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A B S T R A C T   

This report provides an overview of the discussions, presentations, and consensus thinking from the Workshop on Smart Data Collection for CryoEM held at the New 
York Structural Biology Center on April 6–7, 2022. The goal of the workshop was to address next generation data collection strategies that integrate machine learning 
and real-time processing into the workflow to reduce or eliminate the need for operator intervention.   

1. Introduction 

A Workshop on Smart Data Collection for CryoEM was organized by 
the National Resource for Automated Molecular Microscopy (NRAMM) 
and held at the Simons Electron Microscopy Center, New York Structural 
Biology Center, New York, NY on April 6–7, 2022. Twenty-three par-
ticipants from 17 institutions attended the meeting and contributed to 
this paper. Most of the participants were actively engaged in developing 

or improving methods for data collection in cryoEM, with a focus pri-
marily on single particle cryoEM. The slides and video from the pre-
sentations and discussions are available at: https://nramm.nysbc.org/ 
workshop-on-smart-data-collection-for-cryoem/. 

Single particle cryoEM data collection typically requires acquisition 
of thousands of images from a transmission electron microscopy (TEM) 
grid. TEM grids are composed of a metal disk (e.g., copper, gold, mo-
lybdenum) perforated by a mesh of squares (10′s μm in dimensions) and, 
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for cryoEM, the mesh is usually covered with a thin (10′s nm) support 
film (e.g. carbon, gold) perforated by holes (from 0.2 to 2 µm in diam-
eter). The specimen of interest is immobilized in vitreous ice (10′s nm 
thick) supported by the holey substrate and images are acquired over 
regions of the specimen suspended across the holes so that the support 
film does not contribute additional signal to the images. The goal is to 
identify areas across the holes where the vitrified ice is of ideal thickness 
and particles are adequately distributed (not too sparse and not too 
crowded). Most data collection strategies involve examining images at a 
sequentially increasing series of magnifications: first obtaining an 
overview of the entire grid, then imaging squares, followed by imaging 
regions of interest inside holes, then finally acquiring high- 
magnification images of the specimen. In a single day, an accom-
plished electron microscopist can manually acquire hundreds of high- 
magnification exposures, but automated data acquisition software en-
ables collection of tens of thousands of images per day. 

Automated data collection attempts to emulate the performance of 
an experienced microscopist. The first step is assessing the overall grid 
quality, so most data collection strategies begin with collecting an 
overview atlas of the grid by automatically stitching together multiple 
low magnification images such that a majority of the grid is covered (see 
Fig. 1a). The atlas reveals overall features of the sample including re-
gions where the ice is absent, very thick regions, dried out or cracked 
squares, as well as areas that may be appropriate for data collection. The 
user will typically make judgements by eye, selecting squares from the 
potentially good areas and avoiding the bad ones. The automated soft-
ware will then move to the user-targeted squares and acquire a medium 
magnification image such that the holes can be seen (see Fig. 1b). All 
automated software systems have procedures for identifying holes and a 
variety of options for assessing the likelihood that the hole will yield ice 
of suitable thickness (see Fig. 1c). The operator usually adjusts various 
parameters of the hole finders to optimize the outcome for a specific 
grid. This is generally done by collecting a handful of high magnification 
images for a variety of ice thicknesses and assessing which holes have 
the highest probability of yielding intact particles in a good distribution 
(see Fig. 1d). Once that has been determined, the software can be set up 
for full automation and generally be left unattended for hours to several 
days, depending on how much data needs to be acquired. The data 
collection software moves sequentially to each selected square and ac-
quires high magnification images at targets within the holes selected 
from that square. A variety of housekeeping tasks (focusing, checking 
drift, aligning the energy filter, pausing to allow for cryogen fills) are 
taken care of automatically as needed. 

There are several automated data collection packages currently 
available both from academic groups and commercial entities. On the 
academic side, there is Leginon (Suloway, Shi, 2009) and SerialEM 
(Schorb, Haberbosch, 2019), while the commercially available software 
includes EPU (Thompson, Iadanza, 2019) for Thermo Fisher Scientific 
microscopes, JADAS (Zhang, Nakamura, 2009) for JEOL microscopes, 
and Latitude for microscopes with Gatan cameras. While these packages 
differ somewhat in how their workflows are set up and the degree of 

automation, all function similarly and are capable of supporting the 
acquisition of thousands of images per day. 

There are many bottlenecks that slow down the single particle data 
collection workflow. Several of these concern the need for operator 
supervision and intervention in screening grid conditions or in setting up 
and managing a long data collection session. It was the general opinion 
of the group that met together for this workshop that “smarter” software 
could further reduce the need for hands-on operator time just as the 
current automated software packages essentially replaced manual data 
collection about 10 years ago. In the scenarios discussed at the work-
shop, we all understood “smart” to mean “capable of some independent 
action” rather than “quick-witted intelligence,” as the current state of 
the various software options use a combination of traditional algo-
rithmic approaches and machine learning. We anticipate that true 
“machine intelligence” may ultimately obviate the need for human 
operation and supervision of single particle data collection. However, 
this has yet to be achieved. 

Automation of data collection is challenging, because the conditions 
that provide optimal data differ between samples, preparations, and 
project goals. There is heterogeneity at the low- and medium- 
magnification levels that complicates the process of identifying 
regions-of-interest (ROIs) even prior to assessing data quality. This re-
quires operators to manually tune parameters for the ROI detection al-
gorithms currently in use and then to examine high magnification 
micrographs to correlate lower magnification ROIs to ideal ice thickness 
and other sample-specific conditions. Machine learning approaches are 
thus required at two levels to automate screening and data collection: (i) 
identifying viable collection locations in low- and medium- 
magnification images quickly and robustly across different grid types, 
preparation methods, and microscopes, and (ii) optimally ordering those 
targets and altering collection strategies to acquire the best data as 
quickly as possible, learning about which regions contain the best 
sample as collection proceeds. 

2. CryoEM grid screening 

While the ultimate goal of automation is to achieve full indepen-
dence from the need for operator input, one of the most urgent goals 
identified at the workshop was for reducing operator time required for 
grid screening. Regardless of the software used for data collection, one of 
the main limiting factors for throughput is finding “good” grids and 
finding “good” areas on them for data collection. There can be sub-
stantial variability in sample quality from grid to grid even when the 
same sample is prepared under nearly identical conditions (Sgro and 
Costa, 2018). What this often means - from a practical perspective - is 
that many grids must be screened before identifying one where the 
sample is well-preserved and particles are well distributed in thin ice 
over sufficiently large areas that will yield enough images to reconstruct 
a high-resolution 3D map. 

Screening can be quite a laborious process, as the grid must be 
assessed at both low magnifications and high magnification. Low 

Fig. 1. a. Overview atlas of an EM grid (nominal magnification of 1,550x for each of the 23 atlas grid tile images with a pixel size of 4160 Å). Scale bar is 500 µm. b. 
Square level image showing an individual square (nominal magnification of 940x with a pixel size of 379 Å). Scale bar is 20 µm. c. Hole level image showing holes in 
the support film (nominal magnification of 3,600x with a pixel size of 99 Å). Scale bar is 5 µm. d. Final high magnification image showing ice of ideal thickness and 
good particle distribution (nominal magnification of 105,000x with a pixel size of 0.844 Å). Scale bar is 100 nm. 
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magnification images can reveal which areas are “bad” for data collec-
tion because the ice is too thick, is dried out, or is cracked, or if there is a 
sufficiently large area with potential for high-resolution data collection. 
However, high magnification images must also be acquired to assess the 
quality of the sample itself. During the process of vitrification, the 
sample is affected by contact with the air–water interface which can lead 
to denaturation, aggregation, or preferred particle orientation (Noble 
et al., 2018; D’Imprima, Floris, 2019). While the thinnest possible ice is 
preferred to maximize contrast, many particles are not stable in very 
thin ice. As a result, it is often necessary to try several different prepa-
ration conditions in order to produce an optimal grid. Conditions typi-
cally varied to achieve this goal often include alterations to sample 
concentration, changes in grid type (gold vs carbon, hole size and ge-
ometry), different buffer conditions (pH, salts, sugars, cryo-protectants), 
alternative instruments used for vitrification (e.g. Vitrobot, Leica EM 
GP2, chameleon, manual plunger), and/or a suite of detergents or sub-
strates which may help alleviate issues associated with particles inter-
acting at the air–water interface. It is difficult to predict a priori how a 
new sample will behave for a given set of grid preparation conditions. In 

fact, even for known samples, grid quality can vary even when using the 
same sample and conditions. 

The ultimate result is that for a new sample it is common that many 
grids need to be “screened” to determine the optimal conditions for high 
resolution data collection. Practically speaking, many grids will need to 
be rapidly screened, and an autoloader system makes this process effi-
cient. A 200 keV system is typically used for this purpose with the 
principal goal being to ensure that particles are embedded and intact 
within vitreous ice. Projects may spend a significant percentage of time 
at this stage. 

Once a new sample passes these initial assessments, a second 
screening process may ensue as the grids are optimized for an efficient 
high resolution data collection session. Small datasets (hundreds of 
images) may be collected to sample the grids to determine which are 
most suitable for high resolution collection. Typically, the data will be 
assessed by calculating 2D class averages and reconstructing pre-
liminary 3D maps. 

Fig. 2. SmartScope automated workflow for grid screening. The main functions essential for imaging such as specimen exchange, montaging, eucentricity and 
autofocus are automated. The algorithms for area selection (boxes) include a combination of deep learning and conventional image analysis approaches for feature 
identification, classification and clustering of the targets against different metrics. The resulting layered approach provides a sampling of different targets dur-
ing screening. 
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3. Software systems for Smart grid screening and data collection 

At the workshop, four different “smart” software packages were 
presented and discussed. These are laid out in detail in other papers as 
referenced but a brief overview is provided here. 

SmartScope is a software for automated specimen screening in cry-
oEM based around the data acquisition software SerialEM (Schorb, 
Haberbosch, 2019). It provides an automated workflow for imaging at 
multiple magnifications and a web user interface to access results 
(Bouvette, Huang, 2022). It leverages deep learning algorithms for 
feature recognition and classification along with clustering methods to 
provide adequate sampling of a variety of areas across the grid. The 
workflow proceeds as follows (Fig. 2): 1) A microscopy session is created 
by filling out basic information about the imaging settings and speci-
mens; 2) The session is started, which triggers SmartScope to connect to 
the microscope via SerialEM’s python API and start the workflow; 3) For 
each specimen, the grid is automatically loaded into the column of the 
microscope; 4) A low magnification atlas is acquired and the squares are 
identified, classified, and clustered according to their size, from which a 
subset is selected; 5) A square is acquired and holes are automatically 
identified and clustered based on their signal intensities and a subset is 
selected; 6) Finally, high-magnification images of the selected areas are 
recorded and pre-processed to provide basic quality metrics such as CTF 
fit. As a session is progressing, the webpage updates in real-time and 
allows remote interaction with the microscope where area selection can 
be modified and data annotated. SmartScope was built with a modular 
design which will allow new and existing algorithms to be integrated as 
plugins and protocols to be created for new applications and sample 
types. The interface facilitates access to the instruments and results 
without granting full access to the instrument to every user. The goal of 
SmartScope is to assist microscopists by automating the specimen 
screening process in cryoEM and to lower the barrier of adoption for 
cryoEM. 

Smart EPU is built on Thermo Fisher’s EPU, a single particle data 
acquisition application that focuses on automation, guidance and user 
experience. EPU aims to enable more users to benefit from cryoEM by 
making the workflow more efficient and lowering the entry barrier for 
new users. Smart EPU is a system of software programs created around 
EPU that allows for further automation by using machine learning and 

on-the-fly feedback loops. Smart EPU provides an open interface to 
enable the development of algorithms that influence the set-up of an 
experiment or connect to an ongoing acquisition and optimize it in terms 
of efficiency and quality (Fig. 3). EPU already contains a set of built-in 
classical algorithms that help users select grid squares and holes to be 
acquired. For example, a classification method that categorizes and 
suggests similar-looking squares and hole selections is assisted by 
automating routine tasks such as finding all holes, removing holes that 
are located close to grid bars and selecting holes using an intensity-based 
ice thickness filter. On top of these routines, a new machine learning 
algorithm has been added to automatically recognize and discard sub- 
optimal areas that would lead to inferior micrographs. The neural 
network that powers this smart filtering makes the selection based on 
the encoded knowledge of experts as it has been trained with numerous 
selections from previous experiments. These algorithms can be com-
bined with the workflow of EPU for fully automated acquisitions on 
multiple grids (EPU Multigrid) in order to set-up screening or high- 
resolution experiments with limited user interaction. Once data acqui-
sition starts, algorithms can leverage, in real-time, the data and meta-
data produced by the microscope and use the API to fine tune 
parameters. Smart EPU includes algorithms that digest the results of the 
EPU Quality Monitor (EQM) routines of motion correction and CTF 
determination in order to adjust on-the-fly and optimize parameters 
such as microscope focus, stage stabilization time, or skip an area that 
consistently produces micrographs with inadequate CTF resolution es-
timations. For example, Fig. 3 shows the CTF confidence range calcu-
lation for 1,200 images out of 18 grid squares on an Apoferritin sample 
acquired on a Tundra microscope. Even with such a standard sample, 
not all grid squares are equal in quality, and without any intervention, a 
lot of data might be thrown away at the end of the session. When Smart 
EPU algorithms are applied on a similar dataset, the grid squares noted 
with an arrow on Fig. 3 will be skipped. This leads to better data quality 
and an increase in throughput. The prediction of suitable areas to ac-
quire together with automatic on-the-fly adjustments should improve 
the acquisition of good quality images while lowering the time invest-
ment of the operator. 

Smart Leginon integrates the Leginon data collection workflow with 
a machine learning program, Ptolemy (Kim et al., 2021), to provide a 
solution for fully automated, high-throughput grid screening (Cheng, 

Fig. 3. Automation routines of Smart EPU Software for algorithm assisted target selection and live experiment optimization.  
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Kim, 2022). Ptolemy provides robust automated square and hole finding 
and scoring. For example, given a pre-defined square area range, the 
highest scoring class provides reliable sampling of grid squares on un-
known grids in multi-grid screenings. Similarly, Ptolemy’s parameter- 
less hole localization is not affected by differences in grid support ma-
terial, such as gold versus carbon, or grid geometry (hole size and 
spacing) (Fig. 4). At the start of screening, the only inputs required are 
the number of square groups to sample, the number of squares to image 
in each group, a filter “blob” size used by the Ptolemy square finder, and 
a threshold for the Ptolemy hole finder. The session setup only takes a 
few minutes, after which it runs unattended for a set of grids that can be 
automatically exchanged. Initial parameter settings can be re-used so 
that operator setup can be eliminated in future sessions. As an example, 
Smart Leginon automatically screened an 11 grid cassette, reducing 
required operator time from ~ 6 h to < 10 min. This significantly re-
duces the burden on microscope operators and makes more efficient use 
of microscope time. 

CryoRL has not yet been integrated into a data acquisition program. 

Its goal is to enable increased data collection efficiency, while elimi-
nating the need for subjective decisions and user intervention, by 
maximizing the number of micrographs with high-resolution informa-
tion that are acquired over a given time duration (Fan, Li, 2022, Li, Fan, 
2022). By combining supervised classification or regression and deep 
reinforcement learning, cryoRL provides a new framework for cryoEM 
data collection (Fig. 5). It aims to return the quality predictions for lower 
magnification hole level images and also plan the trajectory for higher 
magnification data acquisition, by balancing the trade offs in the time 
for stage movement and Z-height adjustment with data quality. The RL 
network combined with an offline hole classifier or regressor has shown 
improved performance compared to human users, including cryoEM 
experts (Li, Fan, 2022). The reward function of the reinforcement 
learning model makes cryoRL flexible enough to be extended to both 
data screening and collection over a range of microscopes and cameras. 

SmartScope, Smart Leginon, and Smart EPU can all be used to 
perform triage screening on a cassette of grids. All three packages are 
able to return an atlas of each grid but Smart Leginon and SmartScope 

Fig. 4. Smart Leginon workflow and functionalities. (a) Smart Leginon Autoscreen can screen a multi-grid session fully unattended after setting up several pa-
rameters in an example session as shown in Step 1 and then executing a short command line script as shown in Step 2. Subsequently, all grids will be screened 
according to the example session parameters. (b) Smart Leginon hole targeting with Ptolemy provides robust, parameter-less hole targeting, allowing for the 
Autoscreen process to work across many grid types and characteristics. 
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also acquire intermediate and high magnification images of each grid 
while, currently, Smart EPU requires a second pass to select areas either 
for continuing screening or for automated high-resolution data collec-
tion. Ultimately all three packages (and others that might also be 
developed) are likely to converge to similar functionality. 

4. Discussion of current limitations and needs for smarter data 
collection 

Below we summarize some of the topics that were discussed at the 
workshop. 

5. Active learning and fine-tuning 

The ideal high-magnification exposure collection locations for a 
given grid are difficult to know a priori, as they depend on particle 
quality, grid type, and grid preparation method. Indeed, one of the goals 
of screening is to explore squares and holes so that a human operator can 
determine the best collection locations for a particular grid. Existing 
methods for automated targeting use pre-trained, fixed machine 
learning models trained on static, pre-curated datasets. These models 
are then applied in a “one-size-fits-all” fashion to all cryoEM grids. To 
fully automate data collection in a manner that works robustly for any 
session, a method of refining a model’s selection to be specific to the 
current session is required. This can be accomplished via fine-tuning of 
global models, or by using an additional model that is trained only on 
incoming data for the session. This problem is amenable to an active 
learning approach, whereby the model attempts to quickly learn by 
selecting the most informative data points for maximizing a reward 
function. Successful implementation of an active learning and fine- 
tuning approach to data collection could make data collection signifi-
cantly more time-efficient and eliminate the need for human input 
during the data collection process. 

6. Assessment Metrics: How can “good” regions with “good” 
particles be recognized? 

Although it is difficult to determine whether a given acquisition of 
images will lead to high resolution structures, it is more straightforward 
to identify images in which the data quality is compromised. The 
following are some of the indicators of potentially problematic datasets 
that can be identified during an acquisition session:  

● Large global shifts between movie frames. These can occur due to 
instability in the grid (cracks, tears) or the microscope.  

● Significant amount of astigmatism in the power spectrum of the 
whole micrograph or in local patches. This can arise from a poorly 
aligned microscope or contamination on the grid.  

● The CTF is not fitted well to sufficiently high resolution. A CTF fit 
that does not extend to high resolution can be due to microscope 
aberrations, ice that is too thick, or too few particles in the ice 
contributing to the signal.  

● Particle density is too high. If particles are too densely packed they 
may be overlapping in 2D projection which might compromise 
alignment and averaging.  

● Particle density is too low. Frame alignment and CTF fitting may be 
compromised and data collection will be inefficient. 

● Highly preferred orientation. Assessing this aspect requires pro-
cessing the data either in 2D or 3D. The preferred orientation may be 
correlated to specific ice thicknesses. 

The quality of a data acquisition is not determined by the quality of 
only a few micrographs and the indicators discussed need to be collec-
tively evaluated to estimate the proportion of potentially problematic 
micrographs. These evaluations may then drive decisions to skip regions 
of the grid or skip to a new grid. 

7. Metrics for quality 

Several metrics for measuring the quality of high-resolution micro-
graphs have been discussed. A major consideration for any metric used 
for automation is its ability to be computed efficiently and without user 
input. This has driven interest in methods like CTF resolution (Rohou 
and Grigorieff, 2015) and machine learning algorithms that can repro-
duce human qualitative judgements (Li, Cash, 2020). However, these 
approaches do not quantify the end goal of data collection, which is to 
reconstruct a high resolution structure. They also can be unreliable as in 
the case where high resolution from the CTF may be attributed to the 
edge of the carbon film being included into an image. 

Low throughput methods of evaluating data quality usually require 
calculating the resolution of 2D class averages or 3D reconstructions, 
assessing the angular coverage, calculating a Guinier plot falloff B factor 
of the reconstructed map, etc. Evaluating these metrics on-the-fly re-
quires building a fully reliable, fully automated data analysis pipeline. 
This requires high fidelity particle picking, rapid algorithms for 2D 
classification and 3D reconstruction, and the ability to automatically 
assess 2D class averages or 3D structure quality. 

Some progress has been made towards evaluating 2D class averages 
(Li et al., 2020), but the ultimate value of these methods in guiding data 
collection strategies has not yet been determined. The resolution of 3D 
structures is susceptible to overfitting and inclusion of particles in 3D 
reconstructions does not necessarily reflect particle quality, as different 

Fig. 5. CryoRL uses medium magnification hole images as candidates. A pre-trained regressor is used to predict the quality scores (for example, CTFMaxRes) for the 
candidate holes. The output quality scores are combined with the hierarchical grid structure to engineer features which are used as the input for the reinforcement 
learning (RL) network. The RL network will output an optimized trajectory for data collection, balancing the tradeoff between the time cost of stage movement and 
the predicted data quality. 
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reconstruction methods may select different subsets of particles 
contributing to the final map and yet achieve equivalent resolutions 
(Sanchez-Garcia, Segura, 2018). An interim solution to a full analysis is 
to simply count the number of particles in each image, but this still re-
quires reliable user-free particle picking methods and does not provide 
any feedback on the quality of the picks. 

In general, good protein structures should provide 2D classes that 
exhibit high-resolution details (e.g. evidence of secondary structural 
features like alpha helices) during early-to-mid stages of analysis. If the 
images are hard to align and fail to produce high-quality 2D classes, they 
may also be hard to align in order to produce high-quality and inter-
pretable 3D maps. For particles lacking high symmetry there should also 
be a range of classes of different appearances if preferred orientation is 
not present. 

Most discussions involving automated assessment of particle quality 
typically begin with the following question: “How can we design software 
to emulate, or improve on, the decisions made by humans?” Human 
assessment of particle quality typically relies on prior knowledge of 
expected particle size, shape, and morphology (which might be deduced 
from the literature), as well as from prior biochemical, biophysical, and/ 
or structural analyses like homologous structures or negative stain data. 
Thus, future advancements in computational algorithms for assessment 
of 2D class averages and/or 3D reconstructions may need to incorporate 
various levels of operator-supplied input parameters defining the fea-
tures that are expected to be observed for a given sample. Some of the 
possible operator provided metrics might include (note that all will 
require an efficient on-the-fly processing suite):  

● Prior structures (PDB/EMDB) that might be used to generate 2D 
projections to compare to acquired data to inform automated 
assessment of orientational distribution and/or expected particle 
morphology. 

● Negative stain 2D class averages that might help assess if the parti-
cles are of the expected size, shape, and morphology in vitreous ice. 
Comparisons would need to take into account differences in resolu-
tion and preferred orientation.  

● Pre-calculated cryoEM 2D classes could be used in a similar way to 
the negative stain classes. This might be more reliable than negative 
stain 2D averages and could be used during iterative assessment of 
cryoEM sample quality throughout later stages of screening.  

● Basic expectations of particle geometry including particle shape, 
size, symmetry could be used to assess 2D class averages or initial 3D 
reconstructions. 

Given that each unique sample which is imaged during the screening 
phase may have different amounts of preexisting information readily 
available, we propose that all of the above options could be included as 
optional input parameters, and the operator can decide which to use. 
Downstream processing and assessment would then need to adapt 
assessment metric algorithms to account for the different type(s) of in-
puts potentially provided by the operator. 

8. What is the lowest magnification image that can be used to 
determine if holes are “good”? 

Good holes are currently determined by human operators who look 
for particles and assess image quality in the high-magnification expo-
sures. However, it is possible that a computer vision algorithm could 
directly detect the presence or absence of particles in holes at lower 
magnifications, without needing to take a high magnification exposure. 
The lowest magnification required for a computer-vision algorithm to 
reliably detect particles has thus far not been well characterized - it 
almost certainly depends on the size and density of the particles, and is 
likely upper-bounded by a magnification where the particle dimensions 
are more than two pixels. Experimental characterization of the lowest 
magnification required for a particle could potentially allow for the use 

of more efficient magnification levels during both screening and data 
collection. For example, images could be taken at a currently unutilized 
magnification level, where multiple holes are simultaneously visible, 
with the computer vision algorithm explicitly detecting particle pres-
ence or absence at this magnification and directing high magnification 
exposure collection accordingly. Optimization of the magnification 
levels used could increase microscope throughput, as well as the amount 
of high-quality data collected within a given session. 

9. Publicly available labeled or non-labeled datasets for ML 
development and foundational learning 

A key requirement for any machine learning algorithm is the avail-
ability of representative data of the kind of images that will be 
encountered in a production environment. ImageNet (Krizhevsky, 
Sutskever, 2012) with 14 M images is one of the best known publicly 
available datasets, and there are a plethora of datasets addressing spe-
cific tasks (handwriting recognition, human actions, hand gesture 
recognition, natural language processing, etc.). The public availability 
of these datasets has been of paramount importance for the development 
of new methodological ideas, especially those using deep learning that 
are very data intensive. The variability of kinds of images expected in 
cryoEM, especially if focused on single particle data acquisition, should 
not be as large as with natural images. There are several varying factors 
such as the grid support (copper or gold), mesh size, distribution and size 
of the holes, presence or not of a carbon or graphene layer, presence of 
contaminants, ice crystals, aggregation, and varying ice thickness. 
Although the nature of contaminants can be highly varied, still their 
complexity and variety should be orders of magnitude below those of 
natural images. This means that, possibly, a few hundreds or thousands 
of examples of images at a variety of magnifications may be enough to 
delineate the variability of the images obtained at a cryoEM facility. 

To support a useful cryoEM data depository, various metadata 
including pixel size, grid mesh size, and hole size should accompany 
each of the deposited images. Image examples should be available at a 
variety of magnification levels (low, medium, high magnification). It is 
not necessary that magnification levels be standardized, variation will 
help to cover the whole resolution range, but accurate pixel size is 
critical. It is not a hard requirement that all images in the depository 
have counterparts at different magnification levels but it will be helpful 
if many of them have such correspondences. Ideally, not only the cor-
respondence but also the locations of the high magnification images 
within the lower magnification images will be helpful. 

Regarding the labeling of such publicly available images, again it is 
not necessary that all the images have all the labels. This is a situation 
known in machine learning as partial or semi-supervised labeling and a 
typical approach is to use the labels available to infer the missing labels. 
The underlying algorithm can give different weights to the labels 
depending on whether they have been provided by the user or by an 
algorithm. Some of the labels that would be useful might include: local 
ice thickness, local quality of the image (note that this quality may be 
different when evaluating squares, holes, or particles), defocus, location 
of contaminants, ice crystals or carbon edges, location of particles in 
high magnification images, CTF resolution estimation of high magnifi-
cation images, etc. In any case, what is important is that the definition of 
these labels is unambiguous and consistent across datasets deposited by 
different laboratories. The format of the metadata thus needs to be 
agreed upon and ideally built on a well-established community standard 
as for example the EMDB and EMPIAR databases. 

10. Standard ML interfaces to data collection packages 

At present there are several programs interfacing the microscope 
including SerialEM, Leginon, EPU, JADAS, and Latitude. They all sup-
port the same kind of operations (changing magnification, setting focus, 
moving the stage to specific locations, exposing the sample for a given 
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amount of time, etc.). These are the basic operations required to acquire 
images in an electron microscope. It would be very useful if they all 
offered a common programmatic, driver interface which would unify 
basic microscope operation. This would foster the development of so-
phisticated, machine learning based computer programs that could 
accelerate the development of cryoEM as an instrumental technique in 
structural biology. 

11. Extending smart data collection beyond single particle data 
acquisition 

Optimizing targeting locations for single particle data collection does 
not automatically translate to other sample and collection modalities, 
such as cell specimens intended for cryoelectron tomography (cryoET), 
microED samples, negative stain grids, liposome characterization, etc. 
Typically, these use cases will require additional prior knowledge for 
targeting parameter optimization and the areas of interest may have 
undesirable characteristics relative to SPA grids, e.g. cryoET collection 
on a cell specimen is often performed in darker areas on the grid rather 
than brighter areas. To enable the extension of smart SPA collection 
software to other sample and collection modalities, these algorithms 
should be designed to agnostically localize potential areas of interest 
and to not impose built-in strong priors for SPA collection. We foresee 
that subsequent iterations of smart collection software will extend 
beyond SPA, thereby increasing efficiency, reducing operator burden, 
and decreasing user-bias across all cryoEM collection modalities. 

12. Conclusion 

The Smart Data Collection for CryoEM Workshop provided an op-
portunity to discuss many of the challenges of developing the next 
generation of cryoEM data collection software that incorporates ma-
chine learning. These discussions do not often take place at scientific 
meetings and are not typically the subject of journal publications. The 
workshop spurred discussion between several development groups and 
likely accelerated detailed publications and release of the software for 
each of the packages. This review documents these discussions. 
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