 

phenomena. Unlike the receiver’s clock deviation, these errors would be generally 

independent and not common to all measurements; they would affect each measurement 

in a unique manner and, as a result, inaccurate distance computations will be yielded. 

An illustrative example of the effects on position certainty caused by these independent 

measurement errors is shown in the following figure. 
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Figure 12 Effect of independent measurement errors on position certainty 
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2.3 GPS satellite signals 

 

In order to estimate its location on Earth’s surface by means of trilateration methods, the 

GPS receiver needs the positions of the satellites visible in the sky 4 and the respective 

measurements of distances in between. 

 

The data contained on the high-frequency signals radiated by the GPS satellites 

represent the essential information required to estimate both satellites locations and 

distances in between. These “navigational” signals are centred on two L-band 

frequencies of the electromagnetic spectrum: L1 (at 1575.42MHz) and L2 (at 

1227.60MHz) and carry the “navigational information” in the form of two ranging 

codes and a navigation message.  

 

The primary function of the ranging codes is to permit the signal transit time from 

satellite to receiver to be determined (i.e. the TOA measurement); in fact, these 

sequences act as the “time marks” required to derive the elapsed time since the signal 

was transmitted. In addition, the navigation message consists of a group of orbital, 

system status and atmospheric parameters necessary to perform real-time navigation 

processes; in fact, the GPS receiver uses part of these parameters to allocate satellites. 

 

In the next sections, the main characteristics of the signals broadcast by GPS satellites 

are mentioned emphasizing the most important elements that permit user’s location to 

be determined within the GPS receiver. 

 

 

 

                                                 
4 The more sophisticated the GPS equipment, the more its number of tracked channels, so that signals from a larger 

number of satellites are taken into account for the computations and, therefore, improved accuracy can be achieved. 
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2.3.1 Carrier waves 

 

As the name implies, carrier waves provide the means by which the ranging codes and 

the navigation message are transmitted to Earth, and, consequently, to the user. As 

mentioned before, GPS satellites continuously emit electromagnetic radiations centered 

on two radio frequencies located on the L-band5 and referred to as L1 (at 1575.42MHz) 

and L2 (at 1227.60MHz). These signals are generated on board satellites regarding to 

highly stable atomic clocks - usually caesium or rubidium. As a matter of fact, GPS 

satellites transmit on more than two L-band frequencies6 but these are associated with 

classified payloads aboard satellites that do not concern these studies. 

 

The radio waves broadcast by GPS satellites are right-hand circularly polarised and 

capable of transmission through the atmosphere over great distances. Though signals at 

these microwave frequencies are highly directional and hence, easily blocked or 

reflected by solid objects and water surfaces, clouds are penetrated without difficulty. 

Nevertheless, dense or wet foliage can block the transmissions. 

 

Carrier waves do not contain any information. Furthermore, all GPS satellites broadcast 

the same frequencies, though the gathered ones are slightly different because of the 

Doppler effect. In order to provide these carriers the navigational information required 

at receiver site, they must be “modified” (i.e. modulated). GPS uses two different kinds 

of binary codes in order to modulate the radiated L-band signals; these are referred to as 

the ranging codes and the navigation message.  

 

 

 

 

 

                                                 
5 The L band is a portion of the microwave band of the electromagnetic spectrum ranging roughly from 1 to 2 GHz. 
6 L3 at 1381.05 MHz, L4 at 1379.913 MHz and L5 at 1176.45 MHz – according to http://en.wikipedia.org. 
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2.3.2 Ranging Codes 

 

These binary sequences of 0s and 1s allow the receiver to instantaneously determine the 

signal transit time (i.e. TOA measurement) and, consequently, obtain the satellite-to-

user distance when multiplying by the speed of electromagnetic radiation. 

 

The GPS ranging codes have characteristics of random sequences, but are in fact 

generated by mathematical algorithms and therefore referred to as “pseudo-random-

noise” codes (or PRN codes). This type of codes possesss two important caracteristics 

that facilitate the acquisition and tracking of the GPS signals at receiver site. First of all, 

the cross-correlation function of two different ranging codes is nearly zero no matter 

the shift in between; this orthogonality allows all satellites to broadcast simultaneously 

at the same frequency without interferences in between. Secondly, an individual ranging 

sequence will correlate with an exact replica of itself only when the two codes are 

aligned, that is, the autocorrelation function is nearly zero except for zero-shift (where 

it shows a sharp peak). This autocorrelation property allows the receiver to estimate the 

elapsed time since the signal was radiated by satellite’s antenna. 

 

Two kinds of ranging codes are transmitted on the broadcast L-band frequencies: the 

civil C/A code, known as “clear/access” or “coarse/acquisition” code, and the private P 

code, aimed at DoD7 authorized users and named as “precise” because of its higher 

precision and restricted availability. 

 

C/A codes  

An individual C/A code is a unique binary sequence of 1023 chips (or bits) assigned to 

each GPS satellite. This sequence is generated at a rate of 1023000 bits per second that 

is a frequency of 1.023 MHz. Hence, the entire C/A code sequence repeats every 

millisecond and the “code wavelength”, i.e. the length of a bit, is approximately 300 m  

considering that the radio waves transmitted by the GPS satellites propagate 

                                                 
7 Deparment of Defense - USA 
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approximately at the speed of light in vacuum (the entire sequence is about 300 km 

long).  

 

P codes  

The P code is a far more complex binary sequence that consists of an extremely long 

unique PRN segment of about 1014 chips. These codes are approximately 266.4 days 

long with chipping rates located on the frequency 10.23 MHz. The wavelength of this 

code is therefore approximately 30 m (i.e. ten times the resolution of the C/A code8). 

Instead of assigning each satellite a unique code (as in the case of C/A sequences) the P 

code is allocated such that each satellite transmits a one week portion of the 266.4 day 

long sequence (according to reference [3.5], restarting on Saturday midnight). 

 

When Anti-Spoofing (AS)9 capabilities are activated, the P code is broadcast as an 

encrypted sequence referred to as P(Y)-code. In order to acquire or “reconstruct” the 

signals broadcast by satellites and measure then distances in between, the GPS receiver 

needs to know how to generate the ranging codes transmitted on satellite signals, that is, 

need to know how to decrypt the encrypted P code. Since the access to the signals 

containing this high precision P(Y)-code is only restricted to DoD authorized users, 

civil users obtain range measurements from tracking only the ‘less-precise’ C/A-codes 

embedded on the gathered signals. 

 

 

 

 

                                                 
8 The smaller length of the P code chip result in greater precision in the derived range measurements 
compared with that obtained from C/A codes 
 
9  Anti-Spoofing (AS) it the process of encrypting the P code by addition (modulo 2) of the code itself and a secret 
encryption sequence so that P code cannot be replicated by hostile forces, i.e. avoiding ‘spoofing’. When encrypted, P 
code is referred to as P(Y) code. 
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2.3.3 Navigation message 

 

In order for a GPS equipment to derive real-time positions of satellites and receiver, a 

group of parameters are transmitted on both L-band frequencies. These are named as the 

navigation message and contain the information regarding to predicted satellite 

ephemeris, predicted satellite clock correction model coefficients, GPS system status 

information and an ionosphere model.  

Ground control stations uplink this information into each satellite for subsequent 

transmission to all users. Satellite messages are in binary form but, unlike ranging 

codes, the sequences are not random like. The data is emitted at a rate of one bit every 

20 repetitions of the C/A code, that is 50 bits per second (50 bps). The entire sequence 

length consists of 1500 bits. 

 

 

2.3.4 Signal broadcasting 

 

The signal radiated by each GPS satellite antenna is a combination of the three 

components mentioned before: carrier waves, ranging codes and navigation message. In 

fact, all these components are generated in ‘synchrony’, that is, they are derived by 

multiplying or dividing the output of the highly stable atomic clocks onboard satellites. 

These clocks generate a pure sine wave at a frequency f0 = 10.23 MHz referred to as the 

fundamental frequency.  

 

As mentioned in reference [3.5], the output of clocks aboard satellites is offset by a 

small amount in order to compensate for relativistic effects. The actual clock output is 

then 10.22999999543 MHz. Just as a matter of interest, tiny instabilities in those 

orbiting clocks contribute at least a few meters of error to a single receiver GPS 

measurement; in order to keep the error within acceptable limits, ground stations 

monitor continuously the satellite broadcast signals and perform daily uploads on the 

broadcast navigational parameters. 
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The fundamental frequency is multiplied by integer factors to generate the carrier 

frequencies L1 and L2 (154 and 120 respectively10), as shown in the following figure. 

 

 

 

 

Figure 13 Components of a GPS signal – carrier waves, ranging codes and navigation message. 
 

 

Each of the ranging codes are also generated from the satellite clock (as shown in figure 

above). These sequences are combined with the navigation data using modulo-2 

additions, that is, whenever the data bit of the navigation message is equal to 1 the next 

twenty C/A code repetitions will be inverted. Conversely, when the data bit is 0 the 

consecutive ranging code sequences will remain unaffected (see Figure 14).  

 

The composite binary signal is then impressed upon the carrier in a BPSK (binary phase 

shift keying) modulation process consisting of applying a carrier signal shift of 180º 11 

when code transits from 0 to 1, or from 1 to 0. In fact, the composite signal derived 

from the P code is used to modulate both the L1 and L2 carriers, and the one derived 

from the C/A code is only used to modulate the L1 carrier. An illustrative example of 

this process is shown in the Figure 14.  

                                                 
10 fL1  = f0 x 154  = 1575.42 MHz  equivalent wavelength λL1 = c/ fL1 ≈ 19 cm 
  fL2  = f0 x 120  = 1227.60 MHz  equivalent wavelength λL2 = c/ fL2 ≈ 24 cm 
 
11 A carrier signal shift of 180º implies that the carrier is multiplied by -1. 
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It is worth mentioning that the phase shifting of the carrier results in a ‘spreading’ of 

power around the carrier frequencies due to the ranging codes (i.e. pseudo-random 

sequences) modulating these waves. 

 

 

 
 

Figure 14 Structure of a GPS signal. Each signal comprises three components: an RF carrier, a binary 
pseudo-random sequence and the binary Navigation Message.  

 

 

As already discussed, L1 carrier frequency transmits both public C/A codes and 

restricted P sequences. This is accomplished by generating two carrier signals on L1; 

one as generated by the clock (in-phase component) and the other is obtained by 

shifting it in phase by 90º (quadrature component). Specifically, the in-phase 

component is modulated by a P code, and quadrature one is modulated by a C/A code. 

L2 signal carries solely P codes. Hence, the resultant three BPSK-modulated signals are 

then broadcast by each GPS satellite. 

 

The GPS receiver can obtain the measurements of satellite-to-user distances by tracking 

the C/A code or the P code (if it is possible) embedded on the gathered signal. However, 

the C/A code resolution is ‘coarser’, and the derived measurements are subject to 

greater ‘noise’. According to reference [3.5], the absence of a C/A code on L2 is 

intentional in order to limit the accuracy of the GPS system for civil users, as the access 
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restriction to the encrypted P(Y) code. Hence, only authorized users (i.e. DoD users, 

military users) can access to preciser satellite-to-user distances and therefore obtain 

finer positioning results. As a result, the distinction between the ranging codes and the 

associated policies for their use results in the availability of two GPS positioning 

services: the Precise Positioning Service based on dual frequency P code measurements, 

and the Standard Positioning Service based on single frequency C/A code 

measurements. 

 

Just as a matter of interest, dual-frequency measurements are an important challenge to 

overcome drawbacks caused by ionosphere phenomena on GPS positioning accuracy. 

According to reference [3.6], receiver manufacturers have devised and implemented 

standards in civil applications with P code encryption notwithstanding. Anyway, a price 

is paid for the lack of knowledge of the P code structure in the form of lowered signal-

to-noise ratios. Nevertheless, an approximate ionosphere model is provided within the 

navigation message. 
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Chapter 3 

Measurements, Models and Errors 
 

 

“Some talk of millimetres, and some of kilograms, 
And some of decilitres, to measure beer and drams; 
But I'm a British Workman, too old to go to school, 

So by pounds I'll eat, and by quarts I'll drink, and I'll work by my three foot rule.  
A party of astronomers went measuring the Earth, 
And forty million metres they took to be its girth; 

Five hundred million inches, though, go through from Pole to Pole; 
So lets stick to inches, feet and yards, and the good old three foot rule.” 

 
William Rankine - The Three-Foot Rule  

 

 

At its simplest, GPS civil users under the Standard Positioning Service (SPS)12 provides 

positioning accuracy of tens of meters. The performance is dynamic and changes with 

time and place. In fact, accuracy of position estimates depends not only upon the 

number of satellites in view and their spatial distribution, but also upon the nature of the 

errors in the derived measurements, that is, the reliability of the available 

measurements. 

 

As it has been shown on chapter 2, the basic operation of a GPS receiver is focused on 

the acquisition and maintenance of captured radio frequency signals transmitted by the 

satellites spread out in the sky. From these processes a group of measurements or 

observations are derived. Firstly, tracking the ranging codes embedded on the 

transmitted GPS signals yields estimates of instantaneous user-to-satellites distances, 

referred to as ranges (see chapter 2 – section 2.3.2). These measurements, however, are 

all affected by common offsets and are thus named as pseudo-ranges. Secondly, the 

                                                 
12  SPS - Common civilian positioning accuracy obtained by using the single frequency C/A code. Under selective 
availability conditions, guaranteed to be no worse than 100 meters 95% of the time. 
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phase of the received carrier wave might also be tracked by bringing it face to face with 

a local generated sine wave of the same frequency. Several researches (see references 

[3.6], [3.7], [3.8]) have shown that the resultant phase observation contains precise 

information about how satellite-to-user ranges change with time. Both code and carrier-

based measurements can be used subsequently to extract information of ranges, the 

basic quantity used while processing the navigation solution (position, velocity and time 

determination - PVT).  

 

In this chapter, the generation of these measurements is firstly exposed by explaining 

the main hardware operations within the GPS receiver electronics. Secondly, in order to 

develop an appropriate parameter model for GPS measurement data processing, simple 

physical and mathematical models for these two kinds of measurements are posed in 

connection with the receiver-to-satellite geometric ranges. Additionally, as a 

requirement of this process, error sources affecting these data and convenient models to 

characterize them are also commented.  

 

 

 
 
 

Figure 15 Applications of precise GPS measurements. Research into Earth processes via high-
precision geodesy using GPS – A permanent GPS station collects remote measurements of surface 
deformation associated with volcanic processes (island of Monserrat, Soufrière Hills volcano) – image 
courtesy of UNAVCO (University NAVSTAR Consotium 1998). 
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3.1 GPS hardware tracking 

 

The satellite broadcast GPS signals must be acquired and tracked in order to derive the 

required navigation parameters and distance measurements aimed at computing 

receiver’s location. In this section, the overall GPS hardware tracking operation will be 

briefly expounded. 

 

First of all, the satellite signals are gathered by the GPS receiver’s omnidirectional 

antenna. Tracking processes begin with the determination of which satellites are 

currently being observed. The receiver can ascertain which GPS satellites are above the 

horizon with the aid of a recent almanac13 and a rough idea of the user location. If 

almanac information is not available, or only a very poor estimate of PVT is at hand, the 

receiver will carry out a “sky search” attempting to randomly detect and lock onto a 

signal. 

 

After the identification of which satellites are in view, the receiver attempts to acquire 

or “reconstruct” the incoming carrier wave and extract the embedded data (these are the 

ranging codes and navigation message, see chapter 2 sections 2.3.2 and 2.3.3). In this 

process, the receiver needs to know how to generate the ranging codes transmitted on 

satellites signals; these are pseudo-random sequences that modulate (together with the 

navigation message) the carriers broadcast by GPS satellites. As a result of this 

modulation, signal power is spread over a wider spectral region and it is received below 

the background noise (these schemes are referred to as spread spectrum techniques). 

Hence, carrier signal must be made “visible” at the receiver in order to carry out the 

signal acquisition. With that purpose code-correlating techniques are performed within 

the GPS receivers. It is worth highlighting that, in order to maintain the captured radio 

frequency signals, every noise source as well as any possible error due to Doppler 

effect, ionosphere or synchronization is taken into account on the GPS tracking process. 

                                                 
13 Almanac data is used by GPS receivers to predict which satellites are nearby when trying to gather signals. It 
consists of a set of parameters related to each of the GPS satellites and used to calculate their approximate locations 
in orbits. Hence, using almanac data saves time by letting the receiver skip looking for satellites that are below the 
horizon. 
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3.1.1 Code and Carrier Tracking Loops  

 

In order to track the carrier frequency, a ‘carrier-tracking loop’ is used while a ‘code-

tracking loop’ operates in order to track the ranging codes (C/A and/or P code - if it is 

possible). According to reference [3.5], these two tracking loops work together in an 

iterative manner, aiding each other in order to acquire and track the satellite signals. 

 

The receiver’s carrier tracking loop is on the trail of the changes in the received carrier 

frequency. This process is performed essentially by the local generation of a sinusoidal 

signal at frequency L1 (or L2 depending on receiver’s features) which mainly differs 

from the incoming carrier due to the Doppler offset. In order to maintain lock on the 

carrier, this feedback control loop must adjust the frequency of the receiver-generated 

carrier until it “matches” the incoming frequency. The amount of offset applied in this 

alignment is named as the “beat frequency” which can be processed to give a periodic 

carrier beat phase measurement. This kind of measurement is useful for some 

applications such as “phase smoothing” of code measurements (or pseudo-ranges), 

because the noise on them is lower than the one affecting pseudo-ranges. The derivative 

of the carrier beat phase corresponds to the Doppler measurement, which is used to 

determine the receiver’s velocity. 

 

As mentioned before, the carrier signal must be ‘made visible’ above the background 

noise, in order for the carrier tracking loop to acquire the incoming satellite signal. This 

task is performed by another feedback control loop referred to as code tracking loop or 

delay-lock loop. Additionally, a GPS observable is derived from this process; referred 

to as code-phase or pseudo-range measurement. This quantity is basic while processing 

the navigation solution since it contains information about the satellite-to-user distance. 

 

In the code tracking loop, the code modulations embedded on the broadcast GPS signal 

are removed by mixing a “tuned” code replica with the incoming signal. The code 

replica is generated within the receiver electronics. Then, this feedback control loop 
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tunes or alignes14 the locally generated code with the one embedded on the picked up 

signal. In fact, the replica is continuously adjusted by sliding it in time and computing 

the correlation function with the gathered signal. GPS receivers applying this technique 

are referred to as code-correlation receivers. Thanks to this procedure the ranging code 

modulations are removed and the signal power is boosted well above the background 

noise collapsing in the original very narrow carrier frequency band. However, this 

technique requires knowledge of the ranging codes generating algorithms. As 

mentioned in chapter 2 section 2.3.2, under the policy of Anti-Spoofing, the transmitted 

P code is encrypted (i.e. secret) and hence cannot be used in this code-correlating 

technique. According to reference [3.5], GPS instrument manufacturers use a technique 

referred to as “squaring” to perform P code phase measurements on L2. Nevertheless, 

the most important advantage of the code-correlating approach is the resultant higher 

signal-to-noise ratio (and thus better quality in the derived measurements) than any 

other signal processing technique. 

 

As soon as the incoming signal and the replica ranging code are aligned and mixed, the 

"0"s and "1"s of these two binary sequences are cancelled, leaving the incoming carrier 

signal modulated only by the navigation message. This process is summarised in the 

figure below. Navigation data can be obtained by mixing the resultant signal with a 

locally generated sine wave at the same frequency; as mentioned before, this process is 

achieved in the carrier tracking loop.  

 

 

  

 

 

 

Figure 16 Recovery of the GPS ranging 
codes - image courtesy of SNAP-Lab 

 

                                                 
14 An alignment of the gathered signal with the receiver-generated C/A code is required because of the different time 
scales affecting both signals (caused by the lack of synchronization between the receiver clock to the general GPS 
time and the travel time of the signal from satellite to receiver’s antenna) – see section 3.2. 
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Therefore code and carrier tracking loops are designed to aid each other in order to 

acquire and track GPS satellite signals. In addition, the measurements used to compute 

the “navigation solution” (i.e. position, velocity and local time) are also derived on 

these receiver’s operations; these are referred to as code and carrier observations. 

 

 

3.2 Code observations: pseudo-ranges 

 

As mentioned in sections before, the ranging codes transmitted on the GPS satellite 

signals act as accurate “time marks” that permit the receiver to estimate the elapsed time 

that took any portion of the signal to travel from the satellite to the receiver. 

Considering that GPS signals are electromagnetic radiation propagating in straight lines 

at the speed of light, a rough measurement of satellite-to-user distance (i.e. a range) can 

be achieved from the measured propagation time. This measurement is referred to as 

pseudo-range and is essential while computing the position of the GPS receiver.  

 

In fact, an individual GPS pseudo-range is obtained while tracking the phase of the C/A 

code or P code embedded on the gathered signal. The code phase is measured as the 

time shift required to align a replica of the ranging code, generated at receiver site, with 

the incoming one, embedded on the received signal (see section 3.1.1). The range 

measurement is yielded when the above time measurement is multiplied by the speed at 

which the signal propagates (i.e. translation into metric units). An illustrative example 

of this idea is shown in the following figure.  

 

 
Figure 17 The GPS code-range measurement 
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3.2.1 Measuring the phase of the ranging codes 

 

Each chip of the GPS ranging codes is generated at precise known instants of time in 

accordance with clocks on board the satellites. At receiver site, these time snapshots are 

used as ‘time-tags’ that facilitate the estimation of the time interval it took the signal to 

travel from satellite to receiver, that is, the signal transit time or the propagation time. 

But how does the GPS receiver generate this time measurement? 

 

Let’s assume that all satellite clocks are synchronized to the same time scale, referred to 

the general GPS time (GPST). Consider that the ground receiver’s clock maintains also 

the same synchronization (there is thus no clock offset with respect to GPST). If one of 

the satellites starts transmitting a C/A code sequence on the L1 carrier and, at the same 

instant of time, receiver begins generating a C/A code replica corresponding to that 

particular satellite, the replica would match the code arriving from the respective 

satellite. However, this is not the case since the propagation time causes a lag on the 

received code with respect to the local generated replica. This delay is roughly 

estimated within the code tracking loop as the time shift applied on the replica to align it 

with the incoming code, that is, the time shift that shows the sharp peak15 in the 

correlation function between both replica and incoming code sequences – as shown in 

the following figure.  

 

 
Figure 18 Use of the replica code to determine the satellite-to-user signal transit time. 

                                                 
15 This effect is due to the auto-correlation properties of ranging codes, mentioned in section 2.3.2 
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C/A code pseudo-range ambiguity  

 

In terms of C/A codes, the time shift applied on the code’s replica in order to align it 

with the incoming signal does not entirely correspond to the transit time that took the 

signal to travel from satellite to receiver – see previous Figure 18. Distances to satellites 

are about 20.000 km when overhead, and about 26.000 km when rising or setting and 

signal transit times approximately vary between 70 ms and 90 ms. A C/A code sequence 

repeats each millisecond, and the code correlation process essentially provides a 

measurement of ‘pseudo-transit time’ modulo 1 ms, that is, the measurement of signal 

transit time derived from tracking the phase of a C/A code is ambiguous in whole 

milliseconds (as shown in Figure 18 by means of the term NxT, being T the C/A code 

period T=1ms). It is worth pointing out that the one week P code portion transmitted by 

each satellite provides unambiguous pseudo-ranges; however, the access to this code is 

only restricted to DoD authorize users. 

 

According to reference [3.3], the GPS receiver can easily overcome the drawbacks 

caused by the C/A code ambiguity if it has a rough idea of its location within hundreds 

of kilometres (considering that the entire C/A sequence is about 300 km long). The code 

measurements processed on these studies do not seem to be ambiguous; it is supposed 

that the C/A code ambiguity estimation was performed previously while deriving the 

measurements. The following figure shows an example of pseudo-range measurements 

used while performing these studies. 

 

 

 

 

 

     
Figure 19 Example of code 
measurements (pseudo-ranges) 
taken by a stationary receiver 
that observed three satellites during 
a time period of 4 hours on July 19, 
2007 from 9:00 to 13:00.  
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Obtaining measurements of distances and ranging 

 

Once the absolute signal transit time is derived, this time measurement is multiplied by 

the speed of electromagnetic radiation yielding a rough measurement of satellite-to-

receiver distance, referred to as range. Hence, as mentioned in chapter 2, measuring 

simultaneous ranges to three satellites, the receiver will be able to compute its position 

as the intersection of three imaginary spheres of known radii, i.e. the measured ranges, 

and centred at each satellite whose positions are computed by processing some 

parameters taken from the navigation message  - as illustrated in the following figure. 

 

 

 

Figure 20 Ranging with code measurements. 
 

Nevertheless, the real situation has some drawbacks. The receivers are generally 

equipped with quartz crystal oscillators that do not keep the same time as the more 

stable atomic clocks onboard satellites. In fact, both clocks (onboard satellites and 

within the GPS receiver) deviate from the general GPS time scale; these offsets must be 

taken into consideration while processing the derived range measurements. Satellites 

clocks can be approximately synchronized to GPST using the clock correction model 

broadcast in the navigation message. Consequently each range measurement is 

“contaminated” by the receiver clock error, for that reason it is referred to as pseudo-
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range instead of range. Hence, a minimum of four satellites must be tracked in order to 

determine the receiver’s coordinates and clock error. 

 

Precision of the C/A code pseudo-ranges 

 

As it was introduced in the section 2.3.2, an individual C/A code is a unique binary 

sequence of 1023 chips (or bits) that is repeated each millisecond. The uncertainty in 

matching the replicas with the incoming code is thus limited to only 1023 code chips 

per millisecond. According to reference [4.9], the alighment is generally possible to 

within about 1-2% of the chipping rate or the chip length. The chipping rate of the C/A 

codes is 1023 Mbps and the chip length is about 300 m. Hence, a C/A code phase 

measurement precision is on the order of 3-5 metres. P code direct adquisition requires, 

by design, higher complexity due to the length of this code; these studies are not 

focused on this area, readers can look up literature quoted on references [3.3][3.4][2.1]. 

 

Though metre precision can be possible, pseudo-ranges are affected by several error 

sources that degrade the accuracy of these measurements. These error sources will be 

mentioned in subsequent sections.  

 

 

3.2.2 GPS pseudo-ranges: observation equations 

 

Once the definition of pseudo-range has been introduced, physical and mathematical 

patterns need to be described in order to develop an appropriate parameter model for 

processing this kind of GPS measurements. First of all, the physical model for an 

individual pseudo-range is posed. Then, a mathematical model is derived incorporating 

only those terms that will be parameterised while processing the pseudo-ranges. The 

following development is principally taken from references [3.3], [3.4] and [3.6]. 
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In the following sections, measurements from a GPS satellite are analyzed in a generic 

way, making no reference to the satellite identification number or carrier frequency (L1 

or L2) to keep the notation simple. Subscript s is used to identify a term associated with 

a satellite, and subscript r to identify a term associated with the GPS receiver. 

 

Pseudo-range in terms of ‘signal transit time’ 

 

Consider an estimate of the transit time ∆T associated with a specific code transition of 

a signal from a satellite received at time t per GPST. Let ts(t-τ) be the corresponding 

transmission time, stamped in the broadcast signal and tr(t) be the arrival time, 

measured by clock within receiver. Hence, the measured pseudo-range ρ(t) can be 

written as 

 

(3.2-1) ( ) ( ) ( )[ ]τρ −−=∆= ttttcTct sr  

 

where τ is the real signal transit time from satellite to receiver. The terms t and t-τ 

corresponds to the transmission and reception times in the general GPS time (GPST). 

As mentioned before, the instant of time t-τ is known in advance because it corresponds 

to a time stamp printed on the signal and translated to the GPST scale (i.e. corrected by 

using the satellite clock model broadcast on the navigation message). However, t and τ 

are unknown. 

 

Clock errors, offsets or biases 

 

Oscillators in satellites and receivers are used to generate timed signals such as the P 

code and the C/A codes. It is common therefore, to consider them clocks. As it has been 

introduced before, GPS satellite and receiver clocks keep time independently; this lack 

of synchronization affects measurements derived within receivers.  
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In developing the observation equations for GPS code and carrier measurements it is 

useful to assume that every clock, or oscillator, can be compared directly with a 

“perfect” oscillator having a known and constant frequency in the reference time scale 

referred to as GPS Time (GPST). Then, the errors caused by the variations of frequency 

on real satellite and receiver oscillators are named as clock errors, offsets or biases. 

Times derived from the real receiver and satellite oscillators are therefore affected by 

these clock errors and relations to the general GPST frame can be thus specified by the 

following equations 

 

(3.2-2) ( ) ( )tbttt rr +=    ( ) ( ) ( )τττ −+−=− tbttt ss  

 

where br  is the receiver clock offset and bs is the residual modelling error in translating 

the signal transmission time stamp to GPST. Both br and bs reflect the time advances 

affecting satellite and receiver clocks regarding to GPST (as shown in the following 

figure). 

 

 

 
 
 
 
 
 
 
 
 

Figure 21 Effects of clocks errors 
on the measured transit time – bs 
satellite clock error; br receiver clock 
error. 
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Pseudo-range in terms of ‘clock errors’ 

 

Considering the “time advance” affecting receiver and satellite clocks as shown in eq. 

(3.2-2), the pseudo-range equation (3.2-1) can be rewritten as 

 

(3.2-3) ( ) ( )[ ] ( )[ ] ( ) ( ) ( )[ ]ττρττρ −−+=⇒−+−−+= tbtbccttbtctbtct srsr  

 

where the terms br and bs are the receiver and satellite clocks advances, respectively; 

and cτ corresponds to the satellite-to-user distance covered by the gathered signal, as it 

can be observed in the following figure.  

 
 
 
 
 
 
 
 
 

Figure 22 Theoretical concept of 
pseudo-range measurements. The 
receiver and satellite clocks are 
unsynchronized. Hence, the 
measured transit time ∆T is the 
difference between signal reception 
time (according to receiver clock) 
and emission time (stamped on 
signal in accordance with satellite 
time scale). 

 

 

 

The transit time component τ in equation (3.2-3) is made up of two parts. The main one 

refers to the time it takes for the signal to travel through the real geometric range or 

distance between the satellite at the time of transmission t-τ and the receiver at the time 

of reception t. This can be determined from the position vectors of the satellite and the 

receiver at these time snapshots, if they are expressed in the same reference system. The 

satellite and receiver position information contained in the geometric range Range(t,t-τ) 

is essential for GPS positioning. 
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The second part of the transit time term accounts for the “extra time” taken for the 

signal to travel through the Earth’s atmosphere. In fact, the GPS signals are affected by 

the medium through which they travel. All but the final 5% of the signal travel can be 

regarded as in a vacuum or free space, through which the electromagnetic signals travel 

with a constant speed c = 299792458 m/s. Close to the surface of the earth, at a height 

of about 1000 km, the signals enter an atmosphere of charged particles, called the 

ionosphere that acts as a refractive and dispersive medium in the case of the GPS 

frequencies. Later, at a height of about 40 km, the signals encounter an electrically 

neutral gaseous refractive atmosphere known as the troposphere. The atmosphere 

changes therefore the propagation velocity (speed and direction) of radio signals. This 

effect can be modelled as a time delay or an increase in the range measurement and is 

incorporated in the observation equation as a code correction term ρatm .  

 

(3.2-4) ( ) ( )tttRangec atmρττ +−= ,     

 

The term ρatm can be broken down into two components taking into consideration the 

two most important atmospheric layers generating delays or advances in the GPS 

signals, according to GPS literature, these are the ionosphere and the troposphere. Both 

terms will be discussed in the next section (Measured pseudo-ranges). 

 

Combining equations (3.2-3) and (3.2-4), a physical model for an individual pseudo-

range can be derived in units of meters 

 

(3.2-5) ( ) ( ) ( ) ( )[ ] ( )ttbtbcttRanget atmsr ρττρ +−−+−= ,   
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Measured pseudo-ranges  

 

The measured pseudo-range differs from the above physical model (3.2-5) in some 

aspects that must be taken into consideration.  

 

Firslty, the derived pseudo-ranges will have random noise and signal interferences such 

as multipath, both affecting the measurement process. To denote these and other 

uncompensated modelling and measurement errors, an additional term ρnoise is 

considered  

 

(3.2-6) ( ) ( ) ( ) ( )[ ] ( ) ( )tttbtbcttRanget noiseatmsr ρρττρ ++−−+−= ,   

 

Secondly, atmosphere effects will be modelled separately into an ionosphere term and a 

troposphere term. On the one hand, the carrier and its modulating signal (i.e. the ranging 

codes and navigation message) propagate at different speeds through ionosphere. 

Specifically, the code phase is delayed while the carrier phase is advanced by the same 

amount. This means that code observables are measured longer than they should be. On 

the other hand, the path delay for both code and carrier is the same while crossing the 

troposphere; in fact, both signals suffer a delay because of the refractive characteristics 

of this atmospheric layer. Therefore, atmosphere effects will be modelled as two 

positive terms denoting the code transmission delays associated with ionosphere (I) and 

troposphere (T). 

 

(3.2-7) ( ) ( ) ( )tTtItatm +=ρ   

 

The above code pseudo-range mathematical model (3.2-6) is rewritten taking into 

consideration the terms mentioned in this section and dropping references to the 

measurement epoch t in order to simplify the mathematical expressions 

  

(3.2-8) ( ) noisesr TIbbcRange ρρ +++−+=     
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Equation (3.2-8) represents a general observation equation (or mathematical model) 

for an individual code measurement or pseudo-range. Ideally, it would be perfect to 

achieve a measurement of range, the true distance to the satellite. What it is obtained 

instead is a pseudo-range ρ which is a distance measurement “corrupted” by several 

errors (atmosphere effects, measurement noise, clock offsets). How accurate an 

estimate of position it is yielded from these measurements would depend upon the 

GPS receiver’s ability to compensate for or eliminate the errors affecting these 

quantities. 

 

It is worth highlighting that atmosphere effects and the noise term ρnoise depend on the 

receiver’s reliability, satellites layout and period of the day (or night). However, these 

quantities vary slightly between closed observation epochs. The change with time in 

observed pseudo-ranges is therefore equal to the change in any of the following 

quantities: geometric range between satellite and receiver, difference between satellite 

and receiver clock errors, troposphere and ionosphere delays, or measurement noise and 

signal disturbances. 

 

 

In the following section, an example of the pseudo-range measurements used in these 

studies is shown. Figure 23 above shows the pseudo-range measurements from three 

observed satellites taken by a permanent GPS station located on E.T.S.I of Topography, 

Geodesy and Cartography in Polytechnic University of Madrid. Observations were 

collected on July 19, 2007 during approximately 4 hours (9:00 – 13:00) and are 

available on RINEX16  2.10 files. Additionally, antenna’s elevation angles were 

computed so that a graphic of satellites’ layout in the sky can be shown. The three 

observed satellites stayed in view for almost the whole observation time. In fact, they 

started setting about the same time (after the first 50 min) - this is also noticeable since 

the elevation angles started decreasing. One of them (satellite 27) came overhead and 

stayed in view for almost the whole observation time till it disappeared beyond the 

horizon. The other two satellites remained visible higher in the sky, i.e. shorter distances 

                                                 
16 RINEX - Receiver Independent Exchange Format 
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or ranges in between. As the GPS receiver is fixed in a known location (stationary 

antenna), variation in the pseudo-range measurements shown in this figure is mainly 

due to changes in geometric ranges resulting from the satellite motion and rotation of 

the Earth. It is worth highlighting that the GPS receiver’s basic quartz crystal oscillator 

tends to drift, that is, it deviates from the general GPS system time. According to 

reference [3.3], some receiver manufacturers attempt to limit these deviations by letting 

the clock drift until it reaches a certain threshold (typically, 1 ms), and then reset it with 

a ‘jump’ to return the bias to zero. The common discontinuities that are observed on all 

pseudo-range measurements shown in Figure 23 are therefore the consequence of these 

clock readjustments. 
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Figure 23 Example of code measurements (pseudo-ranges) taken by a stationary receiver that 
observed three satellites during a time period of 4 hours on July 19, 2007 from 9:00 to 13:00.  Antenna’s 
elevation angles are shown together with satellites’ layout in the sky. 
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3.3 Carrier observations: Carrier phases 

 

An individual code pseudo-range is obtained by tracking the “phase” of the received 

ranging code; a more precise measurement can be derived by tracing the phase of the 

carrier received from a satellite. Carrier centimetre-level wavelengths (λL1 ≈ 19 cm, λL2 

≈ 24 cm) are very short compared with codes chip lengths (specifically, C/A and P code 

chip lengths are about 300 and 30 m, respectively). Therefore, if resolutions might be 

considered between 1-2% of the wavelength, the phase of the received signal can be 

measured with precisions in the range of millimetres. This aspect implies an important 

advantage in comparison with the metre-level C/A code precisions.  

 

In this section it will be shown that GPS carrier-phase measurements can also be 

defined as a function of satellite-to-user distances. Therefore, information about ranges 

to satellites can be extracted from these signals. 

 

Firstly, as in the case of code pseudo-ranges, a theoretical and physical definition of 

GPS carrier phase measurements will be commented. Secondly, mathematical models 

are also described in order to develop an appropriate parameter schema that permits 

these carrier-based measurements to be properly processed. 

 

3.3.1 Carrier beat phase measurements 

 

An individual carrier phase measurement is defined as the difference between the phase 

of the reference sine wave generated within receiver and the phase of the reconstructed 

carrier after the ranging codes are removed from the gathered one (see section 3.1).  

 

Actually, GPS receivers “difference” the Doppler shifted carrier arriving from satellite 

by the locally generated reference signal, this process results in a carrier beat frequency 

on which carrier phases are taken by periodic sampling. As mentioned by C. Rizos in 

[3.5], these raw phase measurements are generally the by-product of all GPS receivers 



 

54 

 

 

but they cannot be directly used as range observations since they are ambiguous. An 

analogy can be considered for better understanding, carrier phase might be thought as a 

tape measure than only has “millimetre” marks. You can keep track of the covered 

distance with this tape achieving the accuracy of one millimetre, as long as you monitor 

the tape measure continuously in order to keep track of the covered full centimetres, 

metres and even kilometres. Furthermore, if you want to know the absolute distance and 

keep track of it in an accurate way, you need to determine the initial unknown number 

of full kilometres between your GPS handset and the respective satellite, this quantity is 

known as integer ambiguity in GPS terms.  

 

Consider the illustrative example shown in Figure 24 below, if the phase is taken as a 

fractional carrier wavelength, referred to as Fr(Φ), and a cycle or whole wavelength is 

approximately 19 cm in the case of L1, it is obvious that the most significant whole 

cycles to satellite are missed in each of these phase measurements. 

 

 

 

Figure 24 Theoretical concept of a carrier beat phase measurement at k-th epoch, Fr(Φ)k 
 

 

An ideal case of “error-free measurement” is firstly considered. In the scenario shown 

above in Figure 24, satellite and receiver clocks are perfectly synchronized and no 

relative motion in between is affecting measurement processes. A carrier beat phase 

measurement, derived at any observation epoch tk, would be therefore a fraction of a 

cycle (or a fraction of a wavelength Fr(Φ) when talking in metric units). Hence, the 

distance between the specific satellite and the receiver would be an unknown number of 

whole wavelengths nλ plus the measured fractional wavelength Fr(Φ)k.  
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It is observed how the resultant carrier measurement Fr(Φ) contains no information 

regarding the number of whole satellite-to-user entire cycles n, i.e. the integer 

ambiguity. Therefore, the above mentioned carrier beat phase observation cannot be 

directly used as a range measurement because of the inherent unknown quantity n.  

 

If relative motion between satellite and user is considered, the ambiguity term n might 

continuously change and hence, it would depend on both receiver channel tracking the 

satellite and time.  

 

Integrated carrier beat phase 

 

Actually, GPS equipments keep track of the elapsed full cycles as the carrier beat phase 

is sampled within (phase-lock loops capabilities). An integrated carrier beat phase 

observation is thus derived taking into consideration the measured partial wavelength 

Fr(Φ) and the counted number of full carrier wavelengths, elapsed since lock on. If the 

receiver or satellite in the above Figure 24 moves so that the distance between them 

grows by two wavelengths or cycles, the corresponding integrated carrier beat phase 

measurement would be the number of counted full cycles since the first measurement 

epoch (i.e. Int(Φ)0,k=2), plus the fractional measured cycle at that observation epoch 

Fr(Φ)k . An illustrative example is shown in the following figure. 

 

 

 

 

 

 

Figure 25 Theoretical concept 
of the integrated carrier beat 
phase measurement. GPS 
equipments measure carrier phases 
by taking into consideration the 
elapsed whole cycles between 
consecutive epochs plus the 
measured fractional cycle at each 
epoch of observation. 
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Ranging with integrated carrier beat phase measurements 

 

As stated by C. Rizos in reference [3.5], a GPS carrier phase observation from a specific 

satellite can be defined at any measurement epoch tk as 

 

(3.3-1) ( ) ( ) 0,0 CIntFr kkk ++= φφφ      in cycles 

 

(3.3-2) ( ) ( ) 0,0 CIntFr kkkk λφλλφ ++Φ==Φ  in units of length 

 

where ( )kFr φ  is the fractional cycle17 . The term ( ) kInt ,0φ  corresponds to the current 

reading on a zero-crossing counter that only registers the number of whole cycles since 

lock-on. The cycle counter has an initial value of C0 (usually zero). Fr(Φ)k is the 

measured fractional cycle translated into metric units, i.e. the measured fractional 

wavelength. In this section, subscripts k identify the epoch of measurement. 

 

The ideal relation between the measured phase and the satellite-to-user geometric 

distance (or range) at any epoch tk can be defined as  

 

(3.3-3) 0
0 nRange

c

f
kk += φ    in cycles 

 

(3.3-4) 0nRange kk λ+Φ=    in units of length   

 

where n0 is the number of unknown satellite-to-user entire cycles on the first 

observation epoch that is the integer ambiguity term. The geometric satellite-to-user 

range is scaled into units of cycles by f0/c, where f0 is the carrier frequency and c the 

speed of light in vacuum.   

 

                                                 
17 In metric units, a whole cycle corresponds approximately to 19 cm ( L1 carrier) and 24 cm (L2 carrier) 
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If no loss of lock happened between observation epochs, the term n0 on (3.3-3) and (3.3-

4) remains fixed for a particular satellite-to-receiver ensemble of carrier measurements.  

 

In order to convert the above measured phase into range measurement, the initial 

unknown number of satellite-to-user cycles n0 has to be determined. Unlike the receiver 

clock error, time and algorithm complexity trade-offs are higher when trying to solve 

for this ambiguities. There are techniques focused on the resolution of these unknown 

quantities, all involve important challenges in terms of algorithm design and software 

implementation. The mathematical process for determining the value of the ambiguities 

is referred to as ambiguity resolution or initialization. According to Guy L. Thompson 

in reference [3.4], tremendous progress has been made in this environment during the 

last decades. 

 

3.3.2 Carrier-phase observation equations 

 

Let’s have a look on a convenient mathematical model for the above mentioned carrier-

phase measurements. In this section, observation equations for an individual GPS 

carrier-phase observation will be developed. The posed model is valid for measurements 

made on either L1 or L2 frequency. 

 

In the absence of clock offsets and measurement errors, the “beat phase”, formed as an 

observation within the GPS receiver, is defined as the difference between the phase of 

the local receiver oscillator and the phase of the gathered signal at the instant of 

observation t 

 

(3.3-5) ( ) ( ) ( )ttt rlob φφφ −=  in units of cycles 

 

where ( )tbφ  is the carrier beat phase at reception time t,  ( )tloφ  corresponds to the local 

receiver oscillator’s phase at time t and ( )trφ  is the phase of the received signal from a 

certain satellite at time t. 
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Assuming constant running oscillator frequencies, the phase of the received signal at 

any instant can be related to the phase at satellite at the time of transmission in terms of 

the signal transit time τ (see Figure 26).  

 

(3.3-6)  ( ) ( ) ( ) ( ) ( )τφφφφφ −−=−= ttttt slorlob  

 

The carrier phase measurement is thus an indirect measurement of the signal transit 

time τ.  

 

λ

Ør(t)Øs(t-τ)

timett-τ
 

 

Figure 26 Example of carrier-phases in satellite and receiver oscillators assuming constant frequencies 

 

 

In developing the observation equations it is useful to consider that every clock 

(essentially, an oscillator) can be compared with an “ideal” oscillator having a constant 

frequency f0 in the reference time scale GPST. As time goes by, the phase of this 

oscillator θ(t) behaves in accordance with  

 

(3.3-7) 
( ) ( ) ( )
( ) ( ) ( )000

0
0

ttftt

dttftt
t

t

−+=

+= ∫
θθ

θθ
   

 

where f(t) is the time-dependent frequency of the oscillator and t0 corresponds to some 

arbitrary epoch. As mentioned before, in equation (3.3-7) the frequency of the ideal 

reference oscillator f(t) has been assumed to be constant f0. 
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As it was mentioned in sections before, clocks aboard GPS satellites and receivers are 

not perfect and the frequencies they generate are usually affected by slight variations. 

Therefore, the phase of a real GPS satellite or receiver oscillator obeys the relation 

 

(3.3-8)  ( ) ( ) ( )tbftt 0+= θφ  being  ( ) ( ) ( )[ ]tt
f

tb θφ −=
0

1
 

     

where f0b(t) is the oscillator phase error ( ) ( )tt θφ −  - regarding to the phase of the 

“ideal” oscillator ( )tθ . The term b(t) will be denoted as the clock error. The phase of 

the local clock within GPS receiver can thus be written as 

 

(3.3-9) ( ) ( ) ( )tbftt rlo 0+= θφ   

 

where f0br(t) is the clock phase error corresponding to the GPS receiver. 

 

An expression relating phase and satellite clock phase error at transmission time, can be 

derived considering the equations stated above  

 

(3.3-10) ( ) ( ) ( ) ( ) ( ) ττθττθτφ 000 ftbfttbftt sss −−+=−+−=−  

where  ( ) ( ) ( )[ ]ttftt −−+=− τθτθ 0  

 

The clock phase error attributable to the oscillator on board a GPS satellite corresponds 

to the term f0bs(t) . 

 

Replacing the above equations into the carrier beat phase measurement general 

expression stated in (3.3-6), the following equation is achieved 

 

(3.3-11) ( ) ( ) ( )
( )

( ) ( )[ ]
( )

( ) ( ) ( )[ ]ττφ
ττθθφ

τφφ

−−+=
−−+−+=

−

tbtbfft

ftbfttbftt

srb

t

s

t

rb

slo

00

000

4444 84444 7648476
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The oscillator frequency can also be defined in terms of its wavelength λ as f0= c/λ, 

where the term c corresponds to the speed of light in vacuum. 

 

As it was commented in the case of pseudo-range measurements, the transit time term 

f0τ consists of two components. The main one corresponds to the time it took the signal 

to travel from satellite to receiver describing a straight-line path (that is, covering the 

real geometric range between the satellite’s location at transmission time and the 

receiver’s position at reception time). The second component accounts for the lag in 

signal path caused by atmosphere effects; these generate refractions and dispersions that 

change the velocity (speed and direction) at which GPS signals travel. Those 

phenomena are modelled as time delays, phase delays or as an increase in the covered 

distance and considered in the observation equations as several phase correction terms 

grouped on the factoratmφ . The signal transit time component is therefore expressed as 

 

(3.3-12) ( ) ( )tttRange
c

f
f atmφττ +−= ,0

0    

 

Where Range(t,t-τ) corresponds to the geometric distance between the receiver position 

at time t and the satellite location at t-τ. The term atmφ  can be broken down into 

components for the different parts of the atmospheric delay, through the ionosphere and 

troposphere. 

 

Combining the equation (3.3-12) and the model (3.3-11), the observation equation for 

an individual carrier-phase measurement is derived as 

  

(3.3-13) ( ) ( ) ( ) ( )[ ] ( )ttbtbfttRange
c

f
t atmsrb φττφ +−−+−= 0

0 ,  in cycles 

 

(3.3-14) ( ) ( ) ( ) ( )[ ] ( )ttbtbcttRanget atmsrb λφττ +−−+−=Φ ,  in metric units 

 

where λ is the wavelength of the respective carrier (λ=c/f0).  
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Measured carrier-phases 

 

The measured carrier-phases obtained within the GPS receiver slightly differ from the 

above posed observation model (3.3-13) or (3.3-14) in several aspects. 

 

First of all, random noise generated within the GPS receiver processes might affect the 

measurements. Additionally, multipath signals reaching the receiver’s antennas might 

also cause interferences. As in the case of pseudo-range measurements, a term is added 

to take account of these errorsnoiseφ . 

 

Secondly, the real derived phase measurement is the integrated carrier beat phase that 

depends not only on the fractional part of the measured carrier phase, but also on the 

integral part coming from the counter registering the number of elapsed cycles since 

lock-on. That is, all the whole missing satellite-to-user cycles (or wavelengths) since 

lock on need to be considered on the observation equation. This quantity is unique for a 

particular satellite-receiver pair and remains constant as long as the receiver keeps on 

tracking and counting the elapsed cycles from the time the satellite signal was first 

acquired. The parameter N will be added to consider this effect. 

 

Thirdly, tracking the correct number of full cycles on which satellite-to-user distance is 

changing is very critical. This magnitude will be miscalculated if a cycle is missed or an 

extra cycle is added when, for example, the receiver fails to track the signal from a 

satellite at any time. In this situation, the integer ambiguity term N might not remain 

fixed between these observation epochs. In GPS terminology, this phenomenon is 

referred to as “cycle slip”, which is like missing the centimetre or metre marks while 

you are concentrating on reading the millimetre ticks. Cycle slips can cause large errors, 

most GPS systems are thus able to detect and repair them.  

 

Finally, as in the case of pseudo-range measurements, atmosphere effects will be 

modelled separately into ionosphere and troposphere terms. Ionosphere is a dispersive 

medium, that is, the carrier and its modulating signal (i.e. the code and navigation 
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message) propagate at different speeds through this atmosphere layer. In fact, the code 

phase is delayed (i.e. is measured larger than it is in reality) and the carrier phase is 

advanced by the same amount (i.e. is measured shorter). Therefore, in the case of carrier 

measurements, the ionosphere term on the observation equation has negative sign. 

Troposphere effects on carrier phases are analogous to the case of code measurements. 

 

On the final measurement model, cycle slips will not be considered because they are 

usually detected previously in independent processes. Hence, dropping references to the 

measurement epoch, the mathematical model for the measured carrier phase is 

 

(3.3-15) ( ) NbbfRange
c

f
noiseatmsr +++−+= φφφ 0

0    in cycles 

(3.3-16) ( ) NbbcRange noiseatmsr λ+Φ+Φ+−+=Φ    in metres  

 

Considering ionosphere and troposphere effect separately 

 

(3.3-17) ( ) NTIbbcRange noisesr λ+Φ++−−+=Φ  

 

This mathematical development has been obtained from references [3.1] [3.2] and [3.5]. 

As it was mentioned before, constant running oscillator frequency is assumed in these 

studies, that implies equal phases in satellite oscillator and receiver oscillator at the time 

of arrival. If differences in the initial phases of the receiver and satellite clocks are taken 

into consideration, a new term must be added on the equations above. 

 

The atmosphere and noise terms depend on the receiver, satellites layout and epoch (day 

or night). However, these effects vary slowly between consecutive observation epochs. 

Thus, the change with time in observed carrier phases is equal to the change in satellite-

to-user geometric range, receiver and satellite clock errors, atmosphere effects and 

measurement noise and signal multipath. The change in carrier phase measurement over 

a time interval is referred to as integrated Doppler or delta pseudo-range. 
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In the following section, an example of the carrier-phase measurements used in these 

studies is shown.  Figure 27 shows carrier-phase measurements obtained from the 

studies previously introduced in Figure 23. Observations have been collected on July 19 

2007 during 4 hours (9:00 – 13:00) by the same permanent GPS station located on 

E.T.S.I of Topography, Geodesy and Cartography in Polytechnic University of Madrid.  

 

 
Figure 27 Example of carrier-phase measurements taken by a stationary receiver that observed three 
satellites during a time period of 4 hours on July 19, 2007 from 9:00 to 13:00. Unlike code pseudo-ranges, carrier 
phases are not affected by receiver clock readjustments discontinuities.  

 

It is worth highlighting that unlike code-based measurements carrier-phases are not 

affected by receiver clock readjustments (i.e. the discontinuities affecting pseudo-ranges 

in Figure 23). Anyway, large ambiguities are corrupting these carrier measurements 

(almost the whole satellite-to-user distances ≈ 21000 km). In the next section, it will be 

shown that the change over time in carrier phases reflects the trace of satellite-to-user 

ranges in a more reliable way than the change over time in pseudo-ranges. The negative 

sign of some carrier-phases is due to the fact that these are measured regarding to the 
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local oscillator located at receiver site, that is, the received carrier-phase can be 

“advanced” or “delayed” with respect to the phase of the reference oscillator. 

 

3.3.3 Carrier-phase time variations: Delta pseudo-ranges 

 

The carrier-phase observation model (3.3-17) appears similar to the one of the pseudo-

range measurements based on code tracking (3.2-8). Both the code and carrier phase 

measurements are corrupted by the same error sources (measurement noise, atmosphere 

effects, clock errors), but there is an important difference. Code tracking provides 

essentially unambiguous pseudo-ranges (though coarse). The carrier phase 

measurements are however extremely precise, but encumbered with integer ambiguities 

(as shown previously in Figure 27). 

 

One way to get at least a partial benefit of the precise carrier phases, without being 

degraded by the integer ambiguities, is via delta pseudo-ranges obtained from the 

change in the carrier phase measurement over a time interval. These delta pseudo-

ranges are derived by differencing carrier-phase measurements between consecutive 

epochs (i.e. computing time differences). In that way, if the carrier is tracked 

continuously between epochs, the integer ambiguity term is cancelled.  

 

Delta pseudo-ranges between time instants tk-1 and tk can be defined as the following 

time differences 

 

(3.3-18) ( ) ( ) noise
kk

kkkk

RangeRange
tt φ

λ
φφφ ~1

1,1 +
−

≈−=∆ −
−−   in cycles 

 

(3.3-19) ( ) ( ) noisekkkkkk angeRangeRtt Φ+−≈Φ−Φ=∆Φ −−−
~

11,1   in metric units 

 

The error in the above measurement type is related to the rates of change in the offsets 

of the satellite and receiver clocks, and the rates of change in the atmosphere effects. 
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Furthermore, the millimetre-level resolution on carrier-phases implies a lower 

measurement noise, in comparison with achievable metre-level pseudo-ranges 

resolution. 

 

An experimental example derived while performing these studies is shown in this 

section. The data analysis was carried out considering an ensemble of observations 

taken by the previously quoted stationary GPS station. The observation interval on 

which measurements were collected was shorter (9:00– 10:00) in order to speed up the 

period of computation and reading from RINEX files. Measurements were taken from 

one monitored satellite that stayed in view during the whole observation interval. This 

satellite set and, therefore, the respective pseudo-ranges increased. Code and carrier 

observables (i.e. pseudoranges and carrier-phases) are shown in the following figure. 
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Figure 28 Example of code and carrier measurements from a descending satellite, collected during one 
hour of observations (9:00– 10:00 on July 19 2007) 

 

 

The time variations of the above illustrated measurements were evaluated by computing 

differences between epochs of observations. The resultant inherent measurement noise 

is considerable lower on carrier-based time differences (see the following Figure 29). 

Specifically, code-based time differences, denoted by ∆ρ, are affected not only by 

higher noise levels but also by clock readjustments. Nevertheless, time differences 

derived from carrier-phases (i.e. delta pseudo-ranges, denoted by ∆Φ) describe a finer 

trace of the time variations in pseudo-ranges since they are not affected by clock 

readjustments and, furthermore, they exhibit lower levels of measurement noise. 
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Figure 29 Comparison between code pseudo-ranges (ρ) and carrier-phases (Φ) in terms of changes over 
time, differences between adjacent time-instants have been computed as ∆ρ = ρ(tk+1)- ρ(tk)  and ∆ Φ = Φ(tk+1) – 
Φ(tk). 

 

 

On these studies, the files that contained the processed GPS data also included a rough 

approximation of where the stationary GPS station that gathers the measurements is 

located. This position was used to show more realistic outcomes. In that way, traces to 

theoretical ranges were roughly assessed with the aid of the satellites positions derived 

from the broadcast navigation parameters. In the following figures, the resultant 

theoretical ranges, referred to as R, are compared with the measured pseudo-ranges and 

carrier phases as well as their time differences (denoted by ρ, Φ, ∆ρ and ∆Φ, 

respectively). It can be observed how code-based measurements are much noisier than 

carrier-based ones. 
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Figure 30 Example of the theoretical ranges to satellites (R) compared with measured pseudo-ranges (ρ) 
and carrier-phase measurements (Φ). 
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Figure 31 Example of the time variations in the theoretical ranges to satellites (∆R) compared with the 
ones of measured pseudo-ranges (∆ρ) and carrier-phase measurements (∆Φ). 
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Differenced measurements like delta pseudo-ranges ∆Φ are usually processed on GPS 

equipments, these approaches are applied in order to handle some of the effects caused 

by errors degrading the derived GPS measurements (such as clock deviations from 

general GPS time frame or cycle ambiguities). For example, as it was mentioned before, 

the observation dependent ambiguity in carrier-phase measurements is assumed to 

remain constant for an extended period of uninterrupted tracking. The effect of this error 

can thus be eliminated by differencing between consecutive epochs (as shown in figures 

above), avoiding then the cycle ambiguity estimation. Nevertheless, cycle ambiguities 

can also be explicitly estimated to apply the proper corrections on GPS carrier 

measurements, in that way, measurement differentiation will not be necessary. These 

“non-differenced schemes” imply time penalties and algorithms complexities that might 

not be interesting in terms of conventional real-time GPS positioning. 

 

The effect of computing differences on GPS measurements will be explained in more 

detail in chapter 4. 
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3.4 GPS Observation Model Errors 

 

Errors degrading code and carrier-based measurements are often categorized as noise or 

bias according to their rate of change over time.  

 

Noise generally refers to quickly varying phenomena that average out to zero over a 

‘short’ time interval, where short is defined in relation to the tracking loops within 

receiver equipments. A bias tends to persist over a period of time. Measurement biases 

in GPS are referred to as those influences on the observations that cause the measured 

satellite-to-user distance (or “range”) to be different from the true distance by a 

systematic amount18.  

 

For example, the errors associated with the satellites and receiver clocks are regular 

enough to be characterized as bias terms. Propagation errors can be highly variable 

depending upon the user location, satellite elevation angle, and state of the medium. 

However, if the GPS receiver remains fixed or moves slowly, these effects change 

slowly and might also be thought as biases, except for atmosphere scintillations. Hence, 

bias is considered as a time correlated effect (low frequency component) and noise as a 

time uncorrelated effect (high frequency component). 

 

It is worth pointing out that the dominant biases in GPS are those due to the receiver 

equipment and satellite clocks deviations regarding to general GPS time scale (GPST). 

Furthermore, both affect the respective measurements by the same amount.  

 

In this section, the most important sources of errors affecting GPS measurement are 

mentioned describing the principal characteristics and effects on positioning accuracy. 

 

                                                 
18 Systematic errors are biases in measurements which lead to measured values being “systematically” too 
high or too low. 
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3.4.1 Satellite Errors 

 

Satellite errors are caused by errors in the satellite position and clock parameters as 

specified in the 50-bits/s navigation message broadcast by each satellite. These 

inaccuracies are common on both code- and carrier-based measurements. In fact, the 

most important one is that due to the purposeful “dithering” 19 of the satellite clock 

frequency under the policy of Selective Availability (SA)20 . Such scheme introduces 

deviations in the timing marks on the broadcast signals which can be taken out only by 

authorized users. The size of this error can apparently be raised or lowered by the U.S. 

Government. According to reference [3.6], this error remains stable at about 80 ns rms 

(root-mean-square), or 24 m rms. President George Bush recently accepted the 

recommendation of the DoD to end procurement of GPS satellites that have the 

capability to intentionally degrade the accuracy of civil signals by means of SA 

(October 2007). This policy, thus, will no longer be present in GPS III satellites. 

 

Prediction of the satellite ephemeris is processed on the basis of orbits fitted to the 

tracking data obtained over several preceding days. The net effect of the error caused by 

these parameters on a pseudo-range measurement can easily be considered to be the 

projection of the satellite position error vector on the satellite-to-user line of sight. 

According to reference [3.6], experimental results have shown this error to be as large 

as 10 m. Schemes to reduce the ephemeris errors are focused on improvements in 

satellite tracking and prediction algorithms. 

 

 

 

 

 

                                                 
19 Dithering consists of the addition of noise into the satellite clock used to derive broadcast GPS signals in order to 
degrade position accuracy for civil users. 
 
20 Selective Availability (SA) is a policy adopted by the DoD of USA to introduce some intentional clock noise into 
the GPS satellite signals thereby degrading their accuracy for civilian users. 
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3.4.2 Signal Propagation Errors: Ionosphere and troposphere 

 

As mentioned before, all but the final 5% of the signal travel can be regarded as in a 

vacuum or free space, through which the radio waves broadcast by GPS satellites 

propagate at a constant speed (c ≈ 299792458 m/s). In fact, the propagation medium 

changes the velocity of signals (speed and direction) causing uncertainties in the 

measurements of satellite-to-user distances. These effects have a variation dependent 

upon the state of the medium.  

 

Close to the surface of the earth, at a height of about 1000 km, the signals enter an 

atmosphere of charged particles, called the ionosphere. In the case of GPS signals, the 

ionosphere acts as a refractive and dispersive medium. As a result, the carrier and its 

modulating signal (i.e. the code and navigation message) propagate at different speeds 

through this atmosphere layer. In fact, the code phase is delayed (i.e. group delay) while 

the carrier phase is advanced (i.e. phase advance) by the same amount. This implies that 

code measurements are measured longer and carrier-based observables are measured 

shorter than they are in reality.  

 

The physical characteristics of the ionosphere depend upon the solar activity; hence they 

change widely between day and night, even from day to day. Additionally, phase delays 

vary as the physical path of the crossing signal changes due to satellite motion and 

dynamics of the atmosphere itself. In fact, the zenith path delay can vary from about 1 

m at night to 5-15 m in the mid-afternoon (according to reference [3.6]). The delay can 

be larger at low elevation angles, because signal traverses a larger ionosphere path.  

 

Dual frequency (L1-L2) GPS receivers can estimate ionosphere group delays and phase 

advances. Receivers limited to L1-only measurements have recourse to an ionosphere 

model whose parameters are broadcast by the satellites. According to reference [3.6], 

this model reduces the errors due to uncompensated ionosphere delays by about 50% on 

average. In reference [3.6], it is mentioned that, at mid-latitudes, the remaining error can 

be up to 10 m during the day.  
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After crossing the ionosphere, at a height of about 40 km, the signals encounter a layer 

composed of dry gases and water vapour. This electrically neutral gaseous atmosphere 

is called the troposphere and acts as a refractive medium in terms of GPS radio waves. 

Hence, the propagation velocity is once again modified.  

 

Unlike the ionosphere, the troposphere is “nondispersive” for the GPS frequencies, 

therefore the path delay is the same for both code and carrier measurements at L1 and 

L2 frequencies. This effect depends on the refractive index of the air mass along the 

path of the signal. As mentioned in reference [3.2], this error is about 2.5 m in the zenith 

direction and 10-15 m for satellites at low elevation angles. Troposphere delay cannot 

be estimated directly from the GPS measurements and the receiver has to apply 

mathematical models with accuracies decreasing at low elevation angles. 

 

 

3.4.3 Receiver Measurement Errors and Multipath 

 

Measurement errors due to receiver noise depend on signal strength characterized as 

carrier-to-noise spectral density ratio. According to reference [3.2], this error is below 1 

m rms for code measurements, and about 2 mm for carrier phase measurements.  

 

GPS broadcast signals can be reflected from structures in the vicinity of the receiver’s 

antenna, or from the ground. Hence, receiver gathers not only the line-of-sight signal 

but also one or more of its reflections. This interference phenomenon is named as 

multipath and depends upon the environment, antenna placement, and antenna design. 

As mentioned in [3.2], multipath errors can be reduced in previous signal processing 

steps; in fact, receiver manufacturers have developed and implemented proprietary 

techniques. Typical multipath error in pseudo-range measurements can range from 1 m 

in a benign environment to more than 5 m in highly reflective environments. The 

corresponding errors in the carrier measurements are typically two orders of magnitude 

smaller. 

 



 

73 

 

 

Satellites layout in the sky affects measurements qualities. For example, both 

atmosphere and multipath errors are magnified when satellites are at low elevation 

angles.  As a result, observables from high satellites are more reliable than low ones. 

Figure 32 illustrates an example of this fact. Graphics show the time change in pseudo-

range measurements gathered from two observed satellites. Data was gathered in the 

afternoon July 19, 2007 at a rate of 1 Hz during the 18:00-18:06 time period. Both 

satellites were visible the whole observation interval. One of them was placed low in the 

sky with elevation angles ranging from 70 to 80 degrees; in contrast, the other satellite 

was monitored at lower elevation angles that do not exceeded 20 degrees. It can be 

observed how “time differenced” pseudo-ranges from the satellite placed at lower 

elevation angles are affected by higher noise levels. 
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Figure 32 Example of GPS measurements taken from high and low satellites. The satellites were observed 
on July 19, 2007 during 6 minutes (18:00-18:06). Satellite 2 was located at low elevation angles that do not 
exceeded 20 degrees; in contrast, satellite 5 was placed at higher positions in the sky with elevation angles 
ranging from 70 to 80 degrees. Between-epoch differences computed on measured pseudo-ranges (i.e. changes 
with time) are shown in the graphics above, it is noticed that measurements from satellite 2 are affected by 
higher noise levels. 
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If measurements from low satellites can be excluded as a precaution, the impact of these 

errors on the position estimates could be reduced. However, this is not always practical 

because the GPS receiver may not have the luxury to drop measurements. According to 

reference [3.6], elevation cut-off of 5º-7.5º appears to offer a good trade-off between the 

loss of measurements and potential for large errors. The studies performed on this work 

were all based on measurements taken from satellites with elevation angles beyond 10º 

(see Figure 32). 
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Chapter 4 

Combining GPS Measurements  
 

 

“Two types of measurements can be obtained from the GPS Navstar Satellites (…).  
Code tracking measurements are normally referred to as pseudorange measurements (…). 

 The relative phase between the received, reconstructed carrier phase and the receiver 
clock phase at a particular epoch may be measured. This is like a very fine and precise 

measurement of pseudorange but with all the most significant (whole cycles) missing (…) 
more economical processing of the measurements can be obtained via a simple 

combination procedure prior to their inclusion in the position solution equations (…)” 
 

Ron Hatch – ‘The Synergism of GPS Code and Carrier Measurements’, 1982 

 

 

The information redundancy provided by the diverse types of GPS measurements, such 

as pseudo-ranges and carrier phases, offers an exceptional opportunity to improve 

accuracy of position estimates. Conventional GPS equipments use C/A code pseudo-

ranges to compute the navigation solution (i.e. position, velocity and time). These code 

measurements are affected by errors due to satellite and receiver clocks, ephemeris 

parameters and atmosphere effects just like the measured carrier phases. However, the 

error due to multipath and receiver noise in the carrier observables, at centimetre level, 

is about one-hundredth of that in the pseudo-ranges. But there is an important 

drawback: ambiguities affecting carrier measurements involve extra complications 

while computing the navigation solution. 

 

These studies were aimed at examining the benefits of combining the above noisy and 

unambiguous code measurements with the precise but ambiguous carrier phases for 

absolute positioning in a single-frequency receiver. In this chapter, different approaches 

that allow the integration of these measurements in order to achieve better position 

accuracies are developed theoretically. The resultant test results are shown in chapter 5. 
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4.1 Carrier smoothing code pseudo-ranges (CSC algorithms) 

 

Firsts attempts to combine GPS code and carrier measurements were posed at the 

beginning of the nineteen eighties with the name of carrier-aided smoothing code 

(CSC) algorithms.  

 

The term “smoothing” implies the suppression or, at least, reduction of high frequency 

noise components inherent in signals that contain certain desired information. In GPS 

terminology, the information about satellite-to-user distances embedded in the noisy 

pseudo-ranges is essential to allocate the receiver equipment; therefore, efforts to reduce 

pseudo-range noise levels, that make difficult the identification of this range 

information, are the main goal in the design of CSC algorithms (see Figure 33). In that 

way, the preciser or finer carrier-phases are used to filter or “smooth” out the noise on 

code pseudo-ranges. 

 

 

 

Figure 33 Illustrative example of smoothing in GPS positioning. Positions derived from pseudo-
ranges are “noisier” than the ones obtained from carrier-phases. However, carrier-based outcomes 
contain an inherent ambiguity that must be solved to yield absolute positioning (the sketch does not 
fit the reality). If both sources of information are combined, a “cleaner” or “smoothed” trace of 
positions can be obtained. 

 

Basically, a phase smoothing filter might start with raw pseudo-range measurements to 

establish an absolute position. Progressively, higher weights will be placed on the 

derived carrier phase information and less on the raw pseudo-range based data to 
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provide a smoothed pseudo-range output. Such a technique was firstly described in a 

paper by Ronald R. Hatch, entitled “The synergism of GPS code and carrier 

measurements” [4.1].  

  

4.1.1 Evolution of CSC Algorithms 

 

In 1982, Ron Hatch posed one of the first proposals to perform carrier-smoothing-code 

pseudo-ranges algorithms [4.1].  In fact, some of these techniques were later named as 

Hatch filters. 

 

As P. Cheng mentioned in [4.10], Hatch himself posed improvements four years later 

(1986) that applied epoch-dependent smoothing weight factors [4.2].  

 

Variants of Hatch’s algorithms were developed by Lachapelle in 1986 [4.6] on which 

the smoothing weight factors were reduced by a constant from epoch to epoch. Similar 

proposals were also released by Meyerhoff and Evans in 1986 [4.7].  

 

During the next decade, innovative designs were analyzed by Hofmann-Wellenhof 

(1997) [4.3], [4.4]. In fact, an implicit smoothing scheme of code pseudo-ranges with 

carrier observations was used in a DGPS differential correction model by Jin (1996) 

[4.5]. 

 

4.1.2 CSC Domains: range and position. 

 

Two domains of carrier phase smoothing schemes have been analyzed since the first 

Hatch’s investigations were performed in 1982. These are referred to as range and 

position domain algorithms.  

 

Range domain (RD) algorithms place the combination of code and carrier measurements 

before the computation of the navigation solution, that is, pseudo-ranges are directly 
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filtered with the aid of carrier-phases in order to smooth out inherent noise affecting the 

code-based measurements; a ‘smoothed pseudo-range profile’ is then output and 

processed subsequently in order to estimate the receiver’s position. Position domain 

(PD) CSC algorithms are, however, performed within the process that estimates the 

receiver’s position; in that way, both pseudo-ranges and carrier-phases are processed 

while computing the navigation solution. The following figure shows these two CSC 

domain variants. In both approaches, carrier-phases are previously differenced in time 

in order to process the resultant differenced measurements (denoted by ∆Φ). 
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Figure 34 Domains to perform carrier-phases smoothing code pseudo-ranges: Range (RD) and 
Position (PD) domains. 

 

Smoothing schemes posed by Ronald R. Hatch are good examples of range domain 

CSC algorithms. They involve the use of a group of parallel filters (one for each visible 

satellite – see Figure 34) in order to smooth out the noise on code pseudo-ranges with 

the aid of ‘time-differenced’ carrier-phases. Compared with other types of precise 
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differential positioning21, these procedures do not require the specification of a dynamic 

model; furthermore, corrections from a second reference GPS station are not necessary. 

Using this type of filters within a single-frequency receiver, the noise affecting pseudo-

range measurements is considerably reduced; test results shown this fact and will be 

commented in section 5.2.2 (in fact, the noise is reduced more than 1 metre in some 

experiments).  

 

Ideally, it would appear to make sense to apply as much carrier-smoothing as possible 

in order to eliminate the inherent noise. Unfortunately, some references such as 

[3.3][3.6][3.8][3.9] mention that enlarged smoothing intervals can have negative effects 

on the GPS receiver performance, because of the cumulative effect of ionosphere delay 

– this fact was verified in the performed experiments and will be explained in 4.2.1. To 

achieve a more effective and efficient use of Hatch’s algorithms, the rate of ionosphere 

delay and noise characteristics should be known. However, since these effects are 

usually unknown to a single-frequency user, the above quoted references pose the use of 

a conservative constant carrier smoothing time (the cost of considering this option is a 

efficiency reduction in the smoothing approach). 

 

After the introduction of Ron Hatch algorithms, several position-domain (PD) schemes 

were also posed. According to H.K. Lee and C. Rizos [4.8], the most representative 

examples are referred to as the complementary filter designed by Hwang and Brown 

[4.11] and the phase-connected filter posed by Bisnath and Langley in [4.12]. These 

algorithms exhibit less sensitivity to changes in the visible satellite constellation in 

comparison to the above RD schemes. Otherwise RD filtering is, in general, more 

susceptible to information losses than PD filtering if signal lock of a channel is lost, 

even for short periods of time. 

 

The present study was focused on implementations of both RD and PD schemes. 

Specifically, the Hatch filter algorithm has been implemented as an example of RD 

CSC schemes. This algorithm is theoretically introduced in the next section and test 
                                                 
21 Precise Differential Positioning - Precise measurement of the relative positions of two receivers tracking the same 
GPS signals. 
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results are shown in chapter 5. In the case of PD CSC schemes, a modified 

position/velocity Kalman filter has been implemented. This approach was posed by 

Thomas Ford in the article [4.14]. 

 

In the following sections, the theory that allows computing these RD and PD CSC 

schemes is developed. Test results are shown next in chapter 5. 

 

 

4.2 Range Domain CSC 

 

In this section, the mathematical background of a conventional method used to combine 

single-frequency GPS code pseudo-ranges and carrier-phases will be introduced.  

 

So far, carrier-phase measurements have been represented in both cycles and metric 

units. When combining code and carrier measurements it is more convenient to 

represent carrier phases in units of length, like the code pseudo-ranges. Therefore, 

considering the measurement models previously stated in equations (3.3-17) and (3.2-

8), and individual carrier-phase and pseudo-range measurement taken from a certain 

satellite j will be defined as 
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where ( )ktφ  corresponds to the measured carrier phase (in cycles) at any observation 

epoch tk and ( )ktρ  is the code pseudo-range measurement obtained at the same 

observation epoch. The above carrier phase measurement is mapped into units of length 

just by multiplying by the respective wavelength λ.  
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Considering that both code- and carrier-based measurements are gathered from the same 

satellite, references to satellites will be dropped in order to simplify the following 

mathematical expressions. Subscripts will be used to denote the epoch at which 

measurements were taken. Consequently, the above mathematical models (4.2-1) and 

(4.2-2) will be stated as 

 

(4.2-3) ( ) kknoisekksrkk NTIbbcRange
kk

λ+Φ++−−+=Φ  

(4.2-4) ( ) knoisekksrkk TIbbcRange
kk

ρρ +++−+=   

 

It is worth highlighting that broadcast satellite signals contain a group of navigation 

parameters that are used to estimate satellite clock deviations bs in a really accurate 

way. In fact, these corrections are considered while processing the GPS measurements 

to obtain the navigation solution and the residual error can be considered negligible 

compared to other errors affecting outcomes. Therefore, the effect of satellite clock 

offset bs will be disregarded in the following mathematical development. 

 

(4.2-5) kknoisekkrkk NTIbcRange
k

λ+Φ++−+=Φ .  

(4.2-6) knoisekkrkk TIbcRange
k

ρρ ++++= .  

 

The above measurements appear to be similar; both are corrupted by the same error 

sources such as the common receiver clock error br, atmosphere effects (I, T) and 

multipath and measurement noise (Φnoise, ρnoise). Nevertheless, there is an inherent 

ambiguity term N embedded in the carrier-phases and ionosphere effects affect code- 

and carrier-based measurements in an opposite way. As mentioned before, the carrier 

frequency is advanced while it goes through the ionosphere and the lower frequency 

code sequences are, in contrast, delayed. These effects are considered as a delay or 

enlargement in the derived code pseudo-ranges (+I ) and as an advance or shortening (-I) 

in the case of carrier-phases. 
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Let’s study more deeply the effects of all these error sources affecting code pseudo-

ranges and carrier-phases in order to find a convenient way to combinate both GPS 

measurements. Both observables contain the information of interest, denoted 

by kk brcRange .+  and referred to as the “error-free pseudo-range”. In fact, the term 

kRangecorresponds to the satellite-to-user distance required to estimate the receiver’s 

position in terms of trilateration methods (see chapter 2, section 2.2). 

 

Multipath and measurement noise (Φnoise, ρnoise) 

 

Inherent multipath and measurement noise affecting pseudo-ranges and carrier-phases 

largely depend upon the precision of processes within both the code tracking loop and 

the carrier tracking loop (see chapter 3, section 3.1). These effects are denoted by Φnoise 

and ρnoise in eq. (4.2-5) and (4.2-6). 

 

According to Robert G. Brown and Patrick Y. C. Hwang [4.9], the accuracy of the code 

tracking measurement processes (that derive the pseudo-ranges) is considered to be 

about 1 meter under nominal signal reception strengths. In the same way, though 

multipath effects depend upon the environment, antenna placement, and antenna design, 

reference [3.2] states that the errors caused by this interference phenomena can range, in 

the case of code pseudo-ranges, from 1 m in a benign environment to more than 5 m in 

highly reflective environments. The noise term on pseudo-ranges can be considered to 

be about several metres. 

 

Nevertheless, multipath and measurement noise effects adopt lower values in the case of 

carrier-based measurements. As stated in by Hwang and Brown in [4.9], the noise 

generated by the tracking processes deriving carrier-phase measurements may adopt 

values lower than 1 percent of the wavelength, in the case of stationary receivers (most 

navigation-type receivers may generate stronger noise levels in the case of high 

dynamics environments - as high as 2 percent). Considering that L1 carrier wavelength 

is about 19 cm, measurement noise affecting carrier-phases can be therefore considered 
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negligible compared to the one affecting code pseudo-ranges. Additionaly, multipath 

errors in carrier-based measurements are typically two orders of magnitude smaller than 

the ones affecting code pseudo-ranges. 

 

Consequently, code measurements can be considered as unambiguous measurements of 

error-free pseudo-ranges, albeit noisy. In contrast, carrier-phases provide a finer and 

almost noiseless profile of pseudo-ranges with inherent ambiguities affecting them, 

denoted by λNk in eq. (4.2-5) and (4.2-6) (compare Figure 23 and Figure 27 shown in 

chapter 3, code pseudo-ranges are not ambiguous and carrier-phases contain an 

important ambiguity, i.e. they are not absolute measurements of satellite-to-user 

distances). The measurement noise affecting carrier-phases can be considered negligible 

compared to the one affecting pseudo-ranges. 

 

In the following figure, a conceptual view of these two GPS measurements is illustrated. 

The higher code measurement noise and the ambiguity of the carrier phases are shown. 

 

 

 

 

 

Figure 35 Conceptual view of 
code pseudo-ranges and carrier-
phase measurements. Pseudo-
ranges ρ are noisy while carrier-
phases Φ are precise but 
ambiguous.  

 

 

Carrier-phases ambiguity 

 

In eq. (4.2-5) and (4.2-6), the unknown number of whole cycles Nk affecting carrier-

phases can be considered to remain fixed if continuous carrier tracking is assured. The 

effect of this ambiguity term on carrier-phases will be then suppressed if the change in 
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carrier measurements between two consecutive measurement epochs is evaluated. This 

variation between epoch tk-1 and epoch tk can be defined by means of the time 

differenced measurements as 

 

(4.2-7) ( ) ( )
kk noisekkrkkkk TIbcRangett ∆Φ+∆+∆−∆+∆=Φ−Φ=∆Φ − .1   

 

As mentioned before, the satellite clock error term bs was not considered in the equation 

above since the satellite clock is previously synchronized by considering the clock 

model broadcast on the navigation message. Additionaly, the carrier-phase 

measurement noise is considered to be negligible. 

 

The term kk brcRange ∆+∆ .  in the equation above is the change in the “error-free 

pseudo-range” between the two measurement epochs. Similarly ∆I and ∆T are the 

corresponding changes in ionosphere and troposphere delays. Several methods have 

been stated in order to combine the GPS code- and carrier-based measurements defined 

by the above equations (4.2-6) and (4.2-7) in order to take advantage of the low-noise 

on carrier-phases, and the unambiguous nature of code pseudo-ranges (see [4.1], [4.3], 

[4.13]). In terms of the rates of change in atmosphere effects, an appealing alternative is 

posed by P. Misra and P. Enge in [4.13], in this scheme both ionosphere and 

troposphere effects are assumed to change slowly. Therefore, variations in ionosphere 

and troposphere effects are disregarded in the above quoted measurement models since 

these quantities usually would be small if the measurement epochs are close (about 1 or 

5 seconds in between). Under the above circumstances, the change in carrier-phases 

might be thought as a precise and unambiguous profile of the change in the “error-free 

pseudo-range”, that is, 

 

(4.2-8) ( ) ( ) kkkkk brcRangett ∆+∆=Φ−Φ=∆Φ − .1  
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Consequently, the above mentioned carrier-based time differences, denoted by ∆Φk, are 

considered as an accurate estimate of pseudo-ranges and thus exploited to smooth out 

the inherent noise on the measured code pseudo-ranges, denoted by ρk and defined in 

the eq. (4.2-6). As a result, a smoothed or finer pseudo-range profile is derived. This is 

the basic concept of carrier-smoothing-code (CSC) approaches carried out in the range 

domain. An illustrative example of this procedure is shown in the following figure. 

 

 

 

 

 

 
Figure 36 Range Domain Carrier 
Smoothing Code pseudo-ranges (CSC).  
If a fine estimate of pseudo-range at 
initial epoch ρ(t0) can be approximated, a 
smoothed pseudo-range trace would be 
yielded with the aid of the change in 
carrier-phases Φ, denoted by ∆ Φ. 

 

 

If a fine estimate of pseudo-range at the initial epoch could be approximated (denoted 

by ρ(t0) in the above Figure 36), it is possible to yield a smoothed pseudo-range 

profile using the differences over time on carrier-phases (i.e. a good reference of the 

change in the “error-free pseudo-range”) to update the measured code pseudo-

ranges.  

 

Actually, an estimate of pseudo-range at initial epoch could be derived from any epoch 

tk as 

 

(4.2-9) ( ) ( ) ( ) ( )[ ]00ˆ tttt kkk Φ−Φ−= ρρ  

 

where ( )ktρ  is the pseudo-range measured at that k-th epoch and ( ) ( )0ttk Φ−Φ  

corresponds to the carrier-phase difference between the current epoch tk and the initial 

epoch t0, respectively. 
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A more precise estimate would be obtained if a simple average over n epochs is 

processed 

 

(4.2-10) ( ) ( )∑=
k

kt
n

t 00 ˆ
1 ρρ  

 

Once the proper estimate of pseudo-range at initial epoch has been obtained, a 

“smoothed pseudo-range profile” can be reconstructed as 

 

(4.2-11) ( ) ( ) ( ) ( )[ ]00 tttt kksm Φ−Φ+= ρρ  

 

This is the basic mathematical procedure of a conventional range domain CSC 

algorithm. According to [4.13], CSC schemes are nowadays included in GPS receivers 

and offer a modest improvement in terms of positioning accuracy. However, the storage 

of all the pseudo-ranges taken on previous epochs from each of the observed satellites is 

required in order to compute the average stated in (4.2-10). Additionaly, a group of n-1 

additions need to be processed in each epoch for each of the satellites. This is not 

therefore an efficient computational technique in terms of real-time applications. In 

these studies, a more efficient performance of the previously exposed CSC algorithm 

has been considered and implemented. This idea was posed by P. Misra and P. Enge as 

well as B. Hoffman-Wellenhof in references [4.13] and [4.3], respectively. It consists of 

a recursive filter that only needs the smoothed pseudo-ranges from the previous time 

step and the current measurements (both pseudo-ranges and time-differenced carrier-

phases) in order to compute the estimate of the current smoothed pseudo-ranges. In 

contrast to the above mentioned batch smoothing technique, no history of measurements 

and/or smoothed pseudo-ranges is required. This recursive algorithm is defined as 

 

(4.2-12) ( ) ( ) ( ) ( ) ( )( )[ ]

( ) ( )00

11

11

tt

ttt
M

M
t

M
t

sm

kkksm
k

k
k

k
ksm

ρρ

ρρρ

=

Φ−Φ+
−

+= −−  
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The filtering scheme (4.2-12) embodies two inputs and one output. The inputs are the 

measured pseudo-ranges ρ and the measured carrier-phases Φ, taken from the respective 

observed satellite. Additionally, the resultant smoothed pseudo-ranges ρsm corresponds 

to the filter’s output. Therefore, at each measurement epoch tk, the smoothed pseudo-

ranges ρsm(tk) are estimated as a linear combination of the pseudo-ranges measured at 

the same epoch ρ(tk), the smoothed pseudo-ranges obtained at the previous epoch ρsm(tk-

1) and the carrier-phases differenced between current and previous epochs Φ(tk)- Φ(tk-1). 

Hence two multiplications and two additions are required to be computed on each 

measurement epoch for each observed satellite, this conveys an important reduction in 

terms of computational requirements. Furthermore, it is only required the storage of the 

smoothed pseudo-ranges obtained on the previous measurement epoch instead of the 

whole set of measurements since the initial epoch. In some literature, this algorithm is 

usually referred to as the Hatch filter.   

 

It is worth highlighting that the above exposed RD CSC approach adopts a more 

conservative solution by considering the raw pseudo-ranges at the initial epoch ( )0tρ  as 

the initial estimate of the smoothed pseudo-ranges( )0tsmρ . Anyway, ionosphere and 

troposphere corrections are applied on this measurement on previous steps and, 

therefore, this initial estimate of smoothed pseudo-range can be considered as a 

convenient approximation. 

 

In eq. (4.2-12), the weight factors affecting code pseudo-ranges and the smoothed 

pseudo-ranges (updated by the carrier-phases) are time dependent.  In fact, an increase 

of the term Mk is carried out from epoch to epoch. At the first epoch, Mk is set to 1 in 

order to lay the full weight on the measured pseudo-range. For consecutive epochs, Mk 

is increased in order to emphasize the influence of the carrier-phases on previous 

smoothed pseudo-ranges. In that way, as mentioned before, this recursive scheme uses 

the noisy but unambiguous measured pseudo-ranges in order to set an “absolute” 

estimation of the initial smoothed pseudo-ranges and, from epoch to epoch, lays more 

reliability on the estimated smoothed pseudo-ranges from previous epoch (augmented 

by the carrier-phases differenced between epochs).  
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B. Hoffman-Wellenhof, H. Collins and J. Lichtenegger posed in [4.3] a reduction of the 

weight factor 1/Mk by 0.01 from epoch to epoch with a data sampling rate of 1 Hz. After 

100 seconds, only the smoothed value of the previous epoch (augmented by the carrier 

phase difference) is taken into account. In the experiments developed on these studies, 

Mk is considered as the number of epochs on which smoothing is continuously applied, 

i.e. the number of consecutive pseudo-ranges taken from a certain satellite that is 

consecutively processed in the Hatch filter. Therefore, the weight factors 
kM

1
and 

k

k

M

M 1−
change in an exponentially way, as shown in the following figure. 
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Figure 37 Range Domain CSC schemes – Hatch filter’s weight factors. 

 

The recursive CSC scheme stated in equation (4.2-12) is supposed to improve over 

time, that is, the higher the maximum of consecutive smoothing epochs, i.e Mk, the 

stronger carrier measurements information is emphasized and more efficient filtering 

would be achieved. In that way, more pseudo-range noise would be filtered out. 

However, in the next sections it will be shown that cumulative effects caused by 

atmosphere changes limit this efficiency. It is worth hightlighting that the Hatch filter 

approach defined in eq. (4.2-12) is independently carried out for the measurement set 

taken from each of the observed satellites. Therefore, the resultant smoothing algorithm 

consists of a bank of parallel filters, each one defined by the equation (4.2-12). The 

following figure illustrates this procedure. 
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Figure 38 Bank of parallel Hatch filters to perform a range domain CSC approach. Time 
differenced carrier-phases are denoted by ∆Φ. 

 

 

In the following section, experimental outcomes will be shown in order to observe 

smoothing effects on the measured pseudo-ranges and the positioning outcomes while 

applying the bank of parallel Hatch filters.  

 

Measurements were collected on July 19 2007 during 5 minutes (13:00 - 13:05). The 

GPS receiver consists of a stationary station located at the E.T.S.I. Topography, 

Geodesy and Cartography in Madrid (Spain) as part of a GNSS stations ensemble 

belonging to Universidad Politécnica de Madrid. Observations were taken at a rate of 1 

Hz and stored in files under the Receiver Independent Exchange Format (RINEX) 

Version 2.10. These RINEX files are available as a free download on the website 

http://gps.topografia.upm.es/.  

 

Since the processed pseudo-ranges were not affected by high levels of measurement 

noise (maybe because of the antenna’s location or the receiver’s equipment features), a 

normally distributed gaussian random noise with a standard deviation of 2 meters has 

been added on pseudo-ranges in order to facilitate the analysis. This idea was 
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considered following the guidelines of reference [3.6] where real experimental results of 

receiver and multipath noise show variations around 2.5 metres.  

 

First of all, the code- and carrier-based observables (i.e. measured pseudo-ranges and 

carrier-phases) taken from a certain satellite were compared. Additionaly, their changes 

over time were evaluated by computing differences between epochs, the resultant 

differenced measurements are denoted by ∆Φk = Φk-Φk-1 and ∆ρk = ρk-ρk-1 and referred 

to as “delta measurements”. Why were these time differenced measurements 

evaluated? Considering the above mathematical background, the “between epochs” 

code- and carrier-based measurements are stated as 

 

(4.2-13) 
kk noisekkrkkkk TIbcRange ∆Φ+∆+∆−∆+∆=Φ−Φ=∆Φ − .1  

(4.2-14) knoisekkrkkkk TIbcRange
k

ρρρρ ∆+∆+∆+∆+∆=−=∆ − .1  

 

Considering that the elapsed time between epochs is 1 second (i.e. sampling rate of 1 

Hz), the change in the atmosphere effects can be assumed to be negligible. Furthermore, 

it was previously mentioned that the noise term affecting carrier-phases is insignificant 

with respect to the one affecting code pseudo-ranges. Therefore, the difference between 

code and carrier delta measurements can be considered as the inherent noise affecting 

pseudo-ranges (that is reduced when applying the Hatch filter smoothing scheme stated 

in eq. (4.2-12)). 

 

(4.2-15) knoiseknoiseknoisekk ρρρ ∆≈∆Φ−∆=∆Φ−∆  

 

The difference between code and carrier delta measurements stated in the above eq. 

(4.2-5) was evaluated and the results are shown in the following figure. The resultant 

sequence seems to be essentially time uncorrelated and is considerably reduced when 

applying the Hatch filter smoothing scheme. Mean and standard deviation values were 

computed on the first and the last 120 samples. On the first two minutes of 

measurements, the mean error slightly enhanced (from 3.59 cm to 2.03 cm) and the 

standard deviation, however, decreased from metre level to centimetre level (from 
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almost 3 metres to 1.5 decimetres approximately). On the last two minutes of 

observations statistical results verify the improvement over time when smoothing is 

applied on the measured pseudo-ranges since the noise reduction is even stronger (mean 

and standard deviation reach the millimetre-level). 

 

 

Figure 39 Example of smoothing - comparison between time variations in pseudo-ranges and 
carrier-phases. The error in pseudo-range time variations is shown with respect to carrier phases 
(i.e. ∆Φk - ∆ρk and ∆Φk - ∆ρsmk). Data were taken on July 19, 2007 during 5 minutes. The error is 
computed as ∆Φk - ∆ρsmk = (Φk-Φk-1) - (ρsmk-ρsmk-1). 
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Secondly, the experimental results were also evaluated in terms of the receiver’s 

positioning. In that way, a posision error profile was computed as the distance between 

and the position estimates and an approximation of receiver’s location (available among 

RINEX data). This error in position was calculated as 

 

(4.2-16) ( ) ( ) ( )222
estapestapestapesapu zzyyxxuue −+−+−=−=  

 

where ( )apapapap zyxu ,,=  is the RINEX location and ( )eseseses zyxu ,,=  corresponds to the 

estimate. The resultant error is shown in the following figure. Fluctuations on the 

position error were drastically reduced when smoothing was applied on pseudo-ranges. 

In the first minute, the mean error decreased by almost one metre (from 2.634 to 1.978 

metres) while the standard deviation was reduced by half a metre (from 1.518 to 1.090 

m). In contrast, during the last minute of observations, although the standard deviation 

decreased from decimetre-level to centimetre level, the mean error increased a few 

decimetres. This effect will be explained in the next section. 

 
Figure 40 RD CSC schemes - example of error in position estimation. Effects of applying Hatch filter CSC 
schemes on measured pseudo-ranges. 
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4.2.1 RD code-carrier divergence 

 

When deriving the smoothing scheme defined in eq. (4.2-12) any change in the 

ionosphere delay between consecutive measurement epochs was disregarded. It is 

relevant to consider that such a change would generally be insignificant over a few 

seconds. However, as time goes by, this variation accumulates and might become 

significant over a large number of epochs, i.e. a large M factor.  

 

In the above Figure 40, the mean error in position estimation slightly increases in the 

last minute of observations (from 1.581 m to 1.721 m), this deviation might be caused 

by the double effect derived from the ionosphere effect since this goes in one direction 

for the carrier-phases and in the opposite direction for the code pseudo-ranges - see eq. 

(4.2-5), (4.2-6) and (4.2-12). Therefore, as a result of the combination of code- and 

carrier-based measurement in the Hatch filter of eq. (4.2-12), a price is paid for large 

smoothing intervals in the form of positioning deviations due to changes in atmosphere 

effects. In some literature this effect is referred to as code-carrier divergence. 

 

If it were possible to estimate the rate of ionosphere delay, more effective and efficient 

use of the Hatch filtering schemes would be achieved. However, this effect is usually 

unknown to a single-frequency receiver and, therefore, a conservative constant carrier-

smoothing time is typically applied, i.e. a fixed maximum weight factor Mk is 

determined in the equation (4.2-12). When this specified maximum is achieved, the 

factor Mk is set to its initial value and the smoothing process is restarted. 

 

The following figure shows an illustrative example of the code-carrier divergence 

effects on position estimates. These experimental results were obtained by processing 

the same data used to achieve the test results shown in the previous section (Figure 39 

and Figure 40). Observations were taken during 5 minutes at midday July 19, 2007. 

Different maximum for the smoothing interval (i.e. maximum factor Mk) were applied: 

10 seconds, 50 seconds, 100 seconds and the whole observation time, that lasts 5 

minutes. Induced biases due to code-carrier divergence can be slightly appreciated 
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during the last minute. The mean of the position error is highlighted as the filter length 

(i.e. maximum factor Mk) becomes larger. Nevertheless, fluctuations decrease with 

higher filter lengths, that is, standard deviations of the error in position estimates 

decrease as smoothing interval is enlarged. If the atmosphere (specifically the 

ionosphere) had been more active, the divergence would have become manifest for a 

shorter filter length.  

 
Figure 41 Effects of code-carrier divergence on position estimates applying different filter 
lengths – error in estimation of position. 
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4.2.2 Cycle slip drawbacks 

 

It is worth pointing out that, in the case of cycle slips (see page 61), Hatch filter 

algorithms defined in eq. (4.2-12) would fail. A simple check of the carrier-phase 

difference between two consecutive epochs and the Doppler shift multiplied by the 

elapsed time may detect data irregularities such as cycle slips.  

 

In this work, not all the available RINEX data contained Doppler measurements. 

Consequently, other methods were taken into consideration to detect these irregularities 

in the processed carrier-phases. In that way, the change in pseudo-ranges was evaluated 

when no Doppler measurement was available in observation data. In case of a cycle slip 

in the carrier-phases, an extremely high ‘jump’ or discontinuity was detected on the 

mapped delta phases when they were compared with the measured pseudo-ranges.  

 

Therefore, the algorithms implemented in these studies reset the Hatch filter’s weight 

factor Mk of eq. (4.2-12) to its initial value, that is Mk = 1, when a cycle slip is detected. 

This process fully eliminates the influence of the erroneous carrier-phase data. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

96 

 

 

4.3 Position Domain CSC 

 

In conventional GPS receivers, techniques for obtaining the receiver’s location are 

derived generally from the measured code pseudo-ranges. Since these code observables 

are corrupted by noise and other error sources, filtering and smoothing methods are 

required to achieve convenient position estimates. In general, the parameters of interest 

in GPS (usually receiver’s position), or the dominant system errors (for example, clock 

errors), or both, are time-varying. In addition, the time variation is more or less 

predictable. Fur such situations, the data processing techniques that are the most 

efficient and optimal, and therefore the most appropriate, are those based on the 

principles of Least Squares prediction, filtering and smoothing, specifically a recursive 

algorithm called the Kalman filter. Such a filter provides optimum estimates of user 

position (even velocity and local time) based on noise statistics and current GPS 

measurements.  

 

As well as changes in satellite-to-user distances, information about variations in the 

position of the GPS receiver can also be extracted from carrier measurements when they 

are differenced over time. In the last two decades, several lines of investigation have 

posed modified Kalman schemes that also incorporate carrier-phase measurements to 

compute the navigation solution (see references [4.9], [4.11], [4.14]). According to 

these works, some techniques for integrating pseudo-ranges and carrier-phases as 

observables in a Kalman filter have been studied. The idea is to treat a carrier-based 

measurement as a position difference observable between previous and current time 

epochs, hence current as well as previous position information needs to be included 

among filter’s states. As a result, a position difference can be derived, that is directly 

observable by the phase difference measured between the previous and current time 

epochs.  

 

In this section, a general view of the conventional Kalman filter used in GPS receivers 

to compute the navigation solution is exposed. Then, methods that integrate carrier-

phases together with pseudo-ranges are posed by determining modifications in the 
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conventional Kalman configuration. Additionally, the formulation of the “observation 

equations” is also described, as well as the modifications made on the “measurement 

models” to incorporate the new carrier-based observables. 

 

4.3.1 Position determination using Kalman filters 

 

The central problem for the GPS receiver is the precise estimation of position, velocity, 

and time based on noisy observations taken from the gathered satellite signals. This is, 

in fact, an ideal setting for Kalman filter schemes.  

 

This filtering scheme was firstly introduced in 1960 on a paper written by R. E. Kalman 

[4.17]. He described a recursive solution of the discrete-data linear filtering problem. 

The idea revolved around the estimation of a random process with prior knowledge of 

its dynamics and the statistical nature of inherent errors. Additionally, external 

observations were also considered to reach finer estimates.  

 

Advances in digital computer technology made it possible to consider implementing this 

recursive solution in a number of real-time applications, such as GPS. 

 

The design of Kalman filters requires knowledge in the dynamic behaviour of the 

random process to be estimated, that is, the GPS receiver motion described at least by 

its position. Furthermore, a linear relationship between the “state” of the process (i.e. 

position and maybe velocity, acceleration, jerk and local time) and the gathered 

measurements need to be established so that the behaviour of the process can be thought 

as “observable”.  

 

In the following sections, these aspects are theoretically defined by means of 

mathematical models. Subsequently, position determination regarding to these models is 

described by means of the conventional Kalman algorithm and the equations of the GPS 

positioning Kalman filter are introduced. 
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Dynamics of the observed random process: The GPS receiver 

 

In terms of GPS, the random process to be estimated is the receiver platform motion. 

The dynamic behaviour of this process can be derived by a Taylor series expansion 

about the true position of the receiver. Let u  represent the receiver (or user) location; 

then at time t, shortly after time t0, the receiver will be at  
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acceleration and ( )
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 is the jerk. The terms following the third derivative are 

usually considered negligible.  

 

It is worth highlighting that the determination of non-negligible terms depends on the 

system being modelled. In the case of most GPS users, position and velocity change 

relatively slowly over the time period of observations, hence the estimates are 

reasonably close. The same may not be true for acceleration or jerk in some cases such 

as aircrafts or racing cars. Following the guidelines stated in reference [4.9], an 

assumption is often considered in terms of a constant velocity receiver’s movement; 

acceleration and jerk are therefore supposed to be negligible. The resultant model 

derived from the one defined in equation (4.3-1) describes a rectilinear motion  
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Considering that GPS positioning usually consist of a three dimensional process, at 

least, three equations analogous to (4.3-2) need to be solved for the three unknown 

coordinates of receiver’s position ( ) ( ) ( ) ( )[ ]tutututu zyx ,,= , that is 
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Furthermore, if velocity coordinates ( ) ( ) ( ) ( )
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tud zyx ,,  need to be also 

estimated, a total of six differential equations need to be solved. Considering the above 

mentioned constant velocity model, the ensemble of differential equations that 

determine the GPS receiver’s movement will be 
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In order to develop the formulation of a Kalman filter, state space models22 are 

considered since they are better suited for computer simulation in the case of n-th order 

input-output differential equations. 

 

In that way, a system’s state-vector ( ) nVtx ∈  will determine the process status at any 

time, that is, the unknown navigation solution. For a stand-alone GPS model, this array 

usually consists of three position states and two clock states in its most basic form. 

                                                 
22 The state space model represents a physical system as n first order coupled differential equations. 
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According to reference [4.9], this 5-state model is ideal for a stationary receiver (i.e. 

constant position). Anyway, overlooking possible enhancements in this model an 8-state 

model has been considered in these studies by integrating three velocity states. 

Therefore, the GPS model of receiver’s motion will be defined by six system states: 

three coordinates of position ( )zyx uuuu ,,=  and three coordinates of velocity 

( )zyx vvvv ,,=  considering a 3-D reference frame23. Additionally, receiver clock offset 

and receiver clock drift are also considered as system states. It is worth highlighting that 

both clock offset and drift are determined in units of lengths (i.e. multiplied by the 

speed of light in vacuum c). In the following studies, clock states will be omitted 

focusing in the position and velocity state-models. 

 

The continuous state model of a random process is reasonably general in form. All that 

is required is that the process under consideration be related to white noise via a linear 

differential equation as  

 

(4.3-5) ( ) ( ) ( )tnGtxFtx +=&  

  

where ( ) nVtx ∈  is the vector of process states that embodies position and velocity 

coordinates and its derivative is denoted by a dot ( ) nVtx ∈& . Perturbations affecting the 

ideal “noise-free” behaviour ( ) ( )txFtx =&  are considered in the vector ( ) nVtn ∈  and 

referred to as process noise. It is worth highlighting that Kalman filters are formulated 

assuming that the process noise is time-uncorrelated with a gaussian probability density 

distribution. Therefore, ( )tn  is assumed to be an array of white-noise driving functions. 

The white noise component ( ) nVtn ∈  can be considered “coloured” by defining a linear 

relationship nxnMG∈ that relates it with the process model. According to [4.9], an 

appropriate stochastic model for the GPS receiver motion defined in (4.3-2) might be an 

integrated random walk model as shown in the following Figure 42. 

                                                 
23 The reference frame considered for the computation will be the earth-centered, earth-fixed (ECEF) 
frame. 
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Figure 42 Diagram of the integrated random walk model for position and velocity states – 
time and Laplace domains.  

 

For example, if the system is considered to be defined by a 6-state position-velocity 

model ( ) ( ) ( ) ( ) ( ) ( ) ( )[ ]tvtvtvtutututx zyxzyx ,,,,,= , the ensemble of differential equations 

related to the above integrated random walk motion is given by  
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In GPS positioning, measurement constraint allows observations of receiver’s motion 

only at certain points in time. Therefore, the process model defined in (4.3-6) must be 

specified in the discrete-time domain. Considering samples of this process at times t0, 

t1,... tk; the solution of (4.3-6) at time tk+1 may be written as 
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+= −−
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,, 11 ττττ  

 

The discretization of the physical problem exposed in (4.3-6) is given by 

 

(4.3-8) kkkk wxAx += −1   discrete-time state model 

 

( ) nkk Vtxx ∈=  and ( ) nkk Vtxx ∈= −− 11  are the process state-vectors at time kt  and 1−kt , 

respectively. The vector ( ) nkk Vtnw ∈=  corresponds to the noise affecting process states. 

According to reference [4.15], the sequences kw  are also white noise with known 

covariance structures given by  
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Additionally, nnk MA ×∈  relates the state-vectors 1−kx  and kx  in the absence of noise. 

This matrix corresponds to the solution of the deterministic portion in the system (4.3-

6) and is called the state transition matrix for the time-step from 1−kt  to kt . Since F  

matrix has constant coefficients, kA  can be written by analyzing the Taylor Series of the 

exponential function as 
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Considering that the terms F2, F3, … cancel the state transition matrix is defined by the 

mathematical expression stated above 
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Where t∆  is the elapsed time between epochs of observation 1−kt  and kt . 

 

Evaluation of the stochastic portion of (4.3-6) is made by deriving the covariance 

matrix kQ  associated with the process noise kw   - this matrix was previously defined in 

(4.3-9). This procedure may not be obvious; following the guidelines specified in [4.9], 

process noise covariance matrix can be obtained by 
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The mathematical expectation ( ) ( )[ ]ηξ TnnE  is known as the spectral density matrix for 

the process noise. In fact, due to the fact that the process noise is assumed to be white, 

( ) ( )[ ]ηξ TnnE  is defined as a matrix of Dirac delta functions known from the continuous 

model. Assuming independence of velocity in terms of position errors the spectral 

density matrix is given by 
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The terms qu and qv in the matrix (4.3-13) correspond to the common spectral densities 

of process noise ( ) nkk Vtnw ∈=  for all the position and velocity elements, respectively 

(see the integrated random walk model specified in Figure 42). In general, spectral 

amplitudes associated with process noise are not known. In these studies, qu and qv were 

chosen heuristically following guidelines specified in [4.14]. In fact, experiments were 

developed with GPS data collected by stationary receivers, these parameters were 

therefore specified at extremely low values around 0.000033.  

 

Then the process noise covariance matrix, is derived from equation (4.3-12) and is zero 

except for the following elements 
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I3 is the identity matrix of size 3.  

 

In conclusion, the GPS receiver motion is defined by a discrete-time state space model 

given by  

 

(4.3-15) kkkk wxAx += −1  
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Where the state-vector nk Vx ∈  embodies, in this case, position and velocity coordinates 

and the process error nk Vw ∈  consists of white noise sequences affecting each of the 

system’s states. Spectral amplitudes of these noise sequences are defined by qu , qv and 

process noise covariance matrix corresponds to nnk MQ ×∈ . Additionally, the state-

transition matrix nnk MA ×∈  relates state-vectors of consecutive measurement epochs in 

the absence of noise; being t∆  the elapsed time between the considered epochs. 

 

For example, let’s consider a 6-state state vector that embodies position and velocity 

coordinates ( )T
zyxzyx vvvuuux ,,,,,= . If the sampling rate is 1 Hz, that is, the estimation 

of the process states will be computed at each second of observations. In any step from 

epoch tk-1 to epoch tk on which the elapsed time is a second, the receiver motion will be 

defined by the following discrete-time state space model  
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GPS measurements and receiver’s motion mathematical relations 

 

GPS code pseudo-ranges can be considered as rough measurements of satellite-to-user 

distances (or ranges). In fact, a mathematical relationship between the receiver’s 

coordinates ( )zyx uuuu ,,=  and an individual pseudo-range ρ taken from a certain j-

satellite at any epoch of observations can be defined as 

 

(4.3-16) ( ) ( )( ) ( )( ) ( )( ) ( )j
srz

j
zy

j
yx

j
x

j bcbcususus ..
222 −+−+−+−=ρ  

 

Where  s(j)=(sx
(j),sy

(j),sz
(j)) corresponds to this j-satellite three dimensional coordinates. It 

is noticed that the real geometric distance between satellite and user is given by  

 

(4.3-17) ( ) ( )( ) ( )( ) ( )( )222

z
j

zy
j

yx
j

x
j ususus −+−+−=Ψ  

 

This is the basic range equation, in which the geometric range (Ψ) is a function of the 

satellite and receiver coordinates, that are the parameters of interest (see Figure below). 

For simplicity, references to the time epoch have not been considered in the equations 

above.  

 

 
 

Figure 43 Geometric range between a GPS satellite and the receiver.  The receiver 
coordinates are parameterised as Cartesian coordinate components in the same reference system as 
the satellite coordinates. 
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In the case of GPS, the coordinates of the satellites are assumed to be known. In fact, 

these positions are typically evaluated from the broadcast parameters within the 

navigation message (see section 2.3.3). 

 

In the equation (4.3-16), the receiver clock error c.br and satellite clock error c.bs are 

generally considered to be “nuisance” parameters as they do not appear explicitly in the 

basic range equation (4.3-17). However, it is required to include these parameters in the 

GPS model equations in order to account for the measurement biases present in the data 

being processed.  

 

As well as satellite coordinates, satellite clock errors are assumed to be known c.bs 

because they are generally evaluated with the aid of the broadcast navigation 

parameters. In contrast, the receiver clock error needs to be solved to achieve an 

absolute estimation of receiver’s position. As mentioned before, conventional GPS 

Kalman filters consider this parameter as an unknown parameter together with 

receiver’s position coordinates. Anyway, it will be mentioned in subsequent sections 

how the effect of these clock biases can be suppressed by forming measurement 

differences in order to construct observables that are, to a large extent, free of biases. 

 

Moreover, atmosphere effects are not considered because ionosphere and troposphere 

corrections are generally applied on measured pseudo-ranges. In fact, the algorithms 

performed in these studies apply these corrections just before pseudo-ranges are 

processed in the Kalman filter. 

 

As well as in the case of receiver’s dynamics, a discrete-time measurement model that 

relates process states ( )rzyx bcuuux .,,,= 24 with pseudo-range observables can also be 

specified from the mathematical relation posed in (4.3-16). However, in the case of 

Kalman algorithms, linear relationships are required and that is not the case. In order to 

obtain a linear system that mathematicaly relates process states (i.e. position) with 

                                                 
24 Conventional Kalman filter models include clock error as a system state in order to solve for it if there 
are enough satellites 
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measurements (i.e pseudo-ranges), the geometric relationship (4.3-16) is “linearized” 

about an approximate receiver’s position.   

 

For any given function ρ = h(x), a certain value h(x) can be approximated if it is near a 

known point. The most basic requisite is that, where ( )xhx~  is the linearization of h(x) at 

the known point xx ~= , ( ) ( )xhxhx
~~

~ = . The general form of the linearized h(x) is the 

equation of a line given by ( ) ( )HxZKxhx −+=~  where (K,H) is a known point and Z is 

the line’s slope. Hence, using the point (x,h(x)), ( )xhx~  becomes ( ) ( )( )xhxMxxhx −+=~ . 

Because continuous functions are locally linear, the best slope to substitute in would be 

the slope of the line tangent to h(x) at xx ~= . Therefore, the equation for the linearization 

of the function ρ = h(x) at xx ~=  would be 

 

(4.3-18) ( ) ( ) ( )( )xxxhxhxhx
~~~

~ −′+≈  where ( ) ( )xhxhx
~~

~ ≈  

 

Where ( )xh ~  is h(x) at x~  and ( )xh ~′  is the derivative of h(x) evaluated inx~ , that is, the 

slope of h(x) atx~ . Therefore, the linearization of a function corresponds to the first 

order term of its Taylor expansion around the point of interest. 

 

In the linearization of the geometric relationship (4.3-16) an approximation of receiver’s 

states is chosen such that the error in this approximation regarding to the real receiver’s 

location is small compared with the pseudo-range measurements. Therefore, nVx ∈~  is an 

“a priori” estimation of the process state-vector based on all that the receiver knows 

about the process prior to the current epoch. Additionally, the term ( ) mVxh ∈= ρ~~  

corresponds to a vector of “anticipated” pseudo-ranges derived from this a priori state-

vector and  ( ) mx Vxh ∈= ρ~  embodies the current pseudo-range measurements. Finally, 

the term ( ) nmMxh ×∈′ ~  is a matrix obtained by simply evaluating the partial derivatives of 

(4.3-16) about the considered approximate state-vector x~ . 

 

As a result, a new linear system of equations is obtained that relates the state-vector 

errors ( )xx ~−  to pseudo-ranges ρ. For example, if the state-vector embodies position 
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coordinates and receiver clock offset as x=(ux,uy,uz,c.br) and the approximate state-

vector is defined by ( )rzyx bcuuux
~
.,~,~,~~ = , the resultant system of equations related to a 

certain satellite j would be 
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The partial derivatives are defined as 
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In fact, ( ) ( )( ) ( )( ) ( )( )222 ~~~~
z

j
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j
yx

j
x

j ususus −+−+−=Ψ  is the geometric distance (or range) 

between j-satellite position s(j)=(sx
(j),sy

(j),sz
(j)) and the anticipated user position 

( )zyx uuuu ~,~,~~ = . Actually, more than one satellite is observed in each of the measurement 

epochs. Therefore, the linear relationship between receiver’s position and each of the 

obtained pseudo-ranges becomes 
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The matrix H in equation (4.3-21) is called the measurement matrix and describes the 

ideal, i.e. noiseless, connection between measurements and process states. 
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State-space models are also considered to specify the above measurement model in 

terms of Kalman algorithms. Therefore, the corresponding discrete-time measurement 

model to (4.3-21) will be 

 

(4.3-22) ( ) kkkkkk VvxxHzz +−+≈ ~~  

 

Where nk Vx ∈  and mk Vz ∈  are the actual state and measurement vectors; nk Vx ∈~  and 

mk Vz ∈~  are the “anticipated” or approximates for state and measurement vectors. As 

well as the process noise nk Vw ∈  in (4.3-15), the random variable mk Vv ∈  represents 

the measurement noise that is considered as a white process than can be “coloured” by 

defining the linear mathematical relation mmMV ×∈ . The measurement matrix 

nmk MH ×∈  embodies the partial derivatives of (4.3-16) with respect to the state-vector 

x and the matrix V  would contain the partial derivatives of (4.3-16) with respect to the 

measurement noise v.  

 

As mentioned before, both process and measurement noises are assumed to be white 

and to have known covariance structures. Furthermore, they are uncorrelated to each 

other, that is, the cross-correlation between them is zero. Hence, the covariance matrices 

are given by 

 

(4.3-23) [ ]




≠
=

=
ki

kiQ
wwE

kT
ik ,0

,  [ ]




≠
=

=
ki

kiR
vvE

kT
ik ,0

,  [ ] ikvwE T
ik ,0 ∀=  

 

It is worth highlighting that the covariance matrix R is typically defined based on the 

particular design of the receiver device and the system (e.g. the signal bandwidth or the 

received signal power). In these studies, following the guidelines stated in reference 

[4.9], the errors affecting measurements taken from different satellites are assumed to be 

uncorrelated, that is, the matrix R is defined as diagonal. The variance of the error in 

pseudo-range measurements vk is determined by taking into consideration a broadcast 

parameter within the navigation message. This parameter is referred to as User-Range-



 

111 

 

 

Accuracy (URA) and corresponds to the contribution to the range-measurement error 

from an individual error source (apparent clock and ephemeris prediction accuracies). 

When the variance of the receiver measurement noise is somehow known, it is also 

considered on the covariance matrix R. 

 

For example, let’s consider the GPS data processed in previously mentioned 

experiments. As it was said, this data was collected on July 19 2007 at a rate of 1 Hz. 

The receiver was a stationary station located at the E.T.S.I. Topography, Geodesy and 

Cartography in Madrid (Spain). For example, in the first minute of observations (i.e. 

after 60 samples) a total of 8 GPS satellites were visible in the sky. Anyway, it will be 

considered only 5 of them to simplify the mathematical expressions – as shown in the 

following figure. 

 

 
 

Figure 44 Example of satellites visibility - July 19, 2007 - 9:00 am 
 

 

In the 60th epoch of observations, the considered approximate state-vector is denoted as 

( )
60606060

~
.,~,~,~~

60 rzyx bcuuux = . In this example, it is only considered the three position 

coordinates (ux,uy,uz) together with receiver clock offset c.br. 
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Additionally, satellite positions and clock corrections are computed at each epoch of 

observations and are denoted by 

( )
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The discrete-time measurement model for this time step will be determined as  

 

( ) 60606066060
~~ VvxxHzz +−+≈  

 

The actual state vector in the previous equation is considered as  

[ ] 46060606060 . Vbcuuux T
rzyx ∈=  

and the measurement vector z60 embodies the code pseudo-ranges obtained in the 

current epoch. 

( ) ( ) ( ) ( ) ( )[ ] 5
25

60
27

60
2

60
8

60
10

6060 Vz
T ∈= ρρρρρ  

 

Moreover, the computed satellite positions and clock corrections are processed to obtain 

the approximate or anticipated  measurement vector as 
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Where, in the case of each satellite, the anticipated geometrical range is computed by 

 

( ) ( )( ) ( )( ) ( )( )26060
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It is worth highlighting that other biases affecting pseudo-range measurements need to 

be taken into consideration while computing the approximate measurement vector60
~z , if 

they are known in advance or can be predicted during the data processing. In these 

studies, atmosphere corrections are applied on the measured pseudo-ranges in previous 

steps so these biases do not need to be considered.  

 

Finally, the measurement matrix is obtained with the aid of the computed satellite 

positions and the approximate state-vector 
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The covariance matrix of error affecting pseudo-ranges was determined by considering 

as independent sources of error: the clock deviations, errors in the ephemeris 

parameters, and the receiver measurement noise. The variance of the measurement noise 

was considered in the range of a few meters following guidelines stated in reference 

[4.9]. For example, experimental outcomes have shown that, when a gaussian white 

noise component was added on pseudo-ranges with a standard deviation of 2 metres, a 

measurement error variance of 32 m2 provides good approximations in test results. 
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Kalman filter equations 

 

Once, both GPS process and measurement models are specified. The Kalman filter 

equations can be introduced. As mentioned before, the Kalman filter is a recursive 

estimator; this means that only the estimated process-states from the previous time step 

and the current measurements are needed to compute the estimate for the current states. 

As well as the Hatch filter, no history of observations and/or estimates is required. 

Generally, Kalman filters are purely defined in the time domain. 

 

The state of the observed process is represented in the form of two variables denoted by 

kx̂ and kP . The estimate of the state at time k is stored inkx̂ . In addition, kP corresponds 

to the error covariance matrix, a measure of the estimated accuracy of the state 

estimate. Therefore, the smaller kP  elements are, the more accurate the state estimates 

are.  The notation kx̂  represents the estimate of xk at time tk given observations up to, 

and including the initial epoch of time t0. 

 

Basically, a Kalman filter estimates the state of an observed process (i.e. the GPS 

receiver motion) by using a form of feedback control: the algorithm uses the state 

estimate from the previous epoch to “predict” an estimate of the state at the current 

epoch, provided a dynamic model of the states. Then, it obtains feedback in the form of 

external noisy measurements taken at the current epoch. In that way, measurement 

information at the current epoch is used to “correct”, refine or filter the prediction in 

order to achieve a new more accurate state estimate for the current epoch, provided 

some functional relationship exists between the state and the measurements. Therefore, 

the equations for the Kalman filter are processed in two different phases: the 

“prediction” or time update and the “correction” or measurement update. The time 

update is responsible for “projecting forward” (propagating or predicting) in time the 

state kx̂  and error covariance kP  estimates to reflect the effects of dynamics over time. 

The measurement update is responsible for the “prediction refinement” with the aid of 

information provided by external observations or measurements.  
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Furthermore, measurement update utilizes a weighting function, called the Kalman 

gain, which is optimized to produce a minimum error variance. For this reason, the 

Kalman filter is called an optimal filter. Moreover, this filter is structured to produce an 

unbiased estimate, in terms of linear system models. 

 

Time update – Propagation or Prediction step 

 

In the Kalman time update, an initial estimate of the process state and error covariance 

is “predicted” based on all that the receiver knows about the process prior to the actual 

epoch. These prior, or a priori, estimates will be denoted in the following mathematical 

expressions as −kx̂  and −
kP  where the “hat” denotes estimate and the minus superscript 

identifies estimates prior to assimilating measurements at current epoch. In that way, 

both state and covariance are “propagated” from the previous epoch to the current one 

according to the dynamic model (4.3-15). The error in these “a priori”  estimates is 

defined as −− −= kkk xxe ˆ  and assumed to have zero mean. The predicted error covariance 

matrix is defined as { }T

kkk eeEP −−− = .  

 

Under these circumstances, the Kalman time update step is determined by the following 

matrix equations 

 

(4.3-24) 1ˆˆ −
− = kk xAx    A priori estimation of state 

(4.3-25) k
T

kk QAAPP += −
−

1  A priori estimation of error covariance matrix 
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Measurement update  

 

After the time update, ephemeris data25 gathered from satellite signals is extracted from 

navigation messages to allocate satellites within their orbits. Using the time updated 

receiver position contained in the “a priori” state estimate −
kx̂  , an “anticipated” pseudo-

range measurement is then derived for each of the allocated satellites taking into 

consideration the basic range equation stated in (4.3-16). Differences between measured 

and anticipated pseudo-ranges are evaluated in order to minimize the estimation error. 

These differences are called residuals or innovation and reflect the discrepancy between 

the current measurements and the anticipated ones. According to [4.9], a linear blending 

of the noisy measurements and the anticipated ones is applied in accordance with  

 

(4.3-26) ( )−− −+= kkkkkk xHzKxx ˆˆˆ  

 

The vector kx̂  is called the updated estimate and the difference  ( )−− kkk xHz ˆ  embodies 

the above mentioned residuals, where kz  are the measured pseudo-ranges and −kk xH ˆ  

corresponds to the anticipated ones.  

 

The Kalman filter thus adjusts the estimation of system’s states kx̂  to minimize the 

residuals by means of the weighting function mnk MK ×∈ . This matrix is called the 

Kalman gain and it is normally obtained by means of minimum mean squared error 

criteria26.  According to reference [4.15], the minimization can be accomplished by first 

substituting (4.3-26) in the definition of the measurement update error kkk xxe ˆ−= . 

Then, the resultant expression is substituted into the covariance matrix expression 

[ ]T
kkk eeEP =  and the mathematical expectation is performed. The Kalman gain K 

matrix is finally obtained by taking the derivative of the resultant trace with respect to 

                                                 
25 GPS satellites include ephemeris data in the broadcast signals, this set of parameters can be used to 
accurately calculate the location of a GPS satellite at a particular point in time. They describe the path that 
the satellite is following as it orbits Earth.  
26 A minimum mean square error (MMSE) approach minimizes the mean square error, that is, the amount 
by which an estimate differs from the true value of the quantity being estimated. 
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K, setting the result equal to zero, and then solving for K (i.e. looking for the minimum 

mean square error [ ]T
kkk eeEP = ). For more details, see reference [4.9]. One form of the 

resultant matrix27 is given by 

 

(4.3-27) ( ) 1−−− += k
T

kkk
T

kk RHPHHPK  

 

Therefore, according to equation (4.3-26), when the measurement error covariance R 

approaches zero, the actual measurement kz  is “trusted” more and more, while the 

predicted measurement −
kk xH ˆ  is trusted less and less. On the other hand, as the a priori 

estimate error covariance −kP  approaches zero, the actual measurement is trusted less 

and less, while the predicted measurement is trusted more and more.  

 

Under these circumstances, the Kalman measurement update step is finally defined by 

the following matrix equations 

 

(4.3-28) ( ) 1−−− += k
T

kkk
T

kk RHPHHPK  Kalman Gain 

 

(4.3-29) ( )−− −+= kkkkk xHzKxx ˆˆˆ   State measurement update   

(4.3-30) ( ) −−= kkk PKHIP    Error Covariance measurement update 

 

The resultant adjusted estimates kx̂  and kP are the navigation solution output to the user, 

they are also fed back to the dynamical model to repeat then this recursive estimation 

process. 

 

 

 

 

                                                 
27  Kalman filter equations can be algebraically manipulated into several forms. Equation (4.3-27) 
represents the Kalman gain in one popular form. 
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In conclusion, the specification of seven basic elements defines the Kalman filter to the 

extent that it can be implemented as 

k
T

kk QAAPP += −
−

1

1ˆˆ −
− = kk xAx

( ) 1−−− += k
T

kkk
T

kk RHPHHPK

( ) −−= kkk PKHIP

( )−− −+= kkkkk xHzKxx ˆˆˆ

1ˆ −kx

1−kP

 
 

Figure 45 Kalman filter recursive algorithm – matrix equations defining this filtering scheme. 
 

x and P are the state vector and state covariance matrix. The state transition matrix A 

and the covariance matrix of system’s error Q are determined in terms of the modelled 

system dynamics. The vector z contains the measurements used while computing 

navigation solution. Additionally, measurements perturbations are characterized by 

means of their respective covariance matrix R, and mathematical relationships between 

states and measurements are specified in the measurement matrix H. 

 

The recursive Kalman algorithm is first initialized with rough approximations of the 

system’s states. In most cases, the initialization data had been stored in receiver non-

volatile memory when the equipment was last turned off. On these studies, a rough 3-D 

trilateration method (Bancroft algorithm) has been used to determine a rough position 

and time estimates on the first epoch of observations, initialization notwithstanding.  

 

It is worth mentioning that the initial uncertainty, specified in the covariance matrix P 

that is associated with the errors in the state-estimation, is initialized as a diagonal 

matrix with large diagonal elements. Values have been considered according to the 

guidelines of reference [4.14], as the seed position for the system is provided by a 

Bancroft algorithm, position error states were assumed to have initial variance of (100 
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m)2 and the velocity error states were considered to have an initial variance of 2x(100 

m/s)2 . 

 

For example, let’s consider the process-state position/velocity model x = (ux uy uz vx vy 

vz)
T . The initial position and velocity are assumed to be not known perfectly; therefore, 

the covariance matrix should be initialized with a suitably large number. Following the 

guidelines stated in reference [4.14], the initial covariance matrix P could be 
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Hence, in this initial time step, the Kalman filter will then prefer the information from 

the first measurements over the information already provided by the model since the 

variances embodied in the covariance matrix P are extremely high – as mentioned 

before, this matrix represents a measure of the estimated accuracy of the state estimate, 

it its elements are high quantities, the estimated accuracy will not be quite good. In the 

experiments performed with the GPS data obtained on July 19, 2007 the P matrix 

obtained after the first state estimation was 
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After five minutes of observations the covariance matrix obtained after the 300th state 

estimation was 
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Therefore, as the variances of the error in the state estimation decreased (i.e. P matrix 

elements decreased), the Kalman filter trusted less and less the measurements, while the 

filter relied on the state estimations more and more. Furthermore, the initial P 

“diagonality” is lost, that is, the initial assumption of uncorrelated state-estimate errors 

is not trusted by the Kalman filter and some correlation appear among errors in the 

different state-estimates.  

 

According to Figure 45 the covariance matrix estimate Pk depends on the measurement 

noise affecting pseudo-ranges (R matrix) and the process noise affecting receiver’s 

movement (Q matrix) together with the current set of measurements and satellites 

layout in the sky, as determined by the Hk matrix.  

  

 

According to [2.1], the two key benefits of applying Kalman filtering schemes are the 

possibility of operating even when only a partial set of measurements is available and 

the adjustment of state estimation in order to weight the effects of measurement noise. 

This type of filter provides a navigation solution even in the case of low visibility 

environments. Furthermore, as the measurement noise increases, the filter decreases the 

weights of the measurement information while relying more on the user state estimates. 

When the noise variance decreases, the filter utilizes the measurement information more 

and relies on the estimates less. This is, in fact, a smoothing filtering algorithm. 
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A flowchart showing the main steps on the Kalman recursive algorithm used in GPS 

positioning is shown in the following figure. 
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Figure 46 User Position-Velocity-Time (PVT) determination with Kalman filtering  
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4.3.2 Modifications to incorporate carrier-phase measurements 

 

As mentioned before, the change in carrier phases over time can provide a fine trace of 

“noise-free” pseudo-range variations. Previously, some linear equations relating pseudo-

ranges and positions were posed; in this section it will be shown that estimates about 

GPS receiver location can also be obtained from carrier-based measurements. 

 

Let’s start by assuming an individual carrier-phase measurement taken from a satellite, 

say j, at a certain time step tk. As stated before in equation (3.3-17), the mathematical 

model related with this measurement is defined by  

 

(4.3-31) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )j
k

j
atmk

j
skrk

j
k

j Nttbctbctt +Φ+−+Ψ=Φ ..  

 

Only the geometric range ( ) ( )( ) ( )( ) ( )( )222

z
j

zy
j

yx
j

x
j ususus −+−+−=Ψ  contains the 

coordinate parameters of interest in GPS positioning. The unknown receiver position is 

u = (ux,uy,uz) and the location of satellite j is identified by s(j)=(sx
(j),sy

(j),sz
(j)) that is 

derived from navigation parameters broadcast on GPS signals. 

 

The above non-linear mathematical relationship (4.3-31) links receiver position at any 

epoch with carrier-phases ( ) ( )k
j tΦ  , derived at the same epoch. As mentioned in chapter 

3, all biases (atmosphere effects ( )j
atmΦ , ephemeris and satellite clock deviations ( )j

sbc. , 

etc.) basically influence both the pseudo-range and carrier-phase observations by the 

same amount (despite some frequency-dependent effects in terms of ionosphere). 

However, only the carrier-phases contain the ambiguity bias ( )jN , which is a constant 

for a satellite-receiver pair as long as the instrument remains locked onto the satellite.  

 

Depending upon the level of accuracy sought, the various GPS biases and errors may be 

considered significant or not, and different options are used in accounting for these 

effects. According to reference [3.5], the standard approach to GPS phase data 

processing is to construct new observables by differencing carrier-phase measurements 
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in such a way that some (or all) the clock biases are eliminated, and the impact of 

several other measurement biases is significantly reduced. Several differencing schemes 

have been considered by researchers, the figure below shows and illustration of them. 

 

 

 

 

Figure 47 GPS measurement differencing schemes 

 

  

Differences between-receivers may (almost) suppress the effects of satellite clock 

errors. The differences are formed between observations taken by two GPS receivers to 

one satellite, at the same epoch (see Figure 47 above). Nevertheless, the transit time of 

the satellite signals are not equal because of the different satellite-to-user distances 

(according to [3.5] this difference may be up to 1 millisecond for a distance of 300 km 

between receivers) and satellite clock errors cannot, therefore, completely cancel 

because they may refer to different transmission times. However, as the satellites use 

stable atomic oscillators, it is usual to assume that the satellite clock errors are identical 

and thus cancel when the between-station difference is formed. As a result, remaining 

clock bias terms are the “between-receivers” clock errors and the “between-receivers” 

cycle ambiguity. Influences of the orbit error terms have approximately equal 

magnitude and will therefore cancel in between-receiver differencing (according to 

[3.5], this assumption becomes wrong with increasing receiver separation). However, in 

this differenced approach, ambiguity estimates are still required to be solved. 
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These studies have been performed with measurement taken from an individual GPS 

station. Therefore, it was not possible to compute between-receivers differences and 

other differencing schemes needed to be considered. For example, bias parameters 

which remain constant with time may be eliminated by forming the between-epoch 

difference (the well-known time-difference or delta-measurement). Moreover, the 

common receiver clock bias can be eliminated by differencing simultaneous 

measurements taken from different satellites. In that way, a double-difference can be 

obtain by forming between-epoch and between-satellites differences. 

 

Double-differenced carrier-phases 

 

When the system do not have enough observations to generate an instantaneous position 

and clock estimate, position errors from a filter that includes clock states would be 

adversely affected. Since measurements from different satellites that have been taken 

simultaneously are affected by receiver clock error as the same way, between-satellite 

differences can be formed to eliminate this common clock offset. The considered 

observations are taken simultaneously by one GPS receiver to two satellites (see the 

previous Figure 47). Considering two simultaneous carrier-phase measurements taken 

by the same GPS receiver from two observed satellites, the difference between satellites 

can be written as  

 

(4.3-32) ( ) ( ) ( ) ( ) ( ) ( )k
j

k
l

k
lj ttt Φ−Φ=Φ∇  

  

where the operator ∇  identifies a between-satellite difference and the superscript jl  

corresponds to the considered satellites (being l≠j). Remaining clock bias terms are the 

“between-satellite” clock error and the “between-satellite” cycle ambiguity as shown in 

the following equation 

 

(4.3-33) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )[ ] ( ) ( ) ( )katm
jl

k
j

sk
l

sk
j

k
l

k
lj tNNtbtbcttt Φ∇+−+−−Ψ−Ψ=Φ∇  
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As a result, receiver clock error has been suppressed. However, ambiguity estimates are 

still required for each of the satellite measurements. 

 

Now consider that both l and j satellites have been tracked continuously without no 

losses of lock between two consecutive epochs, say tk-1 and tk. Under these 

circumstances, ambiguities ( )lN  and ( )jN embedded in carrier-phases remain constant. 

If a second difference measurement is formed between these epochs, integer ambiguities 

will thus be eliminated. 

 

(4.3-34) 
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−−

11

11

11,
 

 

The operator ∆ is used to represent differences computed between epochs of 

measurements (i.e. time-differences or delta measurements). Note that both common 

receiver clock bias and integer ambiguities have been suppressed from the double-

differenced measurement model. If the assumption that integer ambiguities are constant 

is wrong, an extra term is required to account for any possible cycle slip. As mentioned 

in reference [3.5], not only have the above unknown biases been removed, but in 

addition, the effect of other biases arising from atmospheric effects and satellite 

ephemeris error, have been substantially reduced by the process of double-differencing. 

 

The above posed double-differenced measurement based on carrier observations can be 

applied in the Kalman filter to obtain, as well as in the case of pseudo-ranges, 

information about receiver’s location. But some aspects need to be considered while 

processing these double-differenced carrier-phases. According to [4.14], these 

measurements would be very reliable except that over time, changes in satellite 

allocation and in atmosphere delays all occur.  

 

First of all, time differences computed on carrier-phases relate change in satellite-to-

user distances to change in user location between consecutive epochs. These variations 

are in the direction of the satellite generating the broadcast carrier, i.e. the line-of-sight 
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path to the satellite. Therefore, satellite motion must to be taken into consideration. 

Receiver can guess, in a really accurate way, where the satellite is or has been placed by 

considering satellite orbit parameters broadcast as part of the navigation message. 

Thomas J. Ford and Jason Hamilton claim in [4.14] that the residual errors in satellite 

motion resulting from ephemeris shortcomings can be considered small in comparison 

with the atmospheric error changes. 

 

Secondly, atmosphere also changes with time. Following the guidelines specified in 

[4.14], errors caused by atmosphere effects changes are accounted for in part in the error 

models associated with the measurements and in part by the process noise applied to the 

position in the Kalman time updates. 

 

In addition, information about the current position as well as the previous one needs to 

be incorporated within the states of the Kalman filter. 

 

Kalman modifications to incorporate differenced measurements 

 

The measurements considered on this new Kalman filter will be the double-differenced 

carrier-phases introduced in (4.3-34) together with between-satellite differences 

computed on pseudo-ranges given by the following “error-free” equations 

 

(4.3-35) ( ) ( ) ( )( ) ( ) ( )( )j
k

l
k

j
k

l
k

lj
k 11 −− Ψ−Ψ−Ψ−Ψ=Φ∇∆  

(4.3-36) ( ) ( ) ( )j
k

l
k

lj
k Ψ−Ψ=∇ρ  

 

Where ( ) ( ) ( )222
zzyyxx ususus −+−+−=Ψ  is the geometric range between a satellite 

position ( )zyx sss ,,  and the receiver position ( )zyx uuu ,, . Subscripts k and k-1 are used to 

specify the epoch at which differenced measurements are computed and the superscript 

lj  identify each of the monitored satellites. 
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The above measurement models (4.3-35) and (4.3-36) require the availability of both 

current and previous positions among system’s states. Therefore, the state-vector 

considered in the Kalman filter is expanded in order to include the position at the last 

epoch.  

 

(4.3-37) ( )
111

,,,,,,,,
−−−

=
kkkkkk zyxzyxzyx uuuvvvuuux  

 

The current and previous positions are ( )
kkk zyx uuu ,,  and ( )

111
,,

−−− kkk zyx uuu , respectively. 

Consequently, the time update requires modification in order to support not only current 

position states but also previous ones. In this way, ( )
kkk zyx uuu ,,  states will be transferred 

to ( )
111

,,
−−− kkk zyx uuu during the Kalman time update. That is, the current position after the 

previous update becomes the previous position after the propagation. Therefore, a 

modification in the conventional state transition matrix is performed as 
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Additionally, new measurement matrices are also required, one for each of the above 

differenced measurement models stated in (4.3-35) and (4.3-36). By definition, the 

measurement matrix is obtained by computing the partial derivatives of the non-linear 

measurement equations (4.3-35) and (4.3-36) with respect to system states about a prior 

point, known in advance. These equations are linear combinations of the conventional 

pseudo-range measurement model described in (4.3-16).  

 

Therefore, ruling out clock error states, the conventional measurement matrix at any k-

th epoch can be stated as 
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(4.3-39) 
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where ( ) ( )( ) ( )( ) ( )( )222~ −−− −+−+−=Ψ z
j

zy
j

yx
j

x
j ususus  is the geometric range between an “a 

priori ” receiver position estimate −u and the computed j-th satellite position 

( ) ( ) ( )( )j
z

j
y

j
x sss ,, . 

 

Considering the new position/velocity state-vector (4.3-37), the resultant differenced 

measurement matrices regarding to double-differenced carrier phases, stated in (4.3-35), 

and single-differenced pseudo-ranges, stated in (4.3-36), will be 

 

(4.3-40) ( ) ( ) ( ) ( ) ( )[ ]j
k

l
k

j
k

l
k

lj
k HHHHH 11000 −− +−−=∇∆  

(4.3-41) ( ) ( ) ( )[ ]000000j
k

l
k

lj
k HHH −=∇  

 

Therefore, the resultant “noise-free” state-space measurement models for the modified 

Kalman filter are specified as 

 

(4.3-42) ( ) ( )−

=
−∇∆+Φ∇∆≈Φ∇∆

− kk
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kxx

lj
k
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k xxH)()( ~  

(4.3-43) ( ) ( )−

=
−∇+∇≈∇ − kk
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kxx

lj
k
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k xxH)()( ~ρρ  

 

Modifications on the variance of the resultant differenced measurement errors were also 

considered. An example of the covariance matrix for four between-satellite differences 

generated by differencing the observations from a first satellite with the ones gathered 

from the rest of monitored satellites is shown below 
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(4.3-44) 
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Therefore, the variance of the between-satellite differenced measurements is represented 

by a non-diagonal matrix when 21σ  is large compared with any 2iσ (for i≠1). Different 

satellite combinations have been considered while performing experiments on these 

studies, as a result, the effect of errors is reduced somewhat by choosing a high satellite 

as the reference in the formation of the between-satellite differences. As mentioned in 

chapter 3, a high satellite will have smaller noise, multipath, and atmosphere errors than 

a low satellite will. Therefore, a covariance with a high satellite as reference will be 

closer to a diagonal than the one with a low satellite as reference. 

 

 

This approach was performed by following the guidelines specified in reference [4.14]. 

Test results are shown in chapter 5 based on the simulations developed on these studies. 

This scheme helps maintain position accuracy when the number of satellites in view 

drops below four. It also helps reduce the effect of pseudo-range errors when the 

observed satellites are four or more. In fact, clear improvements have been achieved in 

terms of the degrading effects caused by receiver clock readjustments in position 

estimates (see Figure 78 and Figure 79). 

 

Furthermore, carrier-phases need only be available since the previous time epoch, rather 

than over the last 100 seconds or so. In range domain smoothing techniques the same 

satellites set must be continuously tracked for the position accuracy to be maintained 

and improved. This is in contrast to the position domain schemes, in which the same set 

of satellites need only be continuously observed since the previous time epoch. 

Therefore, provided that some selection of four satellites is available over every epoch, 

the position accuracy of the system can be maintained and improved (3 double-

differenced carrier-phases and 3 single-differenced pseudo-ranges are available to 

compute position and velocity estimates).  
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In addition, the carrier-phase time differences are explicitly treated as a position 

difference observable, instead of other position/velocity schemes that use delta-phases 

as velocity estimates. Therefore, no assumptions are made about the dynamics of the 

vehicle and a position difference is directly observable by at least four differenced 

measurements. 

 

 

4.4 Other CSC schemes 

 

The carrier-smoothing-code filtering posed by Hatch in [4.1] and the PDP Kalman filter 

posed by Thomas Ford in [4.14] are good examples of algorithms that maximally 

utilizes the information redundancy provided by GPS to improve positioning accuracy. 

But these are not the unique options to combine GPS code and carrier measurements. 

 

After the introduction of the Hatch filter in 1982, several smoothing filters have also 

been designed. Ron Hatch himself released improvements on these range domain 

schemes by using epoch-dependent smoothing weight factors. In 1986 Lachapelle [4.6] 

posed other methodology on which the smoothing weight factors were reduced by a 

constant from epoch to epoch and similar approaches were also designed by Meyerhoff 

and Evans in 1986 [4.7] and Hofmann-Wellenhof in 1997 [4.3]. In terms of position 

domain smoothing, in reference [4.12] Bisnatch and Langley described a filter called  

the phase-connected filter. 

 

It is worth highlighting two smoothing approaches posed by P.Y.C. Hwang and R.G. 

Brown in references [4.11] and [4.9]. These schemes efficiently integrate GPS code and 

carrier measurements considering that complementary information is embedded on 

these observables. Both algorithms involve stochastic least-squares filter theory and are 

based on Kalman filters.  
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One of them based the estimation of the smoothed pseudo-ranges in a general linear 

operation processed on the two noisy GPS measurements – as illustrated in the 

following figure. 

 

 
 

Figure 48 Other CSC schemes - General linear measurement combination - posed by P.Y.C. Hwang 
and R.G. Brown in [4.11] 

 

The optimization problem of this general integrated filter is posed as follows: Given the 

mutual correlation structures of the signal and noises, what G1 and G2 will minimize 

the mean-square error? This is a standard Wiener or Kalman filter-type problem and the 

optimal model posed by Hwang and Brown is made up of 16 states that processes a pair 

of pseudo-range and carrier-phase measurements from each of the satellites in view. In 

this approach, the receiver motion is considered as being “noiselike” in character; this 

idea will not fit if, for example, the GPS receiver describes an intentional turn. 

Therefore, a second approach was posed by these researchers in order to avoid problems 

with deterministics inputs, this methodology is more conservative than the general 

linear combination. The following figure illustrates this idea. 

 

 

 

Figure 49 Other CSC schemes - Complementary Kalman filter combining continuous carrier-phase and 
pseudo-range data from GPS signal measurements - posed by P.Y.C. Hwang and R.G. Brown in [4.11] and 
[4.9] . 
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In the above illustrated complementary filter, the data provided by the carrier-phases is 

considered as a good reference trajectory, albeit a noisy one, and the other noisy 

measurement (i.e. the pseudo-ranges) is used to assist the first by providing corrections 

to the reference trajectory. The filter’s job in this formulation is simply to estimate the 

perturbation affecting the reference trajectory derived from carrier-phases. Therefore, in 

optimizing the transfer function G it is not required assumptions about the stochastic 

character of the receiver’s motion. According to Hwang and Brown in [4.9], an efficient 

way to implement this carrier-smoothing complementary filter is as a parallel bank of 

individual complementary filters as the one shown in Figure 49. Each filter is associated 

with a different observed satellite and all the filter outputs can be combined by a least-

squares filter or a simple Kalman filter. According to Hwang and Brown, this method of 

complementary integration looks especially attractive as a mean of achieving good 

dynamical response while still retaining the benefits of filtering the pseudo-range data. 

An approach that achieves the same effect is mentioned by Thomas Ford in [4.14], in 

this process the previous position states from the Kalman state-vector are eliminated by 

reworking the gains, measurement covariance, and propagation equations to take 

advantage of the correlation between process noise and measurement noise that results 

when carrier-phase time difference is introduced as a position difference observation. 

The method in which the previous states are maintained was chosen while performing 

these studies because of its simplicity and intuitiveness. 

 

In terms of range domain carrier-smoothing-code filters, the well-known Hatch filter 

was chosen to perform the experiments on this study. This algorithm is not the only one 

RD CSC scheme, in fact there are other approaches such as the stepwise-optimal RD 

filter posed by R. Rizos in the reference [4.20] and the Doppler-aided smoothing 

approach designed and described in [4.10] by P.Cheng in order to overcome problems 

due to cycle slips providing immunity to these phenomena. Additionally, motivated by 

the advantages of position-domain filtering compared to range-domain filtering, some 

references such as [4.8] posed Hatch filters that are performed in the position domain. 
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Chapter 5 

Experimental Results 

 
"If you don't fail now and again, 
it's a sign you're playing it safe." 

 
Woody Allen  

 

 

The goal of this project is to study and implement different carrier-smoothing-code 

(CSC) schemes that blend together the “range information” contained in both code and 

carrier measurements in order to achieve better accuracies while computing the position 

of the GPS receiver.  

 

Two different CSC approaches were considered in the performed studies. With respect 

to range domain (RD) smoothing algorithms, the Hatch filter stated in section 4.2 has 

been implemented since it has been the reference approach in these carrier-phase 

smoothing code pseudo-ranges techniques. In terms of position domain (PD) 

approaches, schemes based on Kalman filters have been considered. In that way, the 

modified Kalman filter expounded in section 4.3.2 has been implemented following the 

guidelines stated by Thomas J. Ford in references [4.14], [4.18] and [4.19]. This 

approach is generally called the pseudo-range/delta-phase (PDP) Kalman filter. 

Compared with other Kalman filter approaches posed by Patrick Y.C. Hwang and 

Robert G. Brown in references [4.11] and [4.9] , Ford’s algorithm was chosen because 

of its simplicity and intuitiveness.  
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These algorithms have been implemented with the aid of MATLAB R2006a. This 

computing language is extremely flexible with a wide variety of algorithm types. 

Furthermore, it facilitates programming environments dealing with matrix algebra. 

 

The experiments carried out to test the positioning results were performed with real 

GPS data collected by a stationary receiver. The data was gathered by a GPS station 

located at the E.T.S.I. Topography, Geodesy and Cartography in Madrid (Spain) as part 

of a GNSS stations ensemble belonging to Universidad Politécnica de Madrid. 

Observations were taken at a rate of 1 Hz and stored in files under the Receiver 

Independent Exchange Format (RINEX) Version 2.10. These RINEX files are available 

as a free download on the website http://gps.topografia.upm.es/. 

 

In this chapter, a brief description of the designed simulator is shown together with a set 

of test results. Position improvements are shown by means of both qualitative and 

quantitative experimental outcomes. 
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5.1 ‘Matlab GPS’ Simulator 

 

Simulate, as defined by the Concise Oxford Dictionary of Current 
English, means to “imitate conditions of situation etc. with model, 

for convenience or training.” Very often in the fields of science 
and engineering, we need to simulate a situation – just as the 

definition indicates – before it occurs to help us design or 
understand a system or its components. So it is with GPS 

 
Avram K. Tetewsky & Arnold Soltz – GPS WORLD October 1998 

 

 

Because GPS simulation requires a broad spectrum of tools covering matrix algebra, 

digital signal processing, control theory, and navigation algorithms, a high-level 

programming language is desirable. MATLAB, from MathWorks, provides an easy-to-

use matrix programming language that is both portable and third-party extendible. 

Although other simulation tools and matrix languages exist, industry and academia 

routinely use MATLAB for wide ranging analysis tasks in a variety of fields, including 

GPS.  

 

 

 

Figure 50 Block diagram of the GPSMatlab Simulator 
 

In order to properly analyze the performance of the considered carrier smoothing 

algorithms, a set of MATLAB routines has been designed. This software allows the 

computation of satellites and receiver locations by processing GPS data stored under the 

Receiver Independent Exchange Format (RINEX) Version 2.10. This source code has 
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been developed in the Navigation Department at Fraunhofer IIS (Nuremberg - 

Germany). 

 

Some of the features included in this software are a set of parsers to extract the GPS 

data stored in RINEX 2.10 files, satellite coordinates computation from Keplerian 

elements (broadcast on the navigation message), ionosphere and troposphere corrections 

on measurements, positioning algorithms to compute the navigation solution (position, 

velocity and time) together with carrier smoothing code pseudo-ranges (CSC) schemes. 

In the above Figure 50 the main components of this simulator are shown in a block 

diagram. 
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5.2 RD CSC experimental outcomes 

 

As mentioned before, the range domain CSC algorithm specified in equation (4.2-12), 

referred to as Hatch’s filter, was performed by programming a group of MATLAB 

simulation packages. In fact, this approach constitutes a group of parallel low pass 

filters (one for each satellite in view) that tries to smooth out the noise on the pseudo-

ranges gathered from each of the observed satellites. The resultant “smoothed” pseudo-

ranges are then the input to the navigation processor that computes position estimates by 

means of a conventional position/velocity Kalman filter. The following figure illustrates 

a conceptual view of this procedure. 

 

 

 

 

Figure 51 Block diagram of the implemented RD CSC filtering scheme – each RD CSC block 
corresponds to an individual Hatch filter. 

 

 

Several experiments were carried out in order to analyze whether position accuracy is 

enhanced when performances are adjusted by the implemented CSC approach shown in 

Figure 51. Experimental outcomes were obtained by using real GPS data collected in 

the morning July 19, 2007 that can be downloaded freely in RINEX 2.10 files from the 

website http://gps.topografia.upm.es/.  
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The data was gathered by a stationary GPS station located at the E.T.S.I. Topography, 

Geodesy and Cartography in Madrid (Spain). Observations were taken during 6 

minutes (9:00 – 9:06) at a rate of 1 Hz. A total of 8 satellites were visible in the sky 

during the whole observation time. In the following figure, the satellite visibility and the 

antenna’s elevation angles are shown together with an illustrative example of the 

satellites layout in the sky. 
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Figure 52 July 19, 2007 Experiment - Satellites visibility and antenna’s elevation angles. Data 
were collected on July 19, 2007 from 9:01 to 9:06. 

 

Since the available pseudo-range measurements are not severely affected by noise 

(maybe because of antenna’s location or other characteristics in terms of receiver’s 

feasibility), random noise was added on them. This random component is normally 

distributed with a standard deviation of 2 meters. 

 

The navigation solution is performed by a conventional 8-state position/velocity 

Kalman filter that processes either unsmoothed or smoothed pseudo-ranges 

(atmospheric corrections are previously applied on them). The 3-D reference frame 
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considered for the position computation will be a Cartesian frame referred to as ECEF 

(Earth-Centred, Earth-Fixed) system, that is earth-centred and the earth itself remain 

static. 

 

First of all, the effects on positioning when performances are adjusted by the 

implemented RD CSC approach are analyzed (see step 1 in Figure 53). Subsequently, 

this smoothing scheme will be more deeply examined by directly evaluating the effects 

on the filtered pseudo-range measurements (see step 2 in Figure 53). Finally, test results 

are summarized in order to assess if better positioning outcomes could be obtained 

when performances are adjusted by the implemented CSC approach. 

 

 

 

Figure 53 Analysis performed on the implemented RD CSC scheme – block diagrams of the 
conventional “unsmoothed” method (the first sketch) and the RD CSC method.  



 

140 

 

 

5.2.1 RD CSC effects on positioning 

 

A position approximation for the GPS station that collects the measurements is 

available among the RINEX data. In order to properly analyze the effects of the 

implemented RD CSC schemes over position estimates, the resultant three-dimensional 

navigation solution was compared with this RINEX location to obtain a positioning 

error profile - as shown in the following figure. 

 

 

 

Figure 54 Positioning error profile considering the location approximation stored in RINEX files. 
 

Test results performed by processing the GPS data collected in the morning July 19, 

2007 are shown in Figure 55 and Figure 56. In fact, the errors in the estimation of each 

position coordinate (xerror, yerror and zerror) are illustrated by means of graphics. 

Additionally, mean and standard deviations were also evaluated for the first and last sets 

of 120 samples. The first minute of observations was not considered in order to avoid 

possible system instabilities caused in the initialization. Considering that the 

measurements were taken at a rate of 1 Hz, the first and the last 120 samples correspond 

to the first and the last 2 minutes of observations (9:01-9:03 and 9:04-9:06). Numerical 

outcomes are also attached in the tables below the graphics.  

 

First of all, the error in position estimates achieved when performances were adjusted 

by the conventional “unsmoothed” method is shown in Figure 55. The mean error in 
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positioning and its standard deviation were evaluated in terms of the outcomes derived 

from each position coordinate, as stated in the following mathematical expressions 

 

(5.2-1) ( ) ( ) ( )222 zyx eeeerror µµµµ ++=   ( ) ( ) ( )222 zyx eeeerror σσσσ ++=  

 

being µe(x), µe(y), µe(z) the mean errors in position estimation for each Cartesian 

coordinate and σe(x), σe(y), σe(z) the respective standard deviations. The mean error in 

position, denoted by µerror, is in the range of 1-2.2 metres and its standard deviation, 

denoted by σerror, does not exceed 1.2 metres – see the following figure. 

 
Error in position estimation July 19, 2007 

9:00 – 9:06 9:01-9:03 9:04-9:06  
 µerror   σerror  µerror   σerror  

Unsmoothed 2.166 m 0.944 m 1.360 m 1.154 m 
 
Figure 55 July 19, 2007 Experiment - Error in the 3D stationary positioning solution derived 
from unsmoothed pseudo-ranges taken on July 19, 2007 from 9:01 to 9:06. 
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In addition, Figure 56 embodies the error profiles obtained when performances were 

adjusted in order to smooth pseudo-range measurements by applying the implemented 

RD CSC approach illustrated in Figure 51. In fact, different maxima in the smoothing 

interval were considered in order to avoid the effects of code-carrier divergence, as 

mentioned in chapter 4. It is worth recalling that the concept of “maximum smoothing 

interval” refers to the period of time while pseudo-ranges, taken from a particular 

satellite, are smoothed in a continuous basis. This time interval is generally fixed in a 

maximum according to the time it takes the code-carrier divergence to become 

noticeable in terms of positioning (reference [3.1] mentioned a maximum in 100 

seconds). When this maximum interval is achieved for a particular satellite, the 

smoothing process is reset, but only in the case of that satellite. As the implemented RD 

CSC filtering scheme (i.e. the Hatch filter) improves with time, the reset implies a loss 

of quality due to the return to the initial point of the smoothing process; this is in fact 

one of the drawbacks in this carrier-smoothing-code scheme. 

 

The maximum smoothing intervals took 10 seconds, 50 seconds, 100 seconds and 6 

minutes, that is, the whole observation time period (from 9:00 to 9:06). Mean and 

standard values of error in each position coordinate were likewise evaluated and the 

general positioning results derived from the mathematical expressions (5.2-1) are also 

shown in the table above the graphics. 

 

The results of integrating carrier-phase measurements with code pseudo-ranges can be 

seen by comparing the plots shown in both figures (Figure 56 and Figure 55). 

Fluctuations in positioning error are reduced from almost one metre to a few 

centimetres when RD CSC schemes are applied on pseudo-ranges (see the evaluated 

standard deviations in tables above graphics). The mean error in positioning, however, 

slightly increases except in the case of smoothing intervals that last 50 seconds, 100 

seconds, and 6 minutes (during the first 2-minutes interval). In these cases, the mean 

error is reduced below 2 metres.  

 

In addition, in the last minutes of observations, it can be observed the effect of code-

carrier divergence over the estimation of position since de error profile for the first and 
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second Cartesian coordinates (i.e. x and y graphics) slightly deviates from the “zero 

error”. 

 
Error in position estimation July 19, 2007 

9:00 – 9:06 9:01-9:03  9:04-9:06 
 µerror   σerror  µerror   σerror  

Unsmoothed 2.166 m 0.944 m 1.360 m 1.154 m 
10 s RD  CSC 2,219 m 0.591 m 1.385 m  0.785 m  
50 s RD  CSC 2.009 m 0.179 m 1.405 m 0.298 m 
100 s RD  CSC 1.925 m 0.116 m 1.499 m 0.162 m  
6 min RD  CSC 1.921 m 0.110 m 1.667 m 0.130 m  

 
 

Figure 56 July 19, 2007 Experiment - Error in the 3D stationary positioning solution derived 
from smoothed pseudo-range measurements (from 9:01 to 9:06) – Different maximums for the 
smoothing interval were considered: 10 seconds, 50 seconds, 100 seconds and 6 minutes. 

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

-2

-1.5

-1

-0.5

0

0.5

1

1.5

Smoothing - Error in Position - x coord.

m

Time (min)

 

 

10-s Smoothing
50-s Smoothing
100-s Smoothing
6-min Smoothing

 

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Smoothing - Error in Position - y coord.

m

Time (min)

 

 

10-s Smoothing
50-s Smoothing
100-s Smoothing
6-min Smoothing

 

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

-1

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

Smoothing - Error in Position - z coord.

m

Time (min)

 

 

10-s Smoothing
50-s Smoothing
100-s Smoothing
6-min Smoothing

 

 

Mean (m)  

10s          50s        100s       5min  

-0.053     -0.304     -0.508     -0.757    

Standard Deviation (m)  

10s          50s        100s       5min  

0.570      0.256        0.141      0.023 

Mean (m) 

10s          50s        100s       5min 

-0.427    -0.482    -0.484    -0.482 

Standard Deviation (m) 

10s          50s        100s       5min 

0.377     0.118       0.083      0.074 

Mean (m) 

10s          50s        100s       5min  

1.171      1.236      1.316      1.428 

Standard Deviation (m)  

10s          50s        100s       5min  

0.225      0.078        0.058      0.034  

Mean (m) 

  10s          50s      100s       5min 

1.659     1.579      1.546       1. 546 

Standard Deviation (m) 

  10s          50s        100s       5min 

0.113       0.072      0.060       0.059 

Mean (m) 

10s          50s        100s       5min  

0.737      0.595        0.507      0.410  

Standard Deviation (m)  

10s          50s        100s       5min  

0.491      0.131        0.057      0.123 

 

Mean (m) 

  10s          50s        100s       5min 

1.410       1.145       1.039      1.034 

Standard Deviation (m) 

  10s          50s        100s       5min 

0.441       0.112      0.054      0.055 
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Now compare the statistical values derived from the positioning outcomes shown in 

Figure 56 and Figure 55. The following tables show the improvements achieved with 

respect to the outcomes derived from the conventional “unsmoothed” method -

illustrated in Figure 55. Even when just the maximum smoothing interval lasts 10 

seconds, the standard deviation of error in position, denoted by σerror, decreases 30 

percent approximately compared with the one obtained in the conventional 

“unsmoothed” method. In fact, these reductions reach values up to 88 percent when 

applying the largest feasible smoothing interval (in the case of these studies, this period 

corresponds to 6 minutes, that is, the whole observation interval). Hence, the original 

position error fluctuations, that reach almost one metre, are “smoothed” till they reach a 

few centimetres – see σerror values. 

 

 
Error in position estimation  July 19, 2007 

9:01-9:03 
(120 samples) 

µerror  
(m)  σerror   

(m)  

Unsmoothed 2,166 Improvement 
regarding unsmoothed 

0,944 Improvement 
regarding unsmoothed 

10 s RD  CSC 2,219 ↑ -2,45 %  � 0,591 ↓ 37,39 % ☺ 

50 s RD  CSC 2,009 ↓ 7,25  %  ☺ 0,179 ↓ 81,04 % ☺ 

100 s RD  CSC 1,925 ↓ 11,13 % ☺ 0,116 ↓ 87,71 % ☺ 

5 min RD  CSC 1,921 ↓ 11,31 % ☺ 0,110 ↓ 88,35 % ☺ 

 

 
Table 5.1 Mean values of error in the 3D smoothed stationary positioning solution 
computed on July 19, 2007 from 9:01 to 9:03 – 120 samples. 

 
 
 

Error in position estimation  July 19, 2007 
9:04-9:06 

(120 samples) 
µerror  
(m)  σerror   

(m)  

Unsmoothed 
1,360 

Improvement 
regarding unsmoothed 1,154 

Improvement 
regarding unsmoothed 

10 s RD  CSC 1,385 ↑ -1,84 % � 0,785 ↓ 31,98 % ☺ 

50 s RD  CSC 1,405 ↑ -3,31 % � 0,298 ↓ 74,18 % ☺ 

100 s RD  CSC 1,499 ↑ -10,22 % � 0,162 ↓ 85,96 % ☺ 

5 min RD  CSC 1,667 ↑ -22,57 % � 0,130 ↓ 88,73 % ☺ 
 

 
Table 5.2 Mean values of error in the 3D smoothed stationary positioning solution 
computed on July 19, 2007 from 9:04 to 9:06 – 120 samples. 
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As it was mentioned before, the larger the smoothing interval, the more efficient 

smoothing would be achieved, that is, more pseudo-range noise would be filtered out. 

The experimental outcomes shown in the above tables verify this statement, that is, 

standard deviations of error (i.e σerror) decrease more and more when the maximum 

smoothing interval is enlarged.  

 

In contrast, the mean error in positioning, denoted by µerror, do not generally improves 

with respect to one derived from the conventional “unsmoothed” method (see 0 and 0). 

Small improvements, around 11 percent, are achieved in the first set of 120 samples (i.e. 

the first minutes of observations from 9:01 to 9:03). In contrast, in the last 2-minutes 

time interval the mean error increases more and more as the filter’s length is enlarged. 

This effect might be caused, as mentioned before, by the cumulative effect of code-

carrier divergence on the smoothed pseudo-ranges.  
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5.2.2 RD CSC effects on pseudo-ranges 

 
Let’s analyze more deeply the RD CSC approach that was performed to achieve the test 

results shown in previous section 5.2.1. 
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This filtering scheme corresponds to an estimator. In statistics, an estimator is a 

function of an “observable sample” that is used to predict the values of an “unknown 

parameter”. In this case, the observable samples are the pseudo-ranges, denoted by ρ, 

and the carrier-phase, denoted by Φ. In addition, the unknown parameter to be estimated 

is the smoothed pseudo-range referred to as ρsm.  

 

Ideally, the perfect estimator would have the true “ideal” pseudo-range as expected 

value, that is, the geometric range corrupted by receiver and satellite clock errors.  

 

(5.2-3) ( ) ( )( ) ( )( ) ( )( ) ( )j
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j
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j
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222 −+−+−+−=ρ  

 

where (sx
(j),sy

(j),sz
(j)) is the satellite position for a certain j satellite, receiver’s location 

corresponds to (ux,uy,uz) and satellite and receiver clock errors are denoted by c.br and 

c.bs
(j). This ideal pseudo-range profile is not available on these studies. Anyway, let’s 

analyze which are the GPS parameters that are available in these studies; maybe, it is 

possible to obtain a proper “theoretical” pseudo-range profile that approaches the ideal 

model defined in equation (5.2-3). 

 

Firstly, as it was previously mentioned, a position approximation of the GPS station that 

collects the measurements is stored in the processed RINEX files. Therefore, this 

information can be used as receiver’s location (ux,uy,uz) in equation (5.2-3). 

Furthermore, the computation of satellite positions and their clock errors is performed 

within the routines of the “GPS Matlab Tool” used in these studies – see Figure 50. 
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These parameters are necessary to estimate the receiver’s location by means of Kalman 

filtering and are obtained by using the navigation data that satellites broadcast 

embedded on L1 and L2 frequencies. Hence, estimates of the terms (sx
(j),sy

(j),sz
(j)) and 

c.bs
(j) of the model stated in equation (5.2-3) are also available. In addition, the receiver 

clock error estimated by the 8-state Kalman filter can also be considered as the term 

c.br. Therefore, a “theoretical” pseudo-range can be obtained by processing all these 

parameters according to equation (5.2-3).  

 

In the following figures, an illustrative example brings face to face an ensemble of 

measured pseudo-ranges, the respective “theoretical” profile and the resultant 

“smoothed” pseudo-ranges obtained when the maximum Hatch filter smoothing interval 

was set to 100 seconds. These test results were obtained by considering the GPS data 

gathered from a satellite observed in the morning July 19, 2007 (satellite 2 - see satellite 

visibility in Figure 52). Measured ρ, smoothed ρsm and theoretical ρth pseudo-ranges are 

seemingly equivalent. To check this fact, the differences in between were also 

evaluated. 
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Figure 57 July 19, 2007 Experiment - Measured (ρ), smoothed (ρsm) and theoretical (ρth) 
pseudo-ranges. Relation between these three quantities. Example based on measurements 
gathered from a satellite that was observed on July 19, 2007 from 9:00 to 9:06. 
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Figure 58 July 19, 2007 Experiment - Measured (ρ), smoothed (ρsm) and theoretical (ρth) 
pseudo-ranges – Differences between these three quantities. Example based on measurements 
gathered from a satellite that was observed on July 19, 2007 from 9:00 to 9:06. 

 

As expected, the resultant theoretical pseudo-ranges ρth do not exactly match with the 

measured and smoothed ones since the differences ρ-ρth ρtsm-ρth are not exactly zero; 

these are the consequences of all the inherent biases and noises affecting measurements. 

The signal ρ-ρth is seemingly mainly conformed by noise and a “bias” component that 

remains fix around 5-6 metres. 

 

Some aspects must be taken into account. Firstly, it has to be considered how accurate 

are the parameters used to derive the “theoretical” pseudo-ranges (i.e. approximations of 

the true expected value in the estimation of smoothed pseudo-ranges). In fact, satellite 

position and their clock errors are estimated by taking into consideration navigation 

parameters broadcast on satellite signals. These parameters are quite reliable because 

they are updated by the GPS control segment twice a day. The receiver’s clock error is 

estimated by the navigator processor itself (i.e. the Kalman filter). And the receiver’s 

location is derived from RINEX data. It is obvious that all these quatities are just 
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1.934 m 

 

Mean 

5.490 m 

Standard Deviation 

1.811 m 

 

Mean 

 5.750 m 

Standard Deviation  
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approximations to the real values and, therefore, their processing imply a residual error. 

However, in these studies it was not possible to quantify this residual error. 

 

Secondly, the “measured pseudo-ranges” ρ (filtered in the implemented RD CSC 

scheme defined in (5.2-2) in order to estimate the smoothed pseudo-ranges) are 

corrupted not only by clock errors but also by atmosphere effects (ionosphere and 

troposphere) together with multipath and receiver noise. In GPS references, atmosphere 

effects are considered as “slow variations” (i.e. low frequency components), except in 

the case of atmosphere scintillations. In contrast, multipath and measurement noise are 

considered in these studies as time uncorrelated processes, that is, quick variations over 

time (i.e. high frequency components). The RD CSC Hatch filter defined in (5.2-2) 

corresponds to a low pass filter, that is, the high frequency “undesirable” components 

affecting pseudo-ranges will be filtered out with the aid of a “reference signal” that 

contains lower high frequency noise levels (i.e. the carrier-phases Φ). Therefore, any 

low-frequency component inherent in pseudo-ranges (i.e. biases like ionosphere and 

atmosphere effects and clock errors) will not be removed and will remain present on the 

smoothed pseudo-ranges. 

 

Let’s develop the mathematical theory that may define what happened on measurements 

illustrated in Figure 57 and Figure 58. As mentioned before, the “theoretical” pseudo-

ranges were computed as 

 

(5.2-4) ( ) ( ) ( ) thsrzzyyxxth bcbcususus υρ +−+−+−+−= ..222  

 

where the parameters (sx
(j),sy

(j),sz
(j)) and (ux,uy,uz) correspond the real satellite position 

for a certain j satellite and the real receiver’s location, respectively. Satellite and 

receiver clock errors are identified by c.br and c.bs
(j). In addition, the term υth denotes 

the residual error committed by considering approximation to the real values of these 

parameters. 
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In chapter 3 (section 3.2.5), the “measured” pseudo-ranges were defined by a 

mathematical model stated as 

 

(5.2-5) ( ) ( ) ( ) ( ) noisesrzzyyxx TIbbcususus ρρ +++−+−+−+−= .222  

 

where I and T denote the atmosphere errors caused in measurements due to the fact that 

GPS signals went through the ionosphere and the troposphere. Furthermore, the term 

ρnoise corresponds to multipath and measurement noise together with other unmodeled 

error sources. 

 

Hence, the differences ρ-ρth shown in Figure 58 can be mathematically defined by the 

following equation 

 

(5.2-6) 
thnoiseth TI υρρρ −++=−  

 

As mentioned before, atmosphere effects, denoted by I and T, are generally considered 

as low frequency components, as well as the residual error υth . Therefore, the term that 

is expected to be suppressed or at least reduced is the one regarding to the noise 

affecting the measured pseudo-ranges, denoted by ρnoise. In fact, this is the term that is 

normally a hundredth greater than the one affecting carrier phases, as mentioned in 

chapter 4 (section 4.2). Consequently, the term ρnoise will be the one that suffers the 

effects of the applied RD CSC schemes 

 

It is worth highlighting that atmosphere models are considered within the routines of the 

“GPS Matlab Tool” used in these studies (see Figure 50) in order to compute some 

corrections in the pseudo-range measurements before they are processed to derive the 

navigation solution. For example, the corrections that were applied on pseudo-ranges 

taken from the satellite 2 (previously mentioned Figure 57 and Figure 58) are illustrated 

in the following figure. 
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Figure 59 July 19, 2007 Experiment - Ionosphere (I) and troposphere corrections (T) 
applied on pseudo-ranges processed to compute the navigation solution. Example based on 
measurements gathered from a satellite that was observed on July 19, 2007 from 9:00 to 9:06. 

 

 

The atmosphere corrections shown in the figure above add up to 5 metres 

approximately. In these studies, these corrections were considered in the mathematical 

model (5.2-6) to derive an approximation of the measurement error profile affecting 

pseudo-ranges that is filtered out when performances are adjusted by the implemented 

RD CSC approaches. In the following figure, test results derived from the 

measurements shown in Figure 57 and Figure 58 are displayed. 
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Figure 60 July 19, 2007 Experiment – Measured/Theoretical pseudo-ranges residuals 
obtained by subtracting measured ρ from theoretical ρth pseudo-ranges and applying atmosphere 
corrections. Example taken from satellite that was observed on July 19, 2007 from 9:00 to 9:06. 
Effects while applying a 100s RD CSC scheme are shown by means of graphics and numerical 
outcomes. 

 

Compare the values of standard deviations shown in the table above. As the maximum 

smoothing interval is enlarged, standard deviations decrease more and more, i.e. more 

undesirable high frequency components (or noise) are suppressed. This fact reflects the 

effects of the performed low-pass CSC filtering schemes. By definition, the filter pass 

band becomes narrower when the filter’s window (i.e. the smoothing interval) expands; 

hence more high frequency noise components will be suppressed. However, mean 

values are not zero. In the first minutes of observations, the mean values grow as filter 

length is enlarged; nevertheless, in the case of the last minutes, they are reduced up to 

two centimetres. 

1 2 3 4 5 6

-8

-6

-4

-2

0

2

4

6

8

m
Time (min)

Satellite 2

 

 

(ρρρρ-I-T)-ρρρρth

 

 
1 2 3 4 5 6

-8

-6

-4

-2

0

2

4

6

8

m

Time (min)

Satellite 2

 

 

(ρρρρsm
-I-T)-ρρρρth

 
 

July 19, 2007 
9:00 - 9:06 

Satellite 2:  Comparison measured/theoretical pseudo-ranges (ρ-I-T)- ρth 

120 samples 9:01-9:03 9:04-9:06 

 Mean (m) Standard Deviation (m) Mean (m) Standard Deviation (m) 
Unsmoothed 0.603 1.811 1.032 1.939 
RDCSC 10 s 0.664 0.731 0.978 0.652 
RDCSC 50 s 0.748 0.671 0.874 0.522 
RDCSC 100 s 0.795 0.663 0.855 0.523 
RDCSC 5 min 0.802 0.664 0.861 0.526 

 

Mean 

1.032 m 

Standard Deviation  

1.939 m 

Mean 

0.603 m 

Standard Deviation 

1.811 m 

Mean 

0.795 m 

Standard Deviation 

0.663 m 

Mean 

0.855 m 

Standard Deviation  

0.523 m 



 

153 

 

 

The test results obtained from the rest of satellites visible in the sky are shown in the 

Figure 61. The improvement regarding standard deviations of error in measurements (i.e 

the fluctuations) is up to 65 percent in the first minutes of observations and even 73 

percent during the last minutes. In fact, these fluctuations are reduced from almost 2 

metres to half metre. However, the mean values are not zero and decrease a few 

decimetres just during the first minutes of experiments. This effect might be caused by 

the cumulative effect of ionosphere and troposphere delays.  

 

Comparison measured/theoretical pseudo-ranges (ρ-I-T)- ρth July 19, 2007  
9:01 - 9:03 Means in absolute value (m) 

Satellite 2 4 8 10 13 23 25 27 Average   

Unsmoothed 0.603 0.494 1.576 1.967 2.007 1.216 0.510 1.779 1.269 

Improvement 
regarding 

unsmoothed 

RDCSC 10 s 0.664 0.443 1.576 1.972 2.095 1.245 0.511 1.790 1.287 ↑ -1.42 % � 

RDCSC 50 s 0.748 0.355 1.428 1.916 2.168 1.113 0.372 1.880 1.248 ↓ 1.69 % ☺ 

RDCSC 100 s 0.795 0.269 1.352 1.876 2.180 1.051 0.356 1.913 1.224 ↓ 3.54 % ☺ 

RDCSC 5 min 0.802 0.263 1.333 1.865 2.200 1.046 0.354 1.911 1.222 ↓ 3.72 % ☺ 
 Standard Deviations (m) 

Unsmoothed 
1.810 

 1.791 1.910 2.040 1.953 2.150 1.758 2.072 1.936 

Improvement 
regarding 

unsmoothed 

RDCSC 10 s 0.731 0.628 0.748 0.604 0.938 0.604 0.778 0.803 0.729 ↓ 62.33 % ☺ 

RDCSC 50 s 0.671 0,664 0.734 0.666 0.744 0.640 0.690 0.697 0.688 ↓ 64.44 % ☺ 

RDCSC 100 s 0.663 0.666 0.710 0.668 0.704 0.648 0.679 0.678 0.677 ↓ 65.03 % ☺ 

RDCSC 5 min 0.664 0.666 0.700 0.666 0.694 0.652 0.679 0.675 0.674 ↓ 65.16 % ☺ 
Comparison measured/theoretical pseudo-ranges (ρ-I-T)- ρth July 19, 2007  

9:04 - 9:06 Means in absolute value (m) 

Satellite 2 4 8 10 13 23 25 27 Average   

Unsmoothed 1.032 0.398 1.104 1.894 1.241 0.060 0.380 2.093 1.025 

Improvement 
regarding 

unsmoothed 

RDCSC 10 s 0.978 0.377 1.139 1.880 1.255 0.104 0.408 2.085 1.028 ↑ -0.26 % � 

RDCSC 50 s 0.874 0.407 1.260 1.934 1.317 0.396 0.400 2.118 1.088 ↑ -6.15 % � 

RDCSC 100 s 0.855 0.423 1.380 1.986 1.443 0.612 0.342 2.157 1.150 ↑ -12.12 % � 

RDCSC 5 min 0.861 0.446 1.526 2.055 1.643 0.871 0.249 2.206 1.232 ↑ -20.15 % � 
 Standard Deviations (m) 

Unsmoothed 1.938 2.022 1.740 2.002 2.310 2.052 2.019 1.989 2.009 

Improvement 
regarding 

unsmoothed 

RDCSC 10 s 0.652 0.459 0.581 0.438 0.636 0.477 0.773 0.757 0.597 ↓ 70.30 % ☺ 

RDCSC 50 s 0.522 0.483 0.570 0.487 0.522 0.485 0.561 0.571 0.525 ↓ 73.87 % ☺ 

RDCSC 100 s 0.523 0.507 0.560 0.511 0.523 0.507 0.543 0.547 0.528 ↓ 73.74 % ☺ 

RDCSC 5 min 0.526 0.523 0.545 0.527 0.526 0.518 0.534 0.535 0.529 ↓ 73.66 % ☺ 

 

Figure 61 July 19, 2007 Experiment – Comparison between measured ρ and theoretical ρth 

pseudo-ranges when atmosphere corrections are applied – measurements were taken on July 19, 
2007 from 9:00 to 9:06. The considered samples were collected on the time periods 9:01-9:03 and 
9:04-9:06. A total of eight satellites were visible in the sky. Different RD CSC schemes were applied 
on measured pseudo-ranges (10s, 50s, 100s and 5min). 
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The considered RD CSC estimator defined in (5.2-2) would be ideal if the measurement 

error 
thnoisethTI υρρρ −=−−−  is zero, that is, the difference between the estimator’s 

expected pseudo-range (i.e. the theoretical one) and the true achieved quantity (i.e. the 

smoothed pseudo-range) is zero – considering the applied atmosphere corrections.  

However, the experimental mean values of this error are not zero (see the tables above) 

and the implemented RD CSC estimator might not be ideal. This kind of estimators is 

called biased estimator in terms of statistics; in fact, the difference between expected 

estimates and the true ones is referred to as the bias. 
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5.2.3 RD CSC positioning outcomes 

 

Several experiments were performed in order to assess if better positioning results could 

be obtained when performances are adjusted by the implemented RD CSC approach 

previously shown in Figure 51.  

 

The processed measurements were collected during the same observation time interval 

in different days of May and June 2007. In fact, the observation periods lasted 5 minutes 

(from 9:00 to 9:05 in the morning). As well as experiments shown in sections 5.2.1 and 

5.2.2, these measurements were real and the GPS station that gathered them is the same 

that the one considered in previous studies. The sampling rate was 1 Hz and the first 

minute of observations was disregarded to avoid possible system instabilities during the 

initialization of the navigation procedure. 

 

First of all, a qualitative analysis was performed by outlining the error in position 

estimates and directly observing if better positioning results were obtained when 

performing the RD CSC approaches. The error in position was evaluated as the 

geometric distance between the estimated receiver’s location and the approximation 

provided by the processed RINEX files – as illustrated previously in Figure 54 and 

computed according to the following mathematical equation  

 

(5.2-7) ( ) ( ) ( )222
rinexestrinexestrinexest zzyyxxerror −+−+−=  

 

where the estimation of receiver’s position is denoted by (xest,yest,zest) and the RINEX 

reference receiver’s location is (xrinex,yrinex,zrinex). The resultant experiment outcomes are 

shown in the following figures. The error in position was rarely above 3.5 metres; even 

in some cases was up to 1.5 metres. Furthermore, when performances are adjusted by 

the implemented RD CSC scheme, the fluctuations in positioning error are considerably 

reduced – specifically in the cases of applying larger smoothing intervals (50s, 100s and 

5 min). It seems that the best results are achieved when the maximum smoothing 

interval was set to 100s or 5 minutes.  



 

156 

 

 

Secondly, a quantitative analysis was also performed by evaluating the mean error in 

position for each minute of observations. The improvements are small; anyway the 

mean error is generally reduced a few decimetres or centimetres when performances are 

adjusted by the implemented RD CSC schemes.  

 

In fact, the maximum improvements are achieved when smoothing intervals extended 

up to 50 or 100 seconds – with respect to 5 minutes, the mean error is slightly increased 

in four of the eight experiments.  

 

The fluctuations in position error are also “smoothed” with the aid of the RD CSC 

algorithms. As mentioned before, the fluctuations decreased as the smoothing interval is 

enlarged. This aspect verifies the time effectiveness of this CSC procedure; however, 

the slight increases on the mean error limit the considered smoothing intervals. This was 

the reason why a conservative RD CSC approach was chosen by fixing maximum 

smoothing interval in 10 seconds, 50 seconds, 100 seconds and 5 minutes. 
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Figure 62 May/June2007 Experiments – Examples of error in position . Experiments performed 
with data taken on May/June 2007. 
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 Mean Error in Position (m) 
 Usmt RD CSC 
  10s 50s 100s 5min 

9:01 - 9:02 2,858 2,495 2,289 2,289 2,289 
9:02 - 9:03 3,002 2,974 2,582 2,525 2,525 
9:03 - 9:04 2,700 2,735 2,747 2,688 2,691 
9:04 - 9:05 2,575 2,628 2,703 2,676 2,668 

Average 2,784 2,708 2,580 2,544 2,543 

 

 Mean Error in Position (m) 
 Usmt RD CSC 
  10s 50s 100s 5min 

9:01 - 9:02 2,896 2,026 1,840 1,840 1,840 
9:02 - 9:03 1,007 1,164 1,361 1,406 1,406 
9:03 - 9:04 0,943 0,808 0,865 1,000 1,016 
9:04 - 9:05 1,521 1,415 1,122 1,072 1,044 

Average 1,592 1,353 1,297 1,330 1,327 
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 Mean Error in Position (m) 
 Usmt RD CSC 
  10s 50s 100s 5min 

9:01 - 9:02 1,919 1,217 1,030 1,030 1,030 
9:02 - 9:03 1,750 1,653 1,134 1,069 1,068 
9:03 - 9:04 1,561 1,589 1,446 1,303 1,292 
9:04 - 9:05 1,293 1,344 1,412 1,316 1,271 

Average 1,631 1,451 1,255 1,179 1,165 

 

 Mean Error in Position (m) 
 Usmt RD CSC 
  10s 50s 100s 5min 

9:01 - 9:02 2,459 1,894 1,606 1,606 1,606 
9:02 - 9:03 2,457 2,391 1,986 1,929 1,929 
9:03 - 9:04 2,361 2,373 2,278 2,170 2,164 
9:04 - 9:05 2,229 2,288 2,311 2,211 2,163 

Average 2,377 2,237 2,045 1,979 1,965 
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Figure 63 May/June 2007 Experiments – Examples of error in position. Experiments performed 
with data taken on May/June 2007. 
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 Mean Error in Position (m) 
 Usmt RD CSC 
  10s 50s 100s 5min 

9:01 - 9:02 2,429 1,873 1,824 1,824 1,824 
9:02 - 9:03 2,144 1,773 1,510 1,477 1,477 
9:03 - 9:04 2,343 2,364 2,105 1,910 1,905 
9:04 - 9:05 1,658 1,614 1,857 1,913 1,992 

Average 2,143 1,906 1,824 1,781 1,799 

 

 Mean Error in Position (m) 
 Usmt RD CSC 
  10s 50s 100s 5min 

9:01 - 9:02 1,989 1,406 1,299 1,299 1,299 
9:02 - 9:03 0,862 0,852 0,973 0,996 0,996 
9:03 - 9:04 1,352 1,229 1,032 0,993 0,979 
9:04 - 9:05 1,683 1,630 1,316 1,142 1,071 

Average 1,472 1,279 1,155 1,107 1,086 
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 Mean Error in Position (m) 
 Usmt RD CSC 
  10s 50s 100s 5min 

9:01 - 9:02 3,372 2,971 2,898 2,899 2,899 
9:02 - 9:03 1,534 1,700 2,117 2,159 2,159 
9:03 - 9:04 1,679 1,665 1,814 1,923 1,941 
9:04 - 9:05 1,962 2,021 1,941 1,978 1,987 

Average 2,241 2,153 2,165 2,201 2,209 

 

 Mean Error in Position (m) 
 Usmt RD CSC 
  10s 50s 100s 5min 

9:01 - 9:02 3,536 2,783 2,638 2,639 2,639 
9:02 - 9:03 1,696 1,883 2,310 2,377 2,378 
9:03 - 9:04 1,716 1,591 1,803 2,015 2,037 
9:04 - 9:05 2,193 2,201 2,010 2,043 2,042 

Average 2,285 2,115 2,190 2,268 2,274 
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It can be concluded that a maximum smoothing interval of 50 seconds or 100 seconds 

provides a good trade-off between the improvements of the mean error in position and 

fluctuations of this error. 

 

The implemented RD CSC schemes provide improvements in the accuracy of position 

estimates because they reduce the mean error in position estimation. In that way, the 

position estimates obtained when performances are adjusted by the implemented RD 

CSC approach are closer to the actual receiver’s position, compared to the outcomes 

obtained by the conventional unsmoothed method. These improvements are small (at 

decimetre or centimetre level); anyway, it was possible to reduce the position error 

under 1.5 metres in some experiments. 

 

It has been observed that some drawbacks were present in the conventional unsmoothed 

method and have not being overcome by applying the implemented RD CSC 

approaches. For example, the position estimates derived from these algorithms are 

sensitive to receiver clock readjustments that affect code measurements but do not have 

any effect on carrier-phases. As mentioned in chapter 3, the basic quartz crystal 

oscillators (or clocks) located at receiver site are not so precise as the ones located at the 

GPS control stations; as a result, these clocks suffer progressive time deviations with 

respect to the general GPS time frame. The code pseudo-ranges processed in the 

Kalman filter in order to estimate the receiver’s position are time-based measurements 

and their reliability limits the accuracy of the obtained position estimates. Therefore, 

receiver manufactures sought solutions to overcome this measurement limitation, one of 

the strategies that is applied on receivers equipments consists of limiting the time 

deviations by letting the  clock drift until it reaches a certain threshold (typically, 1 ms), 

and then reset it to return the offset to zero (as mentioned in reference [3.3]). These 

readjustments generate discontinuities on the derived code measurements, i.e. the 

pseudo-ranges (1 ms corrections are translated into “length jumps” of 299.79 km). 

Then, the parallel Hatch filters only “smooth” these discontinuities on pseudo-ranges 

but do not suppress then. The receiver clock deviations are gradual and will not be 

eliminated just by applying these low pass filters. In the following figures, an 
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illustrative example is shown, this was observed while performing the above mentioned 

experiments. 
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Figure 64 Effects of receiver clock readjustments in GPS positioning – experiments performed 
with data taken on May 5, 2007. 

 

 

 

Furthermore, both unsmoothed and RD smoothed algorithms will exhibit problems 

when the number of visible satellites do not overcome the limit required to solve the 

navigation equations in the Kalman filter. 
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5.3 PD CSC experimental outcomes 

 

The position domain CSC algorithm implemented in these studies is a Kalman filter 

posed by Thomas J. Ford in references [4.14], [4.18] and [4.19]; this approach is 

generally called the pseudo-range/delta-phase (PDP) Kalman filter. 

 

The main functions performed by the implemented PDP Kalman filter are illustrated in 

the following figure (Figure 65). In this approach, carrier-phase measurements are 

directly incorporated on the Kalman filter that acts as the navigation processor. This 

modified Kalman algorithm combines the satellite-to-user distance information 

extracted from both code and carrier-based measurements to obtain a position estimate. 

To overcome the problems derived from the inherent ambiguities affecting phase 

measurements, carrier-phases are differenced in time, in that sense, the resultant 

differenced measurement is treated as a position difference observable between the 

previous and the current time epochs (as mentioned in section 4.3.2). Therefore, the 

number of system states in this Kalman filter was enlarged to enclose both current and 

previous receiver’s location to properly process the time differenced carrier-phases as 

“position difference” observables.  
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Figure 65 Block diagram of the implemented PD CSC filtering scheme. The Pseudo-
range/Delta-Phase (PDP) Kalman Filter 
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In the case of unsmoothed and range domain smoothed algorithms, position errors from 

a filter that includes clock states would be adversely affected when the system do not 

have enough observations to generate an instantaneous position and clock estimate by 

solving the navigation equations. The estimation of clock states is required in order to 

achieve absolute positioning results; however, as mentioned in section 4.3.2, techniques 

that construct new positioning observables by differencing the GPS measurements are 

used in such a way that clock biases are suppressed. In these studies the common error 

due to receiver’s clock deviations was eliminated from measurements by differencing 

simultaneous measurements gathered from different satellites, i.e. forming “between-

satellite” differences, therefore, the modified Kalman filter that processes these 

differenced measurements does not need to estimate clock states. Hence, the considered 

system states shown previously in Figure 65 do not enclose the clock states. 

Furthermore, in some references such as [3.5], it has been mentioned that the impact of 

several other measurement errors caused by sources such as atmosphere effects and 

innacuracies in satellite ephemeris parameters is significantly reduced by processing 

these differenced GPS measurements. 

 

As well as in the case of RD CSC algorithms, several experiments were carried out in 

order to analyze whether, the position accuracy is enhanced when performances are 

adjusted by the implemented CSC approach shown in Figure 65. First of all, the July 19, 

2007 data set previously used to derive RD CSC test results was considered again to 

obtain position estimates by performing the implemented PDP Kalman filter. The 

observation interval was enlarged till it approached 16 minutes (9:00 – 9:16) in order to 

analyze the sensitivity of position estimates to receiver clock readjustments. As well as 

in RD CSC experiments, pseudo-range measurements were intentionally corrupted with 

the same normally distributed random noise of 2-metres standard deviation.  

 

In Figure 66 the satellites layout in the sky is illustrated together with antenna’s 

elevation angles. A total of 8 satellites were monitored during the whole 16-minutes 

time period. 
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Figure 66 July 19, 2007 Experiment – Observed satellites and antenna’s elevation angles. 
GPS measurements were collected in the morning July 19, 2007 (from 9:00 to 9:16 am) 

 

 

The geometry of this GPS environment, i.e. how satellites are distributed on the sky, is 

quite homogeneous. Five satellites were moving high and other three rose or set closer 

to the horizon. It is worth highlighting the importance of satellites location since 

measurements from high satellites contain smaller errors and noise since the received 

signal powers are higher and the paths through ionosphere and troposphere are shorter. 

 

The PDP Kalman filter formed the between-satellite measurement differences by 

considering a reference satellite that is the highest one in order to minimize the 

measurement error affecting the resultant differenced observables, as mentioned in 

chapter 4. In this experiment, satellite 27 was chosen to form the measurement 

differences because it was monitored with the largest antenna’s elevation angles – see 

Figure 66. Hence measurement differences between satellites were computed according 

to the arrangement shown in the following figure. 
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Figure 67 July 19, 2007 Experiment – Forming between-satellite measurement differences. 
Experiment performed with GPS data collected in the morning July 19, 2007 (from 9:00 to 9:16 
am) 

 

 

First of all, the effects on the estimation of the three Cartesian coordinates are analyzed 

when performances are adjusted by the implemented PDP Kalman filter. In addition, 

these test results are compared to the ones derived from the conventional Kalman filter 

that processed either unsmoothed or RD smoothed pseudo-ranges – as shown the 

following Figure 68. As a second step, a general position error profile was also 

evaluated by considering the geometric distances between the position estimates and the 

RINEX reference location as previously defined in the mathematical relation stated in 

equation (5.2-7). Finally, test results are summarized in order to assess if better 

positioning outcomes could be obtained when the PDP Kalman filter was applied on 

performances. 

 

The following figure illustrates the three analyzed procedures. The unsmoothed method 

and the RD CSC approach used a conventional 8-state position/velocity Kalman filter. 

In contrast, in the PD CSC approach the modified PDP Kalman filter estimated the 

position coordinates. 
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Figure 68 Analysis performed on the implemented PD CSC scheme – block diagrams of the 
conventional “unsmoothed” method (the first sketch) , the RD CSC method and the PD CSC methods.  
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5.3.1 PD CSC effects on positioning 

 

As mentioned before, a qualitative analysis was performed in order to evaluate the error 

in the estimation of each position coordinate. In this section, the experimental outcomes 

obtained by processing GPS data collected in July 19, 2007 from 9:00 to 9:16 will be 

illustrated by means of graphics and numerical outcomes. These error profiles were 

computed in the same way that test results shown in section 5.2.1.  

 

Observe the following figures (Figure 69, Figure 70 and Figure 71) and compare the 

outcomes obtained from the conventional unsmoothed approach and the ones derived 

from applying range domain or position domain smoothing schemes (i.e. the PDP 

Kalman filter).  Charts have been grouped into Cartesian coordinates. 

 

It can be observed that position domain smoothing schemes imply an important 

improvement in terms of position estimation compared to the unsmoothed and the range 

domain smoothed methods. In fact, error in position is reduced above 2 metres in the 

three Cartesian coordinates. In addition, the positon estimates generated by the PDP 

Kalman filter are not sensitive to receiver clock readjustments affecting code pseudo-

ranges because the information contained in the carrier-phase measurements is directly 

applied while computing the position within this filter. 
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Figure 69 July 19, 2007 Experiment - Error in the first coordinate of the 3D stationary 
positioning solution derived from measurements taken from 9:01 to 9:16. 1. Conventional 
unsmoothed procedure, 2. Range domain smoothing procedure, 3. Position domain smoothing 
procedure (PDP Kalman). 
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Figure 70 July 19, 2007 Experiment - Error in the second coordinate of the 3D stationary 
positioning solution derived from measurements taken from 9:01 to 9:16.  1. Conventional 
unsmoothed procedure, 2. Range domain smoothing procedure, 3. Position domain smoothing 
procedure (PDP Kalman). 
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Figure 71 July 19, 2007 Experiment - Error in the third coordinate of the 3D stationary 
positioning solution derived from measurements taken from 9:01 to 9:16.  1. Conventional 
unsmoothed procedure, 2. Range domain smoothing procedure, 3. Position domain smoothing 
procedure (PDP Kalman).  
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The following figure illustrates the general position error profile estimated by 

considering the geometric distances between the position estimates and the RINEX 

reference location. As mentioned before, the PDP Kalman estimates are not affected by 

the instabilities due to clock readjustments; furthermore, the error in these estimates is 

not above 2 metres. 

 

 

 
Figure 72 July 19, 2007 Experiment - Error in position computed as the geometric distance 
between the reference RINEX receiver’s location and the position estimates. Measurements were 
taken on July 19, 2007 from 9:01 to 9:16.  
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In addition, the mean error was computed for each minute of observations. It was 

observed that the error in position slightly increased in some cases when performances 

were adjusted by the range domain or position domain smoothing approaches. However, 

the implemented PDP Kalman filter maintained the error below 2 metres providing 

robustness to the effects of receiver clock readjustments (as shown in previous figures).  

 

 

 

Mean Error in Position Estimation 
 

Unsmoothed RD CSC 
100 s 

PD CSC 
(PDP Kalman) 

9:01 - 9:02 2,597 1,882 1,962 
9:02 - 9:03 2,186 2,067 2,060 
9:03 - 9:04 1,676 1,856 1,988 
9:04 - 9:05 1,294 1,600 1,764 
9:05 - 9:06 1,575 1,400 1,677 
9:06 - 9:07 6,442 6,888 1,573 
9:07 - 9:08 3,072 2,996 1,588 
9:08 - 9:09 2,793 2,760 1,654 
9:09 - 9:10 1,756 1,859 1,812 
9:10 - 9:11 1,564 1,671 1,828 
9:11 - 9:12 1,866 1,712 1,813 
9:12 - 9:13 1,773 1,710 1,788 
9:13 - 9:14 1,961 1,767 1,648 
9:14 - 9:15 2,642 2,223 1,459 
9:15 - 9:16 1,890 2,262 1,450 

Average 
Value 2,339 2,310 1,737 
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Figure 73 July 19, 2007 Experiment - Mean error in position computed for each minute of 
observations. Measurements were taken on July 19, 2007 from 9:01 to 9:16.  
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If the “between-satellite” differences would have been considered according to a 

different satellites arrangement, the error in position would slightly increase, as shown 

in the following example. These test results were also achieved while performing these 

experiments. 
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Figure 74 July 19, 2007 Experiment - Different satellites layout to form between-satellite 
measurement differences – Experiment performed with GPS data collected in the morning July 
19, 2007 (from 9:00 to 9:16) 
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9:15 - 9:16 1,450 

Average 
Value 1,737 

 

Mean Error in Position Estimation 
PD CSC (PDP Kalman) 

9:01 - 9:02 2,460 
9:02 - 9:03 2,358 
9:03 - 9:04 2,253 
9:04 - 9:05 2,238 
9:05 - 9:06 2,116 
9:06 - 9:07 2,188 
9:07 - 9:08 2,199 
9:08 - 9:09 2,147 
9:09 - 9:10 2,058 
9:10 - 9:11 2,013 
9:11 - 9:12 1,973 
9:12 - 9:13 1,866 
9:13 - 9:14 1,795 
9:14 - 9:15 1,779 
9:15 - 9:16 1,699 

Average 
Value 2,076 
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If all the visible satellites would have been located low in the sky, the positioning 

outcomes would be worst because the quality of the gathered measurements would be 

lower. Therefore, as shown in the above test results, the visibility of at least one satellite 

placed high in the sky is convenient for the positioning accuracy to be improved (as 

mentioned in reference [4.19]). 

 

5.3.2 PD CSC positioning outcomes 

 

As well as in RD CSC experiments, several performances were carried out in order to 

assess if better positioning results could be obtained when performances are adjusted by 

the implemented PDP Kalman filter shown in Figure 65.  

 

The processed measurements were the same GPS data sets considered in the RD CSC 

experiments. These observations were collected in May and June 2007 and the 

measurement time periods were enlarged till they approached 16 minutes in order to 

observe what happened with the effects of receiver clock readjustments on position 

estimates. The sampling rate was 1 Hz and the first minute of observations was 

disregarded to avoid possible system instabilities during the initialization of the 

navigation procedure. 

 

First of all, a qualitative analysis was performed by outlining the error in position 

estimates and directly observing if better positioning results were obtained when 

performing the PDP Kalman filter. The error in position was evaluated as the geometric 

distance between the estimated receiver’s location and the approximation provided by 

the processed RINEX files – as illustrated previously in Figure 54 and computed 

according to the equation (5.2-7). Secondly, a quantitative analysis was also performed 

by evaluating the mean error in position in each 2-minutes interval of observations. The 

improvement in position accuracies is clear when performances were carried out by 

using the implemented PDP Kalman filter. The mean error in position is not above 2 

metres in the case of this position domain smoothing approach and fluctuations in 

position estimates are considerably reduced. 
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Figure 75 May/June 2007 Experiments - Error in position. Experiments performed with data 
taken on May/June 2007. 
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 Average Error in Position (m) 

 Unsmoothed RD CSC 
100s 

PD CSC  
PDP Kalman 

9:01-9:03 1,522 1,281 1,096 
9:03-9:05 2,637 2,682 2,153 
9:05-9:07 2,561 2,742 2,145 
9:07-9:09 2,979 3,245 1,866 
9:09-9:11 4,717 4,360 1,853 
9:11-9:13 2,613 2,947 1,835 
9:13-9:15 2,493 2,812 1,698 
9:15-9:17 2,819 2,785 1,543 

Average 2,793 2,857 1,774 

 

 Average Error in Position (m) 

 Unsmoothed RD CSC 
100s 

PD CSC  
PDP Kalman 

9:01-9:03 0,517 0,716 0,687 
9:03-9:05 1,232 1,036 1,119 
9:05-9:07 1,590 1,289 1,299 
9:07-9:09 1,108 1,159 1,327 
9:09-9:11 2,834 2,663 1,349 
9:11-9:13 3,067 3,867 1,397 
9:13-9:15 1,565 1,434 1,340 
9:15-9:17 1,385 1,211 1,347 

Average 1,662 1,672 1,233 

 

 Average Error in Position (m) 

 Unsmoothed RD CSC 
100s 

PD CSC  
PDP Kalman 

9:01-9:03 0,886 0,541 0,485 
9:03-9:05 1,427 1,309 1,105 
9:05-9:07 1,073 1,130 1,019 
9:07-9:09 0,958 0,834 0,860 
9:09-9:11 2,379 2,076 0,808 
9:11-9:13 2,842 2,955 0,808 
9:13-9:15 1,540 1,496 0,828 
9:15-9:17 1,283 1,273 0,821 

Average 1,549 1,452 0,842 
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 Average Error in Position (m) 

 Unsmoothed RD CSC 
100s 

PD CSC  
PDP Kalman 

9:01-9:03 1,246 0,978 0,852 
9:03-9:05 2,295 2,191 1,835 
9:05-9:07 2,274 2,436 1,809 
9:07-9:09 4,283 4,143 1,590 
9:09-9:11 2,747 2,474 1,541 
9:11-9:13 1,832 2,175 1,511 
9:13-9:15 1,766 1,945 1,355 
9:15-9:17 2,024 1,927 1,244 

Average 2,309 2,284 1,467 

 



 

175 

 

 

 

 

 
 

Figure 76 May/June 2007 Experiments - Error in position. Experiments performed with data 
taken on May/June 2007. 
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 Average Error in Position (m) 

 Unsmoothed RD CSC 
100s 

PD CSC 
PDP Kalman 

9:01-9:03 1,087 0,750 0,809 
9:03-9:05 2,000 1,912 1,706 
9:05-9:07 1,278 1,361 1,260 
9:07-9:09 1,317 1,095 1,144 
9:09-9:11 4,063 3,993 1,020 
9:11-9:13 1,850 2,107 0,975 
9:13-9:15 1,046 0,792 0,909 
9:15-9:17 1,053 0,838 0,927 

Average 1,712 1,606 1,094 

 

 Average Error in Position (m) 

 Unsmoothed RD CSC 
100s 

PD CSC  
PDP Kalman 

9:01-9:03 0,439 0,507 0,488 
9:03-9:05 1,518 1,067 1,112 
9:05-9:07 1,412 1,227 1,284 
9:07-9:09 1,613 1,354 1,469 
9:09-9:11 1,422 1,455 1,538 
9:11-9:13 4,177 4,058 1,550 
9:13-9:15 2,346 2,214 1,552 
9:15-9:17 1,406 1,383 1,573 

Average 1,792 1,658 1,321 
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 Average Error in Position (m) 

 Unsmoothed RD CSC 
100s 

PD CSC 
PDP Kalman 

9:01-9:03 0,781 1,100 0,929 
9:03-9:05 1,820 1,951 1,458 
9:05-9:07 2,789 2,289 1,458 
9:07-9:09 1,999 2,287 1,448 
9:09-9:11 1,644 1,781 1,294 
9:11-9:13 4,184 4,115 1,169 
9:13-9:15 2,620 2,391 0,987 
9:15-9:17 0,866 0,721 0,875 

Average 2,088 2,079 1,202 

 

 Average Error in Position (m) 

 Unsmoothed RD CSC 
100s 

PD CSC  
PDP Kalman 

9:01-9:03 0,868 1,209 0,986 
9:03-9:05 1,954 2,029 1,779 
9:05-9:07 2,732 2,269 1,898 
9:07-9:09 2,174 1,549 1,835 
9:09-9:11 1,660 1,494 1,586 
9:11-9:13 4,544 4,747 1,379 
9:13-9:15 1,974 1,549 1,294 
9:15-9:17 1,073 0,824 1,298 

Average 2,122 1,959 1,507 
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In conclusion, the most convenient CSC scheme in terms of position accuracy is the 

implemented PDP Kalman filter that maintains the error in position estimates less than 

two metres. However, this error falls below one metre in rare cases. 
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Chapter 6 

Conclusions 
 

In this study combination approaches that blend together different types of GPS 

measurements were analyzed theoretically and some of them were implemented. These 

algorithms blend together code pseudo-ranges and carrier-phases, derived within a 

conventional single-frequency GPS receiver, in order to smooth out the noise inherent 

on pseudo-ranges. This technique is referred to as carrier smoothing code (CSC) 

filtering. 

 

The analyses were aimed at assessing the improvements on position accuracy that can 

be achieved when performances are adjusted by these CSC approaches. In fact, two 

different CSC algorithms were chosen to perform simulations.  

 

On the one hand, it was considered the most basic CSC schemes that has been the 

reference approach for later CSC researchs. This method was first introduced by Ron 

Hatch in 1982 in a paper entitled “The synergism of GPS code and carrier 

measurements” [4.1]. Hatch’s filter basically consists of a recursive scheme that starts 

with raw pseudo-range measurements to establish an absolute initial smoothed pseudo-

range. Progressively, higher weights will be placed on the derived carrier-phase 

information and less on the one derived from pseudo-ranges. In that way, a smoothed 

pseudo-range profile is provided as the output of the filter that is directly processed by 

the navigation processor to obtain a receiver’s position estimate. This CSC approach 

involves the use of a group of parallel Hatch’s filters, one for each visible satellite and 

offers a modest improvement in terms of position estimation. Test results have shown 

that the mean error in positioning can be reduced as much as a few centimetres (in the 

range of 2-4 cm) with respect to the conventional unsmoothed methods. However, 
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fluctuations in the position estimates are considerably smoothed while applying the 

Hatch’s filters on pseudo-range measurements, as shown in the following example 

derived from an experiment carried out with data collected in May 5, 2007. 

 

 
Figure 77 Error in position obtained while applying different  range domain smoothing 
approaches. Experiments performed with data taken on May 5, 2007. 

 

 

The window’s length (i.e. the smoothing interval) of the Hatch’s filters is a relevant 

factor for eliminating the noise on position estimates. In general, the larger the 

smoothing interval, the more efficient smoothing would be achieved. Hence, this 

smoothing process is supposed to improve with time but a price is paid for large 

smoothing intervals in the form of positioning deviations due to changes in atmosphere 

effects. If it were possible to estimate the rate of ionosphere delay, more effective and 

efficient use of these Hatch filtering schemes would have been achieved. However, this 

effect is usually unknown to a single-frequency receiver; therefore, a conservative 

constant carrier-smoothing time is typically used (these are the different window lengths 

of 10 seconds, 50 seconds, 100 seconds and 5 minutes, considered while deriving the 

test results shown in Figure 77).  
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 Mean Error in Position (m) 
 Usmt RD CSC 
  10s 50s 100s 5min 

9:01 - 9:02 1,919 1,217 1,030 1,030 1,030 
9:02 - 9:03 1,750 1,653 1,134 1,069 1,068 
9:03 - 9:04 1,561 1,589 1,446 1,303 1,292 
9:04 - 9:05 1,293 1,344 1,412 1,316 1,271 

Average 1,631 1,451 1,255 1,179 1,165 
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The second CSC approach that has been considered in these studies is based on Kalman 

filters. In fact, several references posed the theory of Kalman filters in order to combine 

carrier-phases and code pseudo-ranges [4.19] [4.18] [4.14] [4.11] and [4.9]. The 

pseudo-range/delta-phase (PDP) Kalman filter posed by Thomas J. Ford in references 

[4.14], [4.18] and [4.19] has been chosen because of its simplicity and intuitiveness. In 

this approach, carrier-phase measurements are directly incorporated on the navigation 

processor that is a modified Kalman filter. This Kalman algorithm combine the 

positioning information extracted from both code and carrier measurements to derive 

the position estimates. As a requirement, system states enclose both current and 

previous receiver’s location to properly process carrier-phases as position observables.  

 

This “position domain” smoothing scheme is not so sensitive to receiver clock 

readjustments as the “range domain” Hatch filter. These readjustments are performed at 

receiver site to correct the time-deviations caused by the basic quartz crystal oscillators 

(i.e. the clocks) used in this type of equipments. Some receiver manufacturers attempt to 

limit these deviations by letting the clock drift until it reaches a certain threshold 

(typically, 1 ms), and then reset it with a ‘jump’ to return the bias to zero. As shown in 

the following figure, these clock readjustments affect pseudo-ranges because they are 

generated by means of time measurements and therefore, the resultant position estimates 

are also corrupted. 

 

 
Figure 78 Effects of receiver clock readjustments in GPS positioning – experiments performed 
with data taken on May 5, 2007. 
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The carrier-phase measurements are not affected by receiver clock readjustments. As a 

result of incorporanting these GPS measurements in the position estimation within the 

modified PDP Kalman filter, the position becomes insensitive to these clock 

readjustments, as shown in the following figure. 

 

In the following figure, effects of clock readjustments on both pseudo-ranges and 

position estimates are shown. The first coordinate of position, computed while applying 

the unsmoothed method and the Hatch filter method, i.e. a range domain (RD) 

smoothing scheme, is compared with the one computed by the PDP Kalman filter. It is 

observed how positions generated by the PDP Kalman filter are not affected by clock 

readjustments since phases are applied directly while computing the navigation solution. 
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Figure 79 Example of PDP Kalman positioning robustness to clock readjustments - Unlike 
PDP Kalman positioning, position estimates derived from the conventional unsmoothed approach 
and RD Hatch filter scheme are sensitive to receiver clock readjustments affecting pseudo-range 
measurements. 

 

Test results have shown that the position domain smoothing scheme implemented by 

the PDP Kalman filter provide the best outcomes in terms of position accuracies. In 

fact, the error in PDP Kalman estimates is not above 2 metres and remains stable when 

a clock readjustmens is carried out within the receiver. However, test results have 

shown that the remaining error in position is rarely reduced below one metre, even 

when the PDP Kalman filter is used. 
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