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 ABSTRACT 



 In  recent  years,  there  have  been  significant  advances  in  genome  and  transcriptome 

 sequencing  using  next-generation  sequencing  techniques.  The  information  obtained  by 

 such  techniques  is  being  used  in  cancer  research  to  create  personalized  treatments.  One 

 of  the  main  focus  areas  is  immunotherapy  research  and,  more  specifically, 

 cancer-specific  somatic  mutations,  known  as  neoantigens.  These  therapies  based  on 

 neoantigens  could  lead  to  developing  treatment  vaccines  that  trigger  immune  responses 

 against  tumors.  However,  historically,  the  lack  of  efficient  prediction  algorithms  for 

 neoantigen  prediction  has  hindered  this  research  area.  Nevertheless,  with  recent 

 discoveries  such  as  deep  learning,  predicting  neoantigens  is  now  possible  and  opens  a 

 new field for cancer immunotherapy. 

 This  thesis  presents  an  intuitive  and  user-friendly  platform  for  human  and  mouse 

 neoantigen  discovery.  This  project  introduces  two  significant  advances  in  the 

 neoantigen  discovery  field.  First,  it  presents  a  novel  prediction  algorithm  for  humans 

 that  employs  more  information  for  the  prediction  compared  to  other  software.  It  does 

 this  by  using  primary  and  secondary  protein  structure  information  and  natural  language 

 processing  for  protein-encoding.  The  other  novelty  is  the  introduction  of  a  more  flexible 

 mutation  detection  step.  The  platform  allows  the  user  to  compare  the  sample  with  a 

 control  tissue  or  a  reference  genome.  It  also  offers  the  possibility  of  introducing 

 allograft  and  cell  line  samples  and  comparing  them  to  extract  common  mutations,  a 

 current  void  in  other  existing  software.  Human  and  mouse  samples  are  studied  as  proof 

 of concept, and the complete analysis pipeline is presented. 

 Keywords:  Neoantigen,  epitope  predictor,  pipeline,  cancer  immunotherapy,  T-cell 

 epitope 
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 1.  INTRODUCTION 

 Cancer  is  one  of  the  most  significant  health  threats  to  society  nowadays.  It  is  considered 

 the  second  leading  cause  of  death  globally  after  cardiovascular  disease,  accounting  for 

 nearly  one  in  six  deaths  [5].  Furthermore,  due  to  the  increase  in  life  expectancy,  cancer 

 incidence  is  expected  to  increase  a  63%  from  2018  to  2040  unless  more  effective 

 therapies are developed [6]. 

 Although  current  oncology  techniques  have  shown  an  increase  in  survival  rates  of 

 patients  [6],  side  effects  of  these  treatments  or  surgical  procedures  have  posed  a 

 problem  for  cancer  patients.  Consequently,  scientists  are  researching  novel  treatments 

 that  are  more  targeted  and,  therefore,  more  effective  [7].  One  of  the  main  fields  under 

 expansion  in  translational  cancer  research  is  immunotherapy,  a  biological  therapy  that 

 helps  the  immune  system  fight  cancer  [8].  In  this  field,  personalized  treatment  vaccines 

 have  shown  promising  results  during  clinical  trials.  One  of  the  main  focuses  of  these 

 vaccines  is  neoantigens.  Neoantigens  are  tumor-specific  proteins  recognized  by  the 

 immune  system  and  therefore  trigger  an  immune  response  against  the  tumoral  cell. 

 These  neoantigens  are  being  broadly  researched  to  develop  vaccines  that  trigger  T-cell 

 responses against cancer cells [9]. 

 As  a  result  of  the  potential  of  neoantigen-based  vaccines,  different  programs  have  been 

 created  to  predict  human  and  mouse  neoantigens  from  protein  primary  structure. 

 Therefore,  this  thesis  aims  to  create  a  robust  and  user-friendly  software  tool  that 

 provides  a  list  of  human  neoantigens  using  a  novel  prediction  technique.  This  technique 

 employs  primary  and  secondary  structure  information  for  the  prediction,  as  recent 

 studies  showed  that  epitopes  commonly  have  an  alpha-helix  shape.  It  also  uses  a  natural 

 language  processing  model  for  the  protein  encoding,  which  provides  more  information 

 than  the  standard  binarization  used  in  the  other  software.  Moreover,  this  thesis  also  aims 

 to  increase  the  flexibility  in  mutation  detection  for  human  and  mouse  samples,  which  is 

 currently  a  void  encountered,  amongst  others,  by  researchers  at  Centro  de 

 Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT). 
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 2.  THEORETICAL BACKGROUND 

 2.1  The central dogma of biology 

 2.1.1  Deoxyribonucleic acid 

 Deoxyribonucleic  acid  (DNA)  is  an  organic  molecule  found  in  all  nucleated  or 

 non-nucleated  cells  and  many  viruses.  DNA  encodes  the  genetic  information  that 

 characterizes  an  organism  as,  for  example,  the  information  for  hereditary  tracts  and  the 

 creation  of  proteins  [10].  DNA  is  made  up  of  two  strands  linked  together  in  a 

 double-helix  structure.  Each  strand  comprises  a  backbone  containing  a  sugar  called 

 deoxyribose  and  a  phosphate  group.  To  each  of  these  backbone  units,  there  is  attached 

 one  of  the  four  different  nitrogenous  bases:  adenine  (A),  cytosine  (C),  thymine  (T),  and 

 guanine  (G)  [11].  The  link  between  the  two  strands  is  done  by  forming  base  pairs,  which 

 are  hydrogen  bonds  of  the  form  A-T  or  C-G  [12].  The  general  structure  of  DNA  can  be 

 seen in figure 2.1. 
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 Fig.  2.1.  Structure  of  DNA.  DNA  is  made  up  of  4  different  nitrogenous  bases  and  a 

 sugar-phosphate  backbone.  The  two  elements  assemble  in  a  double  helix  that  is  tightly 

 packed, forming chromosomes.  Source:  [1] 

 DNA  can  be  divided  into  coding  and  non-coding  DNA.  The  main  difference  is  that 

 coding  DNA  contains  the  genetic  information  for  creating  proteins,  while  non-coding 

 DNA  does  not  [13].  In  this  thesis,  we  will  consider  a  gene  as  the  region  of  DNA 

 encoding the information for protein synthesis. 

 2.1.2 Ribonucleic acid 

 Ribonucleic  acid  (RNA)  is  an  organic  molecule  derived  from  DNA  through 

 transcription  (figure  2.2).  RNA  is  single-stranded  and  made  up  of  a  backbone 

 containing  ribose  sugar,  phosphate,  and  four  different  nitrogenous  bases.  In  this  case, 

 the  nitrogenous  bases  are  adenine  (A),  uracil  (U),  cytosine  (C),  and  guanine  (G). 

 Messenger  RNA  (mRNA),  a  specific  type  of  RNA,  contains  the  transcribed  information 

 from genes; therefore, it codes for proteins. 

 Other  types  of  RNA  are  ribosomal  RNA  and  transfer  RNA,  amongst  others  [14].  In 

 addition,  some  RNA  molecules  control  gene  expression.  Gene  expression  is  the  process 

 by  which  the  information  coded  in  the  DNA  is  transformed  into  a  functional  protein 

 [15].  Therefore,  regulating  gene  expression  by  RNA  allows  us  to  determine  what  DNA 

 regions  will  undergo  the  transcription  process.  The  ultimate  goal  of  gene  expression 

 regulation  is  to  determine  the  set  of  RNAs  and  proteins  a  cell  will  contain  and  thus  its 

 specific  properties  and  characteristics  [16].  Moreover,  gene  expression  regulation  will 

 determine  how  many  RNA  transcripts  are  created  from  a  gene,  also  called  the  gene 

 expression  level,  and  therefore  the  quantity  of  the  protein  encoded  by  that  gene  that  will 

 be present in the cell. 

 2.1.3  Proteins 

 A  protein  is  a  complex  substance  responsible  for  the  proper  functioning  of  the  body 

 [17].  Proteins  are  derived  from  mRNA  through  translation  (figure  2.2).  In  this  process, 

 the  nitrogenous  bases  of  mRNA  are  grouped  into  triplets  called  codons.  Each  codon 

 encodes  for  a  different  amino  acid,  the  basic  unit  of  proteins.  The  different  amino  acids 

 are bound by strong covalent bonds to form the protein's primary structure. 
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 Fig.  2.2.  The  central  dogma  of  biology.  DNA  is  transformed  into  mRNA  by  transcription,  and 

 mRNA is transformed into proteins by translation.  Source:  [1] 

 Once  the  whole  protein  has  been  translated  from  the  mRNA,  we  have  the  primary 

 structure  of  the  polypeptide  chain.  The  protein  then  undergoes  local  folding  due  to  the 

 formation  of  hydrogen  bonds  between  the  atoms  of  the  protein  backbone  [18].  This  new 

 folded  protein  conformation  is  referred  to  as  the  secondary  structure.  The  protein  can 

 acquire  two  main  conformations  during  this  folding  process.  The  first  one  is  called 

 α-helix,  where  the  polypeptide  chain  adopts  a  helical  structure,  with  each  turn  of  the 

 helix  containing  3.6  amino  acids.  The  second  possible  structure  is  the  β-sheet,  where 

 two  or  more  chain  segments  fold  into  a  sheet-like  structure  [18].  The  two  different 

 structures are shown in figure 2.3. 
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 Fig.  2.3.  Secondary  structure  of  a  protein.  It  can  adopt  an  alpha  helix  (top)  or  a  beta-sheet 

 structure (bottom).  Source:  [1] 

 2.2  BLOSUM62 matrix 

 BLOSUM62  (BLOcks  SUbstitution  Matrix)  is  a  scoring  matrix  for  amino  acid 

 substitutions.  BLOSUM62  matrix  was  constructed  by  analyzing  the  most  common 

 amino  acid  substitutions  between  proteins  with  a  62%  similarity.  Each  pair  of  amino 

 acids  in  the  matrix  receives  a  log-odds  score  based  on  how  likely  it  is  to  see  the 

 substitution  in  nature.  Therefore,  pairs  with  higher  score  indicate  that  it  is  more  likely  to 

 see that specific substitution in nature. 

 Fig. 2.4. BLOSUM62 matrix.  Source:  [2] 
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 2.3  RNA sequencing 

 RNA  sequencing  (RNA-seq)  is  a  technique  used  to  study  the  transcriptome  of  cells, 

 which  is  the  set  of  all  mRNA  molecules  present  in  the  cell  at  a  specific  time  [19].  More 

 specifically,  it  provides  the  sequence  and  quantity  of  all  the  mRNA  molecules  in  a  cell 

 [20].  This  technique  is  widely  used  in  the  bioinformatics  field  as  it  allows  to  study 

 which  genes  are  being  expressed  in  each  cell  and  their  amount,  also  called  their 

 expression  level.  In  addition,  the  information  this  tool  provides  is  used  to  determine  the 

 primary  structure  of  the  proteins  present  in  the  cell,  as  proteins  are  derived  from  the 

 mRNA by known mechanisms. 

 2.3.1 RNA-seq workflow 

 The  first  step  in  performing  an  RNA-seq  analysis  is  to  extract  an  mRNA  sample 

 belonging  to  the  cells  we  want  to  study.  Once  we  have  the  sample,  first,  we  need  to 

 fragment  each  mRNA  molecule  into  smaller  segments.  The  resulting  pieces  are 

 transformed  into  complementary  DNA  (cDNA)  by  reverse  transcription  [20].  Next,  a  set 

 of  adapters  are  added  to  each  end  of  the  segments.  The  adapters  are  constant  sequences 

 needed  for  segmentation  [21].  More  specifically,  they  are  used  to  amplify  the  fragments 

 by  polymerase  chain  reaction  (PCR)  to  replicate  each  cDNA  fragment.  The  adapters  are 

 also  useful  as  primers  to  start  the  first  sequencing  reaction  in  each  fragment  [21].  The 

 preparation of the library to perform RNA-seq can be seen in figure 2.5. 

 Fig.  2.5.  Preparation  of  the  cDNA  library  for  RNA-seq.  The  RNA  fragments  are  trimmed  into 

 shorter  segments.  Then,  they  are  converted  into  cDNA,  and  adaptors  are  added. 

 Source:  [1] 
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 Following  RNA-seq  terminology,  each  cDNA  fragment  will  be  referred  to  as  a 

 read.  Once  the  different  reads  are  prepared,  they  are  introduced  into  a  sequencing 

 machine.  Each  read  is  attached  to  the  device  by  the  adapter  sequence  added  in  the 

 previous  steps.  Next,  fluorescently  tagged  nucleotides  are  introduced  into  the  chamber 

 and  compete  to  join  the  first  nucleotide  present  in  the  reads.  Only  the  complementary 

 nucleotide  attaches  to  it,  meaning  that  if  we  had  an  A  in  our  first  position,  only  T  would 

 be  able  to  join.  After  the  nucleotide  has  been  appended,  it  is  excited  by  a  light  source, 

 which  causes  a  characteristic  fluorescence  signal  emission.  By  recording  the  different 

 signals  emitted  at  each  read  position,  its  sequence  can  be  determined.  The  last  steps 

 explained can be seen in figure 2.6. 

 Fig.  2.6.  RNA-seq  procedure.  The  complementary  base  joins  to  the  base  being  sequenced. 

 Then,  a  fluorescent  light  excitation  makes  the  complementary  to  release  light,  and  the 

 base is identified.  Source:  [1] 

 2.4  Cancer 

 Cancer  is  a  condition  where  cells  in  a  specific  body  part  grow  and  reproduce 

 uncontrollably.  Cancerous  cells  can  also  spread  to  other  body  tissues  in  a  process  known 

 as metastasis [5]. 
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 In  healthy  cells,  a  set  of  genes  control  cell  division.  In  order  to  control  this  process, 

 cells  need  a  balance  between  the  signals  that  trigger  cell  growth  and  those  that  suppress 

 it.  Healthy  cells  also  need  some  genes  that  mark  them  for  programmed  death,  known  as 

 apoptosis,  when  they  are  damaged  [22].  On  the  other  hand,  cancerous  cells  have 

 accumulated  mutations  in  the  genes  that  control  proliferation  and  apoptosis.  The 

 mutations  cause  the  genes  to  malfunction,  so  the  cancer  cell  starts  proliferating 

 uncontrollably  [22].  Moreover,  as  the  genes  marking  the  cells  for  apoptosis  are  also 

 damaged,  the  diseased  cancer  cell  continues  dividing  unconstrained,  as  shown  in  figure 

 2.7. 

 Fig.  2.7.  Cancer  mechanism.  In  a  healthy  organism  (left),  when  a  cell  is  damaged,  it  undergoes 

 apoptosis.  In  an  organism  with  cancer  (right),  damaged  cells  do  not  undergo  apoptosis 

 and grow uncontrolled, forming a tumor.  Source:  [1] 

 Cancerous  cells,  therefore,  have  mutations  in  their  genes.  We  can  classify  those 

 mutations  according  to  their  effect  on  the  DNA  sequence  (figure  2.8).  Some  of  the  most 

 frequent  ones  are  substitution,  deletion,  and  insertion.  Substitution  is  the  replacement  of 

 one  or  more  nitrogenous  bases  with  a  different  pair  of  nucleotides.  Deletion  is  the  loss 

 of one or more base pairs, and insertion is the addition of one or more base pairs [23]. 
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 Fig.  2.8.  Possible  mutations  in  DNA.  Substitution  (left),  deletion  (center)  and  novel  sequence 

 insertion (right). Ref: reference sequence where the mutation is happening.  Source:  [1] 

 When  dealing  with  mutations,  discussing  Single  Nucleotide  Polymorphisms  (SNP) 

 is  crucial.  These  are  variations  in  a  single  nucleotide,  but  unlike  the  abovementioned 

 mutations,  they  do  not  arise  from  cancerous  mutations.  If  more  than  1%  of  the 

 population  does  not  have  the  same  nucleotide  at  a  specific  position  of  the  DNA,  it  is 

 considered  an  SNP  [24].  Therefore,  these  mutations  are  naturally  occurring,  shared  in 

 different individuals, and not considered cancerous. 

 The  mutation  in  the  DNA  of  cancerous  cells  can  also  cause  changes  in  protein 

 synthesis  or  function.  This  is  due  to  the  fact  that  proteins  are  derived  from  genes,  which 

 in  the  case  of  cancer,  are  mutated.  These  mutant  genes  can  cause  the  generation  of  novel 

 proteins  only  present  in  cancer  cells,  which  is  a  good  focus  for  immunotherapies.  In  this 

 thesis,  we  will  focus  on  the  mutations  that  cause  an  amino  acid  in  the  protein's  primary 

 sequence to change, called a missense mutation [25] (figure 2.9). 

 Fig. 2.9. Healthy protein (left) vs. missense mutation (right).  Source:  [1] 
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 2.5  The immune system 

 The  immune  system  is  a  network  of  organs,  tissues,  cells,  and  the  substances  produced 

 by  them.  The  primary  function  of  this  system  is  hosting  the  body's  defense  mechanism 

 against  pathogens  or  other  diseases  [26].  Immunity  is  divided  into  innate  and  acquired 

 immune  systems,  which  work  closely  together  to  produce  a  highly  effective  immune 

 response [27]. 

 2.5.1 Innate immunity 

 The  innate  immune  system  is  the  first  line  of  defense  against  pathogenic  substances 

 entering  the  body.  It  is  characterized  by  offering  a  fast,  nonspecific  immune  response, 

 which means it acts the same way for any substance foreign to the body [27]. 

 The  innate  immune  system  has  two  main  defense  mechanisms,  as  shown  in  figure 

 2.10.  The  first  mechanism  is  the  physical  barriers  that  separate  the  inside  from  the 

 outside  of  the  body  and  prevent  foreign  substances  entrance.  The  second  line  of  defense 

 is  activated  if  the  physical  barriers  are  penetrated.  This  line  of  defense  involves  cells 

 that  phagocyte  the  germs,  digest  them,  and  show  small  fragments  on  their  surface  to 

 present them to cells from the adaptive immune system. 

 Fig.  2.10.  Innate  immune  system.  It  is  composed  of  physical  barriers  and  phagocytes.  In  the 

 lower branch, phagocytosis by a macrophage is shown.  Source:  [1] 

 2.5.2 Acquired immunity 

 The  acquired  immunity  refers  to  the  activation  of  T  and  B  lymphocytes  after 

 encountering  an  antigen,  a  substance  recognized  as  foreign.  Acquired  immunity  has  two 
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 main  characteristics,  its  specificity  and  its  memory.  The  former  refers  to  the  immune 

 system's  capacity  to  recognize  the  pathogen  and  trigger  a  unique  immune  response 

 depending  on  the  substance.  Due  to  the  need  to  recognize  the  pathogen,  acquired 

 immunity  is  slower  than  innate,  but  it  also  offers  a  more  robust  response  once  activated. 

 The  other  characteristic  is  the  presence  of  memory  cells.  They  will  remember  the 

 pathogen,  producing  a  faster  immune  response  if  the  same  pathogen  invades  the  body 

 again [27]. 

 The  acquired  immune  system  can  trigger  two  different  types  of  responses  figure 

 2.11.  First,  antibody-mediated  immunity  consists  of  destroying  pathogens  with  the 

 antibodies  generated  by  B  lymphocytes.  Antibodies  are  proteins  produced  by  B  cells 

 that  identify  and  neutralize  foreign  substances  in  the  body.  The  second  type  of  response 

 is  the  cell-mediated  immunity,  in  which  the  pathogen  is  destroyed  due  to  the  direct 

 interaction  with  T  lymphocytes  [27].  Once  the  T  lymphocytes  have  recognized  a  foreign 

 substance,  they  are  activated,  producing  two  kinds  of  cells:  cytotoxic  CD8+  cells,  the 

 ones  attacking  the  pathogens,  and  helper  CD4+  cells,  which  have  a  helper  role  vital  in 

 the immune function [28]. 

 Fig.  2.11.  Acquired  immune  system.  The  upper  branch  shows  the  humoral  immunity  with 

 B-lymphocytes  and  antibodies  and  how  they  neutralize  pathogens.  The  lower  branch 

 shows  cell-mediated  immunity  by  T-lymphocytes  and  how  T-cells  kill  an  infected  cell. 

 Source:  [1] 

 Cytotoxic  T-cells  can  recognize  infected  or  diseased  cells  and  trigger  their  apoptosis 

 while  not  interfering  with  healthy  cells.  That  ability  is  illustrated  in  figure  2.12. 
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 Nevertheless,  the  mechanism  by  which  CD8+  cells  recognize  the  infected  cells  and 

 trigger their apoptosis is a particular and complex procedure. 

 Fig  2.12.  Selective  recognition  of  infected  cells  by  T  cells.  The  T  cell  recognizes  the  foreign 

 antigens of infected cells and induces their apoptosis.  Source:  [1] 

 At  the  molecular  level,  recognizing  diseased  cells  is  complex  and  has  several 

 mechanisms.  Every  somatic  cell  in  the  body  exhibits  on  its  surface  a  receptor  called 

 Major  Histocompatibility  Complex  I  (MHC  I)  [29].  MHC  I  complex  exposes  on  its 

 surface  fragments  of  peptides  produced  within  the  cell  in  order  to  signal  the  cell's 

 physiological  state  [30].  Therefore,  if  a  cell  is  healthy,  it  exposes  peptide  fragments 

 recognized  by  T  cells  as  part  of  the  body,  also  known  as  self-antigens,  and  an  immune 

 response  is  not  triggered.  On  the  other  hand,  if  the  cell  is  diseased,  it  starts  producing 

 mutant  peptides  that  eventually  show  up  in  the  MHC  I.  These  mutant  peptides  are 

 unique to the diseased cell and are known as neoantigens. 

 Moreover,  cytotoxic  T  cells  have  a  receptor  called  T-cell  Receptor  (TCR)  coupled 

 to  their  surface.  This  TCR  can  interact  with  a  fragment  of  the  peptides  exposed  on  the 

 MHC  I,  known  as  the  epitope.  The  cytotoxic  T  cell  can  then  determine  if  they  are 

 self-antigens  or  neoantigens  and  trigger  an  immune  response  against  the  cell  in  case  it  is 
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 the  latter.  This  immune  response  consists  of  releasing  granzyme  and  perforin,  enzymes 

 that cause cell apoptosis. The mechanism can be seen in detail in figure 2.13. 

 Fig.  2.13.  Cytotoxic  T  cells  recognition  of  healthy  and  cancerous  cells.  In  the  healthy  (left),  the 

 T  Cell  Receptor  (TCR)  recognizes  the  self-antigen  exposed  in  the  Major 

 Histocompatibility  Complex  (MHC)  I  as  part  of  the  body  and  does  not  trigger  a 

 response.  In  the  cancerous  cell  (right),  the  TCR  recognizes  the  neoantigen  as  diseased 

 and triggers the cell apoptosis with perforin and granzyme.  Source:  [1] 

 There  is  a  second  method  of  antigen  presentation  performed  by  MHC  II.  MHC  II  is 

 only  present  in  immune  cells  called  antigen-presenting  cells  (APCs)  and  exhibits  protein 

 fragments  of  organisms  external  to  the  cell.  This  mechanism  identifies  invading 

 substances and triggers an immune response against them. 

 2.6  Immunotherapy 

 Immunotherapy  is  a  therapeutic  approach  that  targets  or  manipulates  the  immune 

 system  [31],  and  it  has  revolutionized  cancer  research  prospects.  Immunotherapy  can  be 

 divided  into  active  or  passive  treatments.  Passive  treatments  include  administering 

 immune  cells  generated  ex-vivo,  so  they  do  not  stimulate  the  host's  immune  response. 

 On  the  contrary,  active  treatments  include  anti-cancer  vaccines,  which  activate  the  host 

 immune response [32]. 
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 The  primary  goal  of  most  immunotherapy  strategies  relies  on  eliciting  a 

 tumor-specific  T  cell  response  to  engage  the  immune  system  in  the  fight  against  cancer 

 [3].  One  of  the  main  focuses  on  eliciting  the  T-cell  response  has  been  therapeutic  cancer 

 vaccines.  More  specifically,  researchers  are  focusing  on  developing  neoantigen-based 

 vaccines.  Neoantigens  are  only  present  in  cancerous  cells  and,  therefore,  can  induce  a 

 more  robust  immune  response  and  cause  less  autoimmune-related  toxicities  than  other 

 antigens  [3].  These  advantages,  combined  with  the  ability  to  predict  neoantigens 

 through  NGS  techniques  from  the  tumor's  DNA,  have  made  neoantigen-based  vaccines 

 a promising approach for cancer immunotherapy. 

 The  pipeline  to  generate  neoantigen-based  vaccines  is  complex  and  has  several 

 steps,  as  shown  in  figure  2.14.  First,  the  tumor  DNA  or  RNA  must  be  extracted  and 

 sequenced  using  NGS  techniques.  Then,  the  neoantigens  have  to  be  predicted  using 

 bioinformatics  workflows.  The  workflows  identify  which  of  the  mutant  peptides  are 

 specific  to  the  cancer  cell  and  predict  which  of  them  will  be  exposed  in  the  MHC  I 

 complex  of  cells.  Finally,  vaccines  are  created  using  several  neoantigens,  and  the  patient 

 is monitored for neoantigen-specific immune responses [3]. 

 Fig.  2.14.  Pipeline  for  the  generation  of  neoantigen  vaccines.  DNA  from  the  tumor  is 

 sequenced,  and  neoantigens  are  identified  from  it.  The  vaccine  is  developed  using 

 those neoantigens and administered to the patient.  Source:  [3] 

 The  molecular  basis  behind  cancer  vaccines  relies  on  cell-mediated  immunity. 

 Therefore,  most  cancer  vaccines  under  development  try  to  elicit  antigen  presentation  by 

 APCs  to  generate  long-lasting  T  cell  immunity  against  specific  antigens.  The  most 

 effective  APC  is  the  Dendritic  Cell  (DC);  therefore,  most  vaccines  use  them  as  effectors 

 [33]. 
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 The  rationale  behind  cancer  vaccines  consists  of  injecting  the  processed  antigens 

 into  the  organism.  Those  antigens  are  phagocyted  by  DCs  and  expressed  on  their  MHC 

 II  complex.  Once  they  have  expressed  the  antigen,  they  migrate  to  the  lymph  nodes 

 where  T  cells  are.  The  DCs  present  the  antigen  to  the  T  cells,  activating  them.  Once 

 activated,  they  proliferate  into  cytotoxic  CD8+  cells  and  helper  CD4+  cells.  CD8+  cells 

 then  travel  to  the  tumor  site  and  trigger  apoptosis  on  the  tumor  cells  presenting  the 

 identified neoantigens [4]. The whole cycle can be seen in figure 2.15. 

 Fig.  2.15.  Pipeline  of  immunotherapy  vaccines.  Antigens  are  injected  with  the  vaccine. 

 Antigen  Presenting  Cells  (APC)  recognize  the  antigens  and  migrate  to  the  lymph 

 node.  T  cells  and  B  cells  are  activated.  B  cells  trigger  antibody-dependent  cellular 

 cytotoxicity  (ADCC),  and  T  cells  infiltrate  the  tumor  and  attack  cells.  They  attach 

 the  cells  releasing  perforin  (PFN),  granzyme  B  (GzmB),  gamma  interferon  (IFNγ), 

 and tumoral necrotic factor-alpha (TNFα).  Source:  [4] 
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 3. STATE OF THE ART 

 3.1 Available software for humans 

 Epitope  prediction  has  proven  to  be  a  fundamental  step  in  creating  neoantigen-based 

 vaccines.  Consequently,  several  programs  have  been  created  to  make  this  prediction, 

 starting from sequencing data or directly from mutant peptides. 

 The  first  type  of  existing  software  focuses  on  predicting  neoantigens  from 

 sequencing  data.  Those  programs  have  some  fundamental  differences,  for  example,  the 

 type  of  mutation  they  can  identify  on  the  data.  The  mutations  can  be  Single  Nucleotide 

 Variations  (SNV),  SNVs  plus  indels  (insertions  +  deletions),  only  indels,  or  gene 

 fusions.  Moreover,  another  distinction  between  tools  is  the  origin  of  their  data,  which 

 can  come  from  whole-genome  sequencing  (WGS),  whole  exon  sequencing  (WES),  or 

 transcriptome  sequencing  (RNA-seq)  [34].  The  different  tools  with  the  characteristics 

 just mentioned can be seen in table 3.1. 

 TABLE 3.1. COMPARISON OF EXISTING SOFTWARE FOR NEOANTIGEN DETECTION. 

 Source:  [34] [35] [36] [37] [38] [39] [40] [41] [42]  [43] [44] [45] [46] [47] [48] [49] [50] [51] 
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 It  is  important  to  note  that  choosing  transcriptome  sequencing  allows  the  user  to 

 obtain  extra  information  regarding  the  expression  level  of  different  genes  at  the  mRNA 

 level  and  other  phenomena  such  as  alternative  splicing.  On  the  other  hand,  using  protein 

 information  allows  the  user  to  know  exactly  what  proteins  are  being  expressed  in  the 

 cell,  as  the  presence  of  the  gene  in  the  mRNA  is  not  always  a  determinant  of  their 

 translation [34]. 

 Most  of  the  tools  in  table  3.1  use  NetMHC  [52]  or  NetMHCpan  [53]  pretrained 

 networks  to  predict  the  neoantigens  from  peptide  fragments.  Therefore,  each  pipeline's 

 novelties  consist  of  how  the  extraction  of  the  mutant  peptides  from  RNA-seq  or  WGS 

 data  is  performed.  Most  tools  use  a  combination  of  WGS/WES  and  RNA-seq  data.  The 

 WGS  is  used  to  call  the  somatic  mutations  with  higher  accuracy,  while  RNA-seq  is  used 

 to quantify expression level. 

 The  analysis  pipeline  is  similar  in  every  program,  and  they  use  the  same  tools,  such 

 as  the  Genome  Analysis  Toolkit  (GATK)  [54]  for  data  preprocessing  and  MuTect  [55] 

 for  mutation  detection.  However,  a  common  feature  in  all  programs  is  that  they  have  a 

 fixed  structure  on  the  input  sequences.  For  example,  most  of  them  allow  only  a  tumoral 

 file  as  an  input  [EpiSeq  [35],  ScanNeo  [49],  NeoFuse  [50],  pVACsec  [39], 

 INTEGRATE-neo  [51],  MuPeXI  [40]],  while  others  only  allow  submission  of  both 

 tumoral  and  control  files  [Epidisco  [41],  OpenVax  [42],  TSNAD  [48],  pTuneos  [45]]. 

 Moreover,  only  a  limited  number  of  tools  accept  raw  RNA-seq  or  WGS  data  [TIminer 

 [36],  OpenVax  [42],  TSNAD  [48],  pTuneos  [45]],  while  most  other  tools  need  prior 

 conditioning [34]. 

 Next,  the  most  common  tools  for  neoantigen  prediction  from  peptides  will  be 

 studied.  Most  of  the  abovementioned  tools  use  NetMHC  [52]  or  NetMHCpan  [53]  for 

 this  task.  NetMHC  accepts  peptides  of  8-10  amino  acids  long,  while  NetMHCpan  takes 

 8-14  amino  acid  sequences.  The  selection  of  sequence  length  is  because  most  epitopes 

 are those lengths [52] [53]. 

 Moreover,  NetMHC  and  NetMHCpan  predict  using  protein  primary  structure. 

 NetMHCpan  performs  a  BLOSUM  encoding,  adding  extra  information  such  as  the 

 length of the insertion/deletion or the length of the flanking regions [53]. 

 3.2 Previous work on the NAP-CNB server 
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 This  thesis  is  the  continuation  of  a  project  that  has  been  under  development  at  the 

 National  Center  of  Biotechnology  (CNB-CSIC)  by  other  UC3M  students  for  some 

 academic  years.  The  starting  point  of  the  project  is  therefore  the  workflow  and 

 algorithms  developed  by  Carlos  Wert  Carvajal,  Paola  Núñez  Hernández  and  Sara 

 Guillén  Fernández-Micheltorena.  Therefore,  it  is  essential  to  briefly  explain  their  work 

 to understand the novel developments introduced in this thesis. 

 3.2.1 NAP-CNB server 

 In his final degree thesis, Carlos Wert Carvajal created a workflow for discovering 

 neoantigens in mouse samples. He also integrated this pipeline into a webpage called 

 NAP-CNB, accessible through the link  https://biocomp.cnb.csic.es/NeoantigensApp/ 

 [56]  . 

 The  workflow  divides  into  two  different  steps,  as  shown  in  figure  3.1.  The  first  is  a 

 preprocessing  step  that  takes  as  an  input  RNA-seq  data  belonging  to  a  mouse  tumor 

 sample  and  returns  all  the  proteins  that  have  mutated  in  the  tumor  with  respect  to 

 healthy  cells.  The  second  step  takes  the  preprocessing  output  and  performs  neoantigen 

 prediction  on  the  mutant  peptides,  determining  which  will  be  neoantigens.  The  final 

 output  of  the  pipeline  is  a  list  of  putative  neoantigens,  along  with  the  probability  of 

 them being so and their expression level. 

 �jjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjj 
 jjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjj 

 Fig.  3.1.  Pipeline  of  the  NAP-CNB  tool.  It  is  formed  by  a  preprocessing  step  and  a  Neoantigen 

 prediction step. 

 Regarding  the  sample  preprocessing,  its  pipeline  is  shown  in  the  figure  3.2.  First  of 

 all,  quality  analysis  is  performed  using  FastQC  [57].  This  inspection  allows  checking  if 

 the  data  was  sequenced  correctly  and  if  there  is  some  error  in  specific  regions  [57]. 

 Once  the  quality  check  is  performed,  several  steps  must  be  followed  according  to 

 GATK [54] best practices. 
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 During  the  preprocessing,  we  first  need  to  select  the  fragments  of  interest.  This  is 

 the  process  grouped  as  file  preprocessing  in  figure  3.2.  First  of  all,  we  should  recall  that 

 our input 
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 Fig. 3.2. Flowchart of the preprocessing 
 step of NAP-CNB. 
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 data  is  the  sequence  of  several  DNA  fragments,  but  we  do  not  know  where  each 

 fragment  came  from  in  the  genome.  Localization  of  the  fragments  is  critical  to 

 understanding  what  chromosome  and  gene  each  of  them  belong  to.  The  first  step  is  the 

 alignment  of  each  of  the  reads  with  a  reference  genome  using  Spliced  Transcripts 

 Alignment  to  a  Reference  (STAR)  [58].  This  way,  we  can  identify  the  exact  location  of 

 each  read  in  the  genome.  Next,  the  duplicate  fragments  created  with  the  PCR  technique 

 are  removed  using  the  tool  Picard:  remove  duplicates  [59].  PCR  amplification  was 

 needed  during  sequencing  in  order  to  obtain  more  accurate  results.  However,  by  doing 

 this,  expression  levels  are  altered,  as  sequences  appear  overexpressed  compared  to 

 reality.  Therefore,  we  need  to  recover  the  original  expression  level  in  the  sample  to  use 

 it  for  further  analysis.  The  third  step  consists  of  obtaining  the  exons  of  the  DNA  with 

 GATK:  SplitNCigars  [60].  It  is  known  that  proteins  come  from  the  coding  DNA 

 regions,  also  known  as  exons,  so  we  need  to  discard  all  the  sequences  that  do  not  belong 

 to  an  exon  as  we  are  not  interested  in  them.  Finally,  a  step  called  GATK:  Base 

 recalibrator  [61]  identifies  if  the  mismatches  with  the  reference  genome  are  due  to  a 

 mutation, an error sequencing, or the presence of an SNP in that base. 

 Once  the  file  preprocessing  is  complete,  variant  calling  is  done  using  MuTect 

 tumor-only  mode  [55].  This  tool  analyses  all  the  reads  and  identifies  SNVs,  as  well  as 

 deletions  and  insertions.  The  tool  is  coupled  with  an  SNP  database  that  will  allow  us  to 

 differentiate  between  mutations  specific  to  the  tumor  and  SNPs.  Moreover,  in  this 

 method,  mutations  are  detected  by  comparing  the  sample  with  a  reference  genome  that 

 the  tool  provides.  The  output  of  this  step  is  a  list  of  all  the  mutations  detected  in  the 

 sample.  Then,  the  mutations  are  run  through  a  Variant  Effect  Predictor  (VEP)  [62]  to 

 identify  which  ones  are  missense  mutations,  as  we  are  only  interested  in  that  specific 

 type.  It  also  obtains  the  sequence  of  the  mutated  protein.  Finally,  cufflinks  [63]  was 

 used  to  obtain  each  gene's  expression  level,  crucial  information  for  vaccine 

 development.  The  final  output  is  a  list  of  mutant  peptides  that  are  only  present  in  the 

 tumor, along with the expression level of each peptide. 

 Once  the  list  of  mutant  peptides  is  obtained,  neoantigen  prediction  must  be 

 performed,  step  two  in  the  figure  3.1.  In  this  case,  for  mouse  samples,  the  NAP-CNB 

 server  applies  a  one-hot  encoding  and  a  long  short-term  memory  neural  network  that 

 yields the list of peptides identified as neoantigens and the probability that they are so. 
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 3.2.2 Human epitope predictor 

 The  human  epitope  prediction  pipeline  was  developed  by  Sara  Guillén 

 Fernández-Micheltorena  and  Paola  Núñez  Hernández  in  their  final  degree  project. 

 Their  pipeline  took  a  list  of  protein  fragments  of  30  amino  acids  and  identified  which  of 

 those fragments were epitopes. The whole workflow can be seen in figure 3.3. 

 Fig. 3.3. Epitope predictor workflow 

 The  first  step  was  implementing  a  secondary  structure  prediction  method.  It  was 

 done  using  ProteinUnet  [64],  a  pretrained  neural  network  that  takes  a  protein  and  gives 

 its  secondary  structure.  ProteinUnet  predicts  three  different  conformations:  alpha-helix 

 (H),  beta-sheet  (B),  and  coil-like  conformation  (C).  An  example  of  this  prediction  can 

 be seen in figure 3.4. 
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 Primary structure:  PPVCPLLSPSFLPCPFLGATASSAISPSML 

 Secondary structure:  CCCCCCCCCCCCCCCCCCCCCCCCCCHHHH 

 Fig. 3.4. Primary structure of a fragment of a peptide in amino acid notation (30 amino acids) 

 and its secondary structure predicted (30 amino acids) 

 They  also  used  the  natural  language  processing  tool  Bidirectional  Encoder 

 Representations  from  Transformers  (BERT)  [65]  to  create  a  language  of  proteins.  First, 

 they  trained  two  different  networks,  one  that  would  learn  to  recognize  the  primary 

 protein  structure  and  a  second  one  that  recognized  the  secondary  structure.  Once  their 

 networks  were  trained,  they  obtained  768-long  word  embedding  vectors  of  each  input 

 protein  sequence.  Finally,  those  two  vectors  were  introduced  in  a  neural  network,  shown 

 in  figure  3.5,  which  predicted  which  of  them  were  epitopes  and  their  probability  of 

 being so. 

 Fig. 3.5. Neural network structure of the human epitope prediction pipeline 
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 4. OBJECTIVES 

 The  objectives  of  this  thesis  were  developed  at  the  Centro  Nacional  de  Biotecnología 

 (CSIC)  in  collaboration  between  the  Biocomputing  Unit  lead  by  Dr.  Carlos  Óscar 

 Sánchez Sorzano and the laboratory of Dr. Esteban Veiga Chacón. 

 This  thesis  has  three  main  objectives,  two  of  them  using  as  a  foundation  the  work 

 developed  by  Carlos  Wert,  Sara  Guillén  Fernández-Micheltorena,  and  Paola  Núñez 

 Hernández, already mentioned under the section state of the art. 

 The  first  objective  is  the  development  of  a  flexible  and  user-friendly  tool  for 

 neoantigen  discovery  in  human  samples.  The  aim  is  to  create  a  pipeline  that  takes 

 RNA-seq  data  and  outputs  a  list  of  putative  neoantigens  for  humans.  The  second 

 objective  is  the  implementation  of  a  more  exhaustive  method  for  mutation  detection. 

 This  new  method  will  be  designed  to  be  available  for  mouse  and  human  samples. 

 Finally,  the  third  objective  is  the  integration  of  the  new  developments  of  the  first  two 

 objectives  in  the  NAP-CNB  server.  This  way,  the  new  implementations  will  become 

 available for any other scientist doing immunotherapy research. 
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 5.  MATERIALS AND METHODS 

 5.1 Materials 

 Databases 

 The  project  relies  on  online  and  open-access  databases  in  different  pipeline 

 steps.  First,  several  databases  of  Ensembl  were  used,  a  bioinformatics  project  to 

 organize  biological  information  belonging  to  sequences  of  large  genomes  [66].  The  first 

 was  a  genome  database  that  provided  the  entire  human  genome  sequence.  The  second 

 one  was  the  gene  database,  which  provides  information  about  the  location  of  the  genes 

 in  the  human  genome.  The  third  database,  dbSNP,  was  obtained  from  the  National 

 Center  of  Biotechnology  Information  (NCBI)  [67].  It  was  used  to  obtain  the  sequence 

 and  location  of  the  SNP  in  the  human  genome.  Finally,  the  UniProt  [68]  database 

 provided  information  about  all  known  protein  sequences  and  was  used  to  obtain  the 

 sequence of mutant peptides. 

 FastQC 

 FastQC  [57]  is  a  tool  that  performs  quality  control  on  the  sequencing  data  coming 

 from  NGS  methods.  It  allows  to  analyze  the  data  and  look  for  sequencing  errors  before 

 further  analysis  [57].  FastQC  is  used  at  the  beginning  of  the  project  to  study  the  quality 

 of the data. 

 STAR 

 Spliced  Transcripts  Alignment  to  a  Reference  (STAR)  [58]  is  a  software  that 

 performs  accurate  and  fast  alignment  of  Next  Generation  Sequencing  (NGS)  data  to  a 

 reference  genome.  The  user  provides  the  reference  genome,  which  should  be 

 conditioned  to  be  used  by  the  software.  This  tool  aligns  our  data  with  the  reference 

 genome and identifies where each read belongs in the genome. 

 Genome Analysis Toolkit 

 The  genome  analysis  toolkit  (GATK)  [54]  was  developed  at  the  Data  Science 

 Platform  of  the  Broad  Institute.  It  offers  different  tools  that  aim  to  perform  variant 

 discovery  on  NGS  data  [54].  In  this  project,  GATK  was  used  in  the  preprocessing  step 

 to condition the raw RNA-seq data to detect mutations in the sample. 
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 Variant Effect Predictor 

 Variant  Effect  Predictor  (VEP)  is  a  tool  developed  by  Ensembl  that  determines  the 

 effect  of  mutations  on  the  protein  sequence  [62].  This  tool  was  used  to  determine  which 

 DNA mutations produced missense mutations in the primary protein structure. 

 Bcftools 

 Bcftools  is  a  set  of  utilities  that  are  used  to  manipulate  files  in  Variant  Calling 

 Format  (VCF)  and  their  Binary  counterpart  (BCF)  [69].  This  thesis  uses  this  tool  to 

 compare VCF files in the preprocessing step. 

 Cufflinks 

 Cufflinks  [63]  is  a  program  created  to  assemble  RNA-seq  transcripts,  quantify  their 

 abundance  and  perform  a  differential  expression  analysis  on  them.  In  this  thesis,  it  is 

 used  to  determine  which  genes  are  up-regulated  or  down-regulated  in  the  tumoral  file 

 with respect to the control file. 

 ProteinUnet 

 ProteinUnet  [64]  is  a  tool  to  predict  the  secondary  structure  of  proteins  from  their 

 primary  structure.  The  code  and  models  were  downloaded  from 

 https://codeocean.com/capsule/2521196/tree/v1  .  The  downloaded  files  included  two 

 trained  models  for  predicting  and  a  script  to  run  the  software.  However,  the  codes  were 

 modified by Sara Guillén to obtain the desired output. 

 Bidirectional Encoder Representations from Transformers 

 The  BERT  [65]  code  is  accessible  from  Github 

 https://github.com/google-research/bert  .  The  developers  made  the  files  available  to 

 perform  the  pretraining  of  the  language  model  and  the  embedding  to  extract  the  desired 

 features  from  our  dataset.  In  this  thesis,  only  the  code  for  extracting  the  features  is  used. 

 Sara  Guillén  and  Paola  Núñez  did  the  pretraining,  and  their  trained  models  are  directly 

 used. 

 Python 

 One  of  the  programming  languages  used  in  this  thesis  was  Python.  The  Python  web 

 framework  Django  was  used  to  introduce  all  the  developed  pipelines  into  the  webpage 

 NAP-CNB.   Django   is  an  open-source  framework  designed  for  web  page  development 
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 [70].  In  addition,  Keras  [71],  another  open-source  python  library,  was  used  to  run  all  the 

 neural networks of the pipeline. 

 Bash 

 Bash  is  a  command-line  shell  user  interface  and  a  scripting  language  [72].  All  of 

 the  preprocessing  is  done  using  toolkits  launched  through  the  bash  shell.  In  order  to 

 make  an  automated  pipeline,  those  commands  are  gathered  in  a  bash  script  file  that  the 

 bash shell can execute in Unix. 

 5.2 Methods 

 The  first  two  objectives  of  this  thesis,  the  development  of  a  human  pipeline  and  the 

 implementation  of  a  more  exhaustive  method  for  mutation  detection,  are  treated 

 separately  and  therefore  have  two  well-differentiated  methodologies.  Once  the  two 

 objectives  were  achieved,  the  new  developments  were  integrated  into  NAP-CNB  over 

 the last weeks of work. 

 5.2.1 Development of an intuitive tool for neoantigen discovery in humans 

 This  part  of  the  thesis  project  aimed  to  develop  a  novel  pipeline  for  the  extraction  of 

 human  neoantigens  from  raw  RNA-seq  data.  This  pipeline  consisted  of  three  main 

 blocks:  a  preprocessing  step,  a  postprocessing  step,  and  a  neoantigen  discovery  step,  as 

 shown in figure 5.1. 

 Fig.  5.1.  Pipeline  of  the  novel  neoantigen  prediction  tool  for  humans.  It  consists  of  a 

 preprocessing step, a postprocessing step, and a neoantigen prediction step. 

 Step 1: Preprocessing 

 The  preprocessing  step  takes  raw  RNA-seq  data  and  outputs  a  list  of  the  mutant 

 peptides  discovered  in  the  cancerous  sample.  This  step  took  the  backbone  from  the 
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 preprocessing  step  used  in  the  NAP-CNB  server,  but  several  modifications  were  done  to 

 adapt  it  for  humans.  Those  modifications  can  be  seen  in  black  in  the  diagram  shown  in 

 figure 5.2. 

 -  Generation of human library 

 The  first  change  in  the  original  pipeline  was  creating  a  library  of  databases  suitable 

 for  analyzing  human  data.  The  library  comprises  three  different  constantly  interacting 

 databases  that  should  be  compatible.  The  three  databases  were  downloaded  to  use 

 version  38  of  the  human  genome.  This  version  is  the  genome  sequence's  last  release, 

 and all databases must share it to avoid incompatibilities. 

 The  first  database  was  downloaded  from  Ensembl  [66]  and  comprised  the  whole 

 genome  in  fasta  format.  It  contains  the  whole  genome  sequence,  separated  by 

 chromosomes,  and  the  exact  location  of  those  chromosomes  inside  the  genome.  The 

 sequence  was  provided  by  the  Genome  Reference  Consortium,  a  project  that  tries  to 

 provide  a  unique  reference  for  the  genome  sequence.  Therefore,  some  of  the  database 

 relevant information is disclosed in table 5.1. 

 TABLE 5.1. INFORMATION ABOUT THE GENOME DATABASE FROM ENSEMBL 

 Assembly  GRCh38.p13 

 Assembly Provider  Genome Reference Consortium 

 Annotation Provider  Ensembl 

 Annotation method  Full genebuild 

 Database version  106.38 

 Base Pairs  3,1 Gb 

 Coding Genes  20.471 

 The  second  database  used  was  a  genes  database  from  Ensemble  [66].  It 

 contained  information  about  the  location  of  the  different  genes  in  the  genome.  The 

 combination  of  the  two  first  databases  was  crucial  to  identifying  the  exact  location  of 

 each RNA-seq fragment and the gene to which it belongs. 

 Finally,  an  SNP  database  (dbSNP)  was  downloaded  from  NCBI  [67].  It  was 

 downloaded in the GRCh38 version. As it was coming from a different organization, 
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 Fig.  5.2.  Flowchart  of  the 

 preprocessing  step  for  the  human 

 pipeline 
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 the  used  nomenclature  used  in  the  database  had  to  be  checked  to  ensure  that  it  was 

 compatible  with  the  previously  mentioned  databases.  The  dbSNP  contained  annotations 

 about  the  different  SNPs  commonly  occurring  in  humans  and  their  exact  location  in  the 

 genome. 

 -  Generation of a STAR genome index for alignment 

 Genome  indexing  is  a  fundamental  step  for  bioinformatics  workflows.  It 

 increases  the  tool's  performance  by  allowing  rapid  access  to  different  parts  of  the 

 reference  genome  [73].  Furthermore,  as  we  have  fragments  from  the  whole  genome  in 

 our  data,  indexing  the  genome  allows  us  to  directly  jump  to  areas  of  interest  instead  of 

 scanning  the  whole  sequence.  The  STAR  [58]  program  used  for  alignments  has  a 

 specific  method  to  generate  such  an  index.  It  is  done  with  the 

 command   genomeGenerate,   and  it  takes  as  inputs  the  whole  genome  and  genes 

 databases.  

 -  VEP conditioning for humans 

 VEP  [62]  is  a  software  that  can  be  used  online  and  offline.  After  reading  the  VEP 

 documentation,  it  was  discovered  that  VEP  online  version  shared  some  private 

 information  of  the  files  with  an  online  server  [62].  As  a  consequence,  the  offline  method 

 was  chosen  to  run  the  program.  A  cache  had  to  be  downloaded  to  run  the  program  on 

 the  local  machine.  The  cache  download  allowed  us  to  get  all  the  species'  information  in 

 one  single  connection  and  store  it  on  the  local  disk.  The  machine's  preexisting  cache 

 belonged  to  mouse,  so  a  human  cache  needed  to  be  downloaded  to  make  VEP 

 functional for human data. 

 The  next  step  was  modifying  the  code  used  to  obtain  the  sequence  of  the 

 peptides  that  had  missense  mutations.  For  mice,  we  were  obtaining  12  amino  acid  long 

 proteins,  as  most  of  the  epitopes  in  mice  were  shorter  than  this.  However,  after  a  study 

 of  the  length  of  all  human  epitopes,  shown  in  figure  5.3,  it  was  discovered  that  the  ideal 

 length  was  30  amino  acids  long  proteins,  given  that  the  maximum  epitope  length  was  26 

 amino  acids.  The  code  created  by  Carlos  Wert  was  then  modified  to  obtain  a  list  of  30 

 amino acid long proteins as an output of the preprocessing step. 
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 Fig. 5.3. Histogram of the different human epitopes’ lengths. The peak is on 8 amino acids, and 

 the longest epitope is 26 amino acids. 

 Step 2: Postprocessing 

 Once  the  preprocessing  was  adapted  for  humans,  a  postprocessing  step  was  designed  to 

 improve  the  prediction  accuracy.  One  of  the  most  common  problems  in  Natural 

 Language  Processing  (NLP)  is  that  the  system  is  susceptible  to  changing  a  single  amino 

 acid.  Therefore,  the  created  models  by  BERT  [65]  are  very  dependent  on  the  particular 

 amino acids of the sequence. 

 The  chosen  method  to  decrease  this  bias  consists  of  generating  similar  sequences  to 

 the  submitted  one,  changing  only  specific  amino  acids,  and  making  a  final  classification 

 according to their overall prediction. 

 In  this  method,  each  peptide  generates  30  additional  sequences  with  one  amino 

 acid  change  at  each  position.  Each  amino  acid  was  replaced  by  the  most  common 

 substitution  in  nature,  chosen  from  the  BLOSUM62  matrix,  to  ensure  the  most  realistic 

 substitution  occurred.  An  example  of  the  output  of  the  postprocessing  is  shown  in  figure 

 5.4. 

 Original sequence  Augmented sequence 

 T  PVCPLLSPSFLPCPFLGATA 

 PPVCPLLSPSFLPCPFLGATA  P  T  VCPLLSPSFLPCPFLGATA 

 PP  I  CPLLSPSFLPCPFLGATA 

 PPV  A  PLLSPSFLPCPFLGATA 
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 Fig.  5.4.  Postprocessing  example.  The  original  sequence  (left)  is  augmented  using  BLOSUM62  to 

 find the most common substitution for each amino acid (right). 

 Step 3: Neoantigen Prediction 

 The  neoantigen  prediction  consists  of  predicting  which  of  the  mutant  peptides 

 discovered  in  the  cancerous  sample  can  be  considered  neoantigens.  This  step  takes  the 

 backbone  from  the  epitope  predictor  developed  by  Sara  Guillén  and  Paola  Núñez.  The 

 original  work  was  prepared  to  take  30  amino  acid  long  proteins  and  predict  on  them,  but 

 it  had  never  been  used  to  predict  on  sequences  obtained  from  raw  RNA-seq  data.  Thus, 

 modifications  were  necessary  to  adapt  the  workflow  to  the  new  purpose.  The  additions 

 to the workflow can be seen in black in figure 5.5. 

 Fig.  5.5.  Modified  pipeline  of  the  human  epitope  predictor.  Modifications  can  be  seen  in  black 

 color in the figure. An input and output conditioning had to be made on the files. 

 -  Input conditioning 
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 The  postprocessing  output  was  prepared  to  give  30  amino  acid  sequences,  with 

 one  sequence  per  line  in  a  text  file.  This  preparation  had  to  be  done  to  create  a  similar 

 input  format  as  the  one  necessary  for  the  epitope  predictor.  However,  one  change  was 

 still  needed  for  the  analysis  to  be  performed  correctly:  separating  different  amino  acids 

 in  the  sequence  with  a  space.  This  had  to  be  done  so  that  BERT  considered  each  amino 

 acid  a  word  inside  a  sentence,  being  the  sentence  the  whole  sequence.  If  this  step  was 

 not  done,  BERT  considered  the  whole  sequence  as  only  one  word  and  predicted 

 incorrectly (figure 5.6). 

 Preconditioning:  PPVCPLLSPSFLPCPFLGATA 

 Postconditioning:  P P V C P L L S P S F L P C P F  L G A T A 

 Fig.  5.6.  Postconditioning  of  a  fragment  of  amino  acid.  In  the  preconditioning  (top),  the  whole 

 sequence  is  considered  a  word.  After  the  postconditioning  (bottom),  the  sequence  is 

 considered a sentence, and each amino acid is considered a word. 

 -  Output conditioning 

 Several  changes  had  to  be  made  in  the  output  file  of  the  neural  network  to 

 transform the output into the expected format. 

 First,  a  majority  voting  had  to  be  performed  on  all  the  sequences  obtained  from 

 postprocessing.  In  the  postprocessing  step,  each  sequence  was  augmented  with  30 

 different  peptides  that  contained  one  amino  acid  substitution.  All  these  peptides  were 

 treated  independently  during  the  epitope  prediction  workflow.  Next,  a  majority  voting 

 was  done  on  the  predictions  of  the  peptides  coming  from  the  same  parent  sequence. 

 This was done assuming that the consensus on the predictions represents the real output. 
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 TABLE 5.2. EXAMPLE OF MAJORITY VOTING ON A SEQUENCE 

 Sequence  Prediction 

 PPVCPLLSPSFLPCPFLGATA  1 

 T  PVCPLLSPSFLPCPFLGATA  0 

 P  T  VCPLLSPSFLPCPFLGATA  0 

 PP  I  CPLLSPSFLPCPFLGATA  0 

 PPV  A  PLLSPSFLPCPFLGATA  0 

 Final prediction: 0 

 Moreover,  the  original  pipeline  gave  only  the  prediction  and  the  probability  that 

 each  sequence  was  a  neoantigen.  This  output  was  enough  for  individual  input  proteins, 

 but  it  needed  to  be  modified  when  handling  RNA-seq  data.  Therefore,  the  output  was 

 modified  to  include  the  sequence  of  the  protein  we  are  predicting,  an  extended  sequence 

 of  such  protein,  its  expression  level,  the  gene  to  which  it  belongs,  and  the 

 postprocessing prediction results. 

 -  Codes automation 

 The  final  modification  was  generating  an  automated  workflow  for  these  codes, 

 which  was  necessary  when  including  them  in  a  webpage.  Previously,  each  step  was 

 executed  manually,  so  the  necessary  modifications  were  done  to  run  them  autonomously 

 for proper incorporation into the NAP-CNB pipeline. 

 5.2.2 Implementation of a more exhaustive method for mutation detection 

 The  second  objective  of  this  project  was  to  implement  a  more  exhaustive  and  flexible 

 method  for  mutation  detection.  This  objective  was  set  out  in  collaboration  with 

 CIEMAT  and  Hospital  12  de  Octubre.  There  is  an  ongoing  investigation  performed  in 

 collaboration  with  these  centers,  during  which  we  identified  two  areas  of  improvement 

 in  the  detection  of  mutations.  Moreover,  this  objective  is  implemented  both  for  human 

 and mouse samples. 

 a.  Implementation  of  an  option  to  compare  with  a  control  tissue  provided  by  the 

 user 
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 The  first  area  of  improvement  identified  was  incorporating  the  option  of  a  control 

 tissue  provided  by  the  user.  The  NAP-CNB  server  only  allowed  the  user  to  introduce  an 

 RNA-seq  file  belonging  to  a  tumoral  sample.  This  sample  was  then  compared  to  a 

 default  healthy  tissue  provided  by  the  MuTect  tool.  However,  in  real-life  experiments, 

 more  precision  is  needed.  For  example,  scientists  often  have  a  control  sample,  which  is 

 healthy  tissue,  from  the  same  organism  from  whom  the  cancerous  sample  was  extracted. 

 As  the  control  and  cancerous  samples  are  extracted  from  the  same  organism,  they 

 should  be  identical.  Nevertheless,  the  tumor  will  present  mutations  that  differentiate  it 

 from  the  control  tissue.  Introducing  a  control  tissue  in  the  pipeline  ensures  that  detected 

 mutations  are  due  to  the  tumor  mutations  and  not  due  to  differences  in  the  sequence  of 

 the default sample with our sample.  

 This  new  implementation  had  several  modifications,  as  seen  in  black  in  figure  5.7. 

 First  of  all,  as  the  user  can  now  introduce  two  different  samples,  both  should  be 

 preprocessed  before  they  can  undergo  variant  calling.  Therefore,  the  file  preprocessing 

 step  was  modified  to  process  both  files.  Next,  a  new  MuTect  working  mode  was 

 introduced.  The  original  method  used  in  NAP-CNB  is  a  tumor-only  method  ,  while  the 

 new  mode  introduced  is  tumor  with  matched  normal  .  This  new  method  allows  the  user 

 to  introduce  a  control  tissue  that  will  be  compared  against  the  cancerous  sample.  This 

 mode  is  only  activated  if  the  user  introduces  a  control  sample;  if  not,  the  tumor-only 

 method  is  used.  Finally,  a  particular  expression  level  detection  had  to  be  implemented, 

 using   Cuffdiff   instead  of   Cufflinks.   Cuffdiff  gives  a  more  interpretable  output  as  it 

 compares  the  expression  levels  in  the  control  and  tumor  samples  and  gives  the 

 difference  in  expression  levels.  This  way,  we  can  study  which  genes  are  down-regulated 

 or up-regulated in the tumoral tissue with respect to the regular gene expression. 

 b. Implementation of an option of introducing cell lines and allograft samples 

 The  second  area  of  improvement  consisted  of  implementing  an  option  for 

 differentiating  the  cancerous  sample  into  cell  line  and  allograft  samples.  In  biological 

 experiments,  cells  are  cultured  in  the  laboratory.  We  call  them  a  cell  line  when  we  have 

 immortalized  cultured  cells.  Cell  lines  can  divide  forever  and  are  more  independent  in 

 terms  of  nutrition  than  other  cultures.  For  cancer  studies,  scientists  create  cell  lines  of 

 the  tumoral  cells,  and  they  introduce  these  cells  into  a  tissue  that  is  implanted  in  the 
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 animal,  which  we  call  an  allograft. The  cell  lines  are  then  frozen  to  store  them  and  limit 

 the number of new mutations generated on the cells. 
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 Fig. 5.7.  Workflow of the preprocessing for mouse with the modifications to compare with a normal 
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 In  research,  the  original  mouse  has  already  been  put  down  by  the  time  the 

 neoantigens  have  been  identified,  and  a  vaccine  has  been  produced.  Therefore,  another 

 allographic  tumor  must  be  generated  on  a  different  mouse  to  test  the  vaccine  efficiency. 

 Theoretically,  the  mutations  in  the  cell  line  and  the  allograft  should  be  the  same  as  the 

 former  is  the  precursor  to  the  latter.  This  means  that  there  would  be  no  problem 

 replacing  the  mouse.  However,  in  reality,  the  microenvironment  of  the  tumor  and  further 

 cell  differentiation  produce  mutations  that  differ  in  both  samples.  Therefore,  to  ensure 

 the  best  efficiency  of  the  vaccines,  we  are  interested  in  finding  which  cell  line  mutations 

 remain in the allograft after implantation. 

 Several  changes  were  needed  to  implement  this  idea  in  the  analysis  workflow. 

 Those changes can be seen in black in figure 5.8.   

 If  a  cell  line  sample  and  an  allograft  sample  are  introduced,  both  must  be 

 preprocessed  in  the  file  preprocessing  step.  Then,  both  undergo  mutation  detection 

 using  MuTect.  The  MuTect  mode  depends  on  whether  the  user  introduces  a  normal, 

 already  addressed  in  the  previous  point.  Once  the  cell  line  and  allograft  files  have 

 undergone  variant  calling,  the  mutations  in  both  files  are  compared,  keeping  only  the 

 common  ones.  The  comparison  was  made  by  a  tool  of  bcftools  called   isec  ,  which 

 returns  the  intersection  between  two  variant  calling  files.  Once  the  mutations  were 

 compared,  and  only  the  common  ones  were  taken,  the  rest  of  the  analysis  resumes 

 normally. 

 5.2.3  Implementation of changes in the NAP-CNB webpage 

 The  web  page  implementation  of  modifications  introduced  in  objectives  1  and  2  was 

 done  using  Django  and  a  docker-compose.  Such  modifications  were  done  in  the 

 development  docker  container,  where  modifications  can  be  seen  in  real-time.  However, 

 they  are  not  affecting  the  NAP-CNB  website  but  a  second  website  accessible  only  to 

 developers.  This  way,  the  correct  functioning  of  the  new  additions  can  be  checked 

 before releasing it to public use. 

 a. Implementation of the modifications in preprocessing from objective 2 
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 The  first  implementation  in  the  webpage  was  the  modifications  in  preprocessing  from 

 objective  2.  The  changes  to  include  a  normal  were  performed  in  the  preprocessing  code 

 file, already explained under the methodology section. Therefore, the only modification 
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 Fig.5.8. Workflow of the 
 preprocessing for mouse 
 with the modifications to 
 compare between cell line 
 and allograft 
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 at  the  web  page  level  was  to  include  a  new  field  where  the  control  tissue  must  be 

 introduced.  This  new  field  was  configured  to  be  optional,  unlike  the  cancerous  sample 

 field, as the user can choose whether to use a normal or not. 

 Moreover,  two  new  fields  were  also  created  for  the  cell  line  samples  and  the 

 allograft  samples.  These  new  files  are  also  optional  to  introduce  as  the  user  can  choose 

 whether to execute this analysis mode or not. 

 b. Implementation of the human pipeline from objective 1 

 The  first  objective  was  more  challenging  to  implement,  as  the  whole  pipeline  was 

 not  combined  in  a  single  code  and  because  each  code  needed  specific  packages  and 

 versions installed to run. 

 -  Including a field to choose the species on the webpage 

 The  first  thing  done  was  to  introduce  a  species  field  on  the  webpage.  Before,  it  was 

 unnecessary  as  it  could  only  produce  an  analysis  of  mouse  samples.  However,  the 

 website  has  been  updated  to  two  species  analysis,  so  this  field  was  necessary. 

 Furthermore,  such  a  field  allows  the  user  to  choose  between  mouse  or  human  samples, 

 which completely changes their analysis. 

 -  Generating virtual environments for each code 

 Each  code  inside  the  human  pipeline  had  different  requirements  that  needed  to  be 

 fulfilled  to  run  correctly.  Therefore,  a  careful  study  was  carried  out,  and  the 

 requirements  for  each  code  were  found.  The  next  step  was  creating  a  virtual 

 environment  for  each  code,  with  those  requirements  installed.  This  way,  different  codes 

 with different requirements could be run on the same computer. 

 -  Introducing the different codes in an automated way in the pipeline 

 In  the  last  step,  the  different  codes  were  introduced  in  an  automated  way  on  the 

 webpage,  linking  the  outputs  of  one  code  with  the  inputs  of  the  others.  Moreover,  each 

 code  was  set  to  run  with  its  specific  virtual  environment.  These  changes  were  performed 

 in  the   tasks.py   script  that  Django  automatically  creates.  This  script  allows  the  user  to  set 

 a list of tasks that each analysis needs to follow. 
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 6.  RESULTS 

 6.1  Development of a robust tool for neoantigen discovery in humans 

 The  data  to  study  the  performance  of  the  novel  tool  for  human  neoantigen  discovery 

 was  provided  by  CIEMAT.  It  consists  of  a  cancerous  file  and  a  tumor  file  from  a  human 

 patient.  The  tumor  type  is  clear  cell  renal  cell  carcinoma  (ccRCC),  the  conventional 

 renal  cell  carcinoma  [74].  This  type  of  cancer  is  the  most  common  kidney  cancer  in 

 adults,  representing  80%  of  the  renal  cell  carcinomas  [74].  CcRCC  is  also  the  most 

 aggressive  renal  cell  carcinoma,  with  a  higher  probability  of  metastasizing  to  the  lungs, 

 liver, and bone [75]. 

 The  obtained  samples  were  then  sequenced  by  Genewiz,  a  leading  global  genomics 

 service  company.  The  company  uses  the  Illumina  NovaSeq  platform  to  perform  the 

 RNAseq  [76].  Illumina  is  one  of  the  leading  companies  in  the  fabrication  of  RNAseq 

 machines,  being  NovaSeq  one  of  their  more  novel  creations  [77].  More  information 

 about the data sequencing can be seen in table 6.1. 

 TABLE 6.1 SEQUENCING CONDITIONS OF THE HUMAN DATA 

 Platform  Illumina NovaSeq 

 Configuration  2x150bp 

 Depth  20-30 million read pairs per sample 

 Data quality  Guaranteed >80% bases with Q30 or higher 

 The  analysis  was  performed  on  the  provided  file  using  the  control  tissue  as  a 

 reference  for  better  accuracy  in  mutation  detection.  The  first  step  was  checking  the 

 quality  of  the  provided  data  using  FastQC.  Both  files  were  studied,  giving  acceptable 

 qualities.  Here,  the  results  for  the  cancerous  file  are  shown  to  illustrate  the  analysis.  The 

 quality  score  across  bases  declined  in  the  last  30,  but  it  was  still  very  high  score  values 

 for most of the bases (figure 6.1). 

 On  the  other  hand,  it  was  discovered  that  the  Illumina  adapter  was  overrepresented 

 in  the  last  20  bases.  This  overrepresentation  means  that  the  sequence  belongs  to  the 

 adapter  in  the  last  bases  and  not  to  the  provided  sample  (figure  6.2).  Therefore,  they 

 should not be considered in the analysis. 
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 Fig.  6.1.  Quality  scores  across  all  bases.  The  graph  shows  the  quality  at  each  read  position  for 

 all the sequences. There has been a decline in quality in the last 30 bases. 

 Fig.  6.2.  %  of  adapter  across  the  bases.  There  is  an  increase  in  adapter  content  in  the  last  20 

 bases of the sequence. 
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 After  the  quality  was  examined,  the  preprocessing  step  was  performed.  It  was  done 

 following  the  "tumor  with  reference  normal"  path  of  the  workflow,  and  the  results 

 obtained in each analysis can be seen in figure 6.3. 

 Fig.  6.3.  Results  of  each  step  of  the  analysis  pipeline.  The  number  of  mutations  or  peptides  used 

 for the workflow's next step are circled on the right. 

 After  the  preprocessing,  897  mutant  peptides  were  detected  and  selected  for  further 

 analysis.  This  is  a  high  number  of  mutant  peptides  but  not  surprising,  as,  in  humans,  the 

 mutagenicity of cells is higher than in mice due to their higher exposure to carcinogens. 

 Those  897  peptides  were  post-processed  and  analyzed  with  the  epitope  prediction 

 pipeline,  consisting  of  a  secondary  structure  prediction,  NLP  analysis,  and  prediction 

 with  a  neural  network.  In  the  end,  509  sequences  were  detected  as  neoantigens,  which 

 were  later  reduced  to  348  after  removing  false  positives  with  the  postprocessing. 

 Unfortunately,  the  resulting  sequences  cannot  be  shown  as  they  are  part  of  an  ongoing 

 investigation.  However,  some  non-neoantigens  are  shown  in  table  6.2  as  an  example  of 

 the results. 
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 TABLE 6.2 EXAMPLE OF THE PREDICTION OF HUMAN SAMPLES 

 Extracted antigen  Prediction  Probability  FPKM  Gene 

 symbol 

 PRGEPRAPWVEQEGSEYWDRETQKYKRQAQ  0  0.0055147  380.657  HLA-C 

 VTGSSGTLEASVLVIIEPSSPGPIPAPGLA  0  0.0135440  5.55312  HSPG2 

 LKEAETRAEFAERMVAKLEKTIDDLEEKLA  0  0.0142660  0  TPM4 

 PVPPREVIKASPHALDPSAFSYAPPGHPLP  0  0.0280893  0.000997  NCOR2 

 The  extracted  antigen  field  shows  the  mutant  peptides  found  in  the  preprocessing 

 step,  the  ones  that  the  epitope  predictor  later  analyzes.  The  prediction  field  shows  the 

 final  prediction  after  the  postprocessing  and  majority  voting.  The  probability  field 

 represents  the  probability  that  a  sequence  is  an  antigen,  being  the  threshold  for 

 something  to  be  considered  an  antigen  at  0.5  probability.  FPKM  (Fragments  Per 

 Kilobase  Million)  measures  the  expression  level  of  that  sequence,  and  it  is  essential  to 

 provide  it  as  more  expressed  sequences  will  elicit  a  higher  immune  response.  Finally, 

 the gene symbol indicates the gene's symbol in which the sequence is located. 

 6.2  Implementation of a more exhaustive method for mutation detection 

 This  objective  arose  from  the  study  of  the  data  provided  by  CIEMAT,  part  of  an  ongoing 

 investigation  with  the  CNB.  The  data  they  provided  belongs  to  two  different  types  of 

 lung  cancer.  The  type  of  cancer  is  confidential  and  will  be  addressed  in  this  thesis  as 

 Cancer  1  and  Cancer  2.  The  data  were  obtained  from  conditional  knockout  mice  (cKO), 

 genetically  engineered  animals  in  which  one  or  more  genes  are  inactivated  in  a  specific 

 tissue to study the effect of those genes [78]. 

 The  obtained  samples  were  then  sequenced  by  Genewiz,  a  leading  global  genomics 

 service  company.  The  company  uses  the  Illumina  NovaSeq  platform  to  perform  the 

 RNAseq  [76].  Illumina  is  one  of  the  leading  companies  in  the  fabrication  of  RNAseq 

 machines,  being  NovaSeq  one  of  their  more  novel  creations  [77].  More  information 

 about the data sequencing can be seen in table 6.3. 
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 TABLE 6.3 SEQUENCING CONDITIONS OF THE MOUSE DATA 

 Platform  Illumina NovaSeq 

 Configuration  2x150bp 

 Depth  20-30 million read pairs per sample 

 Data quality  Guaranteed >80% bases with Q30 or higher 

 The  dataset  consisted  of  six  control  files,  common  for  both  cancers,  and  then,  for 

 each  cancer  type,  six  cell  line  files  and  six  allograft  files  (figure  6.4).  This  gives  a 

 dataset consisting of 30 files. 

 Fig. 6.4. Structure of the dataset. It contains 6 control files from a healthy mouse common for 

 both cancers, 6 cell line files for each cancer, and 6 allograft files for each cancer. 

 Source:  [1] 
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 The  files  belonging  to  the  different  cancers  were  separated.  Therefore,  the  analysis 

 explained  below  had  to  be  repeated  twice,  one  time  for  each  of  the  cancer  types.  The 

 first  step  of  the  analysis  was  preprocessing  the  tumoral  and  control  files  to  prepare  them 

 for  mutation  detection.  This  meant  we  still  had  18  files  by  the  end  of  the  preprocessing. 

 Then,  mutations  had  to  be  found  in  every  cancerous  file,  with  the  control  tissue  as  a 

 reference  for  mutation  detection.  The  output  of  this  step  was  12  files  belonging  to  the 

 cancerous  samples  per  each  of  the  six  control  tissues.  Next,  each  of  the  six  cell  line  files 

 was  compared  with  each  of  the  six  allograft  files  to  find  common  mutations,  which  gave 

 72  mutation  files  for  each  of  the  six  control  tissues.  Then,  the  rest  of  the  analysis  was 

 performed  on  those  six  groups  of  72  mutation  files  until  the  list  of  putative  neoantigens 

 was obtained. The analysis output was 432 prediction files per cancer type (figure 6.5). 

 Fig.  6.5.  Analysis  mode.  The  control  file,  cell  line  file,  and  allograft  file  are  preprocessed.  The 

 cell  line  and  the  allograft  files  are  then  compared  with  the  control  file  to  find  their 

 mutations.  The  extracted  mutations  are  compared  between  cell  line  and  allograft  to  find 

 the common mutation.  Source:  [1] 

 As  an  example  of  the  pipeline  described  above,  the  analysis  of  a  cell  line  and  an 

 allograft  file  of  cancer  1  will  be  presented,  along  with  the  obtained  results.  The 

 workflow used to analyze these files is shown in figure 5.8. 
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 First,  a  quality  analysis  was  performed  on  both  samples  using  FastQC  to  ensure  that 

 the  sequencing  was  correct.  All  the  parameters  gave  satisfactory  results,  and  two  of  the 

 most  important  ones  are  worth  mentioning.  First  of  all,  the  quality  across  all  bases  had 

 good  levels,  meaning  that  none  of  the  positions  of  the  different  fragments  had  major 

 sequencing  problems.  The  mean  quality  per  read,  or  fragment,  also  shows  that  all  of  the 

 reads  have  very  high-quality  scores,  ensuring  that  the  whole  transcriptome  was 

 sequenced  successfully.  The  quality  across  all  bases  and  the  quality  per  read  for  the 

 allograft file can be seen in Figures 6.6 and 6.7. 

 Fig.  6.6.  Quality  scores  across  all  bases.  The  graph  shows  the  quality  for  each  position  in  all  the 

 reads. The quality is high for the whole length of the sequence. 
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 Fig.  6.7.  Quality  score  distribution  over  all  sequences.  It  shows  the  mean  quality  per  read  for  all 

 the  sequences.  The  peak  in  the  right  part  of  the  graph  shows  that  the  mean  quality  for 

 all the reads is very high. 

 Once  the  quality  analysis  was  passed,  the  data  analysis  started.  First,  cancerous  and 

 control  files  were  preprocessed  and  prepared  for  the  variant  calling.  Then,  mutations 

 were  detected  on  the  cell  line  and  allograft  file  with  respect  to  the  control  file.  The 

 number of mutations per file is shown in table 6.4. 

 TABLE 6.4. MUTATIONS DETECTED IN THE CELL LINE AND THE ALLOGRAFT 

 Number of mutations detected 

 Cell line  10.948 

 Allograft  8.144 
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 After  the  mutations  in  both  files  were  detected,  the  next  step  was  to  compare  them 

 and  keep  only  those  maintained  from  the  cell  line  sample  to  the  allograft  sample.  The 

 overlapping  mutations  were  3826,  which  can  be  graphically  represented  in  the  Venn 

 diagram in figure 6.8. 

 Fig.  6.8.  Venn  diagram  showing  the  mutations  for  cell  line  and  allograft  and  the  common 

 mutations for both of them. 

 The  3826  mutations  were  taken,  and  the  analysis  pipeline  was  applied  to  them.  The 

 number of sequences found in each step of the analysis is shown in figure 6.9. 
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 Fig.  6.9.  Results  of  each  step  of  the  analysis  pipeline.  The  number  of  mutations  or  peptides  used 

 for the workflow's next step are circled on the right. 

 A  prediction  was  then  performed  on  the  91  peptides  with  the  neural  network.  It  can 

 be  seen  that  from  the  91  peptides,  18  are  considered  neoantigens  by  the  network  after 

 the  postprocessing.  One  of  those  18  neoantigens  was  not  considered  by  the  first 

 prediction,  but  after  the  postprocessing,  it  was  shown  that  it  was  probably  a  neoantigen. 

 This  thesis  cannot  show  the  sequences  as  it  is  an  ongoing  investigation  with  CIEMAT. 

 However,  some  non-antigens  will  be  shown  as  an  example  of  the  network  type 

 prediction  in  table  6.5.  The  table  shows  the  sequence  under  study,  the  original 

 prediction,  the  prediction  after  the  postprocessing,  the  probability  that  the  sequence  is 

 indeed  an  epitope,  the  gene  expression  level  (FPKM),  and  the  gene  in  which  such 

 sequence  is  located.  It  is  also  worth  noting  that  some  sequences  have  an  expression 

 level  of  0.0,  meaning  they  are  not  expressed  in  the  cells.  Therefore,  these  sequences 

 cannot  be  used  to  create  vaccines  even  if  they  have  a  high  probability  because  they  are 

 not present in the tumor. 

 TABLE 6.5 EXAMPLE OF RESULTS OF THE MOUSE ANALYSIS FOR ONE SAMPLE 

 Extracted antigen  Original 
 prediction 

 Prediction after 
 postprocessing 

 Probabi 
 lity 

 FPKM  Gene 
 symbol 

 ASTIQSPSYGFS  0  0  0  0  Ahnak2 

 TEEMDSLLLVVR  0  0  0  1.29968  Tdrd9 

 HLCEEPAETQGR  0  0  0  4.32962  Kif26a 

 VMMCLYSK  0  0  0  14.6551  Rdh11 

 The  project's  final  step  consisted  of  joining  all  the  generated  files  of  each  cancer 

 type  to  provide  as  output  two  single  files,  one  for  cancer  1  and  the  other  for  cancer  2. 

 This  was  necessary  because  there  were  432  prediction  files  per  cancer  type,  and  it  was 

 challenging  to  look  over  them.  Moreover,  many  entries  were  duplicated  over  the  files, 

 and  most  were  negative  predictions.  Finally,  only  the  sequences  predicted  as 

 neoantigens  were  kept,  giving  65  and  70  neoantigens  for  cancer  1  and  2,  respectively. 
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 Of  those  65  neoantigens  in  cancer  1,  5  were  found  after  the  postprocessing  was  applied, 

 as  they  initially  had  a  prediction  on  non-neoantigen.  For  cancer  2,  4  neoantigens  were 

 found  after  the  postprocessing  step.  Moreover,  it  is  worth  noting  that  the  expression 

 levels for the mutations in cancer 1 were significantly lower than in cancer 2. 

 An  analysis  of  the  expression  level  vs.  the  probability  of  being  an  antigen  was 

 performed  to  study  the  relationship  between  the  variables.  It  was  also  necessary  to  know 

 broadly  how  many  neoantigens  had  high  probability  and  expression,  as  they  are  more 

 likely  to  elicit  an  immune  response.  The  graphs  for  cancer  1  and  2  can  be  seen  in 

 Figures  6.10  and  6.11,  respectively.  The  graph  shows  that  most  of  the  neoantigens  have 

 a  high  probability,  but  there  is  high  variability  between  the  expression  levels  of  each 

 sequence.  Moreover,  it  can  be  seen  that  the  expression  levels  in  cancer  1  are  indeed 

 lower  than  in  cancer  2.  Therefore,  the  sequences  at  the  top  right  of  the  graph  would  be 

 the most appropriate ones to generate vaccines. 

 Fig.  6.10.  Graph  showing  log(FPKM)  with  respect  to  Probability  for  cancer  1.  It  can  be  seen 

 that most of the neoantigens have high probability and variable expression levels. 
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 Fig.  6.11.  Graph  showing  log(FPKM)  with  respect  to  Probability  for  cancer  2.  It  can  be  seen 

 that most of the neoantigens have high probability and variable expression levels. 

 The  final  analysis  of  the  samples  involved  studying  which  biological  pathways  the 

 mutated  genes  usually  interact  with.  This  way,  one  can  discover  the  biological  processes 

 mainly  affected  by  the  tumoral  mutations.  The  analysis  was  performed  with  the  online 

 platform  Genecodis  4  [79],  and  the  results  can  be  seen  in  table  6.6  for  cancer  1  and  table 

 6.7 for cancer 2. 

 TABLE 6.6. BIOLOGICAL PROCESS WITH AFFECTED GENES IN CANCER 1 

    Name of process  nº genes 

 Lipid metabolic process  5 

 DNA repair  4 

 cellular response to DNA damage stimulus  4 

 Meiotic cell cycle  3 

 Extracellular matrix organization  3 

 Angiogenesis  3 

 Regulation of JUN kinase activity  2 

 Phospholipid biosynthetic process  2 
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 Negative regulation of cell adhesion  2 

 Double-strand break repair via homologous 
 recombination 

 2 

 Negative regulation of angiogenesis  2 

 Transcription by RNA-polymerase II  2 

 TABLE 6.7. BIOLOGICAL PROCESS WITH AFFECTED GENES IN CANCER 2 

    Name of process  nº genes 

 Angiogenesis  4 

 DNA repair  4 

 cellular response to DNA damage stimulus  4 

 Extracellular matrix organization  3 

 Meiotic cell cycle  3 

 Regulation of JUN kinase activity  2 

 Protein processing  2 

 Collagen fibril organization  2 

 Negative regulation of cell adhesion  2 

 Double-strand base repair via homologous 
 recombination 

 2 

 Negative regulation of angiogenesis  2 

 Transcription by RNA polymerase II  2 

 The  processes  affected  are  consistent  with  the  knowledge  of  cancer  disease.  For 

 example,  the  mechanism  for  angiogenesis  is  affected,  being  angiogenesis  the  growth  of 

 new  blood  vessels  from  existing  vasculature  [80].  This  is  consistent  with  the  knowledge 

 that  cancerous  cells  have  an  increased  angiogenesis  activity  [81].  Moreover,  DNA  repair 

 mechanisms  also  appear  to  be  affected  by  the  mutations,  which  is  also  consistent  with 

 the  formation  of  cancerous  cells.  DNA  repair  mechanisms  are  necessary  to  maintain 
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 genetic  stability  when  cellular  DNA  is  damaged,  and  deregulation  of  DNA  repair 

 pathways is known to be associated with the initiation and proliferation of cancer [82]. 

 6.3  Implementation of the modification in the NAP-CNB server 

 The  final  step  was  introducing  the  new  capabilities  in  the  NAP-CNB  server.  Below  is 

 the  final  result  after  introducing  the  new  fields  on  the  main  page  of  the  server  (figure 

 6.12). 

 Fig. 6.12. Updated NAP-CNB webpage 

 The  four  different  fields  for  the  introduction  of  the  files  were  successfully  added  to 

 the  webpage,  as  it  can  be  seen  in  figure  6.13.  There  are  four  different  analysis  modes. 

 The  user  should  introduce  the  query  file  to  perform  tumor-only  analysis  .  The  query  and 

 control  files  should  be  introduced  to  perform  tumor  with  matched  normal  analysis.  The 

 user  can  also  introduce  cell  line  file  and  allograft  file  to  perform  cell  and  allograft  only 

 analysis,  and  cell  line,  allograft,  and  control  files  to  perform  cell  and  allograft 

 comparison analysis with matched normal. 
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 Fig.  6.13. Fields to introduce RNA-seq files on the web page. 

 Finally,  a  species  field  was  added  so  that  the  user  can  choose  the  human  or  mouse 

 analysis  pipeline,  depending  on  the  origin  of  the  data  (figure  6.14).  By  default,  mouse  is 

 chosen as it was the original species on the NAP-CNB website. 

 Fig.  6.14.  Species  field  in  the  webpage.  Introduce  Human  or  Mouse,  depending  on  the  origin  of 

 the sample 

 7.  CONCLUSION AND FUTURE WORK 

 Immunotherapies,  combined  with  bioinformatics  pipelines,  constitute  an  expanding 

 field  that  can  revolutionize  cancer  research.  This  work  aimed  to  combine  those 

 techniques  to  create  a  novel  pipeline  for  the  discovery  of  human  neoantigens  and 

 improve an already existing pipeline called NAP-CNB. 
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 This  thesis  aims  to  help  scientists  employ  human  neoantigens  in  vivo  by  providing 

 a  novel  neoantigen  discovery  pipeline.  The  new  methodology  employs  more 

 information  for  prediction  than  other  algorithms  by  using  primary  and  secondary 

 structures.  Moreover,  the  method  improves  the  results  by  using  BERT  for  protein 

 encoding,  which  provides  more  information  than  standard  binarization.  Overall,  this 

 thesis  presents  a  novel  pathway  for  the  extraction  of  human  neoantigens  from  RNA-seq 

 data. 

 This  bachelor  thesis  also  introduces  novel  mutation  detection  methods  that  are  not 

 available  in  any  other  online  tool,  as  it  is  the  comparison  between  cell  lines  and  allograft 

 tissue.  It  also  increases  the  flexibility  in  the  detection  by  adding  different  analysis 

 methods,  allowing  the  user  to  choose  between  having  a  normal  or  not  having  it,  while 

 other online tools only offer one of these options. 

 As  a  proof  of  concept,  experiments  were  performed  on  human  and  mouse 

 samples.  Moreover,  different  methods  were  used  in  the  experiments  to  test  the  proper 

 functioning  of  the  new  capabilities.  The  experiments  showed  that  each  of  the  newly 

 implemented methods worked perfectly and that there were no pipeline errors. 

 However,  a  more  quantitative  final  validation  on  the  lists  of  putative  neoantigens 

 has  to  be  done  in  a  lab  experimentally  by  Esteban's  Veiga  group.  This  validation 

 consists  of  using  the  extracted  sequences  to  create  personalized  vaccines  and  study  the 

 success  of  such  vaccines.  This  is  critical  to  understanding  if  the  extracted  neoantigens 

 were  indeed  antigens.  Therefore,  conclusions  about  the  quality  of  the  extracted  antigens 

 are out of the scope of this work. 

 Although  the  objectives  set  for  this  thesis  were  correctly  fulfilled,  there  is  still 

 work  to  do  on  the  different  pipelines  to  obtain  the  best  performance  possible.  For 

 example,  there  is  still  ongoing  work  with  the  human  pipeline,  increasing  its  specificity 

 to  different  sequences.  The  work  is  being  done  by  UC3M  students  from  the  master's  in 

 information  health  engineering,  and  once  it  is  done,  it  will  be  included  in  the  pipeline  to 

 obtain more specific results. 

 Moreover,  the  mouse  pipeline  is  now  using  an  older  pipeline  that  does  not  share  the 

 advantages  of  the  novel  prediction  method.  Therefore,  future  work  will  focus  on 

 implementing  the  novel  prediction  methodology  on  mouse  samples  to  increase 

 prediction accuracy. 
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 In  conclusion,  the  novel  pipeline  serves  as  proof  of  concept  of  an  intuitive  tool  for 

 neoantigen  discovery  in  mice  and  humans.  Further  refinement  of  the  tool  will  be 

 performed  over  the  following  months,  as  different  validation  tests  are  performed  in  an  in 

 vivo assay. 

 8.  SOCIO-ECONOMIC IMPACT 

 In  demographic  terms,  cancer  is  a  disease  affecting  the  population  worldwide.  It  is  a 

 grave  threat  to  human  health,  accounting  for  one-sixth  of  the  deaths  worldwide  [5]. 

 Furthermore,  the  World  Health  Organization  (WHO)  estimates  an  increase  in  cancer 

 incidence in future years if no significant advances in cancer treatment are created. 
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 As  explained  above,  immunotherapy  is  one  of  the  most  studied  approaches  to 

 treating  cancer.  Currently,  there  are  2.724  ongoing  clinical  trials  on  immunotherapy  to 

 cure  different  cancers.  Furthermore,  out  of  the  total  clinical  trials  using  immunology, 

 783  of  the  ongoing  studies  focus  on  creating  treatment  vaccines  for  cancer  treatment. 

 Finally,  138  of  the  ongoing  vaccine  trials  are  specifically  neoantigen  vaccines. 

 Considering  that  neoantigen-based  vaccines  are  a  relatively  new  idea  and  that  the  tools 

 for  predicting  neoantigens  are  still  under  development,  the  approach  is  showing 

 promising growth. 

 Specifically,  this  software  can  help  researchers  working  on  neoantigen-based 

 vaccines  for  humans  or  mice.  It  aims  to  fill  several  voids  encountered  by  scientists  in 

 neoantigen  prediction  and  therefore  give  more  personalized  results  for  the  requirement 

 of  the  specific  clinical  trial.  Thus,  it  can  directly  benefit  clinical  translation  and  the 

 overall immunotherapy progress. 

 From  an  economic  point  of  view,  neoantigen-based  vaccines  aim  to  reduce  the  cost 

 of  immunotherapies,  which  can  rise  to  $100.000  per  year  and  person  [83].  Towards  this 

 goal,  several  private  companies  have  been  created  that  study  neoantigen  vaccines,  with 

 an  average  annual  investment  of  $300  million  [84].  However,  no  treatment  has  been 

 approved  yet  by  the  Federal  Drug  Administration  (FDA)  or  the  European  Medicines 

 Agency  (EMA),  although  one  of  the  BioNTech  vaccines  has  been  in  Stage  II  trials  since 

 October 2021 [85]. 

 Finally,  it  is  worth  mentioning  that  cancer  therapies  are  expected  to  have  grown  a 

 25%  of  the  oncological  market  by  2025,  reaching  investment  values  of  over  $100 

 billion [84]. 

 9.  REGULATORY FRAMEWORK 

 The  implemented  methodologies  in  this  thesis  are  not  subjected  to  any  regulation  or 

 intellectual  property  protection.  Moreover,  they  do  not  violate  any  code  of  ethics. 
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 However,  several  programs  are  used  to  create  the  different  workflows  with  their 

 regulations. 

 GATK  and  any  other  programs  from  the  Broad  Institute  are  licensed  under  the 

 Apache  License  2.0,  January  2004.  It  is  a  free,  open-source  software  licensing 

 agreement  [86]  that  permits  commercial  use,  code  modification,  distribution,  and 

 private use. 

 Python's  programming  language  chosen  for  the  codes  is  also  open  source.  For  the 

 creation  of  the  web  page,  Django  is  used.  It  is  distributed  under  the  3-clause  BSD 

 license,  an  open-source  license  with  broad  permissions  to  modify  and  redistribute 

 Django [70]. 

 The  ProteinUnet  model  is  licensed  by  Creative  Commons  Attribution,  and  it 

 presents  a  Noncommercial  4.0  International  Public  License  [64].  This  license  allows  the 

 distribution  and  modification  of  the  code  as  long  as  the  author  is  credited  as  the  original 

 creator. 

 Finally,  BERT  architecture  is  also  licensed  under  the  Apache  License  2.0,  January 

 2014 [86]. 

 10.  BUDGET 
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 The  budget  required  to  develop  this  bachelor  thesis  is  disclosed  in  tables  10.1,  10.2, 

 10.3,  and  10.4.  The  first  two  tables  summarize  the  human  and  material  costs, 

 respectively.  The  third  table  collects  the  previously  mentioned  tables'  total  and  adds  the 

 indirect  costs,  which  account  for  15%  of  the  previous  costs.  Finally,  the  fourth  table 

 accounts for the total cost before and after Value Added Tax (VAT). 

 TABLE 10.1 HUMAN RESOURCES 

 Category  Cost (€/hour)  Time  investment 

 (hours) 

 Cost (€) 

 Student  20,0  500  10.000,0 

 Tutor 1  55,0  32  1.760,0 

 Tutor 2  55,0  32  1.760,0 

 TOTAL  13.520,0 

 TABLE 10.2 MATERIAL RESOURCES 

 Element  Description  Cost (€)  Months  Amortization 

 T-Series SP 

 Intel Xeon 1 

 2 Intel Xeon 

 E5-2630 v3, 

 32 threads 

 64GB of RAM 

 7TB of storage 

 10GbE 

 network 

 connection 

 10.495,5 €  4  2.623,9 € 

 T-Series SP 

 Intel Xeon 2 

 2 Intel Xeon 

 E5-2630 v4, 

 40 threads 

 256GB of 

 RAM 

 10,9TB of 

 storage 

 14.391,30 €  7  2.055,9 € 
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 4 Nvidia 

 GeForce GTX 

 1070 

 10GbE 

 network 

 connection 

 Lenovo Yoga 

 520 
 8  th  Gen Intel 

 core i5, 8GB 

 of RAM, 

 512 GB 

 storage 

 1050,4 €  7  150,1 € 

 TOTAL  4829,9 € 

 TABLE 10.3 COST WITH INDIRECT COST ADDED 

 Category  Costs (  €) 

 Human resources  13.520,0 

 Material resources  4829,9 

 Indirect  (15%  of  material  and  human 

 resources) 

 2752,5 

 TOTAL  21.102,4 

 T  TABLE 10.4 SUMMARY 

 Category  Costs (€) 

 Total without VAT  21.102,4 

 VAT (21% of total)  4431,5 

 TOTAL  25.533,9 
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