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Abstract

Image registration is a common problem in computer vision, and speci�cally in biomedical applications that
require inter or intra modality image alignment. We have developed an ImageJ plugin called bUnwarpJ, which
elastically registers pairs of images. This simple and easy-to-use plugin can be used by researchers and clinicians
to create anatomical atlases, segment images using atlases, align pairs of images distorted by both physical and
acquisition related distortions, etc.

Registering two images consists on �nding the image transformation that maps corresponding pairs of pixels
between the original and "distorted" images. We use here the term distorted in a wide sense, to account not only
for "sensu strictu" image distorsions, but also for anatomical variations between or within individuals. We use
an algorithm that simultaneously calculates the direct and inverse transformations and minimizes the similarity
error between the target and source images after imposing a consistency constraint. This approach provides
bidirectional registration �from image A to B or from B to A� in a single computation. We use B-splines to
represent both images and deformations and make use of a powerful optimizer to converge fast to the best image
alignment.

Our plugin allows guiding the registration process using the image similarity, the consistency of the defor-
mations, vector-spline regularization and/or a set of optional landmarks, which can be calculated and fed from
other ImageJ plugins such as the automatic extractors Scale-Invariant Feature Transform (SIFT) and Multi-Scale
Oriented Patches (MOPs). The user can give a weight to each of these terms in the registration process. This
paper provides a general description of the algorithm and its implementation in order to help developers and
users to exploit all its potential.

1. INTRODUCTION

The registration of a source image S onto a target image T consists of �nding the image transformation that best
maps one image into the other. Given that the direct transformation is often not invertible, we need to calculate
the inverse transformation of T into S separately. Inspired in the work of Sorzano et al.,1 we developed the
ImageJ2 plugin bUnwarpJ,3 which calculates both transformations simultaneously while imposing a geometric
consistency constraint on them. The consistency constraint helps the optimizer to avoid getting trapped in local
minima and calculates the direct and inverse transformations in one computation.

bUnwarpJ was originally designed to register histological sections,3 although it has been used to register
other types of images, for instance electrophoretic 2-D gels.4 The �rst release of bUnwarpJ dates from July 2006.
Since then, several upgrades and new tools have been added. We describe the main features of the plugin in the
following sections.



2. MATERIALS AND METHODS

The deformation function calculated by the registration method should be bijective. In other words, it should
unequivocally link every pixel in the target image T with a pixel in the source image S. It should also have
biological meaning appropriate for the particular image modality and source of misalignment. Some authors
propose using di�eomorphic deformation functions, which are invertible, di�erentiable and bijective.5�7 This
means that if the transformation were applied to a real physical object -for instance a tissue section- then no
folding or tearing of the object would be allowed. Therefore, enforcing di�eomorphism is costly and might be
overly restricted to register some types of biological images. To solve this problem, Christensen et al.8 computed
two independent deformations that combined should be as close as possible to the identity transformation. This
closeness to identity is explicitly introduced into the objective function. This two-way constrained registration
is known as consistent registration.

The standard registration method presented by Sorzano et al.1 proposes the calculation of the elastic de-
formation �eld trough the minimization of an energy functional composed by three terms: the energy of the
similarity error between both images (represented by the quadratic pixel error), the error of the mapping of
soft landmarks, and a regularization term based on the divergence and the curl of the deformation to ensure its
smoothness. They use a Levenberg-Marquardt minimization enhanced by a Broyden-Fletcher-Goldfarb-Shanno
(BFGS) estimate of the local Hessian of the goal function. We extended the method3 adding to the energy
functional a factor of the consistency of the deformation �eld. This way, we calculate both the direct and inverse
transformations at the same time. Therefore, the new energy functional includes the dissimilarity between the
source and target images -now in both directions- Eimg, an optional landmark constraint Eµ, the regularization
term (Ediv + Erot), and an energy term Econs that accounts for the geometrical consistency between the elastic
deformation in both directions. Namely, the energy function is now given by

E = wiEimg + wµEµ + (wdEdiv + wrErot) + wcEcons. (1)

Where wx are the speci�c weights given to the di�erent energy terms. These weights can be set by the
bUnwarpJ user in the Advanced Options window of the plugin.

2.1 Image and Deformation Representation

We chose to use B-splines to interpolate the images and model the deformation functions. B-splines are compu-
tationally e�cient, di�erentiable, have good approximation properties and can be used to represent both linear
and non-linear transformations, providing close control of the level of detail of the transformation. Moreover,
we use a multiresolution (iterative coarse-to-�ne) implementation, which improves the convergence speed and
robustness of the algorithm.9 The resolution detail can be directly controlled by the user with the Initial/Final
Deformation parameters in the Advanced Options window. The user can choose the level of detail, i.e. the
number of B-splines used to represent the deformation �elds at each resolution level. The �rst version of the
plugin provided four levels that varied from �Very Coarse� (1 - lowest level) to �Very Fine� (4 - highest level). For
a resolution level n, we create a deformation grid of 2n−1× 2n−1 intervals. That means that in that �rst version
we created deformation grids of 1× 1 intervals at the lowest resolution level and of 8× 8 intervals at the highest
level. To create i intervals, we need i + 1 points, i.e. B-spline coe�cients. Finally, we add 2 extra coe�cients
-one at the beginning and one at the end of every row and column of the grid- in order to avoid problems at the
boundaries. Therefore, for a resolution level n we represent the deformation �eld using (2n−1 + 3)× (2n−1 + 3)
B-spline coe�cients.

2.2 Search for the optimum

Our algorithm starts searching for the minimum of the energy functional at the lowest level of both the image
and deformation pyramids. Once the optimum registration at that level is found, it moves up to the next level in
one of the pyramids. The system �rst increases the deformation level and then alternates image and deformation
steps until the maximum resolution of both pyramids is reached. Once the algorithm reaches the top of one of
the pyramids, it moves up only in the other pyramid until reaching its top. The way of combining the image
and deformation resolution pyramids when using 4 deformation levels is visually described in Figure 1. In our
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Figure 1. Resolution steps for 4 levels of deformation pyramid, i.e. the deformations vary from �Very Coarse� to �Very
Fine� and the image resolution from 1/16 to 1.

implementation, the image pyramid is one level larger than the deformation pyramid, i.e. 5 image resolution
levels vs 4 levels of the deformation �eld pyramid. These numbers and the way the pyramids are combined can
be easily changed. The latest plugin release allows for 5 deformation levels as well.

2.3 New plugin features

Since its �rst release, bUnwarpJ has been several times updated and new features have been added to:

• Load an initial transformation. By default, our algorithm starts searching for the optimum image mapping
from the identity deformation. However, many users who had already registered their images with a�ne
transformations wanted to use bUnwarpJ to re�ne their results or to solve the non-rigid distortions between
their images not corrected by the a�ne transformation. The last release of bUnwarpJ lets the user load an
a�ne transformation to replace the identity as a starting point of the elastic registration.

• Compare transformations. With our plugin, the user can now convert the resulting registration transfor-
mations into a raw format, i.e. to a pixel-to-pixel matching matrix- This way the results can be compared
(see Section 3.1) with other registration methods, for instance using warping index .10

• Compose transformations. When registering a sequence of n images we are sometimes interested in com-
posing the n − 1 pair-wise transformations. This way the images are deformed in one step, avoiding the
degradation e�ect of interpolation involved in applying each transformation. That can now be done in the
Input/Output Menu.

• Automatic landmarks integration. The PointRoi 's of the input images are now directly transformed into
landmarks. This way, we can now use landmark pairs provided, for instance, by automatic landmark
extractors.

3. RESULTS

3.1 Validation

We have developed another ImageJ plugin to test the performance of bUnwarpJ and calculate the accuracy of
the method. This plugin, called SplineDeformationGenerator, can apply 5 di�erent deformations on an image:



Figure 2. Deformations available with SplineDeformationGenerator. From left to right and from top to down: the original
grid image and its corresponding elastic, �sheye, perspective, barrel and smile e�ect examples of deformations.

elastic, �sheye, perspective, barrel/pincushion and �simile� deformations (see Figure 2). This way, we can produce
synthetic data sets to test the algorithm. We measured the accuracy of the registrations using a mean squared
distance version of the standard warping index 10 de�ned as

$ =

√
1
‖ R ‖

∑
x∈R
‖x− g(g∗(x))‖2. (2)

Where g∗ is the synthetic known deformation, g is the deformation in the opposite direction and R is the set
of pixels common to both images. The warping index measures the average geometric error -in pixels- between
the original transformation and the deformation calculated by our algorithm. Thanks to this plugin and the
new deformation comparison features of bUnwarpJ (see 2.3), it is easy to produce random deformations over
any image and check the method performance. SplineDeformationGenerator can be freely downloaded from
http://biocomp.cnb.csic.es/~iarganda/SplineDeformationGenerator/.

3.2 New applications

The most powerful of the new features of bUnwarpJ is that it permits to combine its performance with the
automatic landmark extractors SIFT11 and MOPs,12 implemented in ImageJ by Stephan Saalfeld.13 The output
of those methods can be directly fed as landmarks in bUnwarpJ. Then, the landmarks can either be directly
included in the energy functional by setting a speci�c landmark weight or used to calculate an a�ne transforma-
tion which serves as a starting point for the elastic registration. This is done by setting wµ to 0. Using landmarks
we can correct for strong rigid distortions in the images before invoking bUnwarpJ. Figure 3 shows an example
of applying the MOPS plugin and bUnwarpJ to two monkey brain sections from di�erent individuals. One of
the sections was heavily rotated with respect to the other. We �rst applied the MOPs plugin with the maximal
alignment error set to 10.0 pixels. The image upscaling and the rest of the parameters were set to their default
values. Then, we just launched bUnwarpJ with default parameters and a deformation pyramid of 4 levels. The
orientation was rapidly corrected thanks to the landmarks. Then the optimization continued until convergence.



Figure 3. Example of MOPS and bUnwarpJ plugins performance. From top to bottom and from left to right: original
source and target images with automatically detected landmarks, RGB registration results (yellow color meaning perfect
superposition and red and green colors pointing out the misalignment regions) and �nal deformation grids.



4. CONCLUSIONS AND FUTURE WORK

We have described our tool for consistent and elastic image registration, bUnwarpJ. The most up-to-date re-
lease of this ImageJ plugin and its source code can be freely downloaded from http://biocomp.cnb.csic.es/

~iarganda/bUnwarpJ/. The plugin has been updated to be able to interact with automatic landmark extractors,
allow a�ne transformation initialization and compare its performance with any other registration method.

We plan to adapt the code to simplify its interaction with the ImageJ macro language and create a more
detailed step-by-step user manual.
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