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Chapter 1

Introduction

The Swiss law (LPMA)1 on medically assisted procreation does not allow to develop
more than three embryos in vitro beyond the pronuclear stage, but it permits cryop-
reservation of supernumerary fertilised oocytes prior to pronuclear membrane break-
down. Identification of potentially viable embryos is thus limited either to the oocytes
prior to fertilisation or to the pronuclear stage zygote . The present study was focused
on the pronuclear stage zygotes (see Figure 1.1). The aim was initiated to assess if
morphological characteristics of zygotes could be used as markers of future embryo
developmental competence using statistical tools. Thus, allowing us to transfer only
the embryos that would result in the highest pregnancy rates while minimizing the high
order multiple pregnancies.

Figure 1.1: Pronuclear stage zygotes, one pronucleus contains the genetic material
from the sperm and the other pronucleus contains the genetic material from the oocyte

Human embryos produced in vitro have long been recognised to present few char-
acteristics able to predict their implantation ability. The most widely adopted strategy
to choose viable embryos is to rely on the number of blastomeres and the grade of
the embryos at the time of embryo transfer [1, 2, 3]. However, these morphological
aspects do not correlate sufficiently with the embryonic viability to allow an univo-
cal microscopic recognition of the embryos able to produce a viable pregnancy. A
number of strategies have thus been proposed to improve the prognostic evaluation of

1Loi Fédérale sur la Procréation Médicalement Assistée, 18th Decembre, 1998
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embryo viability, including selection of early cleaving embryos [2, 4, 5], culture up to
the blastocyst stage [6] and scoring of pronucleate stage zygotes [7, 8, 9, 10, 11]. No
study has so far specifically attempted to evaluate the contribution of morphological
characteristics automatically detected by an advanced image analysis tool.

In early 2003, a Plug-in [12] usingJAVATM was developed by Antoine Beuchat
for ImageJ2 software in the biomedical imaging group (BIG)3 under the supervision
of Dr. Sorzano. Images captured under Hofman modulation of theLABR laboratorie
were used. Information resources, including systems, infrastructure and data, were
shared while respecting confidentiality. The Plug-in aims at detecting on digital images
contrast morphological characteristics automatically and exporting a database file for
statistical analysis.

Figure 1.2: ImageJ Plug-In for automated morphological measurements

We compare the performance of several classes of statistical methods for the clas-
sification of zygotes at the two pronuclei stage based on digital images. These methods
are linear discriminant analysis, classification trees, support vector machine, and ran-
dom forest. Methods are applied to samples from theLABR 4 clinic at Lausanne’s
University Hospital (CHUV).

Our aim was to analyse the patterns of the zygotes at the two pronuclei stage and to
compare the prognostic value of several morphometric parameters of fresh and frozen-
thawed zygotes in terms of pregnancy rates. This analysis should help selecting out
efficiently the zygotes with higher implantation ability and, thus, reducing the number
of transfers necessary to achieve pregnancy and the number of multiple gestations.

The report is divided as follows. In Chapter 2, we introduce the data collection
and the main notation. In Chapter 3, we examine the data and asses its quality to get
a overview of its structure. Chapter 4 we study the power of each individual feature
to classify. Chapter 5 brings the proposal of supervised classifiers including the more
commonly used with assessment of the results. Chapter 6 apply the best classifier and
we compute the probability of having a pregnancy with realistic values of theLABRto
get closer to the real situation. Finally, Chapter 7 discusses the better model strategy
and concludes. An appendix provides some plots of the data. This analysis should
demonstrate if the features are related to the implantation potential of the embryo and,

2ImageJ is being developed at the National Institutes of Health of the United States, this software is not
subject to copyright protection and is in the public domain

3Laboratory in The Institute of Applied Optics (IOA) of the Swiss Federal Institute of Technology (EPFL
- Lausanne)

4Reproductive Medicine Unit, Department of Gynaecology and Obstetrics, CHUV, Lausanne, Switzer-
land
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thus, confirm (or not) that the information about implantation is contained in the image
of the pronuclear zygotes. Data show that at the pronuclear zygote levels a series of
criteria can help selecting out embryos with significantly higher implantation abilities.



Chapter 2

Data Collection

2.1 Data

All fresh embryo transfers were performed on day 2 without any embryo selection.
All supernumerary zygotes were frozen before syngamy using a slow freezing proto-
col [13] and were thawed 24-28 h prior to transfer, 3 days after the LH peak in natural
cycles. The implantation potential were used as the main end points and submitted to
statistical evaluation.

As we have stated above, our aim in this study is to make morphometric measure-
ments and observations based on digital images (640x480 with approximately 60 Ko
and 24bit) of oocytes in order to predict the likely outcome. To achieve this two meth-
ods are available, one of them is to use a plug-in forImageJdeveloped at theEPFL
in collaboration with theLABRLaboratories. The collected dataset will be labeled as
IJPM for ImageJPronuclear MorphometricMeasurements. The other method is a vi-
sual inspection of six zygotes characteristics labeledPNS for PronuclearScore, each
characteristic can take values from 1 to 3 (from worst to best). Tables 2.1 and 2.2 are
an overview of the PNS and IJPM dataset, respectively.

Both methods (IJPM and PNS) are based on the same data collected from May 2001
to December 2002. A total of 98 fresh and 110 frozen-thawed zygotes observed under
Hofman contrast (300x) were photographed at the two pronuclei (2PN) stage. Zygotes
leading to pregnancy and not leading to pregnancy are labeled as "good" and "bad",
respectively. Within these 208 zygotes a total of 124 are "bad" and 84 are "good". As
two zygotes are transfered on day 2, only 84 zygotes leading to multiple gestations
were considered, thus we are sure that both of inseminated zygotes lead to pregnancy.
Difference between fresh zygotes and frozen-thawed is so large (see Section 4.1.2),
that in our classification studies we will also analyze zygotes separately depending on
whether they are "fresh" or "cryo"-preserved.
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2.1.1 PNS dataset

The six zygotes characteristics labeled asPNSare

1. centering of the two pronuclei (posPron)

2. proximity of the pronuclei (proxPron)

3. number of nucleoli (nbNucl)

4. polarization and realignment of the nucleoli (distrNucl)

5. cytoplasmic halo (cortReaction)

6. orientation of the pronuclei in respect to the polar bodies (gpAlign)

The CPNS (sum over the six characteristics) may thus vary from 6 to 18.

Image Icsi posPron proxPron nbNucl . . . Cryo Class
01.1041-1.bmp yes 3 3 2 . . . no good
02.1047-1.bmp yes 3 2 1 . . . yes bad

...
...

...
...

...
...

...
...

Table 2.1: Extract of PNS dataset (208 x 9), with three categorical features

2.1.2 IJPM dataset

Image Icsi posOfPronSum proxOfPronCent . . . Cryo Class
01.1041-1.bmp yes 34.96 69.85 . . . no good
02.1047-1.bmp yes 24.1 47.2 . . . yes bad

...
...

...
...

...
...

...

Table 2.2: Extract of IJPM dataset (208 x 59)

Features from IJPM dataset are extracted with the plug-in, Figure 2.1 and 2.2
illustrates the detection process. Figure 2.1 image is helpful throughout this report
if you are unfamiliar with biological terminology. The choice of which variables to
measure is crucial to successful pattern recognition [14]. Variables selection are based
on the experience of theLABRstaff. We also try to get close to the well-known PNS
features. Tables??,??and 2.5 summarize our features.
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Figure 2.1: Pattern recognition made withImageJPlug-In

Figure 2.2: Useful labels for features extraction
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Feature description
1 Title Name of the digital image
2 Icsi Fertilisation type in vitro (=no), or Intra-Cytoplasmic

Sperm Injection ICSI (=yes) (user input)
3 polarGlobal detect presence of Polar Bodies (user input)
4 posOfPronSum mean of distances between the center of the Oolemma

and the barycenter of pronuclei
5 posOfPronRel posOfPronSum divided by the Oolemma radius
6 proxOfPronCent distance between two centers of the pronuclei
7 proxOfPronRel proxOfPronCent divided by the sum of

the radius of pronuclei (if < 1 pronuclei they overlap)
8 nucleoles1 number of nucleoli in pronucleus #1

considering nucleoles1 always greater than nucleoles2
9 nucleoles2 number of nucleoli in pronucleus #2

10 nucleolesTiny same as nucleoles1 considering
radiusPronBig always greater than radiusPronTiny

11 nucleolesBig same as nucleoles1 considering
radiusPronBig always greater than radiusPronTiny

12 sumOfNucl sum of nucleoli1 and nucleoli2
13 diffOfNucl difference of nucleoli1 and nucleoli2
14 dispOfNucl1Avg mean of the distance between nucleoli in

pronucleus #1 and their gravity center
15 dispOfNucl2Avg mean of the distance between nucleoli in

pronucleus #2 and their gravity center
16 dispOfNuclTinyAvg same as dispOfNucl1Avg considering

radiusPronBig always greater than radiusPronTiny
17 dispOfNuclBigAvg same as dispOfNucl1Avg considering

radiusPronBig always greater than radiusPronTiny
18 distOfNucl1ToPronLine sum of the distances between nucleoli

in pronucleus #1 and the perpendicular barycenter line
19 distOfNucl2ToPronLine sum of the distances between nucleoli

in pronucleus #2 and the perpendicular barycenter line
20 distOfNuclTinyToPronLine same as distOfNucl1ToPronLine considering

radiusPronBig always greater than radiusPronTiny
21 distOfNuclBigToPronLine same as distOfNucl1ToPronLine considering

radiusPronBig always greater than radiusPronTiny
22 distOfNucl1ToLineAvgRel distOfNucl1ToPronLine divided by

the number of nucleoli in pronucleus #1
23 distOfNucl2ToLineAvgRel distOfNucl2ToPronLine divided by

the number of nucleoli in pronucleus #2
24 distOfNuclTinyToLineAvgRel same as distOfNucl1ToLineAvgRel
25 distOfNuclBigToLineAvgRel same as distOfNucl1ToLineAvgRel considering

radiusPronBig always greater than radiusPronTiny
26 lineVarOfNucl1Avg mean of the distance between the regression

line of nucleoli in pronucleus #1
parallel to the perpendicular barycenter line
(NA if only one nucleoli in pronucleus #1)

Table 2.3: List of IJPM features
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Feature description
27 lineVarOfNucl2Avg mean of the distance between the regression

line of nucleoli in pronucleus #2
parallel to the perpendicular barycenter line
NA if only one nucleoli in pronucleus #1)

28 lineVarOfNuclTinyAvg same as lineVarOfNucl1Avg considering
radiusPronBig always greater than radiusPronTiny

29 lineVarOfNuclBigAvg same as lineVarOfNucl1Avg considering
radiusPronBig always greater than radiusPronTiny

30 corticalReaction ratio of the Oolemma to the Cortical Reaction
(cytoplasmic halo) radius

31 alphaMin minimum angle between two intercepting lines formed
by the pronucleus centers and the polar bodies #1 to the
barycenter of pronuclei line (always < 90◦), considering
polar bodie #1 having an inferior angle to polar bodie #2

32 alphaMax maximum angle between two intercepting lines
formed by the pronucleus centers and the polar bodies
#1 to the barycenter of pronuclei line (always < 90◦)

33 alphaBetween alphaMax-alphaMin
34 alpha3D1 same angle as alphaMin

considering the polar bodie #1 being in a sphere
35 alpha3D2 same angle as alphaMin

considering the polar bodie #2 being in a sphere
36 OolemmaA axe A of the Oolemma ellipse,

considering OolemmaA always greater than OolemmaB
37 OolemmaB axe B of the Oolemma ellipse
38 OolemmaRatio ratio of the OolemmaA to the OolemmaB
39 CorticalA axe A of the Cortical Reaction ellipse,

considering CorticalA always greater than CorticalB
40 CorticalB axe B of the Cortical Reaction ellipse
41 CorticalRatio ratio of the CorticalA to CorticalB
42 Ellipse.angle angle between OolemmaA and OolemmaB
43 ellDistCentersRel ratio of distance between centers of Oolemma

and Cortical Reaction to Oolemma radius
44 ellDistBetweenRel ratio of largest distance from center of Oolemma

to the Cortical Reaction to the Oolemma radius
45 radiusPron1 radius of pronucleus #1
46 radiusPron2 radius of pronucleus #2
47 radiusPronTiny radius of pronucleus #1 radiusPronBig

always greater than radiusPronTiny
48 radiusPronBig radius of pronculeus #2
49 radiusPron1Rel ratio of radiusPron1 to the Oolemma radius
50 radiusPron2Rel ratio of radiusPron1 to the Oolemma radius
51 radiusPronTinyRel ratio of radiusPronTiny to the Oolemma radius
52 radiusPronBigRel ratio of radiusPronBig to the Oolemma radius

Table 2.4: list of IJPM features (continued)
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Feature description
53 ZS1.Centering centering of the two pronuclei
54 ZS2.Proximity proximity of the pronuclei
55 ZS.3.Nb.of.nucl number of nucleoli
56 ZS4.Line.dispersion polarization and

realignment of the nucleoli
57 ZS.4bis.Line.position polarization and

realignment of the nucleoli
58 ZS6.GP.avg.if.90 orientation of the pronuclei

in respect to the polar bodies
59 Cryo determines if the zygote was cryo-preserved

(=yes) or not (=no) (user input)
60 class determines if the zygotes leads to pregnancy

(=good) or not (=bad) (user input)

Table 2.5: list of IJPM features (continued)



Chapter 3

Data examination

The initial examination of the data is one of the most important parts of the data analysis
cycle [14], it constitutes the first phase of the analysis and comprises three parts:

1. checking the quality of the data and "cleaning" data stage;

2. univariate and multivariate analysis (for example producing plots of the data in
order to get a feel for their structure)

3. calculating summary statistics.

There are several factors that degrade data quality, the main ones being due to
errors, outliers and missing observations. Errors may occur in several ways. They may
be due to malfunctions in recording equipment, for example transcription errors. Some
errors may be difficult to detect, particularly if the value in error is consistent with
other observations. Alternatively, if the error gives rise to an outlier (an observation
that appears to be inconsistent with the remainder of the data) then a simple range test
on each variable may pick it up. Missing values can arise in a number of different ways
and it is important to know how and why they occur. Extreme care must be taken in
the coding of missing values, not treating them as special numerical values if possible.

Normality tests and outlier detection are intimately intermingled: normality tests
should not include outliers since the results might be severely influenced; on the other
hand, automated outlier detection relies on the knowledge of whether a feature is nor-
mally distributed or not. Therefore, these two steps are iteratively intermixed until a
reliable estimate of the normality of a feature is achieved and the corresponding out-
liers detected. In the discourse of this report, we discuss first the normality test, and
then we study the outlier detection.

3.1 Normality

Our data can be separated in two classes, the first class is the"good zygotes" and the
second one is the"bad zygotes". The distribution of our features has the contribution
from the two classes. Thus, the non normality of a feature may be seen as a good sign.
Non normality will be preferable to make an accurate individual classification.

The conventional test for normality when the mean ¯xR and the standard deviation
sR must be estimated is the Shapiro-Wilk test defined in the following section.
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3.1.1 Shapiro-Wilk test for normality

The Shapiro-Wilk test, calculates aW statistic that tests whether a featurex =(x1, . . . ,xp)T

comes from a normal distribution . Small values ofW are evidence of departure from
normality.W has a simple interpretation as an approximate measure of the straightness
of the normal quantile-quantile (Q−Q) probability plot. TheW-statistic for a feature
is calculated as follows:

W =
n‖wTx∗‖

s2
R

=
(∑n

i=1(wix∗i ))
2

∑n
i=1(xi − x̄R)2 (3.1)

wherex∗ is the ordered data of the original datax, s2
R represents the robust variance

of a sample (biased estimator of the population variance see Section 3.2.3), ¯xR is the
robust sample mean of the feature andw = (w1, . . . ,wn) are weights depending on the
number of observationsn (w = w(n)) [15, 16]. W is a measure of the straightness of
the normal probability plot.

We apply the Shapiro-Wilk test for all the "cleaned" features and we obtain a total
of 14 (11%) normal distributions (see Table 3.1) with aP-value lower than 0.05 (P-
value < 0.05).

QQ plots of the normal features are available in appendix C. The feature histograms
can be seen in Appendix B and the stem-and-leaf diagrams Section 3.2.2 can also
be useful to visualize the distribution. For example, if we look at Stem-and-leaf of
the featurelineVarO f Nucl2Avg (Section 3.2.2) we can observe that this distribution
cannot be normal, in fact values could not be below zero and without such values the
distribution looks more like a Poisson distribution.

feature W P-value feature W P-value
2 CorticalB 0.9968 0.052 nucleoles1 0.9545 1
3 corticalReaction 0.9955 0.186 lineVarOfNuclBigAvg 0.9534 1
4 ZS6.GP.avg.if.90 0.9907 0.667 radiusPronBig 0.9531 1
5 OolemmaB 0.9898 0.845 radiusPronTiny 0.9526 1
6 OolemmaA 0.9879 0.922 CorticalRatio 0.9504 1
7 distOfNuclBigToLineAvgRel 0.9879 0.92 radiusPron2Rel 0.9488 1
8 distOfNucl2ToLineAvgRel 0.9856 0.965 posOfPronRel 0.9468 1
9 CorticalA 0.9826 0.987 nucleolesTiny 0.9443 1

10 Ellipse.angle 0.9775 0.998 nucleolesBig 0.9414 1
11 ellDistBetweenRel 0.976 0.999 radiusPron2 0.9376 1
12 proxOfPronCent 0.9738 0.999 lineVarOfNucl1Avg 0.9355 1
13 lineVarOfNucl2Avg 0.9715 1 ZS4.Line.dispersion 0.9355 1
14 dispOfNucl1Avg 0.9712 1 posOfPronSum 0.9259 1
15 radiusPron1Rel 0.9695 1 alphaMin 0.9224 1
16 distOfNucl1ToLineAvgRel 0.9694 1 nucleoles2 0.9194 1
17 OolemmaRatio 0.9691 1 distOfNucl1ToPronLine 0.9059 1
18 proxOfPronRel 0.969 1 distOfNuclBigToPronLine 0.8885 1
19 ellDistCentersRel 0.9675 1 distOfNuclTinyToPronLine 0.8772 1
20 dispOfNuclBigAvg 0.9673 1 diffOfNucl 0.8759 1
21 radiusPron1 0.966 1 distOfNucl2ToPronLine 0.8673 1
22 dispOfNuclTinyAvg 0.9652 1 alpha3D2 0.8587 1
23 sumOfNucl 0.9648 1 ZS5.Cort.react 0.802 1
24 ZS.4bis.Line.position 0.963 1 alphaMax 0.7944 1
25 distOfNuclTinyToLineAvgRel 0.9606 1 ZS.3.Nb.of.nucl 0.7825 1
26 radiusPronTinyRel 0.9602 1 ZS1.Centering 0.7574 1
27 radiusPronBigRel 0.9597 1 alpha3D1 0.7529 1
28 dispOfNucl2Avg 0.9569 1 alphaBetween 0.6669 1
29 lineVarOfNuclTinyAvg 0.9551 1 ZS2.Proximity 0.5001 1
30 nucleoles1 0.9545 1

Table 3.1: Shapiro-Wilk Test withW-statistic, the non directional alternative hypothe-
sisH1 : ρ 6= 0 is supported at the 0.05 level for bold features

3.1.2 Multivariate normality

Multivariate normality means that the individual features are normal in a univariate
sense (see Section 3.1.1) and that their combinations are also normal. Thus, if a variable
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is multivariate normal, its components are also normal, but the reverse is not necessarily
true. In our case only two features can be considered as normal, so the whole dataset
cannot be considered as being normal multivariate.

3.2 Quality of the data and outliers

An outlier is an observation that lies outside the overall pattern of a distribution. Out-
liers must be viewed within the context of the analysis. They can be of different nature
and arise from:

- procedure error (must be eliminated)

- extraordinary event (context must be considered for the cleaning data stage)

- extraordinary observation but ordinary range of values on each feature (context
must be considered for the cleaning data stage)

The three cases illustrate the difficulty of an automated exclusion (see Section 3.2.3)
or retention of an outlier, an in-context judgment must be made considering the data
collection and objectives of the analysis.

3.2.1 "Cleaning" data stage

At this point we consider some criteria for "cleaning" our data from outliers in nu-
merical features. In our case, categorical features are binary, thus univariate outliers
methods can not be used with them.

One disadvantage of removing outliers is that the reduction of the sample size can
lead to a decrease in statistical significance. However, if we want to adjust a model to
our data with, for example, a parametric test such ast− testwe had better decreasing
the variability of our data. On the other hand, if we include all the data, we increase
the probability of having a "distorted" data set. Therefore, invalidating the statistical
results.

Although automatic outlier detection algorithms exist, they must be used with care
and a visual inspection is absolutely needed. In the following we first explain our visual
inspection and then, the automatic outlier detection.

3.2.2 Visual detection

To detect univariate outliers the Stem-and-Leaf plot is chosen. Stem-and-Leaf plot
consists of a compact summary of the information contained in a distribution with the
original data values. Stem-and-Leaf is a histogram turned on its side and allows us to
determine graphically the median and detect outliers. Moreover, detected values can
be recovered from the plot. We apply this method to detect features containing out-
liers and we concluded that only two features contained outlierslineVarO f Nucl2Avg
andcorticalReaction. The lineVarO f Nucl2Avg is not normally distributed whereas
corticalReactionis normally distributed (see Table 3.1), we will see that this property
is determinant to chose an automated outlier selection. FeatureslineVarO f Nucl2Avg
andcorticalReactionare represented in two stem-and-leaf plots, values 44.7 and 43.02,
respectively, can be outliers. To detect outliers in these distributions, the algorithms de-
scribed in Section 3.2.3 are applied.
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Parameter: lineVarOfNucl2Avg
All data
Not normally distributed

The decimal point is at the |

0 | 7933
2 | 001156688001223456899
4 | 000000012223344568899900000011122234455566888
6 | 00011122222334444667888990000111123333456677778888999
8 | 0000011222334455566677789999900122234445556688

10 | 000112236880012367889
12 | 3567784
14 | 3222
16 |
18 | 08
20 |
22 | 6
24 |
26 |
28 |
30 |
32 |
34 |
36 |
38 |
40 |
42 |
44 | 7 <- can be an outlier

Parameter: corticalReaction
All data
Normaly distributed

The decimal point is at the |

42 | 0 <- can be an outlier
44 |
46 |
48 |
50 |
52 |
54 |
56 | 9
58 | 0
60 | 8678
62 | 403788
64 | 01124528
66 | 33670011227799
68 | 044458890001345679
70 | 01122234890012457889
72 | 00112244445777890013679
74 | 000234445567800000111257
76 | 00001225557778923335677789
78 | 0223366889001245568
80 | 1257790235679
82 | 12237771144678
84 | 0223745
86 | 113570
88 | 77
90 | 4

3.2.3 Automated outlier detection

The goal of the algorithms is to select as outliers within a single featurexj those obser-
vations falling at the outer range of a distribution. Shapiro-Wilk test [15, 16] allows us
to decide whether the feature is normally distributed within a confidence interval (see
section 3.1.1). If the distribution is considerednormally distributed Method1 is used
otherwise, Method2 is employed.

Method1: robuts mean and standard deviation selection

1. select a constant factorkmean, three for example (99.74% of the observa-
tions of a normal distribution will fall within three standard deviations).

2. the conventional arithmetic mean ¯x j and standard deviation of the feature
sj are evaluated.

3. repeat step 2 and 3 without the observations falling outkmeanstandard de-
viation of the mean (Equation 3.2) until no new observation is omitted.∣∣xi j − x̄ j

∣∣
s

> kmean (3.2)

4. The last evaluated mean ¯x j and standard deviationsj are more robust and
the last omitted observations are outliers at levelkmean

1

Method2: median and mad detection

1. evaluate the median absolute deviationmadj as follows:

(a) the median ˜x j of the j-th feature is evaluated.
(b) for each observation, evaluate the absolute value of the difference be-

tween the median and that observation.
1kmean is a measure in standard deviation units of how far a score is from the mean for a normally

distributed variable, sometimes it is called absolute standard deviation score
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(c) the median of step 1b represents the value ofmadj .

(d) madj is adjusted by a factor (Equation 3.3) for asymptotically normal
consistency (Equation 3.4). Equation 3.5, is the same as Equation 3.2
replacing ¯x j by the median ˜x j andsj by madj . Sprent describes the
procedure as being relatively robust [17].

1

Phi−1(3
4)

=
1

qnorm(3
4)
≈ 1.4826 (3.3)

ensures consistency, i.e.,

E[mad∗(x j)] = σ j for x j distributed asN(µ,σ2) and largen. (3.4)

∣∣p j − p̃ j
∣∣

mad∗j
> kmedian (3.5)

3.2.4 Automated detection comparison

We use the two features selected with outliers in the visual detection section and plot
the number of outliersnoutl in percent versuskmean(Method1) andkmedian(Method2)
(see Figure 3.1). Method2 is more sensitive than Method1 since the slopenoutl/kmeanis
always greater thannoutl/kmedian. With largekmedianandkmeanthe two algorithms have
the same effect on this data. However, if we don’t know the distribution, it is better to
choose Method2 since the first method assumes a normal distribution.
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Figure 3.1: Outlier selection oflineVarO f Nucl2Avg(left graph) andcorticalReaction
(right graph) features with Method1 (’+’) and Method2 (’*’)

Finally, we select the threshold value for each feature and we obtain for the nor-
mal featurekmean= 3.1 (Equation 3.2) and for the non normal featurekmedian= 4.1
(Equation 3.5). The stem-and-leaf diagrams show the results of our "cleaning stage".
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Parameter: lineVarOfNucl2Avg
Without outliers
Not normally distributed

The decimal point is at the |

0 | 79
1 | 33
2 | 001156688
3 | 001223456899
4 | 0000000122233445688999
5 | 00000011122234455566888
6 | 0001112222233444466788899
7 | 0000111123333456677778888999
8 | 00000112223344555666777899999
9 | 00122234445556688

10 | 00011223688
11 | 0012367889
12 | 356778
13 | 4
14 | 3
15 | 222
16 |
17 |
18 |
19 | 08
20 |
21 |
22 |
23 | 6

Parameter: corticalReaction
Without outliers
Normaly distributed

The decimal point is at the |

56 | 9
58 | 0
60 | 8678
62 | 403788
64 | 01124528
66 | 33670011227799
68 | 044458890001345679
70 | 0112223489012457889
72 | 00112244445777890013679
74 | 000234445567800000111257
76 | 00001225557778923335677789
78 | 022366889001245568
80 | 1257790235679
82 | 12237771144678
84 | 0223745
86 | 113570
88 | 77
90 | 4



Chapter 4

Individual Classification Power

In this chapter we study the power of each individual feature to classify the"zygote
class". For doing this, we measure the degree of association between each feature and
the "zygote class". The degree of association is measured differently depending on
the nature of the feature:continuousor categorical.

Continuous data can assume any value within the range of scores that define the
limits of a feature. In our case, our continuous features have a relative order and
throughout the length of the scale equal differences between measurements correspond
to equal differences in the amount of the attribute being measured. For instance, the
distance between two sets of points is a continuous feature. On the other hand, categor-
ical data is used in our case to identify mutually exclusive categories. As an example
the type of conservation of the zygotes fresh and frozen is a nominal measurement
since it is used purely for purpose of identification. Thus, the analysis of the two types
of data must be made separately.

4.1 Categorical data

4.1.1 Chi-Square test for independence

The appropriate test to employ for measuring the relationship between the zygote class
and a categorical feature is theChi-Square test of independence. This test evalutes
the hypothesis that two variables are independent of one another.

A r×c= n contingency table is constructed withr rows andc columns representing
n cases. Observationoi j of the table contains the number of observations falling in the
i-th row and thej-th column see Table 4.1.

variable1 no variable1 row sum
variable2 o11 o12 o[1,.] = o11+o12

no variable2 o21 o22 o[2,.]
column sum o[.,1] = o11+o21 o[.,2] otot = o[1,.] +o[2,.]

Table 4.1: General model of ar×c contingency table
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OBS Cryo Fresh (= no Cryo) EXP Cryo Fresh (= no Cryo)
good 34 50 44.04 39.96
bad 74 48 63.96 58.04

Table 4.2: Pearson’s Chi-squared test with Yates’ continuity correction for the conser-
vation type featureχ2 = 7.3334,d f = 1, p−value= 0.006769

To apply this test we must make the following assumptions:

1. categorical features for ther× c contingency table are mutually exclusive cate-
gories

2. data represent a random sample, comprised ofn-independant observations, se-
lected from the population it represents

3. the expected frequency of each cell in the contingency table is greater or equal
to 5

These assumptions are reasonable in our case.

Results: Null versus Alternative Hypotheses

To know if the observed cell frequenciesωi j in the contingency table are different from
the expected frequenciesεi j in the underlying population represented by the samples
we employ the null and alternative hypotheses under the chi-square test forr×c table.
The null hypothesis isH0 and the alternative hypothesis isH1:

Null Hypothesis: H0 : ωi j = εi j for all cells (≡ χ = 0)
Alternative Hypothesis: H1 : ωi j 6= εi j for at least one cell (≡ χ 6= 0)

(4.1)
To evaluate the null hypothesisH0 : ωi j = εi j for all cells Yates’ correction for

continuity Equation 4.2 is computed. This correction compensates for the fact that a
continuous distribution is used to estimate a discrete distribution with the chi-square
test [18].

χ2 =
r

∑
i=1

c

∑
j=1

[
(
∣∣oi j −ei j

∣∣−0.5)2

ei j

]
, where ei j =

o[i,.]o[., j]

otot
(4.2)

The degrees of freedom employed for the analysis are computed with the number
of row and the number of columns,d f = (r−1)(c−1). In our particular case we have
2 rows, since we have two classes, and 2 columns (d f = 1). Critical chi-squared values
areχ2

.05 = 3.84andχ2
.01 = 6.63.

The results for our two categories are shown in Table 4.2 for the conservation type
and in Table 4.3 for the insemination type.

The null hypothesisH0 can be rejected at both the 0.05 and 0.01 levels for the con-
servation type (cryo or fresh)χ2 = 7.333 andp−value< 0.01. The significantχ2 value
obtained with the conservation type indicates cryo-preserved zygotes are significantly
worse than fresh zygotes. Concerning the insemination type (IVF or ICSI)χ2 = 0.015
andp−value= 0.9011, the null hypothesis can not be rejected rejected. This can also
be visually seen on Table 4.2.
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OBS Icsi Ivf (= no Icsi) EXP Icsi Ivf (= no Icsi)
good 48 36 48.93 35.07
bad 72 50 71.07 50.93

Table 4.3: Pearson"’s Chi-squared test with Yates"’ continuity correction for the in-
semination type featureχ2 = 0.0154,d f = 1, p−value= 0.9011

Measure of association

A measure of association that can be computed is the Pearson’s contingency coefficient.
The value of the contingency coefficientC is computed with Equation 4.3, whereχ2 is
the computed value for the contingency table andn is the total number of observations.
The upper limit of the contingency coefficient isCmax and can be determined with
Equation 4.4, wherek is the smaller of the two values ofr andc in the contingency
table, in our casek = 2 andCmax=

√
0.5≈ 0.71

C =

√
χ2

χ2 +n
(4.3)

Cmax=

√
k−1

k
(4.4)

Normalized association can be computedC/Cmax∈ [−1,1] and is 1 if a perfect
association exists between variables. The results for our two categories areC≈ 0.188
for the conservation type andC≈ 0.009 for the insemination type.

4.1.2 Summary

The assumptions of theChi-Square are fulfilled. Chi-Square testevaluates the inde-
pendence of two variables. We use two categorical features (Icsi/Ivf and Fresh/Cryo)
versus thegood zygoteor bad zygoteclass. Our analysis shows that the insemination
type does not affect the class of the zygote (χ2 = 0.015 andp− value= 0.9011 not
significant). On the other hand, the conservation state of the zygotes is strongly corre-
lated to its success (χ2 = 7.333 forp−value< 0.01 significant). In fact, the difference
between those two classes is so large, that in our classification studies we will also
analyze zygotes separately depending on whether they are fresh or not.

4.2 Continuous data - Measure of association and cor-
relation

In this section we measure the association between the continuous variables and the
"zygote class". In principle, this is traditionally done through thePearson product-
moment correlation (Section 4.2.1). However, the hypothesis of this measure are
violated by our data. Alternatively, we propose two other measures of association:
Kendall’s Tau correlation (Section 4.2.2) andKokmogorov-Smirnov goodness-of-
fit (Section 4.2.3). These tests allow us to have an overview of the importance of each
feature. This overview will be summarized in Section 4.2.4.
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4.2.1 Pearson product-moment correlation

The most commonly used correlation measure is thePearson product-moment cor-
relation coefficientρ ∈ [−1,1]. To apply this test we must make some assumptions:

1. the two tested features have a bivariate normal distribution

2. the sample of observations of each feature are randomly selected from the popu-
lation they represent

3. the relationship between the two features is of equal strength across the whole
range of both variables (homoscedasticity)

As was shown in Section 3.1, only two features can be considered to be normal. There-
fore, it is difficult to find pairs of bivariate normal variables. Moreover, we are measur-
ing the correlation between a continuous variable and a binary one (the zygote class)
which can never be normal. However, although violating the basics assumptions of this
association measure, it can still throw light on the degree of importance of a continuous
feature compared to the zygote class.

To define the correlation coefficient, first consider the sum of squared valuesssxx,
ssxy, andssyy, for two featuresx (xj ) andy (xk), of a set ofn observations(xi ,yi) about
their respective means,

ssxx =
n

∑
i=1

(xi − x̄)2 =
n

∑
i=1

x2−nx̄2

ssyy = =
n

∑
i=1

y2−nȳ2

ssxy =
n

∑
i=1

(xi − x̄)(yi − ȳ) =
n

∑
i=1

xy−nx̄ȳ

With this notation thePearson product-moment correlationcoefficient can be written
as follows:

ρ =
ssxy√

ssxxssyy
(4.5)

We compute thePearson product-moment correlationbetween our features and
the class. Considering that for non categorical as for non normal distribution features
we cannot conclude the relevance of the test. In fact, even if a functional relationship
exists between the class and a feature,|ρ| will be lower than 1 if the normality assump-
tion is violated. To illustrate the bias of this test, we generate an example of a normal
distributionx = N(0,1), then we apply thesign function y = sign(x+ 1) to simulate
a threshold selection atx = −1 (see Figure 4.1). This simulation can perfectly be an
idealization of our classification with one feature normally distributed and a threshold
at x = −1 splitting good zygotes (level 1 in Figure 4.1) and bad (level -1). ThePear-
son product-moment correlation factor in this case isρ = 0.694, as expected it is
different from 1.



4.2 Continuous data - Measure of association and correlation 23

−3 −2 −1 0 1 2 3

−1.0

−0.5

0.0

0.5

1.0
Classification simulation

x

y=
si

gn
(x

)

Figure 4.1: Trivial classification simulation with normal an binomial feature

Results: Null versus Alternative Hypotheses To determine if the value of the cor-
relation is large enough to allow to conclude that the underlying population correlation
coefficientρ between the two variables is other than zero, we use an inferential statis-
tical test which is based on thet distribution. The null hypothesis isH0 and the non
directional alternative hypothesis isH1.

Null Hypothesis: H0 : ρ = 0
Alternative Hypothesis: H1 : ρ 6= 0

(4.6)

To evaluate the null hypothesisH0 : ρ = 0 Equation 4.7 is applied employing the
t-distribution. Degrees of freedom are nearly constant among featuresd f = (n−2) >
120(→ ∞) in this case the critical two-tailed value ist.05 = 1.96 and t.01 = 2.58, in
other words it is the standard deviation score above and below which a proportion
equivalent to 0.25 (p = 0.75) of the cases in the distribution falls.

Our data is represented in Table 4.4. The null hypothesisH0 : ρ = 0 can be rejected
with a confidence of 95% if the absolute value ofρ is equal to or greater thant.05 = 1.96.

t =
r
√

n−1√
1− r2

(4.7)

In Table 4.4 the bold font indicates those features for which the null hypothesis is
rejected at the 95% level of confidence.

4.2.2 Kendall’s tau correlation

Definition

As for thePearson product-moment correlation, Kendall’s tau is a bivariate mea-
sure of correlation with rank-order data, this measurement represents the degree of
relationship between two variables. The population parameter estimated by the corre-
lation isτ, in our case it will be estimated for each feature and denotedτ̃. The range of
possible values ofKendall’s tau is defined by the limits -1 to +1 (τ̃ ∈ [−1,1]).

As stated above, in order to applyKendall’s tau measure of correlation we must
quantize our data. Quantizing consists in dividing our features values in to determine
ranges. In this analysis the range is divided up into 15 equal intervals. Each interval is
created by sampling the observations into 15-subsets of approximately equal size. This
is called equal probability quantizing.
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1 feature |ρ| |t| conf interval feature |ρ| |t| conf interval
2 diffOfNucl 0.303 4.529 [0.17,0.42] alphaMax 0.076 0.995 [−0.22,0.07]
3 OolemmaB 0.241 3.533 [0.11,0.37] OolemmaRatio 0.069 0.982 [−0.2,0.07]
4 alphaMin 0.192 2.537 [0.04,0.33] nucleolesBig 0.064 0.907 [−0.2,0.07]
5 CorticalB 0.191 2.774 [0.06,0.32] ZS2.Proximity 0.063 0.903 [−0.2,0.07]
6 OolemmaA 0.178 2.575 [0.04,0.31] ZS6.GP.avg.if.90 0.061 0.798 [−0.09,0.21]
7 dispOfNucl2Avg 0.17 2.459 [−0.3,−0.03] distOfNuclBigToPronLine 0.06 0.855 [−0.2,0.08]
8 nucleoles1 0.168 2.431 [0.03,0.3] radiusPronTinyRel 0.058 0.825 [−0.19,0.08]
9 CorticalA 0.165 2.383 [0.03,0.3] lineVarOfNuclBigAvg 0.058 0.829 [−0.19,0.08]

10 radiusPronBig 0.153 2.21 [0.02,0.28] CorticalRatio 0.046 0.65 [−0.18,0.09]
11 nucleoles2 0.151 2.182 [−0.28,−0.01] ZS5.Cort.react 0.044 0.633 [−0.18,0.09]
12 ZS.4bis.Line.position 0.149 2.153 [−0.28,−0.01] distOfNucl1ToPronLine 0.042 0.597 [−0.1,0.18]
13 distOfNucl2ToPronLine 0.148 2.131 [−0.28,−0.01] proxOfPronCent 0.039 0.56 [−0.1,0.18]
14 alpha3D2 0.146 1.924 [0,0.29] Ellipse.angle 0.039 0.555 [−0.1,0.18]
15 ellDistCentersRel 0.141 2.036 [0,0.27] sumOfNucl 0.038 0.539 [−0.1,0.17]
16 lineVarOfNucl2Avg 0.135 1.921 [−0.27,0] dispOfNuclTinyAvg 0.036 0.509 [−0.17,0.1]
17 distOfNuclBigToLineAvgRel 0.135 1.937 [−0.27,0] posOfPronRel 0.034 0.49 [−0.17,0.1]
18 radiusPron1 0.132 1.894 [−0.01,0.26] radiusPron2Rel 0.032 0.462 [−0.17,0.11]
19 nucleolesTiny 0.132 1.898 [−0.01,0.26] ZS.3.Nb.of.nucl 0.028 0.395 [−0.11,0.16]
20 alpha3D1 0.131 1.721 [−0.02,0.28] ellDistBetweenRel 0.027 0.385 [−0.11,0.16]
21 alphaBetween 0.127 1.671 [−0.02,0.27] lineVarOfNuclTinyAvg 0.024 0.337 [−0.11,0.16]
22 dispOfNuclBigAvg 0.125 1.801 [−0.26,0.01] radiusPron1Rel 0.015 0.213 [−0.15,0.12]
23 distOfNucl1ToLineAvgRel 0.121 1.732 [−0.25,0.02] radiusPronBigRel 0.012 0.172 [−0.13,0.15]
24 distOfNucl2ToLineAvgRel 0.115 1.647 [−0.25,0.02] posOfPronSum 0.007 0.094 [−0.13,0.14]
25 distOfNuclTinyToLineAvgRel 0.106 1.521 [−0.24,0.03] ZS1.Centering 0.005 0.077 [−0.13,0.14]
26 radiusPronTiny 0.083 1.19 [−0.05,0.22] corticalReaction 0.004 0.064 [−0.13,0.14]
27 radiusPron2 0.082 1.166 [−0.06,0.22] distOfNuclTinyToPronLine 0.002 0.027 [−0.14,0.14]
28 lineVarOfNucl1Avg 0.079 1.121 [−0.06,0.21] dispOfNucl1Avg 0.002 0.024 [−0.14,0.14]
29 ZS4.Line.dispersion 0.079 1.121 [−0.06,0.21] proxOfPronRel 0.002 0.033 [−0.13,0.14]
30 alphaMax 0.076 0.995 [−0.22,0.07]

Table 4.4: Pearson product-moment correlation of all features with theclassfeature,
the non directional alternative hypothesisH1 : ρ 6= 0 is supported at the 0.05 level for
bold features

To define the correlation coefficient, first consider a ranked featurex = (x1, . . . ,xp)T

and the class ranked featurey = (y1, . . . ,yp)T , wherexi ∈ {1,2, . . . ,6} andyi ∈ {1,2}.
If the sign of the differencexi − x j is the same as the sign of the differenceyi − y j ,
wherei and j represent respectively thei-th and j-th observation, then a pair of ranks
is said to beconcordant, otherwise it is said to bediscordant.

To compute the value of̃τ Equation 4.8 is applied. Where,nC is the number of
concordant pairs of ranksnD the number of discordant andn/2(n−1) the total number
of possible pairs of ranks.

τ̃ =
2(nC−nD)

(n−1)
(4.8)

Results: Null versus Alternative Hypotheses

To determine if the value of the correlation is large enough to allow to conclude that
underlying population correlation coefficientτ between the two variables is other than
zero, we use an inferential statistical test. The null hypothesis isH0 and the non direc-
tional alternative hypothesis isH1.

Null Hypothesis: H0 : τ = 0
Alternative Hypothesis: H1 : τ 6= 0

(4.9)

To evaluate the null hypothesisH0 : τ = 0 Equation 4.8 can be applied among fea-
tures in this case the critical two-tailed value forn> 40 isτ̃.05 = 0.218andτ̃.01 = 0.285.
Or whenn > 10 the normal distribution provides an excellent approximation of the
sampling distribution ofτ [19]. The normal approximation can made with Equa-
tion 4.10

The critical two-tailed value for a normal distribution isz.05 = 1.96andz.01 = 2.58.
The null hypothesisH0 : τ = 0 is rejected if the absolute value ofz is equal to or greater
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thanz.05 = 1.96. In Table 4.5 the bold features reject the null hypothesis at the 0.05
level of confidence.

z=
3τ̃
√

n(n−1)√
2(2n+5)

(4.10)

feature |τ̃| |z| feature |τ̃| |z|
2 ZS.3.Nb.of.nucl 0.302 5.833 distOfNuclTinyToLineAvgRel 0.079 1.519
3 diffOfNucl 0.3 5.798 ZS6.GP.avg.if.90 0.074 1.431
4 ZS2.Proximity 0.287 5.541 alpha3D1 0.068 1.316
5 ZS1.Centering 0.278 5.368 radiusPron2 0.065 1.249
6 nucleoles2 0.185 3.568 OolemmaA 0.06 1.151
7 nucleolesBig 0.182 3.514 CorticalA 0.054 1.048
8 alphaMin 0.177 3.415 lineVarOfNuclTinyAvg 0.047 0.898
9 OolemmaB 0.175 3.368 radiusPronTinyRel 0.046 0.889

10 ZS.4bis.Line.position 0.169 3.271 dispOfNucl2Avg 0.044 0.858
11 distOfNucl1ToLineAvgRel 0.161 3.116 radiusPronBigRel 0.043 0.827
12 distOfNucl2ToPronLine 0.157 3.028 proxOfPronRel 0.035 0.667
13 distOfNuclBigToLineAvgRel 0.157 3.035 posOfPronSum 0.034 0.648
14 CorticalB 0.156 3.014 alphaMax 0.03 0.575
15 radiusPronTiny 0.154 2.968 CorticalRatio 0.029 0.567
16 sumOfNucl 0.141 2.726 distOfNuclTinyToPronLine 0.026 0.495
17 alpha3D2 0.139 2.686 Ellipse.angle 0.022 0.416
18 dispOfNuclBigAvg 0.132 2.553 radiusPron1 0.016 0.311
19 ellDistCentersRel 0.124 2.393 posOfPronRel 0.015 0.291
20 lineVarOfNuclBigAvg 0.114 2.205 radiusPron2Rel 0.012 0.236
21 distOfNuclBigToPronLine 0.109 2.103 ellDistBetweenRel 0.01 0.184
22 radiusPronBig 0.108 2.079 dispOfNucl1Avg 0.008 0.153
23 lineVarOfNucl2Avg 0.105 2.032 proxOfPronCent 0.006 0.121
24 distOfNucl2ToLineAvgRel 0.101 1.944 nucleolesTiny 0.006 0.117
25 OolemmaRatio 0.101 1.948 dispOfNuclTinyAvg 0.006 0.115
26 corticalReaction 0.1 1.935 radiusPron1Rel 0.005 0.098
27 alphaBetween 0.099 1.92 nucleoles1 0.004 0.085
28 ZS5.Cort.react 0.094 1.815 lineVarOfNucl1Avg 0.002 0.04
29 distOfNucl1ToPronLine 0.081 1.572 ZS4.Line.dispersion 0.002 0.04
30 distOfNuclTinyToLineAvgRel 0.079 1.519

Table 4.5: Kendall’s tau for six ranks segmented features, the non directional alternative
hypothesisH1 : τ 6= 0 is supported at the 0.05 level for bold features

In order to applyKendall’s tau test which measures the degree of agreement be-
tween two sets of ranks, our features must be ranked withk labels. A segmentation
process must be applied in order to have the same number ofk labels in each feature.

4.2.3 Kolmogorov-Smirnov goodness-of-fit test

We expect that some features are drawn from two different distributions depending
on the zygote class (see Section 3.1), thus we would like to compare the distribution
between classes. If a difference is noticed, then there exists a significant relationship
between that feature and the zygote class.

Kolmogorov-Smirnov test is employed to compare the cumulative frequency dis-
tributions of two independent samples. To apply this test we must make some assump-
tions:

1. the sample of observations in each class are randomly selected from the popula-
tion they represent

2. all of the samples of observations in each class are independent of one other

3. the scale of measurement is at least ordinal

As can be seen our data fully meet these assuptions.
To apply theKolmogorov-Smirnov test we calculate the cumulative frequency

(normalized by the sample size) of the observations for the"good zygote" sample
Fgood and for the"bad zygote" sampleFbad. TheD-statistic is defined as the greatest
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distance between the observed and expected cumulative probability distribution at any
point. To compute the value ofD Equation 4.11 is applied, wherej represents thej-th
cumulated frequency over the two samples.

D = maxj
(
Fgood, j −Fbad, j

)
(4.11)

This method is sensitive to outliers because we take the maximum value and it can
be biased by outliers, so the stage of outliers detection (Section 3.2.1) is essential.

Results: Null versus Alternative Hypotheses To determine wether the distribution
of the "bad zygote" sample derived from its population is consistent with the distribu-
tion of "good zygote", the following two hypothesis are considered:

Null Hypothesis: H0 : Fgood = Fbad

Alternative Hypothesis: H1 : Fgood 6= Fbad
(4.12)

To conclude the goodness of fit we evaluate the null hypothesisH0 : Fgood = Fbad

Equation 4.11 is applied among features. If the calculatedD-statistic is greater than
the critical one (p < 0.05), then the hypothesis that both distribution are equal should
be rejected. In Table 4.6 the bold features reject the null hypothesis.

feature D P−value feature D P−value
2 diffOfNucl 0.27 0.002 nucleolesTiny 0.136 0.322
3 ZS.4bis.Line.position 0.252 0.004 ellDistCentersRel 0.13 0.375
4 distOfNuclBigToPronLine 0.25 0.004 OolemmaRatio 0.129 0.386
5 OolemmaB 0.248 0.004 proxOfPronCent 0.126 0.412
6 alpha3D2 0.245 0.013 lineVarOfNucl1Avg 0.125 0.424
7 alphaMin 0.228 0.021 ZS4.Line.dispersion 0.125 0.424
8 nucleoles2 0.223 0.015 radiusPronBig 0.119 0.488
9 distOfNuclBigToLineAvgRel 0.218 0.018 dispOfNucl2Avg 0.118 0.499

10 distOfNucl1ToLineAvgRel 0.209 0.027 radiusPron2 0.113 0.558
11 CorticalB 0.208 0.028 distOfNucl1ToPronLine 0.111 0.576
12 lineVarOfNucl2Avg 0.206 0.034 posOfPronRel 0.104 0.659
13 distOfNucl2ToPronLine 0.201 0.037 radiusPronTiny 0.103 0.666
14 CorticalA 0.196 0.045 dispOfNuclTinyAvg 0.101 0.699
15 distOfNucl2ToLineAvgRel 0.181 0.079 posOfPronSum 0.101 0.693
16 distOfNuclTinyToLineAvgRel 0.166 0.131 dispOfNucl1Avg 0.097 0.746
17 nucleolesBig 0.165 0.135 proxOfPronRel 0.09 0.818
18 nucleoles1 0.164 0.142 ellDistBetweenRel 0.082 0.893
19 alphaBetween 0.162 0.22 distOfNuclTinyToPronLine 0.076 0.939
20 lineVarOfNuclTinyAvg 0.157 0.182 Ellipse.angle 0.075 0.942
21 alpha3D1 0.155 0.264 sumOfNucl 0.058 0.996
22 ZS6.GP.avg.if.90 0.153 0.246 radiusPronTinyRel 0.055 0.998
23 dispOfNuclBigAvg 0.148 0.231 ZS2.Proximity 0.052 0.999
24 radiusPron1 0.148 0.229 ZS5.Cort.react 0.05 1
25 alphaMax 0.147 0.328 radiusPron2Rel 0.042 1
26 OolemmaA 0.145 0.251 radiusPron1Rel 0.032 1
27 corticalReaction 0.143 0.262 radiusPronBigRel 0.032 1
28 lineVarOfNuclBigAvg 0.138 0.315 ZS1.Centering 0.029 1
29 CorticalRatio 0.137 0.308 ZS.3.Nb.of.nucl 0.02 1
30 nucleolesTiny 0.136 0.322

Table 4.6: Kolmogorov-Smirnov goodness-of-fit test, in bold those features for which
theD-statistic is greater than the critical one

4.2.4 Correlation Summary

Severals tests for the measure of association and correlation were considered since the
assumptions of some of them are violated. A summary of important features is shown
in Table 4.7.

In Table 4.8 a score is calculated considering the order of each feature, the higher
the feature is, the higher is the score. We apply this scoring to each testPearson,
Kendall andKolmogorov and then, we add the three scores, finally we normalize the
result. Three other columns are marked with a cross if the feature were significant in
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pearson kedall kolmogorov
2 feature |ρ| feature |τ̃| feature D
3 diffOfNucl 0.303 ZS.3.Nb.of.nucl 0.302 diffOfNucl 0.27
4 OolemmaB 0.241 diffOfNucl 0.3 ZS.4bis.Line.position 0.252
5 alphaMin 0.192 ZS2.Proximity 0.287 distOfNuclBigToPronLine 0.25
6 CorticalB 0.191 ZS1.Centering 0.278 OolemmaB 0.248
7 OolemmaA 0.178 nucleoles2 0.185 alpha3D2 0.245
8 dispOfNucl2Avg 0.17 nucleolesBig 0.182 alphaMin 0.228
9 nucleoles1 0.168 alphaMin 0.177 nucleoles2 0.223

10 CorticalA 0.165 OolemmaB 0.175 distOfNuclBigToLineAvgRel 0.218
11 radiusPronBig 0.153 ZS.4bis.Line.position 0.169 distOfNucl1ToLineAvgRel 0.209
12 nucleoles2 0.151 distOfNucl1ToLineAvgRel 0.161 CorticalB 0.208
13 ZS.4bis.Line.position 0.149 distOfNucl2ToPronLine 0.157 lineVarOfNucl2Avg 0.206
14 distOfNucl2ToPronLine 0.148 distOfNuclBigToLineAvgRel 0.157 distOfNucl2ToPronLine 0.201
15 alpha3D2 0.146 CorticalB 0.156 CorticalA 0.196
16 ellDistCentersRel 0.141 radiusPronTiny 0.154 distOfNucl2ToLineAvgRel 0.181
17 lineVarOfNucl2Avg 0.135 sumOfNucl 0.141 distOfNuclTinyToLineAvgRel 0.166
18 distOfNuclBigToLineAvgRel 0.135 alpha3D2 0.139 nucleolesBig 0.165
19 radiusPron1 0.132 dispOfNuclBigAvg 0.132 nucleoles1 0.164
20 nucleolesTiny 0.132 ellDistCentersRel 0.124 alphaBetween 0.162
21 alpha3D1 0.131 lineVarOfNuclBigAvg 0.114 lineVarOfNuclTinyAvg 0.157
22 alphaBetween 0.127 distOfNuclBigToPronLine 0.109 alpha3D1 0.155

Table 4.7: Summary of measure of association and correlation with three tests in the
order of descending importance

their corresponding test. We chose a total of seven features (crosses throughout the
three columns) and we consider them significant in respect to the classgood or bad.
We keep in mind these seven features for the subsequent analysis.

summary summary
2 feature score pearson kedall kolmog. feature score pearson kedall kolmog.
3 diffOfNucl 1 x x x ZS2.Proximity 0.726 − x −
4 OolemmaB 0.966 x x x OolemmaRatio 0.726 − − −
5 alphaMin 0.959 x x x alphaMax 0.696 − − −
6 ZS.4bis.Line.position 0.939 x x x radiusPron2 0.693 − − −
7 nucleoles2 0.939 x x x nucleolesTiny 0.682 − − −
8 CorticalB 0.922 x x x lineVarOfNuclTinyAvg 0.669 − − −
9 alpha3D2 0.899 − x x ZS.3.Nb.of.nucl 0.666 − x −

10 distOfNucl2ToPronLine 0.895 x x x corticalReaction 0.662 − − −
11 distOfNuclBigToLineAvgRel 0.892 − x x distOfNucl1ToPronLine 0.659 − − −
12 distOfNucl1ToLineAvgRel 0.875 − x x sumOfNucl 0.659 − x −
13 lineVarOfNucl2Avg 0.851 − x x CorticalRatio 0.652 − − −
14 nucleolesBig 0.834 − x − ZS1.Centering 0.639 − x −
15 CorticalA 0.828 x − x lineVarOfNucl1Avg 0.625 − − −
16 distOfNuclBigToPronLine 0.821 − x x ZS5.Cort.react 0.622 − − −
17 dispOfNuclBigAvg 0.811 − x − ZS4.Line.dispersion 0.615 − − −
18 distOfNucl2ToLineAvgRel 0.811 − − − radiusPronTinyRel 0.608 − − −
19 ellDistCentersRel 0.804 x x − proxOfPronCent 0.601 − − −
20 OolemmaA 0.801 x − − posOfPronRel 0.578 − − −
21 alphaBetween 0.797 − − − Ellipse.angle 0.568 − − −
22 radiusPronBig 0.794 x x − posOfPronSum 0.564 − − −
23 distOfNuclTinyToLineAvgRel 0.784 − − − dispOfNuclTinyAvg 0.554 − − −
24 alpha3D1 0.777 − − − proxOfPronRel 0.544 − − −
25 nucleoles1 0.75 x − − ellDistBetweenRel 0.541 − − −
26 radiusPronTiny 0.747 − x − radiusPronBigRel 0.534 − − −
27 dispOfNucl2Avg 0.747 x − − distOfNuclTinyToPronLine 0.53 − − −
28 lineVarOfNuclBigAvg 0.736 − x − radiusPron2Rel 0.527 − − −
29 ZS6.GP.avg.if.90 0.73 − − − dispOfNucl1Avg 0.517 − − −
30 radiusPron1 0.726 − − − radiusPron1Rel 0.49 − − −

Table 4.8: Columns are marked with a cross if the feature is significant for each test

4.2.5 Principal Components Analysis

The purpose ofprincipal components analysis (PCA)is to find a smaller group of
underlying variables (p) that describe the data. These new variables (r) are uncorrelated
linear combinations of the original variables (p > r). The new variables rarely lead to
a greater understanding of the data, it is difficult to find a meaning for them. On the
other hand, the smaller new group of variables allows us to

• provide a relevant set of features for a classifier

• reduce redundancy;
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None of these two applications are relevant to us in this case. We will make use ofPCA
with a different goal: measure the contribution of each feature to the overall variance.
In this way, if a feature has a strong contribution to the overall variance, it means either
that that feature is very noisy or that it is strongly related to an underlying physical
process (helpfully the zygote class).

PCA is an eigenanalysis, it can be obtained using thecovariance (C)or thecor-
relation (R) matrix (see Equations 4.13a and 4.13b). We want to give all features the
same variation by standardizing, so we will make use of the correlation matrix.

We perform aneigenvector decompositionof R defined by Equation 4.13b. Prin-
cipal components can be determined using eigenvectors as coefficients in the linear
combination of the variables. LetX = (x1,x2, . . . ,xp) be our set of original features,
cxy represent the covariance between featuresx (xj ) andy (xk) (see Equation 4.13a).
We useR of rank r to calculate an orthogonal basis by finding real positiveeigenval-
uesλ1, . . . ,λr (R is symmetric positive definite) and eigenvectorsci . Eigenvectors and
eigenvalues are the solutions of Equation 4.15. We order the eigenvectors in the order
of descending eigenvalues, it is equivalent to the order of largest correlation.

C =

 c1 . . . c1r
...

...
...

cr1 . . . cr

 , R =

 1 . . . r1r = c1r
c1cr

...
...

...
rr1 = cr1

c1cr
. . . 1


(4.13a)

cxy =
ssxy

(n−1)
=

1
n−1

n

∑
i=1

(xi − x̄)(yi − ȳ), rxy =
cxy

cxxcyy

n

∑
i=1

(xi − x̄)(yi − ȳ)

(4.13b)

Rci = λici , (R−λi I)ci = 0 (4.14)

non trivial solutions for |R−λI | (4.15)

Results

In this section we first study the contribution of each principal component to the overall
variance, then we study the contribution of each feature within each component.

The first principal component (component1) is the component that explains the
greatest part of the variation, then after the first component the second component
component2 explains the greatest part of the variation, and so on. A bar plot of the
relative variance of the 37 first components is shown in Figure 4.2. This relative vari-
ance of each component represents the contribution of each component to the overall
variance. The decrease in contributions from the principal components is relatively
low, to obtain 99% of the overall variance, 37 first components must be used; with ten
components we have only 52% of the overall variance. Variance of components 50 (r)
to 56 (p) are equal to zero, so the underlying variables that describe the data have a
smaller dimension (r < p).

In Table 4.9 you can find the absolute value of the first three ordered components
(ci , i ∈ {1,2,3}). In bold font are those features for which the power to classify the
"zygote class" tests are significant at 0.05 level of confidence (see Section 4.2.4).
These features are also marked with a circle in the 2-dimensional representation of the
data (Figures 4.3, 4.4, 4.5). It can be seen that significant variables are widespread



4.2 Continuous data - Measure of association and correlation 29

Comp.1 Comp.7 Comp.13 Comp.20 Comp.27 Comp.34

8.51 %
6.62 %
6.17 %
5.2 %
5.11 %
4.68 %
4.6 %
4.07 %
3.94 %
3.59 %

10 first components:  0.52 % of variance
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Figure 4.2: Relative variance of the 37 first components, 99% of the overall variance

on the PCA axis. This means that they are not too much correlated among them and,
therefore, they bring enough information about the data set.

Bold features in Table 4.9 features are scattered across columns, that illustrates
the fact that noisy features has a strong contribution to the overall variance and that a
classification with these components is not recommended. This components can still
throw light on the degree of correlation of features for which the power to classify the
"zygote class" tests were significant.
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Figure 4.3:component1 function ofcomponent2

Each principal component is a linear combination of the initial data involving dif-
ficulties to find a meaning with a set of them, especially in our case, some explanation
of the importance of each feature may be necessary to get the methods adopted, fur-
thermore to provide a reasonable summary of the data nearly all components must be
used. However, this test was useful to measure the contribution of each feature to the
overall variance. PCA is a popular technique in pattern recognition. However, PCA is
not optimized for class separability. An alternative is thelinear discriminant analysis
(see Section 5.3).
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feature |component1| feature |component2| feature |component3|
2 distOfNucl1ToPronLine 0.248 radiusPronTiny 0.304 proxOfPronCent 0.295
3 distOfNuclBigToPronLine 0.236 radiusPron2 0.278 proxOfPronRel 0.269
4 sumOfNucl 0.232 radiusPronBig 0.278 posOfPronRel 0.229
5 distOfNucl2ToPronLine 0.225 ZS.4bis.Line.position 0.265 radiusPronTinyRel 0.211
6 nucleoles1 0.21 radiusPronTinyRel 0.265 ZS1.Centering 0.204
7 distOfNuclTinyToPronLine 0.209 radiusPron1 0.261 posOfPronSum 0.203
8 ZS.3.Nb.of.nucl 0.202 radiusPron2Rel 0.248 radiusPron2Rel 0.197
9 nucleolesBig 0.197 radiusPronBigRel 0.246 ZS.3.Nb.of.nucl 0.184

10 nucleoles2 0.189 distOfNucl1ToLineAvgRel 0.244 sumOfNucl 0.184
11 dispOfNucl1Avg 0.187 distOfNuclTinyToLineAvgRel 0.227 nucleoles1 0.183
12 dispOfNuclBigAvg 0.177 radiusPron1Rel 0.224 lineVarOfNucl1Avg 0.183
13 ZS4.Line.dispersion 0.176 distOfNuclBigToLineAvgRel 0.19 ZS2.Proximity 0.179
14 ZS.4bis.Line.position 0.166 ZS2.Proximity 0.174 distOfNuclTinyToLineAvgRel 0.163
15 radiusPronBigRel 0.163 distOfNucl2ToLineAvgRel 0.172 nucleolesBig 0.162
16 dispOfNuclTinyAvg 0.162 proxOfPronRel 0.162 ZS.4bis.Line.position 0.155
17 dispOfNucl2Avg 0.162 distOfNucl1ToPronLine 0.135 OolemmaA 0.148
18 nucleolesTiny 0.148 distOfNuclBigToPronLine 0.106 radiusPronTiny 0.146
19 lineVarOfNucl1Avg 0.148 alphaMax 0.091 ZS4.Line.dispersion 0.143
20 radiusPronBig 0.146 ellDistCentersRel 0.086 distOfNucl2ToLineAvgRel 0.142
21 lineVarOfNuclBigAvg 0.145 distOfNuclTinyToPronLine 0.086 radiusPron2 0.141
22 radiusPron1Rel 0.143 ellDistBetweenRel 0.083 radiusPronBigRel 0.137
23 distOfNuclBigToLineAvgRel 0.142 lineVarOfNucl2Avg 0.078 ZS5.Cort.react 0.129
24 distOfNucl1ToLineAvgRel 0.141 nucleolesTiny 0.071 nucleoles2 0.128
25 radiusPron1 0.132 dispOfNuclTinyAvg 0.067 radiusPron1Rel 0.127
26 distOfNuclTinyToLineAvgRel 0.124 dispOfNucl1Avg 0.065 lineVarOfNuclBigAvg 0.126
27 lineVarOfNucl2Avg 0.124 ZS1.Centering 0.062 dispOfNucl1Avg 0.125
28 radiusPronTinyRel 0.121 posOfPronRel 0.061 alphaMax 0.121
29 lineVarOfNuclTinyAvg 0.121 ZS6.GP.avg.if.90 0.06 corticalReaction 0.119
30 distOfNucl2ToLineAvgRel 0.12 ZS4.Line.dispersion 0.059 ellDistBetweenRel 0.116
31 radiusPron2Rel 0.118 nucleolesBig 0.058 nucleolesTiny 0.111
32 posOfPronRel 0.117 CorticalB 0.058 dispOfNuclBigAvg 0.11
33 proxOfPronCent 0.116 alpha3D2 0.058 alphaBetween 0.107
34 radiusPronTiny 0.113 posOfPronSum 0.058 alpha3D1 0.105
35 posOfPronSum 0.11 distOfNucl2ToPronLine 0.056 ZS6.GP.avg.if.90 0.104
36 radiusPron2 0.107 proxOfPronCent 0.055 distOfNucl1ToLineAvgRel 0.102
37 ZS1.Centering 0.103 alphaBetween 0.054 diffOfNucl 0.098
38 diffOfNucl 0.079 corticalReaction 0.052 OolemmaB 0.097
39 proxOfPronRel 0.076 alpha3D1 0.05 lineVarOfNuclTinyAvg 0.089
40 OolemmaB 0.072 lineVarOfNuclTinyAvg 0.047 ellDistCentersRel 0.083
41 OolemmaRatio 0.072 OolemmaA 0.046 alpha3D2 0.076
42 alpha3D1 0.065 CorticalA 0.044 distOfNuclBigToLineAvgRel 0.073
43 alphaMax 0.06 lineVarOfNuclBigAvg 0.043 distOfNuclBigToPronLine 0.07
44 Ellipse.angle 0.059 ZS.3.Nb.of.nucl 0.041 distOfNuclTinyToPronLine 0.062
45 alphaBetween 0.048 OolemmaRatio 0.034 radiusPronBig 0.053
46 CorticalB 0.047 dispOfNucl2Avg 0.033 radiusPron1 0.046
47 ZS2.Proximity 0.043 diffOfNucl 0.032 CorticalB 0.042
48 CorticalRatio 0.035 dispOfNuclBigAvg 0.031 distOfNucl1ToPronLine 0.036
49 ZS6.GP.avg.if.90 0.034 nucleoles2 0.024 CorticalRatio 0.034
50 alpha3D2 0.025 alphaMin 0.024 distOfNucl2ToPronLine 0.03
51 alphaMin 0.025 Ellipse.angle 0.024 OolemmaRatio 0.029
52 ellDistBetweenRel 0.021 CorticalRatio 0.022 lineVarOfNucl2Avg 0.029
53 ellDistCentersRel 0.017 ZS5.Cort.react 0.02 CorticalA 0.011
54 CorticalA 0.012 lineVarOfNucl1Avg 0.017 dispOfNuclTinyAvg 0.006
55 OolemmaA 0.01 nucleoles1 0.011 alphaMin 0.006
56 corticalReaction 0.003 sumOfNucl 0.004 dispOfNucl2Avg 0.004
57 ZS5.Cort.react 0.003 OolemmaB 0.002 Ellipse.angle 0.001

Table 4.9: Absolute value of the first three ordered components, in bold font are those
features for which the power to classify the zygote class are significant
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Chapter 5

Supervised Classifiers

We start this chapter with some definitions that will be useful to assess the quality of the
classifier at hard (Section 5.1). Then we explain two different classification strategies
that will be used throughout the chapter. Finally, we show the essential theory and the
results obtained with a full battery of classifiers.

Our goal in this chapter is to predict the implantation potential of the zygotes
yi ∈ {1,2} based on ai-th observationxi . Each zygote potential data are divided
in three classes, zygotes leading to pregnancy (twins) zygotes no leading to pregnancy
and uncertain zygotes (see Chapter 2). Only the first two classes are going to be used
in this chapter.

Two datasets are compared, the first one is thePNS zygote scoring data, zygotes
were visually scored from one to three for proximity, orientation and centering of the
pronuclei, cytoplasmic halo, and number and polarisation of the nucleoli. From these
individual scores, a cumulated pronuclear score labeledPNSis calculated. The second
dataset is the data collected with theImageJ Plug-In, pronuclear measurements were
made (see Chapter 2) and it is labeledIJPM . Furthermore each dataset can also be
divided in fresh and frozen-thawed zygotes labeledfresh andcryo, respectively (see
Section 2.1.2).

5.1 Classification accuracy

To assess the performance of our classifiers, theerror rate will be computed splitting
our data in two parts, the training set and the test set. Several procedures are available
to compute the error rate. Three of them arek-fold cross-validation (5.1),bootstrap
(5.1) andholdout estimate. The first two methods are used throughout this chapter.
In fact, k-fold cross-validation technique is superior thanholdout estimate, giving
reduced bias for small data sets [20]. Furthermore, k-fold cross-validation (ifk 6=
n) is also superior in terms of variance thanleave-one-out cross-validation(k = n)
procedure. Indeed if the prediction rule is unstable the leave-one-out procedure will
have high variance, the sets being too similar to the full data set. Concerning bootstrap
procedure, it has proved superior to many other techniques [14] making an efficient use
of the data also compared to the holdout estimate procedure using only a little part of
the data in the training process.

Before computing errors rates let us introduce some notation. Let the training data
be Y = {yi , i = 1, . . . ,m} and letω = {ωi , i = 1, . . . ,m} be the true categorical class
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labels. Now consider our classifier built with the training datay and its corresponding
class labelso = {oi = 1, . . . ,m} assigned with a given classifier. Now letQ(ωi ,oi) be
the loss function

Q(ωi ,oi) =
{

0 if ωi = oi (correct classification)
1 if ωi 6= oi (misclassified)

(5.1)

Let eA be theapparent error rate for a given classifier, necessary to calculate the boot-
strap error rate. The apparent error rate is obtained by cumulating the errors through
the training data.

eA =
1
m

m

∑
i=1

Q(ωi ,oi) (5.2)

This error rate is optimistically biased, in fact we consider the same data to measure
the error and to build the classifier. The following sections summarize the k-fold cross-
validation and the bootstrap algorithms.

k-fold cross-validation

k-fold cross-validation is an estimator method based on resampling. k-fold cross-
validation algorithm is created by sampling the observations intok-subsets of approxi-
mately equal size, then classifyk times, each time leaving out one of the subsets from
training, but using only the omitted subset to compute the misclassification error rate.
It is implemented as follows

1. Sample the data intok-subsets of approximately equal sizeY = {yi , i = 1, . . . ,k})

2. Generate the classifier with a data set each time leaving out one of thek-subsets
from trainingYC

j , whereY j is thek-th subset andYC
j is its complementary subset

Y j ={yi , i = 1, . . . ,

⌊
1
k

⌋
}

YC
j ={yi , i = 1, . . . ,

⌊
n(k−1)

k

⌋
}, Y = Y j ∪YC

j

3. Compute thej-th k-fold error rateek
j using only the omitted subset

Repeat these stepsk times, error rate is given by

ek =
1
k

k

∑
j=1

ek
j (5.3)

10-fold cross-validation displayed lower variance compared to leave-one-out cross-
validation [21] because the leave-one-out training sets are too similar to the full data set
and so we apply 10-fold cross-validation to our classifiers to asses their performance.

With this procedure, aconfusion matrix can be constructed. A confusion matrix
contains information about actual and predicted classifications done by a classifier.
Performance of such systems is commonly evaluated using the data in the matrix. The
following table shows the confusion matrix for a two class classifier.a andd is the
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true predicted bad (b) good (g)
bad (B) a b
good (G) c d

Table 5.1: Example of a confusion matrix

number of correct predictions of bad and good, respectively,b andc is the number of
incorrect predictions of bad and good. In the rest of the chapter, for each classifier, to
get reliable estimates we ran 100 cycles of tenfold cross-validation error rate estimation
to assess the error rate variation. Thus, the number of correct and incorrect predictions
is the average over these cycles, furthermore we normalize the table dividing it by the
sum of predictions.

We use boxplots confusion tables and histograms to summarize the error rates. In
histograms, the gray vertical line represents CPNS misclassification error (Table 5.3).
k-fold cross-validation cannot be applied toPNS error, indeed the classifier built
using a subset in step 2 of Section 5.1 is always the same because it is fixed by the
LABR(w = 1p×1 andw0 = 13). Thus, we cannot obtain its variance.

Bootstrap

Bootstrap is another method for estimating the generalisation errorcorrected for bias.
As we saw above, it has proved superior to many other techniques [14]. This technique
was first developed by Efron (1979). The basic idea involves sampling with replace-
ment to produce random samples of sizem from the original data. Each of these sam-
ples is known as a bootstrap sample and each provides and estimate of the bias. Re-
peating the sampling a large number of times provides information on the variability
of the estimator, approximatively 100 subsamples might be used. It is implemented as
follows

1. Generate thej-th bootstrap data setyj according to a uniform 1/m distribution

2. Generate the classifier usingyj

3. Compute thej-th apparent error rateeA
j using the latter classifier (see Equa-

tion 5.2)

4. Calculate the actual error rateeC
j considering our whole sampley

5. Computew j = eA
j −eC

j

Repeat these steps B times and compute the bootstrap bias

Wboot =
1
B

B

∑
j=1

w j (5.4)

The bias-correctedapparent error rate is given by

eA
boot = eA−Wboot (5.5)

With the basic bootstrap procedure, the apparent error rateeA
j is obtained by con-

sidering the bootstrap data, so the same data as held in the classifier, thus a confusion
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matrix will be dramatically biased and is not enlightening. In the following, only the
bootstrap error and its deviance is used.

In the rest of the chapters, for each classifier we ran 50 cycles of bootstrap with 100
bootstrap samples each time. Misclassification rate estimation is compute and the 50
cycles allows us to assess the error rate variation.

5.2 Comparison between classification strategies

In order to assess the benefits of splitting the dataset into fresh and cryo zygotes the
error obtained with the splitted data set and the error obtained with all data are com-
pared. The error for a given classifier using all data will be referred to aseall , while the
error with the splitted dataset is calledesplit. The whole error rate for splitted data is
computed as

esplit = ef reshp(wf resh)+ecryop(wcryo) (5.6)

whereef resh is the classification error for the fresh data andp(wf resh) is the estimates
of the a priori probabilities of conservation membership. In our dataset there are as
many fresh zygotes as cryo ones, thus

p(wf resh)≈ p(wcryo)≈ 0.5

5.3 Linear discriminant analysis

assumptions: multivariate normal class densities with same covariance ma-
trix in each class

space partitioning: hyperplanes
free parameters: a priori probability of classes
advantages: rescale of the data so that the within class covariance is spher-

ical, ease of interpretation and ease of use
disadvantage: restrictive assumption of class densities, data must be full

rank (at least as many observations as features)

This section is dedicated to linear discriminant analysis (LDA), it is a classical sta-
tistical approach for predicting samples of unknown classes, based on training samples
with known classes. Linear Discriminant Analysis easily handles the case where the
within-class frequencies are unequal and their performances has been examined on ran-
domly generated test data. This method maximizes the ratio of between-class variance
to the within-class variance in any particular dataset guaranteeing maximal separabil-
ity. LDA is studied in hopes of providing better classification compared to Principal
Components Analysis. The prime difference between LDA and PCA is that PCA does
more of feature classification and LDA does data classification. In PCA, the shape and
location of the original data sets changes when transformed to a different space whereas
LDA does not change the location but only tries to provide more class separability and
draw a decision region between the given classes.

5.3.1 Mathematical background

LDA seeks a linear combinationh(x) of components ofx = (x1, . . . ,xp)T so that the
different classes are separated by hyperplanes (see Equation 5.7),w is called weight
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vector andw0 the threshold . Functionh(x) is the equation of the hyperplane with
perpendicular directionw and a perpendicular distance|w0|/|w| from the origin [14].
h(x)/|w| is the perpendicular distance from the patternx to the hyperplane.

h(x) = wTx+w0 (5.7)

A samplex is assigned to bad ifh(x) ≥ 0. Otherwise, it is assigned to good. Let
x jg (p×1) be the observation within classg containingp-features. The sample within
groupg hasng elements and the mean ofx jg is denoted bȳxg and obtained with Equa-
tion 5.8,x̄ is the mean ofp-features considering both groups.

x̄g =
1
ng

ng

∑
i=1

xig (5.8)

Now let us find the directionw. There is a space of best separation for a determined
w maximizing Equation 5.9.

φ =
wTBw
wTWw

(5.9)

whereW denotes the within-class covariance matrix (Equation 5.10) andB the between
class covariance matrix (Equation 5.11).

W =
ng

∑
j=1

G

∑
g=1

(x jg− x̄g)(x jg− x̄g)T (5.10)

B =
G

∑
g=1

ng(x̄g− x̄)(x̄g− x̄)T (5.11)

We choose the directionw that maximizesφ(w), differentiatingφ(w) and setting the
derivative to zero to find the maximum

dφ
dw

= 0 =
2Bw(wWw)−2(wBw)Ww

(wTWw)2 (5.12a)

equivalent to Bw = Ww
(

wBw
wWw

)
= φWw (5.12b)

iff W not singular W−1Bw = φw (5.12c)

In order to be able to compute the inverse of the within class covariance matrix, the
matrix must be full rank, this can be only the case if the data set has at least as many
rows as columns (necessary condition).

Equation 5.12c implies thatw must be an eigenvector ofW−1B with eigenvalueφ.
Thus,w is the eigenvector of higher eigenvalue. In our caseG = 2, matrixB of rank
one can be written as follows

B =
n1n2

n1 +n2
(x̄1− x̄2)(x̄1− x̄1) (5.13)

W−1(x̄1− x̄2) is the eigenvector associated to the eigenvalue of the matrixW−1B, so

w ∝ W−1(x̄1− x̄2) (5.14)
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We normalizew without loss of generality, the weight vector becomes

w =
W−1(x̄1− x̄2)
‖W−1(x̄1− x̄2)‖

(5.15)

The classification rule for a new observation is to assignx to bad ifh(x) = wTx+w0

is closer to ¯y1 = wT x̄1 than toȳ2, or

h(x) = wTx− 1
2
(x̄1 + x̄2) > 0 (5.16)

Another approach is to assume that the class-wise densities are multivariate Gaussian
distributions with means ¯x1 and x̄2, and common covariance matrixC (see Equa-
tion 4.13a). Then, the normal distribution for both classes becomes

p(x|g) =
1√

(2π)p|C|
e−

1
2(x−x̄1)C−1(x−x̄2) (5.17)

Classification is achieved by calculating the posterior probabilitiesp(wi |x), and
assigning the label to a class for which they are the greatest. Bayes’s rule allows us to
to compute them

p(wi |x) =
p(x|wi)p(wi)

p(x)
(5.18a)

or equivalently, (5.18b)

(5.18c)

log(p(wi |x)) = log(p(x|wi))+ log(p(wi))− log(p(x)) (5.18d)

=−1
2
(x− x̄i)TC−1(x− x̄i)− log(p(wi))+const (5.18e)

= xTC−1x̄i −
1
2

x̄T
i C−1x̄i + log(p(wi))+const= gi(x) (5.18f)

(5.18g)

The discriminant rule becomes, assignx to wi if gi > g j , for all i 6= j. The means and
the covariance matrix are unknown but using the plug-in approach all we have to do is
replacing them by their maximum likelihood estimator.

5.3.2 Results

Unweighted LDA with PNS data (CPNS)

As discussed in Section 2.1.1CPNS is the cumulated pronuclear score, this score can
be seen as anLDA classification with an unitary weight vectorw, the thresholdw0 is
already established by the laboratory tow0 = 15. This threshold can be obtained form
Figure 5.1. The implantation rate is given byd/(a+d) in Table 5.1, this rate increases
for all zygotes when the cumulated pronuclear score is greater than 8. At level 15 the
implantation rate is maximum. Hence,w0 = 15, Equation 5.7 becomes

h(x) =
p

∑
i=1

xi +15 (5.19)
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The classification becomes ifh(xi) ≥ 15, thexi zygote will be considered as having
maximum implantation potential. Right side of Figure 5.1 is the frequency of the CPNS
score, zygotes having a score of 12 are 22%, when zygotes having a score of 18 are
only 0.5% (only one zygote). Implantation rate for frozen-thawed zygotes is equal to
1 for a CPNS score greater or equal than 15. However, we can not conclude that all
cryo-preserved zygotes with a score higher than 15 lead to a pregnancy because only
one frozen-thawed has a score over 15, thus the implantation rate becomesd/(a+d) =
1/(0+1) = 1.
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Figure 5.1: Implantation rate as function of the cumulated pronuclear score (CPNS)
and CPNS frequency
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Figure 5.2: Implantation rate as function of the cumulated pronuclear score (CPNS)

Throughout this chapter,CPNS misclassification erroris compared to the misclas-
sification rate of supervised classifiers. Its confusion matrix and its values are shown
in Tables 5.2 and 5.3.

For frozen-thawed zygotes the accuracy of the classifier is very low, in fact neither
bad frozen zygote are classified as being bad nor as being good. However, the overall
classifier accuracy is of 0.3 (see Table 5.2), this fact can be explained by the small
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all data fresh cryo
true\ pred bad good bad good bad good

bad 0.549 0.044 0.392 0.0928 0.692 0.0
good 0.353 0.054 0.412 0.103 0.299 0.009

Table 5.2: Confusion matrix with CPNS procedure (unweighted LDA with PNS data)

eall ef resh ecryo esplit

CPNS error 0.398 0.505 0.3 0.402

Table 5.3: Misclassification error rate with CPNS procedure (unweighted LDA with
PNS data)
s

number of thawed-zygotes in our sample, only 26 of 59 (26/(26+59)≈ 0.3) are good.
Even if we compare all our classifiers with accuracy in Table 5.2 this fact must be taken
in account.

Conventional LDA with PNS and IJPM data

Although the variance of the error estimates for thePNSdata is smaller that those based
on theIJPM data due to noise (PNScan only take 3 values (see Section 2.1.1), whereas
values ofIJPM are continuous), the wholeIJPM dataset performs better classification
thanPNS in respect to the estimation of the error rate. The mean error estimation for
IJPM is 0.36 ± 0.02 whereas the mean forPNS is 0.39 ± 0.01 (see Table 5.6).
Concerning the sampled data (fresh or cryo) the error estimation is lower for thePNS
dataset. However, if we want to assess accuracy of classification based on error rate
estimation procedures, the classification error with divided dataesplit (cryo or fresh)
and with whole dataeall must be compared (see Equation 5.6). Within the splitted data
the PNS is better than IJPM in respect to misclassification error rate, concerning all
data together IJPM is better, hence we compareePNS

split with eIJPM
all , finally eIJPM

all < ePNS
split

(0.363 < 0.396) (see Tables 5.6). The smallest misclassification error with LDA is
obtained with the IJPM dataset, for 10-fold cross-validation and bootstrap techniques,
without distinction between their conservation type, its value is of0.363±0.02.

Histograms of classification error rate are shown in Figure 5.4. Vertical gray line
represents the error rate with the CPNS scoring in Table 5.3, the black line represents
the mean of the error rate with the LDA procedure in Table 5.6. Error rate with LDA
procedure (black) is always below the error rate with CPNS scoring (grey), except in
the case of thawed-zygotes, however we must keep in mind the fact that almost all cryo-
preserved zygotes are misclassified. CPNS error in first histogram (grey line) overlaps
the LDA classification with PNS data, that can be also a reason to choose the value 15
for the thresholdw0.

all data fresh cryo
true\ pred bad good bad good bad good

bad 0.385± 0.016 0.197± 0.016 0.24± 0.0231 0.232± 0.0231 0.449± 0.031 0.245± 0.031
good 0.169± 0.0142 0.25± 0.0142 0.261± 0.0209 0.268± 0.0209 0.164± 0.0148 0.142± 0.0148

Table 5.4: Confusion matrix for 10-fold cross-validation for IJPM data

Results with bootstrap confirm those obtained with 10-fold cross-validation, how-
ever with this approach has less variance.
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Figure 5.3: 10-fold cross validation for both set of data IJPM and PNS, each set of data
is represented entirely or is divided by the cryo-conservation feature
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Figure 5.4: Histogram of 10-fold cross validation for both set of data IJPM and PNS,
each set of data is represented entirely or is divided by the cryo-conservation feature

5.3.3 Conclusion

The main conclusion of this section is that the smallest misclassification error with
LDA is obtained with theIJPM dataset without distinction between their conservation
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all data fresh cryo
true\ pred bad good bad good bad good

bad 0.41± 0.00799 0.184± 0.00799 0.268± 0.014 0.217± 0.014 0.481± 0.0236 0.21± 0.0236
good 0.206± 0.00848 0.2± 0.00849 0.223± 0.0147 0.293± 0.0147 0.16± 0.00798 0.148± 0.00797

Table 5.5: Confusion matrix for 10-fold cross-validation for PNS data

eall ef resh ecryo esplit

PNS 0.393± 0.0132 0.446± 0.0245 0.347± 0.0189 0.396± 0.0154
IJPM 0.363± 0.0214 0.497± 0.0351 0.391± 0.0304 0.444± 0.0232

Table 5.6: Summary of 10-fold error rates
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Figure 5.5: Bootstrap error rate both set of data IJPM and PNS, each set of data is
represented entirely or is divided by the cryo-conservation feature

eall ef resh ecryo esplit

PNS 0.404± 0.00386 0.462± 0.00307 0.376± 0.00726 0.405± 0.0184
IJPM 0.398± 0.00549 0.508± 0.00606 0.439± 0.00929 0.378± 0.00942

Table 5.7: Summary of bootstrap error rates

type, its value is0.363±0.02 for 10-fold cross-validation.
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5.4 Trees
assumptions: hyperspace separation with stepwise method
space partitioning: smaller hypercubes within hypercubes
free parameters: α amount of penalisation,I(t) impurity function, f number

of features per node
advantages: ease of interpretation and ease of use
disadvantage: stepwise method, high variance and unstable classifiers

This section is dedicated to classification trees. Trees are usual classifiers in med-
ical diagnosis for their ease of interpretation and their compactness. Trees have demon-
strated good performance on a wide variety of problems in which there is not a strong
theory in an area that would clearly indicate which variables are, and are not, probably
predictors of some dependent classification. Trees will be very useful in identifying
major data trends, and hence this method is well adapted for our fixed goals. Each
endpoint of our classification tree allows us to predict whether an expected observation
belongs to the "good" or the "bad" class zygotes leading to pregnancy or zygotes not
leading to pregnancy respectively.

5.4.1 Mathematical background

Tree models used throughout this section, are hierarchical classifiers based on binary
logical rules. They divide the space intomultidimensional rectangles. In fact, a tree
cuts the feature space into smaller and smaller hypercubes, each hypercube corresponds
to a terminal node of the tree. Trees are usually displayed in a graph which has the
format of a binary decision tree, each tree has grows from the root node to the terminal
nodes (also called leaves). Three steps in the algorithm to find the "best" tree are

1. search thej-th feature that should be used at thei-th node to split the samples
into subgroups

2. select the thresholdxth on j-th feature that should be assigned at thei-th node
(an example of decision is{x ∈ℜ : x j ≤ xth})

3. choose which leaf is a terminal node

We first describesplitting rules, including the first two steps, with our features based
on theGini criterion. Then, stopping rules to assign terminal nodes.

Splitting and stopping rules

Following L. Breiman (1984) [22], the splits are carried out in a way that the selected
j-th feature and threshold at a certain node get as "pure" as possible. The decrease
in impurity at each nodet is measured with animpurity function I(t). A common
impurity function is defined by theGini criterion (5.20a).

I(t) = ∑
i 6= j

p(wi |t)p(w j |t) (5.20a)

p(wi |t) = Nj(t)/N(t) (5.20b)
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whereI(t) is the impurity at the nodet, p(wi |t) is an estimate of the probability dis-
tribution overwi , Nj(t) is the number of samples of classw j leading to the nodet and
N(t) is the total number of samples in that node (N(t) = ∑2

j Nj(t)).
The impurity functionI(t) at nodet allows us to choose the split that minimizes the

impurity at the two leafs leading to nodestL andtR left node and right node respectively,
the decrease in impurity function is

δI(t)≡∑
i 6= j

p(wi |t)p(w j |t)− (I(tR)pR+ I(tL)pL) (5.21a)

≡∑
i 6= j

p(wi |t)p(w j |t)− (∑
i 6= j

p(wi |tR)p(w j |tR)pR+ ∑
i 6= j

p(wi |tL)p(w j |tL))pL)

(5.21b)

Now we can grow our tree one step lookahead ("stepwise" method) selecting nodes
maximizing the decrease in impurity over our features. The process described above
can be applied until each terminal node contains only one observation, but often leads
to anover-fit to the training data and the classification could not prove useful. We,
thus, must stop the splitting rule process orprune the tree having "pure" (all samples
that arrive at that node belong to the same class) or nearly pure class membership. In
the following section we will describe a standard pruning algorithm to determine which
leaf is a terminal node.

Pruning the tree

The most popular pruning approach is the one proposed by Breiman (1984) [22]. The
basic idea this approach is that too big trees (having numerous leaves) yield an over-fit.
On the other hand, the misclassification rateR(t) will increase if the number of leaves
is too little. So, a compromise is searched with the cost-complexity measure.

Firstly, let’s make some definitions.Ti is a pruned subtree ofT if it has tthe same
root node. LetT̃i denote the set of terminal nodes of the treeTi , then letN(T̃i) denote
its cardinality. Finally, letα be the amount of cost of complexity (control of penaliza-
tion) of N(T̃i). The penalized misclassification rate for the nodet is Rα(t) and can be
computed as follows

Rα(t) =R(t)+α (5.22a)

Rα(Ti) = ∑
t∈ T̃i

(R(t)+α) = R(Ti)+αN(T̃i) (5.22b)

WhenRα(Ti) = Rα(t) the contribution to the cost of complexity of the subtreeTi is the
same than that for the nodet andα can be write as a function of nodet

α(t) =
R(t)−R(Ti)
N(T̃i)−1

(5.23a)

The numerator is the difference between the estimated misclassification error for the
nodet and the estimated misclassification error for the whole subtree with the same
root, the denominator is the number of terminal nodes of the subtree. Ifα = 0, there
will be no pruning (no penalization). On the other extreme, if we choseα = +∞
all nodes except the root node are removed. In practice, we can computeR(Ti) by
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estimating the amount of misclassification error at nodet, R(Ti) can also be estimated.
It is the amount of misclassification error for the subtreeTi , andN(T̃i) the cardinality
of Ti . The only free parameter is the cost-complexityα(t) reflecting the compromise
described above. The following process is used to prune the treeT

1. search a nodetk (can be more than one) with the smallest value ofα(t) = αk

2. make it a terminal node, the new tree without the sub-branches fromtk node is
labeledTk

3. calculate the newα(t) for its ancestors, always superior toαk

This process is iteratedk times until the terminal node is the root node. Now we have
a collection of treesTk (k∈ {1, . . . ,k}) and correspondingαk.

Now, we can grow an the prune our tree that fits our training set, but it can be
inefficient in classification specially when the available dataset contains less than a
thousand cases [22], thus cross-validation is used to select the best tree, enhancing the
predictability of our classifier.

Selecting the optimal tree

After the pruning of treeT iteratedk times, we have a collection of treesTk (k ∈
{1, . . . ,k}), 10-fold cross-validation is applied, we take 90% of the sample, grow the
tree using this part of the sample, prune a sequence of subtrees and calculate the error
rate for every subtree in the sequence using the rest 10% of the sample as a test set. This
is repeated 10 times, every time using different part of the sample as an estimation set
and as a test set. The problem is that we have different data to grow and to prune, thus,
αk sequences are differents. The approach described by Breiman ([22]) is to first grow
and prune using all of he data, whichs gives a sequenceαk, then form a new sequence
α̂k =

√αkαk+1 (geometric mean). When pruning trees grown with 90% of the sam-
ple, we choose the best tree from the sequence which minimize the misclassification
estimateRCV(Tk).

Let T(α) the pruned subree with all nodes havingg(t) > α, (T(α) = Tk at thek-th
stage). 10-fold cross-validation is used to prune the tree the method is as follows

1. use the prune process to generate a sequence of pruned subtreesTk of T

2. generateV subsetsLv ∈ {L1, . . . ,LV} into V parts with approximately equal size
and generate a treeTv

3. use the prune process to generate a sequence of pruned subtreesTvk of Tv (5.4.1)

4. compute the cross-validation estimate of misclassificationRCV(Tk)

RCV(Tk) =
1
V

V

∑
v=1

Rv(Tv(α̂k)) (5.24)

where,Rv is the estimate of misclassification based on the subsetLv for the tree
Tv(α̂k)) andα̂k is the geometric mean.

5. select the smallest treeTmin∈ {T1, . . . ,TK}

RCV(Tmin) = min
k

RCV(Tk) (5.25)

The final pruned tree isTmin.
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5.4.2 Results

For the tree approach, the variance of the error estimates for thePNS data is also is
smaller that those based on the IJPM data certainly due to noise as seen for LDA. The
whole PNS dataset performs better classification than IJPM in respect to the estimation
of the error rate. As the quartiles in 10-fold cross-validation overlap, the difference
is not significant. Concerning the sampled data (fresh or cryo) the error estimation is
lower for PNS dataset.

In order to assess the benefits of splitting the dataset into fresh and cryo zygotes,
the error obtained with the splitted data set and the error obtained with all data are
compared. Within the splitted data the PNS is better than IJPM in respect to mis-
classification error rate (0.423 < 0.469), concerning all data together PNS is also better
(0.423 < 0.414), results are showed in Table 5.10). Hence, we compareePNS

split with ePNS
all ,

finally ePNS
all < ePNS

split (0.414 < 0.423). The smallest misclassification error with trees is
obtained with the PNS dataset, for 10-fold cross-validation and bootstrap techniques,
without distinction between their conservation type, its value is of0.41±0.02.
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Figure 5.6: 10-fold cross validation for both set of data IJPM and PNS, each set of data
is represented entirely or is divided by the cryo-conservation feature

Histograms of classification error rate are shown in Figure 5.7. Vertical gray line
represents the error rate with the CPNS scoring in Table 5.3, the black line represents
the mean of the error rate with tree procedure in Table 5.6. Error rate with trees pro-
cedure (black) always overlap the error rate with CPNS scoring (grey), except in the
case of thawed-zygotes. Soclassification with trees using IJPM dataset do not im-
prove the classification. However, we must keep in mind the fact that almost all cryo-
preserved zygotes are misclassified. CPNS error in first histogram (grey line) overlaps
the tree classification with PNS data, as seen for LDA.

As the whole PNS dataset without splitting the dataset performs slightly better clas-
sification than IJPM in respect to the estimation of the error. We grow as an example, a
randomly chosen tree among the 100 trees with PNS dataset (Figure 7.3). In our trees,
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Figure 5.7: Histogram of 10-fold cross validation for both set of data IJPM and PNS,
each set of data is represented entirely or is divided by the cryo-conservation feature

categorical features are treated as numerical data, for example ICSI can take categori-
cal values "yes" or "no", respectively for Intra-Cytoplasmic Sperm Injection ICSI and
in vitro fertilisations, these values are converted to numerical values 1 and 0. Thus,
the threshold in node ICSI of Figure 7.3 split the ICSI fertilisation to the left if it is
greater or equal to 0.5 ("yes" label) and in vitro to the right ("no" label). Values at each
terminal node are the class counts, for example for PNS cryo data, the first terminal
node has a value of 62/18 which means that 62 bad zygotes and 18 good zygotes fall
in this terminal node. Ideally, we would like 100% of classification 70/0 in this latter
node. It is quite possible to grow the tree that fits the training so well, but it leads to a
too well adaptation to the features of that subset resulting in over-fit.

Although the misclassification rate with the uniweighted LDA (CPNS) is lower
than with the trees (0.398 < 0.41), the tree in Figure 7.3 can be useful to theLABR
for his ease of interpretation and ease of use. Furthermore, many zygotes have not a
CPNS score superior to 15, indeed the probability in our data set having a zygote with
a CPNS superior to 15 was of 10% (see Figure 5.2). And so, the advantage of the trees
is that they can be used even if the CPNS score is low.

all data fresh cryo
true\ pred bad good bad good bad good

bad 0.362± 0.0288 0.22± 0.0288 0.216± 0.0355 0.255± 0.0355 0.485± 0.041 0.209± 0.041
good 0.203± 0.0214 0.215± 0.0214 0.271± 0.0404 0.257± 0.0404 0.202± 0.0244 0.103± 0.0244

Table 5.8: Confusion matrix for 10-fold cross-validation for IJPM data

5.4.3 Conclusion

Trees approach lead to an overall higher misclassification rate compared to LDA, fur-
thermore trees show lower stability, interquartile ranges are broader than those previ-
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Classification Tree for PNS data
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Figure 5.8: Classification Tree for PNS data
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Figure 5.9: Classification Tree for PNS divided data

all data fresh cryo
true\ pred bad good bad good bad good

bad 0.39± 0.0165 0.203± 0.0165 0.2± 0.0312 0.284± 0.0312 0.586± 0.0292 0.105± 0.0292
good 0.211± 0.0152 0.196± 0.0152 0.256± 0.0323 0.259± 0.0323 0.2± 0.0084 0.108± 0.00839

Table 5.9: Confusion matrix for 10-fold cross-validation for PNS data

ously computed with LDA. Therefore, our preliminary analysis suggest that trees in
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eall ef resh ecryo esplit

PNS 0.414± 0.0207 0.541± 0.0402 0.306± 0.0292 0.423± 0.024
IJPM 0.423± 0.0296 0.527± 0.0515 0.412± 0.044 0.469± 0.0355

Table 5.10: Summary of 10-fold error rates
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Figure 5.10: Bootstrap error rate both set of data IJPM and PNS, each set of data is
represented entirely or is divided by the cryo-conservation feature

eall ef resh ecryo esplit

PNS 0.423± 0.00432 0.503± 0.00973 0.367± 0.00802 0.435± 0.00725
IJPM 0.443± 0.00797 0.496± 0.00519 0.407± 0.00951 0.452± 0.00486

Table 5.11: Summary bootstrap error rates

our case are less useful than LDA. However, trees are a useful method to summarize
data and to make a quick human diagnostic. Indeed, two quick human diagnostics can
be made before the transfer, the first is to calculate the CPNS score and the second is to
drop the zygote down the tree of Figure 7.3. The advantage of using our tree classifier
is that a zygote with a score under 15 is considered as any zygote. Hence, allowing a
classification with all zygotes as opposed to the CPNS classification. This advantage is
that in our sample, only 10% zygotes have a score over or equal to 15 (see Figure 5.2).

The main conclusion of this this section is that the smallest misclassification er-
ror with tree is obtained with the PNS dataset, for 10-fold cross-validation and boot-
strap techniques, without distinction between their conservation type, its value is of
0.41±0.02 for 10-fold cross-validation.
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5.4.4 Mathematical background

5.5 Support Vector Machines

assumptions: the larger the margin, the better the generalisation error of
the classifier

space partitioning: non-linear frontiers
free parameters : choice and parameters of KernelK, regularisation parameter

C
advantages: more powerful than LDA, not a stepwise method
disadvantage: not scale-invariant

Support vector machine (SVM)model is a nonlinear discriminant analysis. The
basic idea of SVM is to seek for a separating non-linear decision boundary (see Equa-
tion 5.26) maximizing a marginρ between two classesy1 andy2 with a higher dimen-
sional feature space. This can be achieved if the data is separable, but in practice the
data is not separable, in that case a variable must be introduced to allow the constraints
to be met.

5.5.1 Mathematical background

Separable data

For a nonlinear functionφ, SVM seeks a non-linear decision boundary which maxi-
mizes the marginρ, the assumption is that the larger the margin, the better the general-
isation error of the classifier,ω is called weight vector andω0 the bias. Classesw1 and
w2 have corresponding labelsy1 = 1 andy2 =−1. Letn be the number of observations,
the margin satisfies for both classes

y j

(
m

∑
i=1

ωiφi(xj )+ω0

)
= y j

(
ωTφ(xj )+ω0

)
≥ ρ (5.26)

Equation 5.26 is the equation of two parallel non-linear boundaries on each side of
ωTφ(xj )+ ω0 = ρ separated by the distanceρ/‖ω‖ (hyperplanes). Equivalently, we
can divideρ andω0 in Equation 5.26 byρ, the new boundaries are calledcanonical
decision boundaries

y j
(
ωTφ(xj )+w0

)
≥ 1 (5.27a)

and let, f (xj ,y j) = y j
(
ωTφ(xj )+w0−1

)
(5.27b)

and so the distance becomes 1/‖ω‖. The points that lie on the canonical boundaries are
calledsupport vectors. The maximization of the distance becomes the minimization of
‖ω‖. The problem is minimizing‖ω‖ subject to constraints (5.27b), the corresponding
Lagrangianis

L =
1
2
‖w‖2−

n

∑
j=1

λ j f (xj ,y j) (5.28)

where{λ j , i = 1, . . .n;λ j ≥ 0} are theLagrangianmultipliers. To minimize Equa-
tion 5.28 is equivalent to maximize the distance between two SVM points (1/‖ω‖)
and to minimize the distance of the same points to the boundaries of SVM.
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The dualLagrangianproblem is to maximize

D =
n

∑
j=1

λ j −
1
2

n

∑
j=1

n

∑
k=1

λ jλky jykφ(xj )Tφ(xk) (5.29)

over allλ j ≥ 0 with ∑n
j=1 λ jy j = 0. The weight vectorw can be obtained via

w =
n

∑
j=1

λ jy jφ(xj ) (5.30)

andw0 can be computed using any set of support vectorsxSV
j with associated values of

λSV
j > 0 with Equation 5.27b.

Non separable data

For non separable data, the margin in Equation 5.27a must be adjusted by a slack
variableσ j ≥ 0, Equation 5.27a and Equation 5.28 become

y j
(
ωTφ(xj )+w0

)
≥ 1−σ j (5.31a)

L =
1
2
‖w‖2 +C

n

∑
j=1

σ j −
n

∑
j=1

λ j f (xj ,y j) (5.31b)

the corresponding dual problem is maximized over all 0≤ λ j ≤C with ∑n
j=1 λ jy j = 0.

To minimize Equation 5.31b is equivalent to maximize the distance between two SVM
points (1/‖ω‖), to minimize the distance of the same points to the boundaries of SVM
and the cost for those points that are not inside of the boundaries.

The weight vectorw can be obtained via

w =
n

∑
j=1

λ jy jφ(xj ) (5.32)

andw0 can be computed using any set of support vectorsxSV
j with associated values of

0≤ λSV
j ≤ 0 with Equation 5.31b.

The prediction formula for an observation in SVM{x j , j ∈ SV} (set of support
vectors with associated values ofλ j ) is

g(x) = sign
(
ωTφ(x)+w0

)
= sign

(
n

∑
j∈SV

λ jy jφ(xj )Tφ(x)+w0

)
(5.33)

φ(x)Tφ(y) is also calledKernel function K(x,y), Equation 5.33 can be replaced by

g(x) = sign

(
n

∑
j∈SV

λ jy jK(xj ,x)+w0

)
(5.34)

5.5.2 Results

As we have presented kernels, they can sometimes improve the separability of the two
classes of samples by performing an projection of the data into a higher dimensional
feature space. Choice of the kernel the actual form of the nonlinearity is relatively
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unimportant [14], we choose the polynomial basis function kernels. However, degrees
of freedom (do f) and costs (C) may improve the classification, they can be obtained
by an iterative process choosingdo f andC for which misclassification error rate is a
minimum. The process is carried out with the data, results are shown in Table 5.12.
These results are used to design our SVM classifiers.

PNS PNS fresh PNS cryo IJPM IJPM fresh IJPM cryo
dof 3 5 4 2 4 5

C 3 1 3 9 1 3

Table 5.12: Minimum misclassification error rate according to the number of degrees
of freedom and the costs

Once again, the wholeIJPM dataset performs better classification thanPNS in
respect to the estimation of the error rate. The mean error estimation forIJPM is
0.378± 0.02 whereas the mean forPNSis 0.392± 0.02 (see Table 5.15). Concerning
the sampled data (fresh or cryo) the error estimation is also lower for theIJPM dataset.
Within the divided data the IJPM performs slightly better classification than PNS in
respect to misclassification error rate (see Tables 5.15). The smallest misclassification
error with SVM is obtained with the IJPM dataset, for 10-fold cross-validation and
bootstrap techniques, without distinction between their conservation type, its value is
of 0.378±0.02.
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Figure 5.11: 10-fold cross validation for both set of data IJPM and PNS, each set of
data is represented entirely or is divided by the cryo-conservation feature

Histograms of classification error rate are shown in Figure 5.12. Vertical gray line
represents the error rate with the CPNS scoring in Table 5.3, the black line represents
the mean of the error rate with SVM procedure in Table 5.15. Error rate with SVM
procedure (black) is always below the error rate with CPNS scoring (grey), except in
the case of thawed-zygotes, this is the same result as for LDA and trees classifiers.
Once again, we must keep in mind the fact that almost all cryo-preserved zygotes are
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misclassified.
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Figure 5.12: Histogram of 10-fold cross validation for both set of data IJPM and PNS,
each set of data is represented entirely or is divided by the cryo-conservation feature

all data fresh cryo
true\ pred bad good bad good bad good

bad 0.418± 0.0156 0.163± 0.0156 0.225± 0.0222 0.246± 0.0222 0.601± 0.0188 0.0927± 0.0188
good 0.215± 0.0156 0.204± 0.0156 0.206± 0.0209 0.323± 0.0208 0.22± 0.0171 0.0856± 0.0171

Table 5.13: Confusion matrix for 10-fold cross-validation for IJPM data

all data fresh cryo
true\ pred bad good bad good bad good

bad 0.425± 0.0143 0.169± 0.0143 0.225± 0.017 0.26± 0.017 0.59± 0.0169 0.102± 0.0169
good 0.224± 0.0118 0.183± 0.0118 0.178± 0.0209 0.337± 0.0209 0.229± 0.00841 0.0796± 0.00841

Table 5.14: Confusion matrix for 10-fold cross-validation for PNS data

eall ef resh ecryo esplit

PNS 0.392± 0.0185 0.438± 0.0277 0.33± 0.0198 0.384± 0.0176
IJPM 0.378± 0.0226 0.452± 0.0332 0.313± 0.0274 0.382± 0.0202

Table 5.15: Summary of 10-fold error rates

5.5.3 Conclusion

SVM approach lead to an overall lower misclassification rate compared to LDA, how-
ever, they show lower stability. The main conclusion of this this section is that the
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Figure 5.13: Bootstrap error rate both set of data IJPM and PNS, each set of data is
represented entirely or is divided by the cryo-conservation feature

eall ef resh ecryo esplit

PNS 0.41± 0.0102 0.467± 0.0158 0.314± 0.0116 0.39± 0.00822
IJPM 0.399± 0.0135 0.471± 0.0178 0.34± 0.0148 0.405± 0.011

Table 5.16: Summary bootstrap error rates

smallest misclassification error with SVM is obtained with the IJPM dataset, for 10-
fold cross-validation and bootstrap techniques, without distinction between their con-
servation type, its value is of0.378± 0.02 for 10-fold cross-validation. The mis-
classification error obtained with the PNS dataset, for 10-fold cross-validation is of
0.384 ± 0.0176, latter we will see that SVM leads to the best classification for the
PNS dataset.

5.6 Random Forest
assumptions: none
space partitioning: hypercubes "bagging"
free parameters: number of variables in the random subset at each node, num-

ber of trees in the forest
advantages: more robust against overfiting, more robust than other classi-

fiers with respect to noise
disadvantage: "black box" approach

A Random Forest is a classifier that is built from multiple trees generated from
random sampling of the observations, and the features. One of the reason for perform-
ing random forest to our data is that random forest is robust against over-fitting [23],
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normally leading to poor performance. Another reason for choosing Random Forest is
that Random Forest is more robust with respect to noise than other classification meth-
ods [23]. And as seen with PCA, noisy IJPM features has a strong contribution to the
overall variance for the IJPM dataset.

Ideally, we would want to find a biological meaning of a correctly classified sample,
hence understanding Random Forest "black box" is needed. For this purpose, internals
estimates of variable importance are computed in Section 5.6.4

5.6.1 Mathematical background

As seen in Section 5.4, each node in standard trees are split using the best split among
all variables, whereas in a random forest, each node is split using the best among a
subset of features randomly chosen at that node. The random forest process involves
four steps. Letn be the number of samples, and letL (n× p) be the whole training set.

1. Samplen bootstrap subsetsL = {L1, . . . ,Ln} with replacement

2. UseLv to construct the tree classifierTv without pruning (see Section 5.4), at
each node ofTv, m split random features are selected, the best split from these
features is retained.

3. Tv are used to predict samples that are not inLv, calledout-of-bagand labeled
LC

v (L = Lv∪LC
v )

4. Final prediction is unweighted prediction for eachout-of-bagestimators

A variable importance estimation can also be computed before usingTv to predict
the out-of-bag data (Step 3). If we randomly permute the value for one variable for the
out-of-bag samples, this will result in substantially decreasing our ability to classify
each individual in the sample, we can find a variable importance estimation.

The size of each bootstrap sample is equal to the size of the original training set,
but they are drawn with replacement, so each one contains some duplicates of certain
training points and leaves out other training points completely.

5.6.2 Results

Two parameters control the algorithm, the number of variables in the random subset at
each node and the number of trees in the forest. The choice of the number of features
per nodenf and number of treesnT may improve the classification, they are obtained
by an iterative process choosing for which misclassification error rate is a minimum.
Random Forest was run growing and combining 2000 trees. Results are showed in
Table 5.17. These results are used throughout this section to design our Random Forest
classifiers.

PNS PNS fresh PNS cryo IJPM IJPM fresh IJPM cryo
nb of features 1 5 1 8 1 1

Table 5.17: Minimum misclassification error rate according to the number of features,
usually one or two features gives near optimum results [23]

Convergence of the error rate for the IJPM and the PNS datasets are illustrated in
Figure 5.14. In both cases, to ensure convergence Random Forest is run growing and
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combining 100 cycles (gray lines), and then the misclassification error rate averaged
(black bold line). The generalization error rate for forest do not converge as the number
of features increase, however the number of trees does [23].
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Figure 5.14: Error rate of the prediction on the IJPM and PNS data function of the
number of trees; the x-th tree being the error rate for all trees up to the x-th. Error
converges to 0.34 and 0.39, respectively

For the Random Forest approach, the variance of the error estimates for the PNS
data is also is smaller that those based on the IJPM data certainly due to noise as seen
for the latter classifiers.

In order to assess the benefits of splitting the dataset into fresh and cryo zygotes,
the error obtained with the splitted data set and the error obtained with all data are
compared. Within the splitted data the IJPM is better than PNS in respect to misclassi-
fication error rate (0.376 < 0.4), concerning all data together PNS is also better (0.338
< 0.394) the difference between the datasets can be considered as significant as the
quartiles of IJPM and PNS in 10-fold cross-validation are well separated. Results are
showed in Table 5.20. Hence, we compareeIJPM

split with eIJPM
all , finally eIJPM

all < eIJPM
split

(0.338 < 0.376). The smallest misclassification error with trees is obtained with the
IJPM dataset. For 10-fold cross-validation and bootstrap techniques, without distinc-
tion between their conservation type, its value is of0.338±0.02.

Histograms of classification error rate are shown in Figure 5.16. Vertical gray line
represents the error rate with the CPNS scoring in Table 5.3, the black line represents
the mean of the error rate with the Random Forest procedure in Table 5.20. Error
rate with Random Forest procedure (black) is always below the error rate with CPNS
scoring (grey) even in the worst of iteration, except in the case of thawed-zygotes.
Hence, the classification with Random Forest is always better even in the worst of
iteration.

all data fresh cryo
true\ pred bad good bad good bad good

all data fresh cryo
true/perd bad good bad good bad good

bad 0.479± 0.0143 0.102± 0.0142 0.23± 0.0198 0.241± 0.0198 0.671± 0.0113 0.0231± 0.0113
good 0.236± 0.0109 0.182± 0.0109 0.188± 0.0227 0.341± 0.0227 0.299± 0.00744 0.00706± 0.00744

Table 5.18: Confusion matrix for 10-fold cross-validation for IJPM data

5.6.3 Conclusion

The main conclusion of this section is that the smallest misclassification error with
Random Forest is obtained with theIJPM dataset without distinction between their
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Figure 5.15: 10-fold cross validation for both set of data IJPM and PNS, each set of
data is represented entirely or is divided by the cryo-conservation feature
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Figure 5.16: Histogram of 10-fold cross validation for both set of data IJPM and PNS,
each set of data is represented entirely or is divided by the cryo-conservation feature

conservation type, its value is0.338±0.02 for 10-fold cross-validation. Furthermore,
with IJPM dataset, the classification with any grown forest is always more accurate
than with CPNS.
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all data fresh cryo
true\ pred bad good bad good bad good

all data fresh cryo
true/perd bad good bad good bad good

bad 0.507± 0.0106 0.0863± 0.0106 0.177± 0.0167 0.308± 0.0167 0.685± 0.00725 0.00673± 0.00725
good 0.308± 0.00809 0.099± 0.00808 0.197± 0.0226 0.318± 0.0226 0.289± 0.00913 0.0194± 0.00913

Table 5.19: Confusion matrix for 10-fold cross-validation for PNS data

eall ef resh ecryo esplit

PNS 0.394± 0.015 0.505± 0.03 0.296± 0.0127 0.4± 0.0158
IJPM 0.338± 0.0187 0.429± 0.0364 0.322± 0.0146 0.376± 0.0194

Table 5.20: Summary of 10-fold error rates
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Figure 5.17: Bootstrap error rate both set of data IJPM and PNS, each set of data is
represented entirely or is divided by the cryo-conservation feature

eall ef resh ecryo esplit

PNS 0.396± 0.00707 0.52± 0.00212 0.308± 0.000707 0.414± 0.00141
IJPM 0.375± 0.00647 0.468± 0.0108 0.324± 0.00735 0.396± 0.00676

Table 5.21: Summary bootstrap error rates

5.6.4 Variable importance

For the purpose of understanding Random Forest "black box", internals estimates of
variable importance are computed. The importance of variables changes depending on
the input parameter controlling the number of variables used at each node. Results in
this section are obtained by setting the parameter to the values of Table 5.17.

As IJPM dataset gives more accurate results, we focus our analysis on it. Fig-
ure 5.18 is the percent increase in misclassification rate as compared to the out-of-bag
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rate. Figure 5.19 represents the variation of importance of the 10 first features. First
feature represented by its boxplot is clearly detached from the others, then the decay is
slow.
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Figure 5.18: IJPM’s 40 first features, the importance of each one is as percent increase
in misclassification

The first featurelineVarO f Nucl2Avg is clearly the most important feature in re-
spect to Random Forest classification accuracy. This measure reflects the polarization
and alignment of the minority nucleoli.

We compare feature selection based on each testPearson, Kendall andKolmogorov
of Section 4.2.4 and Random Forest feature selection listed in Table 5.22. Eight of ten
significant variables are in the 15 first features selected with Random Forest. Two of
themdi f f O f Nuclandnucleoles2 are in the 26-th and 50-th position, respectively.

feature score pearson kedall kolmog.RF position
1 diffOfNucl 1 x x x 26
2 OolemmaB 0.966 x x x 2
3 alphaMin 0.959 x x x 7
4 ZS.4bis.Line.position 0.939 x x x 5
5 nucleoles2 0.939 x x x 50
6 CorticalB 0.922 x x x 12
7 alpha3D2 0.899 − x x 4
8 distOfNucl2ToPronLine 0.895 x x x 8
9 distOfNuclBigToLineAvgRel 0.892 − x x 9

10 distOfNucl1ToLineAvgRel 0.875 − x x 15

Table 5.22: Columns are marked with a cross if the feature is significant for each test

The number of features cutoff is not clearly defined, indeed a cutoff step in Fig-
ure 5.18 is not obvious. Moreover, choosing features form Table 5.22 is not clear.
Once again, this study reflects the difficulties establishing cutt-off in our features.
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IJPM: 1−10
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Figure 5.19: IJPM’s 10 first features variation

Concerning PNS dataset, the featuredistrNucl is totally detached from the others,
we will see later that this variable is strongly correlated with the conservation type. This
feature represented by the first boxplot of Figure??, is significantly more important
than the others, indeed its quartiles are well separated.
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Figure 5.20: 40 first variable most important as percent increase in misclassification

5.6.5 Supervised Classification with conservation type

In Section 4.1.2, we find that the preservation state of the zygotes was strongly corre-
lated to its success. Hence, it is interesting to find features influenced by the preserva-
tion. Thus, we use th Random Forest algorithm which is usually adapted for a measure
of feature importance. We ran 100 random forest, using 2000 trees in each of them to
estimate the importance represented in Figure 5.22.
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Figure 5.21: Variable importance as percent increase in misclassification

IJPM: cryo prediction
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Figure 5.22: Variable importance as percent increase in misclassification for cryo-
preserved zygotes

First seven of ten features are in relation to the polarisation of the nucleoli (see
Section 2.1). We can conclude, that this measure is influent to the classification of the
preservation type, at least with our dataset. Hence, if we examine these distributions a
little bit closer, our measures tells us thatwithin nucleoli dispersions and dispersion
in respect to the "pronuclei line" (see Secction 2.1) increases when the zygotes
were cryo-preserved(see Figure 5.23). Furthermore, in these ten first features two
of them are measurements of Oolemma "radius" (Oolemma is fitted to an ellipse),
Oolemma is smaller for cryo-preserved zygotes.
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Figure 5.23: Fresh (left image) and Frozen-thawed zygote (right image), nucleoli dis-
persions increases when the zygotes were cryo-preserved



Chapter 6

Improvement

The goal of this project is to improve the implantation rate of the zygotes that is cur-
rently about 16% for fresh and 10% for frozen zygotes when 8-10 zygotes are collected
and fertilized. The misclassification rates computed in our analysis of the classifiers is
not representative for the real improvement that can be achieved by using a better clas-
sifier. An improvement of 6% in the misclassification rate (CPNS compared to IJPM)
affects to the selection of a single zygote. However, the implantation rate is the output
of a much more complex process. First, two zygotes must be chosen from a set of 8
to 10 fresh zygotes (the rest of the zygotes are frozen). If these two zygotes failed to
lead to pregnancy, then other two zygotes must be chosen among the frozen ones. This
process is repeated until success or there are no more zygotes. An improvement of
6% in the misclassification rate affects to the selection of each zygote. Therefore, the
expected gain in the probability of success should be larger than 6%. Furthermore, to
accurately compute this probability, the probability of success of a fresh zygote and a
frozen zygote must be taken into account. In this section we develop the theory that
allows computing the probability of success of the whole process. As an exercise, we
start our discussion with a strategy in which only one zygote is selected at a time. This
will serve us as basis to develop the more complicated theory for the case of selecting
(as is done in practice) two zygotes at a time.

Selection of one zygote at a time

In this section we study the case in which we first select a single fresh zygote and freeze
the rest. If it does not lead to pregnancy, then we take another one from among the
frozen ones and repeat this procedure until one of the zygotes succeed or there no more
zygotes. We assume that there is initiallyN fresh zygotes. We refer to fresh zygotes
with the labelF and to cryo zygotes with labelC. We refer to zygotes actually leading
to pregnancy with the labelG (Good zygotes) and to zygotes actually not leading to
pregnancy with the labelB (Bad zygotes). Independently of whether a zygote is good
or bad, the classifier classifies it as good or bad. We refer to zygotes classified as
good with the labelg and to zygotes classified as bad with the labelb. For the sake of
clarity, at some points we start our discussion with three zygotes and, subsequently, we
generalize toN zygotes.

Each fresh zygote has a probabilityp(G|F) and p(B|F) = 1− p(G|F) of being
Good or Bad (correspondingly,p(G|C) and p(B|C) when they are frozen). These
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probabilities are assumed to be known by previous experience. Our analysis of the
confusion matrix of each classifier give us the probabilities of being classified with a
label when the zygote actually have some other label. These probabilities are different
depending on whether the zygotes are fresh or not. For instance, the confusion matrix
gives us information about the probability that a Good, fresh zygote is classified as
good, that is,p(g|G∩F). Table 6.1 summarizes all the probabilities provided by the
confusion matrices. Note that given a zygote that is actually Good, it must hold that
p(g|G∩F)+ p(b|G∩F) = 1. That means that all rows of the confusion matrices must
add up to 1.

classified as bad classified as good
actually Bad p(b|B∩F) p(g|B∩F)

actually Good p(b|G∩F) p(g|G∩F)

classified as bad classified as good
actually Bad p(b|B∩C) p(g|B∩C)

actually Good p(b|G∩C) p(g|G∩C)

Table 6.1: Probabilities provided by the confusion tables.

The first zygote in our case is selected amongN fresh zygotes. Thus, the probability
of success at the first zygote can be computed as follows.

Given any fresh zygote, there are four possibilities: either it is Good and it is clas-
sified as good (this will occur with probabilityp(G∩ g|F)), or it is Good and it is
classified as bad (p(G∩ b|F)), or it is Bad and it is classified as good (p(B∩ g|F)),
or it is Bad and it is classified as bad (p(B∩b|F)). These probabilities can be easily
computed with the data available (confusion matrices and the probability of a fresh
zygote of being Good). For instance,p(G∩ g|F) = p(g|G∩ F)p(G|F). If a zy-
gote is classified as bad (either if it is actually Good or Bad), it will not be selected.
Thus, we are left only with three possibilities: it is Good and it is classified as good
(p(G∩g|F)), or it is Good and it is classified as bad (p(G∩b|F)), or it is classified as
bad(p(b|F) = p(b|G∩F)p(G|F)+ p(b|B∩F)p(B|F)).

Given three zygotes, we will achieve success at the first choice if at least one zygote
is Good and it is classified as good. Thus, there are only six possible successful cases
summerized in Table 6.2 where #Gg|F represents the number of fresh zygotes that are
actually Good and are classified as good. For instance, the first case indicates that
the three of them are Good and classified as good (success is guaranteed). Int the
second case two of them are Good and classified as good and the other one is Bad but
classified as good. In this case, success is achieved with probability 2/3 since we have
three zygotes classified as good but only two are really Good. In the last case, two of
the zygotes are classified as bad, so they will not be chosen (independently of whether
they are actually Good or Bad). The only zygote that is classified as good is actually
Good and, for this reason, success is guaranteed.

In general, the probability of success given a certain combination of zygotes
(#Gg|F,#Bg|F,#b|F) can be easily computed as

p(success|#Gg|F,#Bg|F,#b|F) =
#Gg|F

#Gg|F +#Bg|F
(6.1)

We will achieve success at the first zygote if we are in any of the situations in
Table 6.2. Thus, we need to compute the probability of encountering each case. These
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#Gg|F #Bg|F #b|F p(success|#Gg|F,#Bg|F,#b|F)
3 0 0 1
2 1 0 2

3
2 0 1 1
1 2 0 1

3
1 1 1 1

2
1 0 2 1

Table 6.2: Probability of success at the first choice.

probabilities in turn depend on the probability of a single zygote of being actually
Good and classified as good, of being actually Bad and classified as good, or of being
classified as bad (p(G∩g|F),p(B∩g|F),p(b|F)).

The first case ((#Gg|F = 3,#Bg|F = 0,#b|F = 0)) occurs with probabilityp(G∩
g|F)3p(B∩ g|F)0p(b|F)0 since we need the three zygotes be of the same type. We
represent this case by(Gg,Gg,Gg) meaning that the first zygote is actually Good and
classified as good (Gg), the second is alsoGgand so is the third. Thus, we can see there
is a single combination of zygote labels leading ((Gg,Gg,Gg)) to the first case. How-
ever, we can find three label combinations leading to the second case:(Gg,Gg,Bg),
(Gg,Bg,Gg), (Bg,Gg,Gg). Thus, its probability is 3p(G∩g|F)2p(B∩g|F)1p(b|F)0.
In general, the probability of each case follows a multinomial distribution whose gen-
eral term is

p(#Gg|F,#Bg|F,#b|F |N) =( N
#Gg|F

)(N−#Gg|F
#Bg|F

)(N−#Gg|F−#Bg|F
#b|F

)
p(G∩g|F)#Gg|F p(B∩g|F)#Bg|F p(b|F)#b|F

(6.2)

Finally, with N = 3 zygotes, the probability of succeeding at the first zygote can be
computed as

p(success|N = 3,F) = p(success|3,0,0)p(3,0,0|3)+ p(success|2,1,0)p(2,1,0|3)+
p(success|2,0,1)p(2,0,1|3)+ p(success|1,2,0)p(1,2,0|3)+
p(success|1,1,1)p(1,1,1|3)+ p(success|1,0,2)p(1,0,2|3),

(6.3)
and, in general,

p(success|N,F) =

∑N
#Gg|F=1 ∑N−#Gg|F

#Bg|F=1 p(success|#Gg|F,#Bg|F,#b|F)p(#Gg|F,#Bg|F,#b|F |N),
(6.4)

where #b|F = N−#Gg|F−#Bg|F .
Finally, if we haveN = 3 zygotes, our current strategy chooses a fresh one. If

it fails to lead to pregnancy, we choose a cryo zygote. If it fails, we take the third
zygote. The probability of succeeding at choice 1 is, we have already proved it,
p(success|N = 3,zygote= 1) = p(success|3,F). Therefore, we fail with probability
p( f ailure|N = 3,zygote= 1) = 1− p(success|N = 3,zygote= 1). Thus, the probabil-
ity of succeeding at zygote number 2 (that was frozen) isp(success|N = 3,zygote=
2) = p( f ailure|N = 3,zygote= 1)p(success|N = 2,C). Note that the probability of
succeeding at zygote number 2 is the probability of failing at zygote number 1 and the
succeeding with a cryo zygote among 2 (because one of the 3, the fresh one, has already
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failed). Finally, if zygote number 2 fails, the probability of succeeding at zygote num-
ber 3 isp(success|N = 3,zygote= 3) = p( f ailure|N = 3,zygote= 1)p( f ailure|N =
2,zygote= 2)p(success|N = 1,C). Table 6.3 summarizes this reasoning.

Egg numberi p(success|N = 3,zygote= i)
1 p(success|3,F)
2 (1-p(success|3,F))p(success|2,C)
3 (1-p(success|3,F))(1-p(success|2,C))p(success|1,C)

Table 6.3: Probability of success selecting one zygote at a time.

In general, the probability of succeeding at zygote numberi is

p(success|N, i) =
{

p(success|N,F) i = 1

(1− p(success|N,F))
(

∏i−1
j=2 (1− p(success|N− j +1,C))

)
p(success|N− i +1,C)0 i 6= 1 (6.5)

Finally, withN zygotes, the overall probability of success of this strategy is the sum
of the probabilities of succeeding at any zygote between 1 andN, that is,

p(success|N) =
N

∑
i=1

p(success|N, i) (6.6)

Selection of two zygotes at a time

Our previous analysis addresses a strategy that is not the currently followed in practice.
Instead of selecting a single fresh zygote and freezing the rest, the current strategy
works with pairs of zygotes. First, a pair of fresh zygotes is chosen and the rest are
frozen. If both zygotes fail, then other two zygotes are thawed and implanted. If they
fail too, other two zygotes are defrozen. This procedure is iterated until success or
there are no more zygotes.

Although selecting a single zygote at a time is different from selecting a pair, our
previous analysis helps calculating the probability of success of the actual implantation
strategy. Equations 6.5 and 6.6 remain the same in the case of selecting two zygotes if
instead of interpretingi as the number of the zygote,i is the number of the pair andN
is the total number of pairs. The main difference between selecting pairs and selecting
single zygotes comes at Equation 6.4. GivenN pairs of fresh zygotes, the probability
of succeeding taking a pair of zygotes is given by

p2(success|N,F) =

p1(success|2N,F)+ p1(success|2N−1,F)− p1(success|2N,F)p1(success|2N−1,F)
(6.7)

wherep2(success|N,F) is the probability of succeeding after selecting a pair among
2N zygotes, andp1(success|M,F) is the probability of succeeding after selecting a
single zygote amongM zygotes (this probability is the one given in Equation 6.4).

Results

The probability of obtaining a Good zygote if it is fresh isp(G|F) = 0.17 while if it is
thawed it drops top(G|C) = 0.11. With these probabilities at hand and the confusion

1Data from theLABRcenter, 2003
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matrices corresponding to each of the classifiers studied in this report, we compute the
probability of having a pregnancy with our best classifier Random Forest for IJPM,
and SVM for PNS, finally we compare it to the CPNS. Results are summarized in
Figure 6.1. The probability of success after 4 attempts (i.e. 8 zygotes) for CPNS
(human expert visual inspection of six zygotes) is of0.308, for PNS dataset it is of
0.582and for IJPM dataset it is of0.656. We also compute PNS with Random Forest
and obtain0.388.

With IJPM dataset and Random Forest, the first step represents an improvement
in respect to CPNS of 21.4%. Improvement in the following step is of 7.4%. As
state above, the gain in the probability of success is larger than the improvement of
the classification error rate. PNS dataset with SVM also leads to an improvement in
respect to CPNS of 9.6%, the following step imprvement is of 9.4%.

CPNS - 15 Threshold -
P(success at pair 1)=0.262496
P(success at pair 2)=0.0239758
P(success at pair 3)=0.0148499
P(success at pair 4)=0.00626926
Total probb of success = 0.307591

PNS - Random Forest -
P(success at pair 1)=0.304239
P(success at pair 2)=0.0450919
P(success at pair 3)=0.0274029
P(success at pair 4)=0.0114865

Total probb of success=0.38822

PNS - SVM -
P(success at pair 1)=0.359229
P(success at pair 2)=0.118515
P(success at pair 3)=0.0722277
P(success at pair 4)=0.0316486

Total probb of success=0.58162

IJPM - Random Forest -
P(success at pair 1)=0.47636
P(success at pair 2)=0.0975371
P(success at pair 3)=0.0575458
P(success at pair 4)=0.0244482

Total probb of success=0.655891

Table 6.4: Probability of success computations applying CPNS, SVM to PNS dataset
and Random Forest to PNS and IJPM datasets

Four groups of vertical lines are represented in Figure 6.1, each group represents
a transfer procedure. Although, this procedure is iterated until success or there are no
more zygotes, we fix four iterations. Within each data set (IJPM and PNS), implan-
tation rates increase rapidly, then levels off. IJPM is always above CPNS and PNS,
indicating a significant improvement. Classification with IJPM dataset is clearly more
accurate.
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Figure 6.1: Implantation rate comparison after four transferts
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Conclusion

Our aim in this study is to make morphometric measurements and observations based
on digital images of zygotes in order to predict the likely outcome. To achieve this
two methods are available: one of them is to use a plug-in forImageJdeveloped at the
EPFL in collaboration with theLABRLaboratories. The collected dataset is labeled
asIJPM for ImageJPronuclear MorphometricMeasurements. The other method is a
visual inspection of six zygotes characteristics labeledPNSfor PronuclearScore, each
characteristic can take values from 1 to 3 (from worst to best).

In this report, we study the power of each individual feature to classify the "zygote
class". For doing this, we measure the degree of association between each feature and
the "zygote class". The degree of association is measured differently depending on
the nature of the feature: categorical or continuous. Categorical data were, type of
conservation of the zygotes fresh and frozen and insemination type IVF1 or ICSI 2,
we use the Chi-Square test which evaluates the independence of two variables, since
its assumptions were fulfilled. Our analysis shows that the insemination type does not
affect the class of the zygote (χ2 = 0.015 andp−value= 0.9011 not significant). On
the other hand, the conservation state of the zygotes is strongly correlated to its success
(χ2 = 7.333 forp−value< 0.01 significant). In fact, the difference between those two
classes were so large, that in our classification studies we also had to analyze zygotes
separately depending on whether they were fresh or not.

Concerning continuous features, in principle the degree of association is measured
with Pearson product-moment correlation. However, the assumptions of this measure
were violated by our data. Alternatively, we used two other measures of association,
Kendall’s Tau correlation and Kokmogorov-Smirnov goodness-of-fit. Seven features
were significant in respect to the class "good" or "bad", for each test Pearson, Kendall
and Kolmogorov.

In order to measure the contribution of each feature to the overall variance, we
made use of PCA. PCA was computed using the correlation matrix, as we wanted to
give to all features the same weight. The decrease in contributions from the principal
components were relatively low. To obtain 99% of the overall variance, 37 first com-
ponents had to be used; with ten components we had only 52% of the overall variance
(see Figure??). We cannot conclude that any feature has a strong contribution to the
overall variance. Furthermore, significant variables obtained with the degree of associ-
ation tests, were widespread on the PCA axis. This means that they are not too much

1In vitro fertilisation
2Intra-Cytoplasmic Sperm Injection
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correlated among them and, therefore, they bring enough information about the data
set.

Comp.1 Comp.7 Comp.13 Comp.20 Comp.27 Comp.34

8.51 %
6.62 %
6.17 %
5.2 %
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4.68 %
4.6 %
4.07 %
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3.59 %

10 first components:  0.52 % of variance
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Figure 7.1: Relative variance of the 37 first components, 99% of the overall variance

Then, we compared results obtained with several well-known classification meth-
ods, to identify zygotes with high implantation potential based on PNS and IJPM
datasets. To compare the performance of the classifiers cross-validation within the
original data set and bootstrap techniques were used to provide a nearly unbiased esti-
mate.

In order to assess the benefits of splitting the dataset into fresh and cryo zygotes
when classifying, the error obtained with the divided data set and the error obtained
with all data were compared. The error for a given classifier using all data was referred
to aseall , while the error with the splitted dataset was calledesplit.

LDA is a classical statistical approach for predicting samples of unknown classes,
based on training samples with known classes. LDA tries to provide more class sep-
arability and draw a decision region between the given classes maximizing the ratio
of between-class variance to the within-class variance in any particular dataset guar-
anteeing maximal separability. CPNS scoring was seen as an LDA classification with
an unitary weight vector, the threshold was already established by the laboratory to 15.
This selection was confirmed by computing the implantation rate as function of the
CPNS (see Figure 7.2). Indeed, the implantation rate increases for all zygotes when
the cumulated pronuclear score is greater than 8. At level 15 the implantation rate is
maximum.

The smallest misclassification error with equiweighted LDA (CPNS) is obtained
without distinction between their conservation type, its value iseall = 0.398 for 10-
fold cross-validation. For frozen-thawed zygotes the accuracy of the classifier was very
low. In fact, all frozen zygotes were classified as bad. However, the overall classifier
accuracy was of 0.3, this fact was explained by the small number of thawed-zygotes in
our sample, only 26 of 59 (26/(26+59)≈ 0.3) were good. Even if we compare all our
classifiers with this accuracy, this fact was taken in account.

The whole IJPM dataset performs better classification than PNS for conventional
LDA in respect to the estimation of the error rate. The mean error estimation for IJPM
without distinction between their conservation type waseall = 0.36 ± 0.02 whereas
the mean for PNS was 0.39 ± 0.01. However, the variance of the error estimates for
the PNS data was smaller that those based on the IJPM data due to noise (PNS took
only 3 values, whereas values of IJPM were continuous).
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Figure 7.2: Implantation rate as function of the cumulated pronuclear score (CPNS)

Trees classifiers lead to an overall higher misclassification rate compared to LDA,
furthermore trees showed lower stability, interquartile ranges were broader than those
previously computed with LDA. Therefore, our preliminary analysis suggested that
trees in our case were less useful than LDA. However, trees are a useful method to
summarize data and to make a quick human diagnostic. Indeed, two quick human
diagnostics can be made before the transfer, the first is to calculate the CPNS score and
the second is to drop the zygote down the tree of Figure 7.3. The advantage of using our
tree classifier is that a zygote with a score under 15 can be considered as any zygote.
Hence, allowing a classification with all zygotes as opposed to the CPNS classification.
This advantage is that in our sample, only 10% zygotes have a score over or equal to
15. The smallest misclassification error with tree was obtained with the PNS dataset,
for 10-fold cross-validation and bootstrap techniques, without distinction between their
conservation type, its value was ofeall = 0.41±0.02 for 10-fold cross-validation.

Classification Tree for PNS data
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Figure 7.3: Classification Tree for PNS data
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Support vector machine (SVM) model is a nonlinear discriminant analysis. The ba-
sic idea of SVM is to seek for a separating non-linear decision boundary maximizing a
margin between two classes with a higher dimensional feature space. SVM approach
leaded to an overall lower misclassification rate compared to LDA, however, it’s sta-
bility was also lower. The smallest misclassification error with SVM was obtained
with the IJPM dataset, for 10-fold cross-validation and bootstrap techniques, without
distinction between their conservation type, its value was ofeall = 0.378± 0.02 for
10-fold cross-validation.

Random Forest is a classifier that is built from multiple trees generated from ran-
dom sampling of the observations, and the features. One of the reason for performing
random forest to our data was that random forest is robust against over-fitting, and it is
more robust with respect to noise than other classification methods [23]. And as seen
with PCA, noisy IJPM features had a strong contribution to the overall variance for
the IJPM dataset. For the purpose of understanding Random Forest "black box", in-
ternals estimates of variable importance were computed. Handling interactions among
variables is another advantage compared to LDA.

The smallest misclassification error with Random Forest is obtained with the IJPM
dataset. For 10-fold cross-validation and bootstrap techniques, without distinction be-
tween their conservation type, its value is ofeall = 0.338±0.02. Difference between
the datasets can be considered as significant as the quartiles of IJPM and PNS in 10-fold
cross-validation are well separated.

Overall, we have found that the Random Forest approach both leads to an over-
all lower misclassification rate as well as to a more stable assessment of classification
errors compared with the developed methods (additional methods can be neural net-
works,k-nearest neighbor classifier, . . . ). Therefore, our preliminary analysis suggest
that Random Forest may be more useful than other methods to classify samples based
on digital images. However, the misclassification rates computed in our analysis of the
classifiers is not representative of the real improvement that can be achieved by using
a better classifier. Hence, we develop the theory that allows to compute the probabil-
ity of success of an implantation process. Another reason of developing this theory is
that our sample is not a random sample, in fact we chose the zygotes leading to mul-
tiple pregnancies, and therefore the sampling distributions are biased, this bias is also
corrected by this procedure.
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Figure 7.4: Implantation rate comparison after four transferts



71

We compute the probability of having a pregnancy with our best classifier Random
Forest for IJPM, and SVM for PNS, finally we compare it to the CPNS. The probability
of success after 4 attempts (i.e. 8 zygotes) for CPNS is of0.308, for PNS dataset it is
of 0.582and for IJPM dataset it is of0.656.

With IJPM dataset and Random Forest, the first step represents an improvement
in respect to CPNS of 21.4%. Improvement in the following step is of 7.4%. As
state above, the gain in the probability of success is larger than the improvement of
the classification error rate. PNS dataset with SVM also leads to an improvement in
respect to CPNS of 9.6%, the following step improves to 9.4%.

Four groups of vertical lines are represented in Figure 7.4, each group represents
a transfer procedure. Although, this procedure is iterated until success or there are no
more zygotes, we fix four iterations. Within each data set (IJPM and PNS), implan-
tation rates increase rapidly, then levels off. IJPM is always above CPNS and PNS,
indicating a significant improvement. Classification with IJPM dataset is clearly more
accurate.

No study has attempted to evaluate the contribution of morphological characteris-
tics of zygotes automatically detected by an advanced image analysis tool, these char-
acteristics can be used as markers of future embryo developmental competence using
statistical tools. Statistical tools allow us to transfer only the embryos classified as
"good" while minimizing the high order multiple pregnancies. However, to assess our
results theses experiments must be done with more data.



Aknowledgements

I wish to acknowledge my supervisor: Dr. Carlos Oscar Sánchez Sorzano at the
"Consejo Superior de Investigaciones Científicas" (CSIC) who helped me refine my
project goals and for his constructive comments. I also thank Dr. Alfred Senn and
Dr. Françoise Urner at "Laboratoire d’Andrologie et de Biologie de la Reproduction"
(LABR) for their active support in developing this project. I am, of course, indebted to
the Swiss Federal Institute of Technology (EPFL) , for providing this project.



Bibliography

[1] F. Puissant, M. Van Rysselberge, P. Barlow, J. Deweze, and F. Leroy, “Embryo
scoring as a prognostic tool in IVF treatment,”Human Reproduction, vol. 2, pp.
705–8, 1987.

[2] C. Giorgetti, P. Terriou, P. Auquier, E. Hans, J. L. Spach, J. Salzmann, and et al,
“Embryo score to predict implantation after in-vitro fertilization: based on 957
single embryo transfers,”Human Reproduction, vol. 10, pp. 2427–31, 1995.

[3] S. Ziebe, K. Petersen, S. Lindenberg, A. G. Andersen, and A. N. Andersen
A. Gabrielsen, “Embryo morphology or cleavage stage: how to select the best
embryos for transfer after in-vitro fertilization,”Human Reproduction, vol. 2, pp.
1545–9, 1997.

[4] D. Sakkas, F. Urner, D. Bizzaro, G. Manicardi, P. G. Bianchi, Y. Shoukir, and
et al, “Sperm nuclear DNA damage and altered chromatin structure: effect on
fertilization and embryo development,”Human Reproduction, vol. 13 Suppl 4,
pp. 11–9, 1998.

[5] A. Salumets, C. Hyden-Granskog, S. Makinen, A. M. Suikkari, A. Tiitinen, and
T. Tuuri, “Early cleavage predicts the viability of human embryos in elective
single embryo transfer procedures,”Human Reproduction, vol. 18, pp. 821–5,
2003.

[6] D. K. Gardner, M. Lane, J. Stevens, T. Schlenker, and W. B. Schoolcraft, “Blas-
tocyst score affects implantation and pregnancy outcome: towards a single blas-
tocyst transfer,”Fertil Steril, vol. 73, pp. 1155–8, 2000.

[7] L. A.Scott and S. Smith, “The successful use of pronuclear embryo transfers
the day following oocyte retrieval,”Human Reproduction, vol. 13, pp. 1003–13,
1998.

[8] J. D. Fisch, H. Rodriguez, R. Ross, G. Overby, and G. Sher, “The Gradu-
ated Embryo Score (GES) predicts blastocyst formation and pregnancy rate from
cleavage-stage embryos,”Human Reproduction, vol. 16, pp. 1970–5, 2001.

[9] J. Tesarik and E. Greco, “The probability of abnormal preimplantation develop-
ment can be predicted by a single static observation on pronuclear stage morphol-
ogy,” Human Reproduction, vol. 14, pp. 1318–23, 1999.

[10] M. Ludwig, B. Schopper, S. Al-Hasani, and K. Diedrich, “Clinical use of a pronu-
clear stage score following intracytoplasmic sperm injection: impact on preg-
nancy rates under the conditions of the German embryo protection law,”Human
Reproduction, vol. 15, pp. 325–9, 2000.



BIBLIOGRAPHY 74

[11] A. Salumets, C. Hyden-Granskog, A. M. Suikkari, A. Tiitinen, and T. Tuuri, “The
predictive value of pronuclear morphology of zygotes in the assessment of human
embryo quality,”Human Reproction, vol. 16, pp. 2177–81, 2001.

[12] D. Sage and M. Unser, “Teaching Image-Processing Programming in Java,”IEEE
Signal Processing Magazine, vol. 20, no. 6, pp. 43–52, 2003, Using “Student-
Friendly” ImageJ as a Pedagogical Tool.

[13] A. Senn, C. Vozzi, A. Chanson, P. De Grandi, and M. Germond, “Prospective
randomized study of two cryopreservation policies avoiding embryo selection:
the pronucleate stage leads to a higher cumulative delivery rate than the early
cleavage stage,”Fertil Steril, vol. 74, pp. 946–52, 2000.

[14] Andrew R. Webb,Statistical Pattern Recognition, John Wiley and Sons Ltd., 2
edition, 2002.

[15] P. Royston, “Algorithm AS 181: The W Test for Normality,”Applied Statistics,
vol. 31, pp. 176–180, 1982.

[16] P. Royston, “A Remark on Algorithm AS 181: The W Test for Normality,”Ap-
plied Statistics, vol. 44, pp. 547–551, 1995.

[17] P. Sprent,Data Driven statistical methods, Chapman & Hall, London, 2 edition,
1998.

[18] F. Yates, “Contingency tables involving small numbers and the chi-square test,”
Journal of the Royal Statistical Society, vol. 1, pp. 217–235, 1934.

[19] David J. Sheskin,Handbook of Parametric and Nonparametric Statistical Proce-
dures, CRC Press, LLC, 3 edition, 2004.

[20] C. Goutte, “Note on free lunches and cross-validation,”Neural Computation, vol.
9, pp. 1211–1215, 1997.

[21] L. Breiman and P. Spector, “Submodel selection and evaluation in regression: the
X random case,”International Statistical Review, vol. 60, pp. 291–319, 1992.

[22] L. Breiman, J. Friedman, R. Olshen, and C. Stone,Classification and Regression
Trees, Wadsworth & Brooks, 1984.

[23] L. Breiman, “Random Forests,”Machine Learning, vol. 45, pp. 5–32, 2001.

marks the start of additional material in your book. After this command chapters
will be numbered with letters.



Appendix A

Boxplots class vs variables

advantages: compact, concise
disadvantages: emphasize tails of distribution,

discard many finer features distribution

















Appendix B

Histograms for each class

advantages: needs no explanation,
familiar

disadvantages: contain no information on distribution within the bins,
sensitive to number and placement of bins































Appendix C

QQ-plots

advantages: sample sizes do not need to be equal,
shifts in location, in scale and changes in symmetry can be
detected
presence of outliers can be detected

disadvantages: need to be compared to another distribution
















