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Chapter 1

Introduction

The Swiss IaWI(PMAf] on medically assisted procreation does not allow to develop
more than three embryos in vitro beyond the pronuclear stage, but it permits cryop-
reservation of supernumerary fertilised oocytes prior to pronuclear membrane break-
down. Identification of potentially viable embryos is thus limited either to the oocytes
prior to fertilisation or to the pronuclear stage zygote . The present study was focused
on the pronuclear stage zygotes (see Figurg 1.1). The aim was initiated to assess if
morphological characteristics of zygotes could be used as markers of future embryo
developmental competence using statistical tools. Thus, allowing us to transfer only
the embryos that would result in the highest pregnancy rates while minimizing the high
order multiple pregnancies.

Figure 1.1: Pronuclear stage zygotes, one pronucleus contains the genetic material
from the sperm and the other pronucleus contains the genetic material from the oocyte

Human embryos produced in vitro have long been recognised to present few char-
acteristics able to predict their implantation ability. The most widely adopted strategy
to choose viable embryos is to rely on the number of blastomeres and the grade of
the embryos at the time of embryo transier[[L. 2, 3]. However, these morphological
aspects do not correlate sufficiently with the embryonic viability to allow an univo-
cal microscopic recognition of the embryos able to produce a viable pregnancy. A
number of strategies have thus been proposed to improve the prognostic evaluation of

1Loi Fédérale sur la Procréation Médicalement Assistée, 18th Decembre, 1998



embryo viability, including selection of early cleaving embryos 2,14, 5], culture up to
the blastocyst stagel[6] and scoring of pronucleate stage zy@otes [7, 8/ 9] 10, 11]. No
study has so far specifically attempted to evaluate the contribution of morphological
characteristics automatically detected by an advanced image analysis tool.

In early 2003, a Plug-in [12] usingAVA™™ was developed by Antoine Beuchat
for Imagef] software in the biomedical imaging group (Bl)mder the supervision
of Dr. Sorzano. Images captured under Hofman modulation oE &R laboratorie
were used. Information resources, including systems, infrastructure and data, were
shared while respecting confidentiality. The Plug-in aims at detecting on digital images
contrast morphological characteristics automatically and exporting a database file for
statistical analysis.

Figure 1.2: ImageJ Plug-In for automated morphological measurements

We compare the performance of several classes of statistical methods for the clas-
sification of zygotes at the two pronuclei stage based on digital images. These methods
are linear discriminant analysis, classification trees, support vector machine, and ran-
dom forest. Methods are applied to samples from LthBRE] clinic at Lausanne’s
University Hospital (CHUV).

Our aim was to analyse the patterns of the zygotes at the two pronuclei stage and to
compare the prognostic value of several morphometric parameters of fresh and frozen-
thawed zygotes in terms of pregnancy rates. This analysis should help selecting out
efficiently the zygotes with higher implantation ability and, thus, reducing the number
of transfers necessary to achieve pregnancy and the number of multiple gestations.

The report is divided as follows. In Chapfgr 2, we introduce the data collection
and the main notation. In Chapf{dr 3, we examine the data and asses its quality to get
a overview of its structure. Chapfgr 4 we study the power of each individual feature
to classify. Chaptdr]|5 brings the proposal of supervised classifiers including the more
commonly used with assessment of the results. Chppter 6 apply the best classifier and
we compute the probability of having a pregnancy with realistic values dfABRto
get closer to the real situation. Finally, Chagipr 7 discusses the better model strategy
and concludes. An appendix provides some plots of the data. This analysis should
demonstrate if the features are related to the implantation potential of the embryo and,

2Imagel is being developed at the National Institutes of Health of the United States, this software is not
subject to copyright protection and is in the public domain

SLaboratory in The Institute of Applied Optics (IOA) of the Swiss Federal Institute of Technology (EPFL
- Lausanne)

“Reproductive Medicine Unit, Department of Gynaecology and Obstetrics, CHUV, Lausanne, Switzer-
land



thus, confirm (or not) that the information about implantation is contained in the image
of the pronuclear zygotes. Data show that at the pronuclear zygote levels a series of
criteria can help selecting out embryos with significantly higher implantation abilities.



Chapter 2

Data Collection

2.1 Data

All fresh embryo transfers were performed on day 2 without any embryo selection.
All supernumerary zygotes were frozen before syngamy using a slow freezing proto-
col [13] and were thawed 24-28 h prior to transfer, 3 days after the LH peak in natural
cycles. The implantation potential were used as the main end points and submitted to
statistical evaluation.

As we have stated above, our aim in this study is to make morphometric measure-
ments and observations based on digital images (640x480 with approximately 60 Ko
and 24bit) of oocytes in order to predict the likely outcome. To achieve this two meth-
ods are available, one of them is to use a plug-inlfoageJdeveloped at th&PFL
in collaboration with thedt ABR Laboratories. The collected dataset will be labeled as
IJPM for ImageJPronuclear MorphometritM easurements. The other method is a vi-
sual inspection of six zygotes characteristics lab&bb for PronuclearScore, each
characteristic can take values from 1 to 3 (from worst to best). Tables 2[Tdnd 2.2 are
an overview of the PNS and IJPM dataset, respectively.

Both methods (IJPM and PNS) are based on the same data collected from May 2001
to December 2002. A total of 98 fresh and 110 frozen-thawed zygotes observed under
Hofman contrast (300x) were photographed at the two pronuclei (2PN) stage. Zygotes
leading to pregnancy and not leading to pregnancy are labeled as "good" and "bad",
respectively. Within these 208 zygotes a total of 124 are "bad" and 84 are "good". As
two zygotes are transfered on day 2, only 84 zygotes leading to multiple gestations
were considered, thus we are sure that both of inseminated zygotes lead to pregnancy.
Difference between fresh zygotes and frozen-thawed is so large (see $ectipn 4.1.2),
that in our classification studies we will also analyze zygotes separately depending on
whether they are "fresh" or "cryo"-preserved.
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2.1.1 PNS dataset

The six zygotes characteristics labeledPdS are
1. centering of the two pronuclepésPror)
2. proximity of the pronucleigroxPron
3. number of nucleoliffobNuc)
4. polarization and realignment of the nucledligtrNucl)
5. cytoplasmic halodortReaction
6. orientation of the pronuclei in respect to the polar bodigs\ign)

The CPNS (sum over the six characteristics) may thus vary from 6 to 18.

Image\ Icsi  posPron proxPron nbNucl ... Cryo Class
01.1041-1.bmp| yes 3 3 2 ... no good

02.1047-1.bmp| yes 3 2 1 ... yes bad

Table 2.1: Extract of PNS dataset (208 x 9), with three categorical features

2.1.2 |1JPM dataset

Image | Icsi  posOfPronSum  proxOfPronCent ... Cryo Class
01.1041-1.bmp| yes 34.96 69.85 ... no good
02.1047-1.bmp| yes 24.1 47.2 ... yes bad

Table 2.2: Extract of IJPM dataset (208 x 59)

Features from IJPM dataset are extracted with the plug-in, Flgufe 2.1[afjd 2.2
illustrates the detection process. Fig[re] 2.1 image is helpful throughout this report
if you are unfamiliar with biological terminology. The choice of which variables to
measure is crucial to successful pattern recognitioh [14]. Variables selection are based
on the experience of theABRstaff. We also try to get close to the well-known PNS
features. Table8?,?? and 2.5 summarize our features.
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Figure 2.1: Pattern recognition made withageJPlug-In

Figure 2.2: Useful labels for features extraction
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Feature description
1 | Title Name of the digital image
2 | lcsi Fertilisation type in vitro (=no), or Intra-Cytoplasmic
Sperm Injection ICSI (=yes) (user input)
3 | polarGlobal detect presence of Polar Bodies (user input)
4 | posOfPronSum mean of distances between the center of the Oolemma
and the barycenter of pronuclei
5 | posOfPronRel posOfPronSum divided by the Oolemma radius
6 | proxOfPronCent distance between two centers of the pronuclei
7 | proxOfPronRel proxOfPronCent divided by the sum of
the radius of pronuclei (if < 1 pronuclei they overlap)
8 | nucleolesl number of nucleoli in pronucleus #1
considering nucleolesl always greater than nucleoles2
9 | nucleoles2 number of nucleoli in pronucleus #2
10 | nucleolesTiny same as nucleolesl considering
radiusPronBig always greater than radiusPronTiny
11 | nucleolesBig same as nucleolesl considering
radiusPronBig always greater than radiusPronTiny
12 | sumOfNucl sum of nucleolil and nucleoli2
13 | diffOfNucl difference of nucleolil and nucleoli2
14 | dispOfNucl1Avg mean of the distance between nucleoli in
pronucleus #1 and their gravity center
15 | dispOfNucl2Avg mean of the distance between nucleoli in
pronucleus #2 and their gravity center
16 | dispOfNuclTinyAvg same as dispOfNucl1Avg considering
radiusPronBig always greater than radiusPronTiny
17 | dispOfNuclBigAvg same as dispOfNucl1Avg considering
radiusPronBig always greater than radiusPronTiny
18 | distOfNucl1ToPronLine sum of the distances between nucleoli
in pronucleus #1 and the perpendicular barycenter line
19 | distOfNucl2ToPronLine sum of the distances between nucleoli
in pronucleus #2 and the perpendicular barycenter line
20 | distOfNuclTinyToPronLine same as distOfNucl1ToPronLine considering
radiusPronBig always greater than radiusPronTiny
21 | distOfNucIBigToPronLine same as distOfNucl1ToPronLine considering
radiusPronBig always greater than radiusPronTiny
22 | distOfNucllToLineAvgRel distOfNucl1ToPronLine divided by
the number of nucleoli in pronucleus #1
23 | distOfNucl2ToLineAvgRel distOfNucl2ToPronLine divided by
the number of nucleoli in pronucleus #2
24 | distOfNuclTinyToLineAvgRel| same as distOfNucl1ToLineAvgRel
25 | distOfNuclBigToLineAvgRel | same as distOfNucl1ToLineAvgRel considering
radiusPronBig always greater than radiusPronTiny
26 | lineVarOfNucl1Avg mean of the distance between the regression
line of nucleoli in pronucleus #1
parallel to the perpendicular barycenter line
(NA if only one nucleoli in pronucleus #1)

Table 2.3: List of IJPM features
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Feature description

27 | lineVarOfNucl2Avg mean of the distance between the regression
line of nucleoli in pronucleus #2
parallel to the perpendicular barycenter line
NA if only one nucleoli in pronucleus #1)

28 | lineVarOfNuclTinyAvg | same as lineVarOfNucl1Avg considering
radiusPronBig always greater than radiusPronTiny

29 | lineVarOfNuclBigAvg | same as lineVarOfNucl1Avg considering
radiusPronBig always greater than radiusPronTiny

30 | corticalReaction ratio of the Oolemma to the Cortical Reaction
(cytoplasmic halo) radius

31 | alphaMin minimum angle between two intercepting lines formed
by the pronucleus centers and the polar bodies #1 to the
barycenter of pronuclei line (always <90considering
polar bodie #1 having an inferior angle to polar bodie #2

32 | alphaMax maximum angle between two intercepting lines
formed by the pronucleus centers and the polar bodies
#1 to the barycenter of pronuclei line (always <90

33 | alphaBetween alphaMax-alphaMin

34 | alpha3D1 same angle as alphaMin
considering the polar bodie #1 being in a sphere

35 | alpha3D2 same angle as alphaMin
considering the polar bodie #2 being in a sphere

36 | OolemmaA axe A of the Oolemma ellipse,
considering OolemmaA always greater than OolemmaB

37 | OolemmaB axe B of the Oolemma ellipse

38 | OolemmaRatio ratio of the OolemmaA to the OolemmaB

39 | CorticalA axe A of the Cortical Reaction ellipse,
considering CorticalA always greater than CorticalB

40 | CorticalB axe B of the Cortical Reaction ellipse

41 | CorticalRatio ratio of the CorticalA to CorticalB

42 | Ellipse.angle angle between OolemmaA and OolemmaB

43 | ellDistCentersRel ratio of distance between centers of Oolemma
and Cortical Reaction to Oolemma radius

44 | ellDistBetweenRel ratio of largest distance from center of Oolemma
to the Cortical Reaction to the Oolemma radius

45 | radiusPronl radius of pronucleus #1

46 | radiusPron2 radius of pronucleus #2

47 | radiusPronTiny radius of pronucleus #1 radiusPronBig
always greater than radiusPronTiny

48 | radiusPronBig radius of pronculeus #2

49 | radiusProniRel ratio of radiusPron1 to the Oolemma radius

50 | radiusPron2Rel ratio of radiusPronl to the Oolemma radius

51 | radiusPronTinyRel ratio of radiusPronTiny to the Oolemma radius

52 | radiusPronBigRel ratio of radiusPronBig to the Oolemma radius

Table 2.4: list of IJPM features (continued)
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Feature

description

53
54
55
56
57
58
59

60

ZS1.Centering
ZS2.Proximity
ZS.3.Nb.of.nucl
ZS4.Line.dispersion
ZS .4bis.Line.position
ZS6.GP.avg.if.90
Cryo

class

centering of the two pronuclei

proximity of the pronuclei

number of nucleoli

polarization and

realignment of the nucleoli

polarization and

realignment of the nucleoli

orientation of the pronuclei

in respect to the polar bodies

determines if the zygote was cryo-preserved
(=yes) or not (=no) (user input)

determines if the zygotes leads to pregnancy
(=good) or not (=bad) (user input)

Table 2.5: list of IJPM features (continued)



Chapter 3

Data examination

The initial examination of the data is one of the most important parts of the data analysis
cycle [14], it constitutes the first phase of the analysis and comprises three parts:

1. checking the quality of the data and "cleaning" data stage;

2. univariate and multivariate analysis (for example producing plots of the data in
order to get a feel for their structure)

3. calculating summary statistics.

There are several factors that degrade data quality, the main ones being due to
errors, outliers and missing observations. Errors may occur in several ways. They may
be due to malfunctions in recording equipment, for example transcription errors. Some
errors may be difficult to detect, particularly if the value in error is consistent with
other observations. Alternatively, if the error gives rise to an outlier (an observation
that appears to be inconsistent with the remainder of the data) then a simple range test
on each variable may pick it up. Missing values can arise in a number of different ways
and it is important to know how and why they occur. Extreme care must be taken in
the coding of missing values, not treating them as special numerical values if possible.

Normality tests and outlier detection are intimately intermingled: normality tests
should not include outliers since the results might be severely influenced; on the other
hand, automated outlier detection relies on the knowledge of whether a feature is nor-
mally distributed or not. Therefore, these two steps are iteratively intermixed until a
reliable estimate of the normality of a feature is achieved and the corresponding out-
liers detected. In the discourse of this report, we discuss first the normality test, and
then we study the outlier detection.

3.1 Normality

Our data can be separated in two classes, the first class'igdbd zygotes" and the
second one is théhad zygotes”. The distribution of our features has the contribution
from the two classes. Thus, the non normality of a feature may be seen as a good sign.
Non normality will be preferable to make an accurate individual classification.

The conventional test for normality when the me@rand the standard deviation
Sr must be estimated is the Shapiro-Wilk test defined in the following section.
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3.1.1 Shapiro-Wilk test for normality

The Shapiro-Wilk test, calculates\astatistic that tests whether a feature (xq,...,Xp)"
comes from a normal distribution . Small values/éfare evidence of departure from
normality. W has a simple interpretation as an approximate measure of the straightness
of the normal quantile-quantil&€X— Q) probability plot. TheW-statistic for a feature

is calculated as follows:

_ nfw’x| _ (SIy(wix))?
Sk Y% —XRr)?

wherex* is the ordered data of the original data% represents the robust variance
of a sample (biased estimator of the population variance see Sgctioh 3=2iS}he
robust sample mean of the feature ane- (wy, ..., wy) are weights depending on the
number of observations (w = w(n)) [15,[16]. W is a measure of the straightness of
the normal probability plot.

We apply the Shapiro-Wilk test for all the "cleaned" features and we obtain a total
of 14 (11%) normal distributions (see Taple]3.1) witfP&alue lower than 0.05R-
value < 0.05).

QQ plots of the normal features are available in appgnlix C. The feature histograms
can be seen in Append[x] B and the stem-and-leaf diagrams Sgctiop 3.2.2 can also
be useful to visualize the distribution. For example, if we look at Stem-and-leaf of
the featurdineVarO f NucRAvg (Sectior] 3.2.2) we can observe that this distribution
cannot be normal, in fact values could not be below zero and without such values the
distribution looks more like a Poisson distribution.

w (3.1)

feature w P-value feature w P-value
2 CorticalB 0.9968 0.052 nucleolesl 0.9545 1
3 corticalReaction 0.9955 0.186 lineVarOfNucIBigAvg 0.9534 1
4 756.GP.avg.if.90 0.9907 0.667 radiusPronBig 0.9531 1
5 OolemmaB 0.9898 0.845 radiusPronTiny 0.9526 1
6 OolemmaA 0.9879 0.922 CorticalRatio 0.9504 1
7 distOfNuclBigToLineAvgRel 0.9879 0.92 radiusPron2Rel 0.9488 1
8 distOfNucl2ToLineAvgRel 0.9856 0.965 posOfPronRel 0.9468 1
9 CorticalA 0.9826 0.987 nucleolesTiny 0.9443 1
10 Ellipse.angle 0.9775 0.998 nucleolesBig 0.9414 1
11 ellDistBetweenRel 0.976 0.999 radiusPron2 0.9376 1
12 proxOfPronCent 0.9738 0.999 lineVarOfNucl1Avg 0.9355 1
13 lineVarOfNucl2Avg 0.9715 1 ZS4.Line.dispersion 0.9355 1
14 dispOfNucl1Avg 0.9712 1 posOfPronSum 0.9259 1
15 radiusPron1Rel 0.9695 1 alphaMin 0.9224 1
16 distOfNucl1ToLineAvgRel 0.9694 1 nucleoles2 0.9194 1
17 OolemmaRatio 0.9691 1 distOfNucl1ToPronLine 0.9059 1
18 proxOfPronRel 0.969 1 distOfNuclIBigToPronLine 0.8885 1
19 ellDistCentersRel 0.9675 1 distOfNuclTinyToPronLine 0.8772 1
20 dispOfNucliBigAvg 0.9673 1 diffOfNucl 0.8759 1
21 radiusPronl 0.966 1 distOfNucl2ToPronLine 0.8673 1
22 dispOfNuclTinyAvg 0.9652 1 alpha3D2 0.8587 1
23 sumOfNucl 0.9648 1 ZS5.Cort.react 0.802 1
24 ZS.4bis.Line.position 0.963 1 alphaMax 0.7944 1
25 distOfNuclTinyToLineAvgRel 0.9606 1 ZS.3.Nb.of.nucl 0.7825 1
26 radiusPronTinyRel 0.9602 1 ZS1.Centering 0.7574 1
27 radiusPronBigRel 0.9597 1 alpha3D1 0.7529 1
28 dispOfNucl2Avg 0.9569 1 alphaBetween 0.6669 1
29 lineVarOfNuclITinyAvg 0.9551 1 ZS2.Proximity 0.5001 1
30 nucleoles1 0.9545 1

Table 3.1: Shapiro-Wilk Test withi/-statistic, the non directional alternative hypothe-
sisH1 : p # 0 is supported at the.@5 level for bold features

3.1.2 Multivariate normality

Multivariate normality means that the individual features are normal in a univariate
sense (see Sectipn 3]1.1) and that their combinations are also normal. Thus, if a variable
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is multivariate normal, its components are also normal, but the reverse is not necessarily
true. In our case only two features can be considered as normal, so the whole dataset
cannot be considered as being normal multivariate.

3.2 Quality of the data and outliers

An outlier is an observation that lies outside the overall pattern of a distribution. Out-
liers must be viewed within the context of the analysis. They can be of different nature
and arise from:

- procedure error (must be eliminated)
- extraordinary event (context must be considered for the cleaning data stage)

- extraordinary observation but ordinary range of values on each feature (context
must be considered for the cleaning data stage)

The three casesillustrate the difficulty of an automated exclusion (see $ectign 3.2.3)
or retention of an outlier, an in-context judgment must be made considering the data
collection and objectives of the analysis.

3.2.1 "Cleaning" data stage

At this point we consider some criteria for "cleaning” our data from outliers in nu-
merical features. In our case, categorical features are binary, thus univariate outliers
methods can not be used with them.

One disadvantage of removing outliers is that the reduction of the sample size can
lead to a decrease in statistical significance. However, if we want to adjust a model to
our data with, for example, a parametric test such-asestwe had better decreasing
the variability of our data. On the other hand, if we include all the data, we increase
the probability of having a "distorted" data set. Therefore, invalidating the statistical
results.

Although automatic outlier detection algorithms exist, they must be used with care
and a visual inspection is absolutely needed. In the following we first explain our visual
inspection and then, the automatic outlier detection.

3.2.2 Visual detection

To detect univariate outliers the Stem-and-Leaf plot is chosen. Stem-and-Leaf plot
consists of a compact summary of the information contained in a distribution with the
original data values. Stem-and-Leaf is a histogram turned on its side and allows us to
determine graphically the median and detect outliers. Moreover, detected values can
be recovered from the plot. We apply this method to detect features containing out-
liers and we concluded that only two features contained outliee¥arO f NucRAvg
andcorticalReaction ThelineVarO f NucRAvgis not normally distributed whereas
corticalReactions normally distributed (see Taljle B.1), we will see that this property

is determinant to chose an automated outlier selection. Fedine®arO f NucRAvg
andcorticalReactiorare represented in two stem-and-leaf plots, values ddd 4302,
respectively, can be outliers. To detect outliers in these distributions, the algorithms de-
scribed in Sectiop 3.2.3 are applied.
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Parameter: corticalReaction

Parameter: lineVarOfNucl2Avg All data
Normaly distributed
All data

Not normally distributed . . .
The decimal point is at the |

The decimal point is at the |

42 10 <= can be an outlier
0| 7933 aa
2 | 001156688001223456899 46 1
4 | 000000012223344568899900000011122234455566888 48
6 | 00011122222334444667888990000111123333456677778888999 >0 |
8 | 0000011222334455566677789999900122234445556688 i’j :
10 | 000112236880012367889 >
12 | 3567784 5619
14 | 3222 810
16 | 60 | 8678
e | 06 62 | 403788
20 | 64 | 01124528
216 66 | 33670011227799
2 | 68 | 044458890001345679
2 | 70 | 01122234890012457889
2 | 72 | 00112244445777890013679
20 | 74 | 000234445567800000111257
2 76 | 00001225557778923335677789
e 78 | 0223366889001245568
6 | 80 | 1257790235679
o 82 | 12237771144678
20 | 84 | 0223745
2 | 86 | 113570
44 | 7 <= can be an outlier 88 : 7

4

3.2.3 Automated outlier detection

The goal of the algorithms is to select as outliers within a single feafuhose obser-
vations falling at the outer range of a distribution. Shapiro-Wilk {est([15, 16] allows us
to decide whether the feature is normally distributed within a confidence interval (see
sectior] 3.1]1). If the distribution is consideneormally distributed Method1 is used
otherwise, Method?2 is employed.

Method1: robuts mean and standard deviation selection

1. select a constant fact&fean three for example (99.74% of the observa-
tions of a normal distribution will fall within three standard deviations).

2. the conventional arithmetic meapand standard deviation of the feature
sj are evaluated.

3. repeat step| 2 and 3 without the observations fallingkgun standard de-
viation of the mean (Equatign 3.2) until no new observation is omitted.

X} —Xj|

s Kmean (3.2)

4. The last evaluated meam and standard deviatios) are more robust and
the last omitted observations are outliers at Idawglarﬂ

Method2: median and mad detection

1. evaluate the median absolute deviatioad as follows:

(a) the mediarx;of the j-th feature is evaluated.

(b) for each observation, evaluate the absolute value of the difference be-
tween the median and that observation.

Ikmean is @ measure in standard deviation units of how far a score is from the mean for a normally
distributed variable, sometimes it is called absolute standard deviation score
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(c) the median of stgp 1b represents the valuaadi .

(d) mad is adjusted by a factor (Equatipn B.3) for asymptotically normal
consistency (Equatidn 3.4). Equatfon|3.5, is the same as Eqf{iatjon 3.2
replacingx; by the mediarx;"ands; by mad. Sprent describes the
procedure as being relatively robust|[17].

11
Phi-1(3)  gnorm(3)
ensures consistency, i.e.,

~ 1.4826 (3.3)

E[mad' (xj)] = g; for x; distributed asN(, 6°) and largen. (3.4)

M > Kmedian (3-5)

macgk

3.2.4 Automated detection comparison

We use the two features selected with outliers in the visual detection section and plot
the number of outliersg in percent versuBmean (Methodl) anmegian (Method?2)

(see Figurl). Method2 is more sensitive than Method1 since thergh@p®&meanis
always greater thamy| /kmedian With largekmedianandkmeanthe two algorithms have

the same effect on this data. However, if we don't know the distribution, it is better to
choose Method?2 since the first method assumes a normal distribution.
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Figure 3.1: Outlier selection dineVarO f NucRAvg (left graph) andtorticalReaction
(right graph) features with Method1 ('+') and Method?2 ("*')

Finally, we select the threshold value for each feature and we obtain for the nor-
mal featurekmean= 3.1 (Equatior] 3.2) and for the non normal featlr@dian= 4.1
(Equatior] 3.5). The stem-and-leaf diagrams show the results of our "cleaning stage".
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Parameter: lineVarOfNucl2Avg
Without outliers
Not normally distributed

The decimal point is at the |

01 79
133
2 | 001156688
3 | 001223456899
4 1 0000000122233445688999
5 | 00000011122234455566888
6 | 0001112222233444466788899
7 | 0000111123333456677778888999
8 | 00000112223344555666777899999
9 | 00122234445556688
10 | 00011223688
11 | 0012367889
12 | 356778
13 | 4
14 1 3
15 | 222
16 |
17 |
18 |
19 | 08
20 |
21 |
22 |
23| 6

Parameter: corticalReaction
Without outliers
Normaly distributed

The decimal point is at the |

56 19

58 10

60 | 8678

62 | 403788

64 | 01124528

66 | 33670011227799

68 | 044458890001345679

70 | 0112223489012457889

72 | 00112244445777890013679
74 | 000234445567800000111257
76 | 00001225557778923335677789
78 | 022366889001245568

80 | 1257790235679

82 | 12237771144678

84 | 0223745

86 | 113570

88 | 77

9 | 4



Chapter 4

Individual Classification Power

In this chapter we study the power of each individual feature to classifyztygote
class". For doing this, we measure the degree of association between each feature and
the "zygote class". The degree of association is measured differently depending on
the nature of the featureontinuousor categorical

Continuous data can assume any value within the range of scores that define the
limits of a feature. In our case, our continuous features have a relative order and
throughout the length of the scale equal differences between measurements correspond
to equal differences in the amount of the attribute being measured. For instance, the
distance between two sets of points is a continuous feature. On the other hand, categor-
ical data is used in our case to identify mutually exclusive categories. As an example
the type of conservation of the zygotes fresh and frozen is a nominal measurement
since it is used purely for purpose of identification. Thus, the analysis of the two types
of data must be made separately.

4.1 Categorical data

4.1.1 Chi-Square test for independence

The appropriate test to employ for measuring the relationship between the zygote class
and a categorical feature is tk#hi-Square test of independenceThis test evalutes
the hypothesis that two variables are independent of one another.

Ar x c=ncontingency table is constructed withows andc columns representing
n cases. Observatiam; of the table contains the number of observations falling in the
i-th row and thej-th column see Table 4.1.

variablel no variablel row sum

variable2 011 012 O[1,] =011+ 012
no variable2 021 022 02,
column sum| o[ 3 = 011+ 021 0.2 Otot = O[1,] + 02,

Table 4.1: General model ofrax ¢ contingency table



4.1 Categorical data 20

OBS Cryo Fresh (=no Cryo) | EXP Cryo Fresh (= no Cryo)
good 34 50 44.04 39.96
bad 74 48 63.96 58.04

Table 4.2: Pearson’s Chi-squared test with Yates’ continuity correction for the conser-
vation type featurg? = 7.3334,d f = 1, p— value= 0.006769

To apply this test we must make the following assumptions:

1. categorical features for thex ¢ contingency table are mutually exclusive cate-
gories

2. data represent a random sample, comprisedintiependant observations, se-
lected from the population it represents

3. the expected frequency of each cell in the contingency table is greater or equal
to5

These assumptions are reasonable in our case.

Results: Null versus Alternative Hypotheses

To know if the observed cell frequencies in the contingency table are different from
the expected frequencieg in the underlying population represented by the samples
we employ the null and alternative hypotheses under the chi-square test édable.

The null hypothesis islp and the alternative hypothesisHig:

Null Hypothesis: Ho: wj=g¢; forallcells (=x=0)
Alternative Hypothesis: Hi: wj #¢; foratleastone cell (=x#0)
(4.1)

To evaluate the null hypotheshy : wij = g for all cells Yates’ correction for
continuity Equatiof 4]2 is computed. This correction compensates for the fact that a
continuous distribution is used to estimate a discrete distribution with the chi-square
test [18].

r (o3 - . 2

2 (|oij —&j| —05) 0ji,]OL,]

- z . where gj =l 4.2
X i= lel 8 o Otot 4.2)

The degrees of freedom employed for the analysis are computed with the number
of row and the number of columndf = (r — 1)(c—1). In our particular case we have
2 rows, since we have two classes, and 2 colurdris{1). Critical chi-squared values
arexs = 3.84andx%, = 6.63.

The results for our two categories are shown in Table 4.2 for the conservation type
and in Tabl¢ 43 for the insemination type.

The null hypothesislg can be rejected at both the 0.05 and 0.01 levels for the con-
servation type (cryo or freslf = 7.333 andp— value< 0.01. The significang? value
obtained with the conservation type indicates cryo-preserved zygotes are significantly
worse than fresh zygotes. Concerning the insemination type (IVF or kS$0.015
andp—value= 0.9011, the null hypothesis can not be rejected rejected. This can also
be visually seen on Tabe 4.2.
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OBS lcsi Ivf(=nolcsi) | EXP lIcsi Ivf(=no Icsi)
good 48 36 48.93 35.07
bad 72 50 71.07 50.93

Table 4.3: Pearson's Chi-squared test with Yates™ continuity correction for the in-
semination type featung? = 0.0154,df = 1, p— value= 0.9011

Measure of association

A measure of association that can be computed is the Pearson’s contingency coefficient.
The value of the contingency coefficigbis computed with Equati@.& whey@ is

the computed value for the contingency table anglthe total number of observations.

The upper limit of the contingency coefficient Gyax and can be determined with
Equation 4.1, wherg& is the smaller of the two values ofandc in the contingency

table, in our cas& = 2 andCpyax= v/0.5~ 0.71

XZ

C= Zn (4.3)
k-1

Cmax: T (4-4)

Normalized association can be compu@Cnax € [—1,1] and is 1 if a perfect
association exists between variables. The results for our two categoriesadel 88
for the conservation type ar@l~ 0.009 for the insemination type.

4.1.2 Summary

The assumptions of théhi-Square are fulfilled. Chi-Square testevaluates the inde-
pendence of two variables. We use two categorical features (lcsi/lvf and Fresh/Cryo)
versus thgyood zygoteor bad zygoteclass. Our analysis shows that the insemination
type does not affect the class of the zygoté € 0.015 andp — value= 0.9011 not
significant). On the other hand, the conservation state of the zygotes is strongly corre-
lated to its succest = 7.333 for p— value< 0.01 significant). In fact, the difference
between those two classes is so large, that in our classification studies we will also
analyze zygotes separately depending on whether they are fresh or not.

4.2 Continuous data - Measure of association and cor-
relation

In this section we measure the association between the continuous variables and the
"zygote class". In principle, this is traditionally done through tiRearson product-
moment correlation (Section[4.2]1). However, the hypothesis of this measure are
violated by our data. Alternatively, we propose two other measures of association:
Kendall's Tau correlation (Sectiorf 4.2.2) ané&kokmogorov-Smirnov goodness-of-

fit (Sectior{ 4.23). These tests allow us to have an overview of the importance of each
feature. This overview will be summarized in Secfion 4.2.4.
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4.2.1 Pearson product-moment correlation

The most commonly used correlation measure isRbarson product-moment cor-
relation coefficientp € [—1,1]. To apply this test we must make some assumptions:

1. the two tested features have a bivariate normal distribution

2. the sample of observations of each feature are randomly selected from the popu-
lation they represent

3. the relationship between the two features is of equal strength across the whole
range of both variables (homoscedasticity)

As was shown in Sectign 3.1, only two features can be considered to be normal. There-
fore, it is difficult to find pairs of bivariate normal variables. Moreover, we are measur-
ing the correlation between a continuous variable and a binary one (the zygote class)
which can never be normal. However, although violating the basics assumptions of this
association measure, it can still throw light on the degree of importance of a continuous
feature compared to the zygote class.

To define the correlation coefficient, first consider the sum of squared vadyes
SSy, andssy, for two featurex (x;) andy (xk), of a set ofn observationgx;,y;) about
their respective means,

n

SSu = i;(xi — %) = iixz—nﬁ

S§y = Iiyz —ny?

n

SSy = Zl(xi—@(Yi—W :;Xy—nXV

1= ]
With this notation thé?earson product-moment correlationcoefficient can be written
as follows:
p=— (4.5)
1/SSxSSy

We compute théearson product-moment correlationbetween our features and
the class. Considering that for non categorical as for non normal distribution features
we cannot conclude the relevance of the test. In fact, even if a functional relationship
exists between the class and a feat{pewill be lower than 1 if the normality assump-
tion is violated. To illustrate the bias of this test, we generate an example of a normal
distributionx = N(0, 1), then we apply theignfunctiony = sign(x+ 1) to simulate
a threshold selection at= —1 (see Figur¢ 4]1). This simulation can perfectly be an
idealization of our classification with one feature normally distributed and a threshold
atx = —1 splitting good zygotes (level 1 in Figure #.1) and bad (level -1). Féar-
son product-moment correlation factor in this case ip = 0.694, as expected it is
different from 1.
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Classification simulation
1.0 c———— e,

0.0

y=sign(x)

—0.59

-1.0| oCC cmemaI=——=b

Figure 4.1: Trivial classification simulation with normal an binomial feature

Results: Null versus Alternative Hypotheses To determine if the value of the cor-
relation is large enough to allow to conclude that the underlying population correlation
coefficientp between the two variables is other than zero, we use an inferential statis-
tical test which is based on thiaistribution. The null hypothesis idp and the non
directional alternative hypothesishk.

Null Hypothesis: Ho: p=0

Alternative Hypothesis: Hi: p#0 (4.6)

To evaluate the null hypothesi$y : p = 0 Equatior] 4.]7 is applied employing the
t-distribution. Degrees of freedom are nearly constant among featdres(n— 2) >
120(— o) in this case the critical two-tailed value tigs = 1.96 andt o1 = 2.58, in
other words it is the standard deviation score above and below which a proportion
equivalent to 0.25f = 0.75) of the cases in the distribution falls.

Our data is represented in Taple]4.4. The null hypothégsisp = 0 can be rejected
with a confidence of 95% if the absolute valuga$ equal to or greater thags = 1.96.

rvn—1
t = 4.7
T2 (4.7)
In Table[4.4 the bold font indicates those features for which the null hypothesis is
rejected at the 95% level of confidence.

4.2.2 Kendall's tau correlation
Definition

As for the Pearson product-moment correlation Kendall’s tau is a bivariate mea-

sure of correlation with rank-order data, this measurement represents the degree of
relationship between two variables. The population parameter estimated by the corre-
lation isT, in our case it will be estimated for each feature and denté&the range of
possible values dfendall’s tau is defined by the limits -1 to +% (€ [—1, 1]).

As stated above, in order to aptiendall’s tau measure of correlation we must
guantize our data. Quantizing consists in dividing our features values in to determine
ranges. In this analysis the range is divided up into 15 equal intervals. Each interval is
created by sampling the observations into 15-subsets of approximately equal size. This
is called equal probability quantizing.
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1 feature |p| It] conf interval feature Pl It] conf interval
2 diffOfNucl 0.303 4.529 [0.17,0.42] alphaMax 0.076 0.995 -[0.22,0.07]
3 OolemmaB 0.241 3.533 [0.11,0.37] OolemmaRatio 0.069 0.982 —p.2,0.07]
4 alphaMin 0.192 2.537 [0.04,0.33] nucleolesBig 0.064 0.907 -0.2,0.07]
5 CorticalB 0.191 2774 [0.06,0.32] ZS2.Proximity 0.063 0.903 -0.2,0.07]
6 | OolemmaA 0178 2575  [0.04,0.31] 756.GP.avg.if.90 0.061 0798 —D.09,0.21]
7 dispOfNucl2Avg 0.17 2.459 £0.3-0.03] distOfNuclBigToPronLine 0.06 0.855 —0.2,0.08]
8 nucleoles1 0.168 2431 [0.03,0.3] radiusPronTinyRel 0.058 0.825 —P.19,0.08]
9 | Corticald 0165 2383  [0.03,0.3] lineVarOfNuclBigAvg 0058  0.829  40.19,0.08]
10 radiusPronBig 0.153 221 [0.02,0.28] CorticalRatio 0.046 0.65 -0.18,0.09]
11 nucleoles2 0.151 2.182 £0.28-0.01] ZS5.Cort.react 0.044 0.633  —D.18,0.09]
12 ZS.4bis.Line.position 0.149 2.153 £0.28-0.01] distOfNucl1ToPronLine 0.042 0597 -p.1,0.18]
13 distOfNucl2ToPronLine 0.148 2131 £0.28-0.01] proxOfPronCent 0.039 0.56 0.1,0.18]
14 | alpha3D2 0.146 1.924 [0,0.29] Ellipse.angle 0.039 0555 —0.1,0.18]
15 ellDistCentersRel 0.141 2.036 [0,0.27] sumOfNucl 0.038 0.539 -0.1,0.17]
16 lineVarOfNucl2Avg 0.135 1.921 -£0.27,0] dispOfNuclTinyAvg 0.036 0.509 -$0.17,0.1]
17 distOfNuclBigToLineAvgRel 0.135 1.937 —0.27,0] posOfPronRel 0.034 0.49 —p.17,0.1]
18 radiusPronl 0.132 1.894 —p.01,0.26] radiusPron2Rel 0.032 0.462 —0.17,0.11]
19 nucleolesTiny 0.132 1.898  —0.01,0.26] ZS.3.Nb.of.nucl 0.028 0.395 —0.11,0.1¢]
20 alpha3D1 0.131 1.721 —{0.02,0.28] ellDistBetweenRel 0.027 0.385 -D.11,0.16]
21 alphaBetween 0.127 1.671 —0.02,0.27] lineVarOfNuclITinyAvg 0.024 0.337 40.11,0.16]
22 dispOfNuclBigAvg 0.125 1.801 -0.26,0.01] radiusPron1Rel 0.015 0.213  -0.15,0.12]
23 distOfNucl1ToLineAvgRel 0.121 1.732  0.25,0.02] radiusPronBigRel 0.012 0.172  -p.13,0.15]
24 distOfNucl2ToLineAvgRel 0.115 1.647 [0.25,0.02] posOfPronSum 0.007 0.094 0.13,0.14]
25 distOfNuclITinyToLineAvgRel 0.106 1.521 -{0.24,0.03] ZS1.Centering 0.005 0.077  —p.13,0.14]
26 radiusPronTiny 0.083 1.19 —0.05,0.22] corticalReaction 0.004 0.064  -p.13,0.14]
27 radiusPron2 0.082 1.166  —P.06,0.22] distOfNuclITinyToPronLine 0.002 0.027 —D.14,0.14]
28 lineVarOfNucl1Avg 0.079 1121 -£0.06,0.21] dispOfNucl1Avg 0.002 0.024 -0.14,0.14]
29 ZS4.Line.dispersion 0.079 1121 —0.06,0.21] proxOfPronRel 0.002 0.033 —0.13,0.14]
30 alphaMax 0.076 0.995 -{0.22,0.07]

Table 4.4: Pearson product-moment correlation of all features witkl#ssfeature,
the non directional alternative hypothebis: p # 0 is supported at the.@5 level for
bold features

To define the correlation coefficient, first consider a ranked featsréxy, ..., Xp)"
and the class ranked feature= (y1,...,yp)", wherex € {1,2,...,6} andy; € {1,2}.
If the sign of the difference; — x; is the same as the sign of the differenge-y;,
wherei and j represent respectively thi¢h andj-th observation, then a pair of ranks
is said to beconcordant, otherwise it is said to bdiscordant.

To compute the value df Equatior(4.B is applied. Wherec is the number of
concordant pairs of ranks, the number of discordant amd2(n— 1) the total number
of possible pairs of ranks.

s~ Z(I"IC - HD)
G 8

Results: Null versus Alternative Hypotheses

To determine if the value of the correlation is large enough to allow to conclude that
underlying population correlation coefficienbetween the two variables is other than
zero, we use an inferential statistical test. The null hypothesig end the non direc-
tional alternative hypothesis i4;.

Null Hypothesis: Ho: =0

Alternative Hypothesis: Hi: 1#0 (4.9)

To evaluate the null hypothes : T = 0 Equatiorf 4.8 can be applied among fea-
tures in this case the critical two-tailed value fios 40 isT g5 = 0.218andt o; = 0.285.
Or whenn > 10 the normal distribution provides an excellent approximation of the
sampling distribution oft [19]. The normal approximation can made with Equa-
tion[4.10

The critical two-tailed value for a normal distributiorzigs = 1.96andz o, = 2.58.
The null hypothesisip : T = 0 is rejected if the absolute value ois equal to or greater
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thanzgs = 1.96. In Table[4.b the bold features reject the null hypothesis at & 0
level of confidence.

Stynin—1) (4.10)

Z=
2(2n+5)
feature %] |7 feature | |7

2 ZS.3.Nb.of.nucl 0.302 5.833 distOfNuclTinyToLineAvgRel 0.079 1.519

3 diffOfNucl 0.3 5.798 ZS6.GP.avg.if.90 0.074 1.431

4 ZS2.Proximity 0.287 5.541 alpha3D1 0.068 1.316

5 ZS1.Centering 0.278 5.368 radiusPron2 0.065 1.249

6 nucleoles2 0.185 3.568 OolemmaA 0.06 1.151

7 nucleolesBig 0.182 3.514 CorticalA 0.054 1.048

8 alphaMin 0.177 3.415 lineVarOfNuclTinyAvg 0.047 0.898

9 OolemmaB 0.175 3.368 radiusPronTinyRel 0.046 0.889
10 ZS.4bis.Line.position 0.169 3.271 dispOfNucl2Avg 0.044 0.858
11 distOfNucl1ToLineAvgRel 0.161 3.116 radiusPronBigRel 0.043 0.827
12 distOfNucl2ToPronLine 0.157 3.028 proxOfPronRel 0.035 0.667
13 distOfNuclIBigToLineAvgRel 0.157 3.035 posOfPronSum 0.034 0.648
14 CorticalB 0.156 3.014 alphaMax 0.03 0.575
15 radiusPronTiny 0.154 2.968 CorticalRatio 0.029 0.567
16 sumOfNucl 0.141 2.726 distOfNuclTinyToPronLine 0.026 0.495
17 alpha3D2 0.139 2.686 Ellipse.angle 0.022 0.416
18 dispOfNuclBigAvg 0.132 2.553 radiusPronl 0.016 0.311
19 ellDistCentersRel 0.124 2.393 posOfPronRel 0.015 0.291
20 lineVarOfNuclBigAvg 0.114 2.205 radiusPron2Rel 0.012 0.236
21 distOfNuclBigToPronLine 0.109 2.103 ellDistBetweenRel 0.01 0.184
22 radiusPronBig 0.108 2.079 dispOfNucl1Avg 0.008 0.153
23 lineVarOfNucl2Avg 0.105 2.032 proxOfPronCent 0.006 0.121
24 distOfNucl2ToLineAvgRel 0.101 1.944| nucleolesTiny 0.006 0.117
25 OolemmaRatio 0.101 1.948| dispOfNuclTinyAvg 0.006 0.115
26 corticalReaction 0.1 1.935| radiusProniRel 0.005 0.098
27 alphaBetween 0.099 1.92 | nucleolesl 0.004 0.085
28 ZS5.Cort.react 0.094 1.815| lineVarOfNucl1Avg 0.002 0.04
29 distOfNucl1ToPronLine 0.081 1.572| ZSA4.Line.dispersion 0.002 0.04
30 distOfNuclTinyToLineAvgRel 0.079 1.519

Table 4.5: Kendall's tau for six ranks segmented features, the non directional alternative
hypothesid; : T # 0 is supported at the. @5 level for bold features

In order to applyKendall’s tau test which measures the degree of agreement be-
tween two sets of ranks, our features must be ranked kittibels. A segmentation
process must be applied in order to have the same numlidabéls in each feature.

4.2.3 Kolmogorov-Smirnov goodness-of-fit test

We expect that some features are drawn from two different distributions depending
on the zygote class (see Sectjon| 3.1), thus we would like to compare the distribution
between classes. If a difference is noticed, then there exists a significant relationship
between that feature and the zygote class.

Kolmogorov-Smirnov testis employed to compare the cumulative frequency dis-
tributions of two independent samples. To apply this test we must make some assump-
tions:

1. the sample of observations in each class are randomly selected from the popula-
tion they represent

2. all of the samples of observations in each class are independent of one other

3. the scale of measurement is at least ordinal

As can be seen our data fully meet these assuptions.

To apply theKolmogorov-Smirnov test we calculate the cumulative frequency
(normalized by the sample size) of the observations for'gomd zygote" sample
Fgood and for the'bad zygote" sampleFyag. The D-statistic is defined as the greatest
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distance between the observed and expected cumulative probability distribution at any
point. To compute the value @ Equatiorf 4.1]1 is applied, whejaepresents th¢-th
cumulated frequency over the two samples.

D = max (Fgoodj — Foad j) (4.11)

This method is sensitive to outliers because we take the maximum value and it can
be biased by outliers, so the stage of outliers detection (Séction 3.2.1) is essential.

Results: Null versus Alternative Hypotheses To determine wether the distribution
of the "bad zygote" sample derived from its population is consistent with the distribu-
tion of "good zygote", the following two hypothesis are considered:

Null Hypothesis: Ho: Fgood = Frad

Alternative Hypothesis: Hi: Fgood # Fad (4.12)

To conclude the goodness of fit we evaluate the null hypothtsisgood = Foad
Equatior{4.T]1 is applied among features. If the calcul@estatistic is greater than
the critical one (p < 0.05), then the hypothesis that both distribution are equal should
be rejected. In Table 4.6 the bold features reject the null hypothesis.

feature D P—value feature D P—value
2 diffOfNucl 0.27 0.002 nucleolesTiny 0.136 0.322
3 ZS.4bis.Line.position 0.252 0.004 ellDistCentersRel 0.13 0.375
4 distOfNuclBigToPronLine 0.25 0.004 OolemmaRatio 0.129 0.386
5 OolemmaB 0.248 0.004 proxOfPronCent 0.126 0.412
6 alpha3D2 0.245 0.013 lineVarOfNucl1Avg 0.125 0.424
7 alphaMin 0.228 0.021 ZS4.Line.dispersion 0.125 0.424
8 nucleoles2 0.223 0.015 radiusPronBig 0.119 0.488
9 distOfNucIBigToLineAvgRel 0.218 0.018 dispOfNucl2Avg 0.118 0.499
10 distOfNucl1ToLineAvgRel 0.209 0.027 radiusPron2 0.113 0.558
11 CorticalB 0.208 0.028 distOfNucl1ToPronLine 0.111 0.576
12 lineVarOfNucl2Avg 0.206 0.034 posOfPronRel 0.104 0.659
13 distOfNucl2ToPronLine 0.201 0.037 radiusPronTiny 0.103 0.666
14 CorticalA 0.196 0.045 dispOfNuclTinyAvg 0.101 0.699
15 distOfNucl2ToLineAvgRel 0.181 0.079 posOfPronSum 0.101 0.693
16 distOfNuclITinyToLineAvgRel 0.166 0.131 dispOfNucl1Avg 0.097 0.746
17 nucleolesBig 0.165 0.135 proxOfPronRel 0.09 0.818
18 nucleoles1 0.164 0.142 ellDistBetweenRel 0.082 0.893
19 alphaBetween 0.162 0.22 distOfNuclTinyToPronLine 0.076 0.939
20 lineVarOfNuclTinyAvg 0.157 0.182 Ellipse.angle 0.075 0.942
21 alpha3D1 0.155 0.264 sumOfNucl 0.058 0.996
22 ZS6.GP.avg.if.90 0.153 0.246 radiusPronTinyRel 0.055 0.998
23 dispOfNucIBigAvg 0.148 0.231 ZS2.Proximity 0.052 0.999
24 radiusPronl 0.148 0.229 ZS5.Cort.react 0.05 1
25 alphaMax 0.147 0.328 radiusPron2Rel 0.042 1
26 OolemmaA 0.145 0.251 radiusPron1Rel 0.032 1
27 corticalReaction 0.143 0.262 radiusPronBigRel 0.032 1
28 lineVarOfNuclBigAvg 0.138 0.315 ZS1.Centering 0.029 1
29 CorticalRatio 0.137 0.308 ZS.3.Nb.of.nucl 0.02 1
30 nucleolesTiny 0.136 0.322

Table 4.6: Kolmogorov-Smirnov goodness-of-fit test, in bold those features for which
the D-statistic is greater than the critical one

4.2.4 Correlation Summary

Severals tests for the measure of association and correlation were considered since the
assumptions of some of them are violated. A summary of important features is shown
in Table[4.Y.

In Table[4.8 a score is calculated considering the order of each feature, the higher
the feature is, the higher is the score. We apply this scoring to eacPaasson
Kendall andKolmogorov and then, we add the three scores, finally we normalize the
result. Three other columns are marked with a cross if the feature were significant in
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pearson kedall kolmogorov
2 feature [p| feature [T feature D
3 diffofNucl 0.303 ZS.3.Nb.of.nucl 0.302 diffOfNucl 0.27
4 OolemmaB 0.241 diffOfNucl 0.3 ZS.4bis.Line.position 0.252
5 alphaMin 0.192 ZS2.Proximity 0.287 distOfNucIBigToPronLine 0.25
6 CorticalB 0.191 ZS1.Centering 0.278 OolemmaB 0.248
7 OolemmaA 0.178 nucleoles2 0.185 alpha3D2 0.245
8 | dispOfNuci2Avg 0.17 nucleolesBig 0.182  alphaMin 0.228
9 nucleolesl 0.168 alphaMin 0.177 nucleoles2 0.223
10 CorticalA 0.165 OolemmaB 0.175 distOfNucIBigToLineAvgRel 0.218
11 radiusPronBig 0.153 ZS.4bis.Line.position 0.169 distOfNucl1ToLineAvgRel 0.209
12 nucleoles2 0.151 distOfNucl1ToLineAvgRel 0.161 CorticalB 0.208
13 ZS.4bis.Line.position 0.149 distOfNucl2ToPronLine 0.157 lineVarOfNucl2Avg 0.206
14 distOfNucl2ToPronLine 0.148 distOfNuclBigToLineAvgRel 0.157 distOfNucl2ToPronLine 0.201
15 alpha3D2 0.146 CorticalB 0.156 CorticalA 0.196
16 ellDistCentersRel 0.141 radiusPronTiny 0.154 distOfNucl2ToLineAvgRel 0.181
17 lineVarOfNucl2Avg 0.135 sumOfNucl 0.141 distOfNuclITinyToLineAvgRel 0.166
18 distOfNuclBigToLineAvgRel 0.135 alpha3D2 0.139 nucleolesBig 0.165
19 radiusPronl 0.132 dispOfNucIBigAvg 0.132 nucleolesl 0.164
20 nucleolesTiny 0.132 ellDistCentersRel 0.124 alphaBetween 0.162
21 alpha3D1 0.131 lineVarOfNuclBigAvg 0.114 lineVarOfNuclTinyAvg 0.157
22 alphaBetween 0.127 distOfNuclIBigToPronLine 0.109 alpha3D1 0.155

Table 4.7: Summary of measure of association and correlation with three tests in the
order of descending importance

their corresponding test. We chose a total of seven features (crosses throughout the
three columns) and we consider them significant in respect to the giasior bad.
We keep in mind these seven features for the subsequent analysis.

summary summary
2 feature score pearson kedall kolmod. feature score pearson kedall kolmog.
3 diffofNucl 1 X X X ZS2.Proximity 0.726 — X -
4 OolemmaB 0.966 X X X OolemmaRatio 0726 — - -
5 alphaMin 0.959 X X X alphaMax 0696  — - -
6 ZS.4bis.Line.position 0.939 X X X radiusPron2 0.693 — - -
7 nucleoles2 0.939 X X X nucleolesTiny 0.682 — - -
8 CorticalB 0.922 X X X lineVarOfNuclTinyAvg 0.669 - - -
9 alpha3D2 0.899 - X X ZS.3.Nb.of.nucl 0.666  — X -
10 distOfNucl2ToPronLine 0.895 X X X corticalReaction 0.662 — - -
11 distOfNuclBigToLineAvgRel 0.892 - X X distOfNucl1ToPronLine 0.659 — - -
12 distOfNucl1ToLineAvgRel 0875 — X X sumOfNucl 0.659 - X -
13 lineVarOfNucl2Avg 0.851 - X X CorticalRatio 0.652 — - -
14 nucleolesBig 0.834 — X - ZS1.Centering 0.639 — X -
15 CorticalA 0.828 X - X lineVarOfNucl1Avg 0.625 - - -
16 distOfNucIBigToPronLine 0.821 — X X ZS5.Cort.react 0.622 — - -
17 dispOfNucIBigAvg 0.811 - X - ZS4.Line.dispersion 0.615 — - -
18 distOfNucl2ToLineAvgRel 0.811 — - - radiusPronTinyRel 0.608 — - -
19 ellDistCentersRel 0.804 X X - proxOfPronCent 0.601 — - -
20 OolemmaA 0.801 X - - posOfPronRel 0.578 — - -
21 alphaBetween 0.797 - - - Ellipse.angle 0.568 — - -
22 radiusPronBig 0.794 X X - posOfPronSum 0.564 — - -
23 | distOfNuciTinyToLineAvgRel ~ 0.784  — - - dispOfNuciTinyAvg 0554 — - -
24 alpha3D1 0.777 - — - proxOfPronRel 0544 — — -
25 nucleolesl 0.75 b3 - - ellDistBetweenRel 0.541 - - -
26 radiusPronTiny 0.747 - X - radiusPronBigRel 0534 - - -
27 dispOfNucl2Avg 0.747 X - - distOfNuclTinyToPronLine 0.53 - - -
28 lineVarOfNuclBigAvg 0.736 X radiusPron2Rel 0.527
29 ZS6.GP.avg.if.90 0.73 - - dispOfNucl1Avg 0.517 - -
30 radiusPronl 0.726  — — radiusPron1Rel 0.49 — —

Table 4.8: Columns are marked with a cross if the feature is significant for each test

4.2.5 Principal Components Analysis

The purpose oprincipal components analysis (PCA)is to find a smaller group of
underlying variablesy) that describe the data. These new variabigarg uncorrelated
linear combinations of the original variablgs $ r). The new variables rarely lead to

a greater understanding of the data, it is difficult to find a meaning for them. On the
other hand, the smaller new group of variables allows us to

e provide a relevant set of features for a classifier

e reduce redundancy;
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None of these two applications are relevant to us in this case. We will make B§=of

with a different goal: measure the contribution of each feature to the overall variance.
In this way, if a feature has a strong contribution to the overall variance, it means either
that that feature is very noisy or that it is strongly related to an underlying physical
process (helpfully the zygote class).

PCA is an eigenanalysis, it can be obtained usingdtnariance (C)or thecor-
relation (R) matrix (see Equatiorfs 4.13a gnd 4.J13b). We want to give all features the
same variation by standardizing, so we will make use of the correlation matrix.

We perform areigenvector decompositiorof R defined by Equatiop 4.1Bb. Prin-
cipal components can be determined using eigenvectors as coefficients in the linear
combination of the variables. Let = (x1,X2,...,Xp) be our set of original features,

Cxy represent the covariance between features ) andy (xx) (see Equatioa).

We useR of rankr to calculate an orthogonal basis by finding real posidigenval-
uesA,..., Ar (Ris symmetric positive definite) and eigenvectarsEigenvectors and
eigenvalues are the solutions of Equafion 4.15. We order the eigenvectors in the order
of descending eigenvalues, it is equivalent to the order of largest correlation.

C1 ... Crr 1 rlr:Cilér
C=| : : ] R= : :
Cr]_ Cr rr1:% 1
(4.13a)
SSy 10 Gy
Cxy = =—S =X —Y), ey = i —X)(Yi —
W= -1  n-12 (X =X)(yi —Y) Y ooy 2 X =X)(Yi —Y)
(4.13b)
Rg; ZAiCi, (R—)\H)Ci =0 (4.14)
non trivial solutions for |R —Al| (4.15)

Results

In this section we first study the contribution of each principal component to the overall
variance, then we study the contribution of each feature within each component.

The first principal component¢mponert) is the component that explains the
greatest part of the variation, then after the first component the second component
componerf explains the greatest part of the variation, and so on. A bar plot of the
relative variance of the 37 first components is shown in Figurie 4.2. This relative vari-
ance of each component represents the contribution of each component to the overall
variance. The decrease in contributions from the principal components is relatively
low, to obtain 99% of the overall variance, 37 first components must be used; with ten
components we have only 52% of the overall variance. Variance of componends 50 (
to 56 (p) are equal to zero, so the underlying variables that describe the data have a
smaller dimensionr(< p).

In Table[4.9 you can find the absolute value of the first three ordered components
(ci,i € {1,2,3}). In bold font are those features for which the power to classify the
"zygote class" tests are significant at 0.05 level of confidence (see Setion] 4.2.4).
These features are also marked with a circle in the 2-dimensional representation of the
data (Figure§ 4|3, 4.4, 4.5). It can be seen that significant variables are widespread
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10 first components: 0.52 % of variance
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Figure 4.2: Relative variance of the 37 first components, 99% of the overall variance

on the PCA axis. This means that they are not too much correlated among them and,
therefore, they bring enough information about the data set.

Bold features in Tablg 4,9 features are scattered across columns, that illustrates
the fact that noisy features has a strong contribution to the overall variance and that a
classification with these components is not recommended. This components can still
throw light on the degree of correlation of features for which the power to classify the
"zygote class"tests were significant.
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Figure 4.3:componert function ofcomponeri

Each principal component is a linear combination of the initial data involving dif-
ficulties to find a meaning with a set of them, especially in our case, some explanation
of the importance of each feature may be necessary to get the methods adopted, fur-
thermore to provide a reasonable summary of the data nearly all components must be
used. However, this test was useful to measure the contribution of each feature to the
overall variance. PCA is a popular technique in pattern recognition. However, PCA is
not optimized for class separability. An alternative islihear discriminant analysis
(see Sectiop 5]3).
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feature |componert| feature |componer| feature |componerg|

2 distOfNucl1ToPronLine 0.248 radiusPronTiny 0.304 proxOfPronCent 0.295
3 distOfNucIBigToPronLine 0.236 radiusPron2 0.278 proxOfPronRel 0.269
4 sumOfNucl 0.232 radiusPronBig 0.278 posOfPronRel 0.229
5 distOfNucl2ToPronLine 0.225 ZS.4bis.Line.position 0.265 radiusPronTinyRel 0.211
6 nucleoles1 0.21 radiusPronTinyRel 0.265 ZS1.Centering 0.204
7 distOfNuclTinyToPronLine 0.209 radiusPronl 0.261 posOfPronSum 0.203
8 ZS.3.Nb.of.nucl 0.202 radiusPron2Rel 0.248 radiusPron2Rel 0.197
9 nucleolesBig 0.197 radiusPronBigRel 0.246 ZS.3.Nb.of.nucl 0.184
10 nucleoles2 0.189 distOfNucl1ToLineAvgRel 0.244 sumOfNucl 0.184
11 dispOfNucl1Avg 0.187 distOfNuclTinyToLineAvgRel 0.227 nucleolesl 0.183
12 dispOfNuclBigAvg 0.177 radiusPron1Rel 0.224 linevarOfNucl1Avg 0.183
13 ZS4.Line.dispersion 0.176 distOfNuclBigToLineAvgRel 0.19 ZS2.Proximity 0.179
14 ZS.4bis.Line.position 0.166 ZS2.Proximity 0.174 distOfNuclTinyToLineAvgRel 0.163
15 radiusPronBigRel 0.163 distOfNucl2ToLineAvgRel 0.172 nucleolesBig 0.162
16 dispOfNuclTinyAvg 0.162 proxOfPronRel 0.162 ZS.4bis.Line.position 0.155
17 dispOfNucl2Avg 0.162 distOfNucl1ToPronLine 0.135 OolemmaA 0.148
18 nucleolesTiny 0.148 distOfNuclBigToPronLine 0.106 radiusPronTiny 0.146
19 lineVarOfNucl1Avg 0.148 alphaMax 0.091 ZS4.Line.dispersion 0.143
20 radiusPronBig 0.146 ellDistCentersRel 0.086 distOfNucl2ToLineAvgRel 0.142
21 lineVarOfNuclBigAvg 0.145 distOfNuclTinyToPronLine 0.086 radiusPron2 0.141
22 radiusPron1Rel 0.143 ellDistBetweenRel 0.083 radiusPronBigRel 0.137
23 distOfNuclBigToLineAvgRel 0.142 lineVarOfNucl2Avg 0.078 ZS5.Cort.react 0.129
24 distOfNucl1ToLineAvgRel 0.141 nucleolesTiny 0.071 nucleoles2 0.128
25 radiusPronl 0.132 dispOfNuclTinyAvg 0.067 radiusPron1Rel 0.127
26 distOfNuclTinyToLineAvgRel 0.124 dispOfNucl1Avg 0.065 lineVarOfNucIBigAvg 0.126
27 lineVarOfNucl2Avg 0.124 ZS1.Centering 0.062 dispOfNucl1Avg 0.125
28 radiusPronTinyRel 0.121 posOfPronRel 0.061 alphaMax 0.121
29 lineVarOfNuclTinyAvg 0.121 ZS6.GP.avg.if.90 0.06 corticalReaction 0.119
30 distOfNucl2ToLineAvgRel 0.12 ZS4.Line.dispersion 0.059 ellDistBetweenRel 0.116
31 radiusPron2Rel 0.118 nucleolesBig 0.058 nucleolesTiny 0.111
32 posOfPronRel 0.117 CorticalB 0.058 dispOfNucIBigAvg 0.11
33 proxOfPronCent 0.116 alpha3D2 0.058 alphaBetween 0.107
34 radiusPronTiny 0.113 posOfPronSum 0.058 alpha3D1 0.105
35 posOfPronSum 0.11 distOfNucl2ToPronLine 0.056 ZS6.GP.avg.if.90 0.104
36 radiusPron2 0.107 proxOfPronCent 0.055 distOfNucl1ToLineAvgRel 0.102
37 ZS1.Centering 0.103 alphaBetween 0.054 diffOfNucl 0.098
38 diffOfNucl 0.079 corticalReaction 0.052 OolemmaB 0.097
39 proxOfPronRel 0.076 alpha3D1 0.05 lineVarOfNuclITinyAvg 0.089
40 OolemmaB 0.072 lineVarOfNuclITinyAvg 0.047 ellDistCentersRel 0.083
41 OolemmaRatio 0.072 OolemmaA 0.046 alpha3D2 0.076
42 alpha3D1 0.065 CorticalA 0.044 distOfNuclBigToLineAvgRel 0.073
43 alphaMax 0.06 lineVarOfNuclBigAvg 0.043 distOfNuclBigToPronLine 0.07
44 Ellipse.angle 0.059 ZS.3.Nb.of.nucl 0.041 distOfNuclITinyToPronLine 0.062
45 alphaBetween 0.048 OolemmaRatio 0.034 radiusPronBig 0.053
46 CorticalB 0.047 dispOfNucl2Avg 0.033 radiusPronl 0.046
47 ZS2.Proximity 0.043 diffOfNucl 0.032 CorticalB 0.042
48 CorticalRatio 0.035 dispOfNucIBigAvg 0.031 distOfNucl1ToPronLine 0.036
49 ZS6.GP.avg.if.90 0.034 nucleoles2 0.024 CorticalRatio 0.034
50 alpha3D2 0.025 alphaMin 0.024 distOfNucl2ToPronLine 0.03
51 alphaMin 0.025 Ellipse.angle 0.024 OolemmaRatio 0.029
52 ellDistBetweenRel 0.021 CorticalRatio 0.022 lineVarOfNucl2Avg 0.029
53 ellDistCentersRel 0.017 ZS5.Cort.react 0.02 CorticalA 0.011
54 CorticalA 0.012 lineVarOfNucl1Avg 0.017 dispOfNuclTinyAvg 0.006
55 OolemmaA 0.01 nucleolesl 0.011 alphaMin 0.006
56 corticalReaction 0.003 sumOfNucl 0.004 dispOfNucl2Avg 0.004
57 ZS5.Cort.react 0.003 OolemmaB 0.002 Ellipse.angle 0.001

Table 4.9: Absolute value of the first three ordered components, in bold font are those
features for which the power to classify the zygote class are significant
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Chapter 5

Supervised Classifiers

We start this chapter with some definitions that will be useful to assess the quality of the
classifier at hard (Secti¢gn 5.1). Then we explain two different classification strategies
that will be used throughout the chapter. Finally, we show the essential theory and the
results obtained with a full battery of classifiers.

Our goal in this chapter is to predict the implantation potential of the zygotes
yi € {1,2} based on a-th observatiorx;. Each zygote potential data are divided
in three classes, zygotes leading to pregnancy (twins) zygotes no leading to pregnancy
and uncertain zygotes (see Chapfer 2). Only the first two classes are going to be used
in this chapter.

Two datasets are compared, the first one iSRNE zygote scoring data, zygotes
were visually scored from one to three for proximity, orientation and centering of the
pronuclei, cytoplasmic halo, and number and polarisation of the nucleoli. From these
individual scores, a cumulated pronuclear score labeN8is calculated. The second
dataset is the data collected with ttmeageJ Plug-In pronuclear measurements were
made (see Chaptgf 2) and it is labelé®M . Furthermore each dataset can also be
divided in fresh and frozen-thawed zygotes labdlegh andcryo, respectively (see

Sectior] 2.1).

5.1 Classification accuracy

To assess the performance of our classifiersethar rate will be computed splitting
our data in two parts, the training set and the test set. Several procedures are available
to compute the error rate. Three of them kifeld cross-validation (5.7]), bootstrap
(5.7) andholdout estimate The first two methods are used throughout this chapter.
In fact, k-fold cross-validation technique is superior tHaidout estimate giving
reduced bias for small data sets|[20]. Furthermore, k-fold cross-validatidn-Aif
n) is also superior in terms of variance thiave-one-out cross-validationk = n)
procedure. Indeed if the prediction rule is unstable the leave-one-out procedure will
have high variance, the sets being too similar to the full data set. Concerning bootstrap
procedure, it has proved superior to many other technigués [14] making an efficient use
of the data also compared to the holdout estimate procedure using only a little part of
the data in the training process.

Before computing errors rates let us introduce some notation. Let the training data
beY ={yi,i=1,....m} and letw = {w;,i = 1,...,m} be the true categorical class
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labels. Now consider our classifier built with the training datnd its corresponding
class label® = {0; = 1,...,m} assigned with a given classifier. Now 8tw;, ;) be
the loss function

.| 0 ifwx=0 (correct classification)
Qe 01) { 1 ifey£0 (misclassified) 6.1
Lete? be theapparent error rate for a given classifier, necessary to calculate the boot-
strap error rate. The apparent error rate is obtained by cumulating the errors through
the training data.

1 m
f= ﬁi;Q(cmoi) (5.2)

This error rate is optimistically biased, in fact we consider the same data to measure
the error and to build the classifier. The following sections summarize the k-fold cross-
validation and the bootstrap algorithms.

k-fold cross-validation

k-fold cross-validation is an estimator method based on resampling. k-fold cross-
validation algorithm is created by sampling the observationskirsobsets of approxi-
mately equal size, then classifytimes, each time leaving out one of the subsets from
training, but using only the omitted subset to compute the misclassification error rate.
It is implemented as follows

1. Sample the data intesubsets of approximately equal sie= {y;,i=1,...,k})

2. Generate the classifier with a data set each time leaving out oneloebtimsets
from trainingY, whereY j is thek-th subset antfjc is its complementary subset

Yi={y,i=1,..., HJ}

nk—1)
k

Y(j:—{yi,i—l,‘..{ J}, Y =Y;uUY§

3. Compute thg-th k-fold error ratee’j( using only the omitted subset

Repeat these stepdimes, error rate is given by
1 K
= > leel; (5.3)

10-fold cross-validation displayed lower variance compared to leave-one-out cross-
validation [21] because the leave-one-out training sets are too similar to the full data set
and so we apply 10-fold cross-validation to our classifiers to asses their performance.
With this procedure, aonfusion matrix can be constructed. A confusion matrix
contains information about actual and predicted classifications done by a classifier.
Performance of such systems is commonly evaluated using the data in the matrix. The
following table shows the confusion matrix for a two class classif'eandd is the
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true predicted| bad (b) | good (g)
bad (B) a b
good (G) c d

Table 5.1: Example of a confusion matrix

number of correct predictions of bad and good, respectibedyndc is the number of
incorrect predictions of bad and good. In the rest of the chapter, for each classifier, to
get reliable estimates we ran 100 cycles of tenfold cross-validation error rate estimation
to assess the error rate variation. Thus, the number of correct and incorrect predictions
is the average over these cycles, furthermore we normalize the table dividing it by the
sum of predictions.

We use boxplots confusion tables and histograms to summarize the error rates. In
histograms, the gray vertical line represents CPNS misclassification error [Tgble 5.3).
k-fold cross-validation cannot be applied t®NS error, indeed the classifier built
using a subset in step 2 of Sectjon|5.1 is always the same because it is fixed by the
LABR(W = 1,1 andwp = 13). Thus, we cannot obtain its variance.

Bootstrap

Bootstrap is another method for estimating the generalisation ewmected for bias.

As we saw above, it has proved superior to many other technigues [14]. This technique
was first developed by Efron (1979). The basic idea involves sampling with replace-
ment to produce random samples of siaérom the original data. Each of these sam-

ples is known as a bootstrap sample and each provides and estimate of the bias. Re-
peating the sampling a large number of times provides information on the variability
of the estimator, approximatively 100 subsamples might be used. It is implemented as
follows

1. Generate th¢-th bootstrap data sgf according to a uniform Am distribution
2. Generate the classifier usipg

3. Compute thej-th apparent error rate'j‘\ using the latter classifier (see Equa-
tion[5.3)

4. Calculate the actual error ra&% considering our whole sampje

5. Computew; = €} — €

Repeat these steps B times and compute the bootstrap bias

@

Whoot = Wj (5-4)

1
le

The bias-correctedpparent error rate is given by

e@oot = & —Whoot (5.5)

With the basic bootstrap procedure, the apparent errOIefaiEeobtained by con-
sidering the bootstrap data, so the same data as held in the classifier, thus a confusion
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matrix will be dramatically biased and is not enlightening. In the following, only the
bootstrap error and its deviance is used.

In the rest of the chapters, for each classifier we ran 50 cycles of bootstrap with 100
bootstrap samples each time. Misclassification rate estimation is compute and the 50
cycles allows us to assess the error rate variation.

5.2 Comparison between classification strategies

In order to assess the benefits of splitting the dataset into fresh and cryo zygotes the
error obtained with the splitted data set and the error obtained with all data are com-
pared. The error for a given classifier using all data will be referred égasvhile the

error with the splitted dataset is calleg,i;. The whole error rate for splitted data is
computed as

Esplit = €freshP(Wresh) + €cryoP(Weryo) (5.6)

whereesresh is the classification error for the fresh data g+ esh) is the estimates
of the a priori probabilities of conservation membership. In our dataset there are as
many fresh zygotes as cryo ones, thus

p(Wfresh) ~ p(Wcryo) ~ 0.5

5.3 Linear discriminant analysis

assumptions: multivariate normal class densities with same covariance ma-
trix in each class
space partitioning:  hyperplanes

free parameters: a priori probability of classes

advantages: rescale of the data so that the within class covariance is spher-
ical, ease of interpretation and ease of use

disadvantage: restrictive assumption of class densities, data must be full

rank (at least as many observations as features)

This section is dedicated to linear discriminant analysis (LDA), it is a classical sta-
tistical approach for predicting samples of unknown classes, based on training samples
with known classes. Linear Discriminant Analysis easily handles the case where the
within-class frequencies are unequal and their performances has been examined on ran-
domly generated test data. This method maximizes the ratio of between-class variance
to the within-class variance in any particular dataset guaranteeing maximal separabil-
ity. LDA is studied in hopes of providing better classification compared to Principal
Components Analysis. The prime difference between LDA and PCA is that PCA does
more of feature classification and LDA does data classification. In PCA, the shape and
location of the original data sets changes when transformed to a different space whereas
LDA does not change the location but only tries to provide more class separability and
draw a decision region between the given classes.

5.3.1 Mathematical background

LDA seeks a linear combinatidr(x) of components ok = (x,...,Xp)" SO that the
different classes are separated by hyperplanes (see Equaiiow5s7galled weight
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vector andwp the threshold . Functioh(x) is the equation of the hyperplane with
perpendicular directiow and a perpendicular distanp&|/|w| from the origin [14].
h(x)/|w| is the perpendicular distance from the patteto the hyperplane.

h(x) = w'x+wo (5.7)

A samplex is assigned to bad H(x) > 0. Otherwise, it is assigned to good. Let
Xjg (p x 1) be the observation within clagontainingp-features. The sample within
groupg hasng elements and the meanx; is denoted byg and obtained with Equa-
tion[5.8,x is the mean op-features considering both groups.

Now let us find the directiow. There is a space of best separation for a determined
w maximizing Equatiof 5]9.
w'Bw
= 5.9
= Wrww (5.9)
whereW denotes the within-class covariance matrix (Equdtion|5.10Bathe between
class covariance matrix (Equation 5.11).

=

I
&
@

(Xjg — Xg) (Xjg —Xg)" (5.10)

Il

R
“\:\

R

(o9]
|
o)

Ng(Xg —X)(Xg —X)" (5.11)
1

T

We choose the directiow that maximizegp(w), differentiatingg(w) and setting the
derivative to zero to find the maximum

do 0 2Bw(wWw) — 2(wBw)Ww

= 12
dw (WT'Ww)2 (5.12a)
. wBw
equivalentto Bw=Ww <va\Iw> = @Ww (5.12b)
iff W notsingular W ™Bw = qw (5.12c)

In order to be able to compute the inverse of the within class covariance matrix, the
matrix must be full rank, this can be only the case if the data set has at least as many
rows as columns (necessary condition).

Equatioc implies that must be an eigenvector W 1B with eigenvaluep.
Thus,w is the eigenvector of higher eigenvalue. In our c@se 2, matrixB of rank
one can be written as follows

g
Ny +ne

(X1 —X2) (X1 —X1) (5.13)
W*l(il —Xp) is the eigenvector associated to the eigenvalue of the MatrixB, so

wOW (X1 —x2) (5.14)
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We normalizew without loss of generality, the weight vector becomes

W_l()?l — )?2)

W= —— ———
W=t —X2)|

(5.15)

The classification rule for a new observation is to assgigmbad ifh(x) = wx+wp
is closer toy; = w' Xz than toys, or

h(x) =w'x— %()71 +X2) >0 (5.16)

Another approach is to assume that the class-wise densities are multivariate Gaussian
distributions with means; and x;, and common covariance matri&x (see Equa-
tion[4.13%). Then, the normal distribution for both classes becomes

1 1oy s \o-liy_ i
— = g 2(xX)CTH(x=Xp)
X|g) = e 2 5.17
p(x|g) P (5.17)
Classification is achieved by calculating the posterior probabilipies |x), and
assigning the label to a class for which they are the greatest. Bayes's rule allows us to
to compute them

oy P(XIWE) p(wi)
p(Wi[x) = T (5.18a)
or equivalently, (5.18b)
(5.18¢)
log(p(wi|x)) = log(p(x|w;)) +log(p(w;)) —log(p(x)) (5.18d)
= —%(x —xi)TCH(x—Xx;) — log(p(w;)) + const (5.18e)

=x"Cx - %YFC*% +log(p(w)) +const=gi(x)  (5.18f)
(5.18g)

The discriminant rule becomes, assigto w; if g; > gj, for alli # j. The means and
the covariance matrix are unknown but using the plug-in approach all we have to do is
replacing them by their maximum likelihood estimator.

5.3.2 Results
Unweighted LDA with PNS data (CPNS)

As discussed in Sectign 2.1APNSis the cumulated pronuclear score, this score can
be seen as abDA classification with an unitary weight vectar, the thresholdvg is
already established by the laboratoryteg—= 15. This threshold can be obtained form
Figure[5.1. The implantation rate is given tiy(a+d) in Tablg5.1, this rate increases

for all zygotes when the cumulated pronuclear score is greater than 8. At level 15 the
implantation rate is maximum. Henogy = 15, Equatiofi 5J7 becomes

h(x) = ixi +15 (5.19)
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The classification becomestifx;) > 15, thex; zygote will be considered as having
maximum implantation potential. Right side of Fig[Qre]5.1 is the frequency of the CPNS
score, zygotes having a score of 12 are 22%, when zygotes having a score of 18 are
only 0.5% (only one zygote). Implantation rate for frozen-thawed zygotes is equal to

1 for a CPNS score greater or equal than 15. However, we can not conclude that all
cryo-preserved zygotes with a score higher than 15 lead to a pregnancy because only
one frozen-thawed has a score over 15, thus the implantation rate bedgfaesd) =
1/(0+1)=1.

Implantation Rate with CPNS CPNS frequency
1.04 Sk I
—e— All zygotes
o 08] [®— Alzygotes 0209 |—— Fresh o/
© —— Fresh —— Frozen-thawed \:
14 \
- —— Frozen-thawed -.0.15 x +
S 0.6 R [ / K \
© 4=t [ S *
= o \ EY */o \o
8 04 o-p-°-0 \e goio \
S i % - B _t R
2 \ [+ +.
= 0.2 *< / 0.05 +
*
J 00\
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Figure 5.1: Implantation rate as function of the cumulated pronuclear score (CPNS)
and CPNS frequency

Error Rate with CPNS
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Figure 5.2: Implantation rate as function of the cumulated pronuclear score (CPNS)

Throughout this chapte§PNS misclassification erroris compared to the misclas-
sification rate of supervised classifiers. Its confusion matrix and its values are shown
in Tabled 5.P and 513.

For frozen-thawed zygotes the accuracy of the classifier is very low, in fact neither
bad frozen zygote are classified as being bad nor as being good. However, the overall
classifier accuracy is of 0.3 (see Taple|5.2), this fact can be explained by the small
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all data fresh cryo
true\ pred | bad good | bad good | bad good
bad | 0.549 0.044| 0.392 0.0928| 0.692 0.0
good | 0.353 0.054| 0.412 0.103 | 0.299 0.009

Table 5.2: Confusion matrix with CPNS procedure (unweighted LDA with PNS data)

€all

€tresh

€cryo

Esplit

CPNS error

0.398

0.505 0.3

0.402

Table 5.3: Misclassification error rate with CPNS procedure (unweighted LDA with
PNS data)
s

number of thawed-zygotes in our sample, only 26 of 59 (26+ 59) = 0.3) are good.
Even if we compare all our classifiers with accuracy in Tabl 5.2 this fact must be taken
in account.

Conventional LDA with PNS and IJPM data

Although the variance of the error estimates forfSdata is smaller that those based

on thelJPM data due to noisdNScan only take 3 values (see Secfion 2.1.1), whereas
values oflJPM are continuous), the wholdPM dataset performs better classification
thanPNSin respect to the estimation of the error rate. The mean error estimation for
IJPM is 0.36 + 0.02 whereas the mean f®iNSis 0.39 + 0.01 (see Tabl¢ 5]6).
Concerning the sampled data (fresh or cryo) the error estimation is lower f&MNBe
dataset. However, if we want to assess accuracy of classification based on error rate
estimation procedures, the classification error with divided dgjia (cryo or fresh)

and with whole dat&,;; must be compared (see Equafion 5.6). Within the splitted data
the PNS is better than IJPM in respect to misclassification error rate, concerning all
data together IJPM is better, hence we come&h® with e}, finally ej"™ < eL2
(0.363 < 0.396) (see Tablgés b.6). The smallest misclassification error with LDA is
obtained with the IJPM dataset, for 10-fold cross-validation and bootstrap techniques,
without distinction between their conservation type, its value 3883+ 0.02.

Histograms of classification error rate are shown in Figurg 5.4. Vertical gray line
represents the error rate with the CPNS scoring in Table 5.3, the black line represents
the mean of the error rate with the LDA procedure in Tablé¢ 5.6. Error rate with LDA
procedure (black) is always below the error rate with CPNS scoring (grey), except in
the case of thawed-zygotes, however we must keep in mind the fact that almost all cryo-
preserved zygotes are misclassified. CPNS error in first histogram (grey line) overlaps
the LDA classification with PNS data, that can be also a reason to choose the value 15
for the thresholadwvg.

all data fresh cryo
true\ pred bad good bad good bad good
bad 0.385+ 0.016 0.197 0.016 0.24+0.0231 0.232t 0.0231 0.449+ 0.031 0.245+ 0.031
good 0.1694 0.0142 0.25+ 0.0142 0.261+ 0.0209 0.268t 0.0209 0.1644 0.0148 0.142+ 0.0148

Table 5.4: Confusion matrix for 10-fold cross-validation for IJPM data

Results with bootstrap confirm those obtained with 10-fold cross-validation, how-
ever with this approach has less variance.
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10 Fold Cross—Validation

all IJPN- -
all PNSH HIk
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Figure 5.3: 10-fold cross validation for both set of data IJPM and PNS, each set of data
is represented entirely or is divided by the cryo-conservation feature
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Figure 5.4: Histogram of 10-fold cross validation for both set of data IJPM and PNS,
each set of data is represented entirely or is divided by the cryo-conservation feature

5.3.3 Conclusion

The main conclusion of this section is that the smallest misclassification error with
LDA is obtained with thedJPM dataset without distinction between their conservation
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all data fresh cryo
true'\ pred bad good bad good bad good
bad 0.41+ 0.00799 0.184- 0.00799 0.268+ 0.014 0.217-0.014 0.481+ 0.0236 0.21+ 0.0236
good 0.206+ 0.00848 0.2+ 0.00849 0.223+ 0.0147 0.293t 0.0147 0.16+ 0.00798 0.148 0.00797

Table 5.5: Confusion matrix for 10-fold cross-validation for PNS data

€all €fresh €cryo Esplit
PNS | 0.39340.0132 | 0.446+ 0.0245 0.3470.0189| 0.396+ 0.0154
IJPM | 0.363+ 0.0214 | 0.4974+ 0.0351 0.394 0.0304 | 0.444+ 0.0232

Table 5.6: Summary of 10-fold error rates

Bootstrap Error

all 1IJPN- ofh
all CPNSH [
fresh 1JPN- H)
fresh CPNS- [ ]
cryo [JPN- HH
cryo CPNSH Hho
| | | | |
AN (e0] < Yo} ©
S S S = S

bias—corrected apparent error rate

Figure 5.5: Bootstrap error rate both set of data IJPM and PNS, each set of data is
represented entirely or is divided by the cryo-conservation feature

€all €fresh €cryo Ssplit
PNS | 0.4044 0.00386| 0.4624+ 0.00307 0.376: 0.00726| 0.4054 0.0184
IJPM | 0.398+ 0.00549| 0.5084- 0.00606 0.439- 0.00929| 0.378+4 0.00942

Table 5.7: Summary of bootstrap error rates

type, its value i9.363+ 0.02 for 10-fold cross-validation.
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5.4 Trees
assumptions: hyperspace separation with stepwise method
space partitioning:  smaller hypercubes within hypercubes
free parameters: o amount of penalisatiorl,(t) impurity function, f number
of features per node
advantages: ease of interpretation and ease of use
disadvantage: stepwise method, high variance and unstable classifiers

This section is dedicated to classification trees. Trees are usual classifiers in med-
ical diagnosis for their ease of interpretation and their compactness. Trees have demon-
strated good performance on a wide variety of problems in which there is not a strong
theory in an area that would clearly indicate which variables are, and are not, probably
predictors of some dependent classification. Trees will be very useful in identifying
major data trends, and hence this method is well adapted for our fixed goals. Each
endpoint of our classification tree allows us to predict whether an expected observation
belongs to the "good" or the "bad" class zygotes leading to pregnancy or zygotes not
leading to pregnancy respectively.

5.4.1 Mathematical background

Tree models used throughout this section, are hierarchical classifiers based on binary
logical rules. They divide the space intaultidimensional rectangles In fact, a tree

cuts the feature space into smaller and smaller hypercubes, each hypercube corresponds
to a terminal node of the tree. Trees are usually displayed in a graph which has the
format of a binary decision tree, each tree has grows from the root node to the terminal
nodes (also called leaves). Three steps in the algorithm to find the "best" tree are

1. search thg-th feature that should be used at ikl node to split the samples
into subgroups

2. select the threshold;, on j-th feature that should be assigned at ittle node
(an example of decision isx € O : Xj < %n})

3. choose which leaf is a terminal node

We first describesplitting rules, including the first two steps, with our features based
on theGini criterion. Then, stopping rules to assign terminal nodes.

Splitting and stopping rules

Following L. Breiman (1984) [22], the splits are carried out in a way that the selected
j-th feature and threshold at a certain node get as "pure" as possible. The decrease
in impurity at each nodé is measured with ampurity function 1(t). A common
impurity function is defined by th&ini criterion (5.204).

()= 3 PP (5.200)
7]
p(wi[t) = Nj (1) /N(®) (5.20b)
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wherel (t) is the impurity at the nodg p(wi|t) is an estimate of the probability dis-
tribution overw;, Nj(t) is the number of samples of clasg leading to the nodeand
N(t) is the total number of samples in that no8&t) = ZJZ N;j ().

The impurity functionl (t) at nodet allows us to choose the split that minimizes the
impurity at the two leafs leading to nodigsandtr left node and right node respectively,
the decrease in impurity function is

ol (t) E-Zz- p(Wi[t) p(w;[t) — (I (tr) PR+ (tL) PL) (5.21a)
17]
= ; p(wi[t) p(wjt) — (; P(Wi[tr) P(Wj [tr) PR+ ZZ_ p(wiltL) p(w;ltL)) p)
i) i1#] i)
(5.21b)

Now we can grow our tree one step lookahead ("stepwise" method) selecting nodes
maximizing the decrease in impurity over our features. The process described above
can be applied until each terminal node contains only one observation, but often leads
to anover-fit to the training data and the classification could not prove useful. We,
thus, must stop the splitting rule processpoune the tree having "pure" (all samples

that arrive at that node belong to the same class) or nearly pure class membership. In
the following section we will describe a standard pruning algorithm to determine which
leaf is a terminal node.

Pruning the tree

The most popular pruning approach is the one proposed by Breiman (1984) [22]. The
basic idea this approach is that too big trees (having numerous leaves) yield an over-fit.
On the other hand, the misclassification f&te) will increase if the number of leaves
is too little. So, a compromise is searched with the cost-complexity measure.

Firstly, let's make some definitiong; is a pruned subtree df if it has tthe same
root node. Leff; denote the set of terminal nodes of the tigethen letN(T;) denote
its cardinality. Finally, letx be the amount of cost of complexity (control of penaliza-
tion) of N(T;). The penalized misclassification rate for the nb@eR, (t) and can be
computed as follows

Re(t) =R(t) +a (5.222)
Ra(T) = ¥ (R(t)+a) = R(T) +aN(T) (5.22b)
te T

WhenRy (Ti) = Ry(t) the contribution to the cost of complexity of the subtfiges the
same than that for the nod@nda can be write as a function of notle

a(t) :w (5.23a)
N(T) -1
The numerator is the difference between the estimated misclassification error for the
nodet and the estimated misclassification error for the whole subtree with the same
root, the denominator is the number of terminal nodes of the subtree=I10, there
will be no pruning (no penalization). On the other extreme, if we chwse 4o

all nodes except the root node are removed. In practice, we can cofRQujeby
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estimating the amount of misclassification error at nigdRT;) can also be estimated.
It is the amount of misclassification error for the sutheeandN(fi) the cardinality
of Ti. The only free parameter is the cost-complexity) reflecting the compromise
described above. The following process is used to prune thé& tree

1. search a nodg (can be more than one) with the smallest value @) = oy

2. make it a terminal node, the new tree without the sub-branchestfroode is
labeledT*

3. calculate the new(t) for its ancestors, always superiord@

This process is iteratddtimes until the terminal node is the root node. Now we have
a collection of treeF ¥ (k € {1,...,k}) and correspondingy.

Now, we can grow an the prune our tree that fits our training set, but it can be
inefficient in classification specially when the available dataset contains less than a
thousand cases [22], thus cross-validation is used to select the best tree, enhancing the
predictability of our classifier.

Selecting the optimal tree

After the pruning of tre€T iteratedk times, we have a collection of tre@& (k €
{1,...,k}), 10-fold cross-validation is applied, we take 90% of the sample, grow the
tree using this part of the sample, prune a sequence of subtrees and calculate the error
rate for every subtree in the sequence using the rest 10% of the sample as a test set. This
is repeated 10 times, every time using different part of the sample as an estimation set
and as a test set. The problem is that we have different data to grow and to prune, thus,
Ok sequences are differents. The approach described by Breiman ([22]) is to first grow
and prune using all of he data, whichs gives a sequapcthen form a new sequence
Gk = \/0K0k11 (geometric mean). When pruning trees grown with 90% of the sam-
ple, we choose the best tree from the sequence which minimize the misclassification
estimateR°V (TK).

Let T(a) the pruned subree with all nodes havig() > o, (T (a) = TX at thek-th
stage). 10-fold cross-validation is used to prune the tree the method is as follows

1. use the prune process to generate a sequence of pruned slibtoéds

2. generat® subsetd € {Lj,...,Ly} intoV parts with approximately equal size
and generate a trélg

3. use the prune process to generate a sequence of pruned sTMfreF, (5.4.1)

4. compute the cross-validation estimate of misclassificaof{T*)

1 \%

Vo rky _ + ~

REV(TX) = VV;RV(TV(GK)) (5.24)
where,R, is the estimate of misclassification based on the suhsfr the tree
Ty(Gk)) anddy is the geometric mean.

5. select the smallest tr@gn € {T1,...,TX}

REY (Tmin) = rr?(in REV(TK) (5.25)

The final pruned tree i$nin.
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5.4.2 Results

For the tree approach, the variance of the error estimates fd®Nt&data is also is
smaller that those based on the IJPM data certainly due to noise as seen for LDA. The
whole PNS dataset performs better classification than IJPM in respect to the estimation
of the error rate. As the quartiles in 10-fold cross-validation overlap, the difference
is not significant. Concerning the sampled data (fresh or cryo) the error estimation is
lower for PNS dataset.

In order to assess the benefits of splitting the dataset into fresh and cryo zygotes,
the error obtained with the splitted data set and the error obtained with all data are
compared. Within the splitted data the PNS is better than IJPM in respect to mis-
classification error rate (0.423 < 0.469), concerning all data together PNS is also better

(0.423 < 0.414), results are showed in Tdble .10). Hence, we corffjftwith ef{\S
finally €S < eEP (0.414 < 0.423). The smallest misclassification error with trees is
obtained with the PNS dataset, for 10-fold cross-validation and bootstrap techniques,

without distinction between their conservation type, its value 841+ 0.02.

10 Fold Cross—Validation

all IJPN- o - - 4
all PNS- + - -
fresh 1JPN- or---C1TF--
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cryo IJPN+ Fr--C1IO--4 o
cryo PNSH + {J] - 40
T
o o o o o
error rate

Figure 5.6: 10-fold cross validation for both set of data IJPM and PNS, each set of data
is represented entirely or is divided by the cryo-conservation feature

Histograms of classification error rate are shown in Figurg 5.7. Vertical gray line
represents the error rate with the CPNS scoring in Table 5.3, the black line represents
the mean of the error rate with tree procedure in Tablg 5.6. Error rate with trees pro-
cedure (black) always overlap the error rate with CPNS scoring (grey), except in the
case of thawed-zygotes. 8tassification with trees using IJPM dataset do not im-
prove the classification However, we must keep in mind the fact that almost all cryo-
preserved zygotes are misclassified. CPNS error in first histogram (grey line) overlaps
the tree classification with PNS data, as seen for LDA.

As the whole PNS dataset without splitting the dataset performs slightly better clas-
sification than IJPM in respect to the estimation of the error. We grow as an example, a
randomly chosen tree among the 100 trees with PNS dataset (Figure 7.3). In our trees,
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Figure 5.7: Histogram of 10-fold cross validation for both set of data IJPM and PNS,
each set of data is represented entirely or is divided by the cryo-conservation feature

categorical features are treated as numerical data, for example ICSI can take categori-
cal values "yes" or "no", respectively for Intra-Cytoplasmic Sperm Injection ICSI and
in vitro fertilisations, these values are converted to numerical values 1 and 0. Thus,
the threshold in node ICSI of Figufe J.3 split the ICSI fertilisation to the left if it is
greater or equal to 0.5 ("yes" label) and in vitro to the right ("no" label). Values at each
terminal node are the class counts, for example for PNS cryo data, the first terminal
node has a value of 62/18 which means that 62 bad zygotes and 18 good zygotes fall
in this terminal node. Ideally, we would like 100% of classification 70/0 in this latter
node. It is quite possible to grow the tree that fits the training so well, but it leads to a
too well adaptation to the features of that subset resulting in over-fit.

Although the misclassification rate with the uniweighted LDA (CPNS) is lower
than with the trees (0.398 < 0.41), the tree in Fidurg 7.3 can be useful 10ABR
for his ease of interpretation and ease of use. Furthermore, many zygotes have not a
CPNS score superior to 15, indeed the probability in our data set having a zygote with
a CPNS superior to 15 was of 10% (see Figuré 5.2). And so, the advantage of the trees
is that they can be used even if the CPNS score is low.

true '\ pred

all data

bad

good

fresh
bad

good

cryo

bad good

bad
good

0.362+ 0.0288
0.203+ 0.0214

0.22+ 0.0288
0.215+ 0.0214

0.2164 0.0355
0.2714 0.0404

0.255¢ 0.0355
0.257 0.0404

0.485+ 0.041 0.209+ 0.041
0.202+ 0.0244 0.103t 0.0244

Table 5.8: Confusion matrix for 10-fold cross-validation for IJPM data

5.4.3 Conclusion

Trees approach lead to an overall higher misclassification rate compared to LDA, fur-
thermore trees show lower stability, interquartile ranges are broader than those previ-
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Classification Tree for PNS data
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Figure 5.8: Classification Tree for PNS data

PNS fresh data
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Figure 5.9: Classification Tree for PNS divided data

all data fresh cryo
true\ pred bad good bad good bad good
bad 0.39:+ 0.0165 0.203t 0.0165 0.240.0312 0.284+ 0.0312 0.5864+ 0.0292 0.105t 0.0292
good 0.211+ 0.0152 0.196t 0.0152 0.256+ 0.0323 0.259t 0.0323 0.2+ 0.0084 0.108t 0.00839

Table 5.9: Confusion matrix for 10-fold cross-validation for PNS data

ously computed with LDA. Therefore, our preliminary analysis suggest that trees in
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€all €fresh €cryo Esplit
PNS | 0.41440.0207 0.541 0.0402 0.306: 0.0292 0.423t 0.024
IJPM | 0.423+0.0296 0.527-0.0515 0.412-0.044 0.469+ 0.0355

Table 5.10: Summary of 10-fold error rates

Bootstrap Error
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Figure 5.10: Bootstrap error rate both set of data IJPM and PNS, each set of data is
represented entirely or is divided by the cryo-conservation feature

€all €fresh €cryo Esplit
PNS | 0.4234+0.00432 0.503t 0.00973 0.367 0.00802 0.435: 0.00725
IJPM | 0.44340.00797 0.496: 0.00519 0.407-0.00951 0.452- 0.00486

Table 5.11: Summary bootstrap error rates

our case are less useful than LDA. However, trees are a useful method to summarize
data and to make a quick human diagnostic. Indeed, two quick human diagnostics can
be made before the transfer, the first is to calculate the CPNS score and the second is to
drop the zygote down the tree of Fig{ire]7.3. The advantage of using our tree classifier
is that a zygote with a score under 15 is considered as any zygote. Hence, allowing a
classification with all zygotes as opposed to the CPNS classification. This advantage is
that in our sample, only 10% zygotes have a score over or equal to 15 (seg[Figure 5.2).

The main conclusion of this this section is that the smallest misclassification er-
ror with tree is obtained with the PNS dataset, for 10-fold cross-validation and boot-
strap techniques, without distinction between their conservation type, its value is of
0.41+0.02for 10-fold cross-validation.



5.5 SVM 49

5.4.4 Mathematical background
5.5 Support Vector Machines

assumptions: the larger the margin, the better the generalisation error of
the classifier
space partitioning:  non-linear frontiers

free parameters : choice and parameters of Kerri€l regularisation parameter
C

advantages: more powerful than LDA, not a stepwise method

disadvantage: not scale-invariant

Support vector machine (SVM)model is a nonlinear discriminant analysis. The
basic idea of SVM is to seek for a separating non-linear decision boundary (see Equa-
tion[5.26) maximizing a margip between two classag andy, with a higher dimen-
sional feature space. This can be achieved if the data is separable, but in practice the
data is not separable, in that case a variable must be introduced to allow the constraints
to be met.

5.5.1 Mathematical background
Separable data

For a nonlinear functiomp, SVM seeks a non-linear decision boundary which maxi-
mizes the margip, the assumption is that the larger the margin, the better the general-
isation error of the classifiety is called weight vector andy the bias. Classes; and

w» have corresponding labejs =1 andy, = —1. Letn be the number of observations,
the margin satisfies for both classes

Yi <i‘*"‘ﬁ(xi)+®0> =y (@' 0(x) + o) > p (5.26)

Equation 5.76 is the equation of two parallel non-linear boundaries on each side of
wT(p(xj) -+ wp = p separated by the distanpg ||w|| (hyperplanes). Equivalently, we

can dividep anduy in Equatior{ 5.2p by, the new boundaries are callednonical
decision boundaries

yj (@' o(x)) +wo) > 1 (5.27a)

and let, f(x;,yj) =yj (@' @(x;) +wo—1) (5.27b)
and so the distance becomed|d||. The points that lie on the canonical boundaries are
calledsupport vectors The maximization of the distance becomes the minimization of

||eo]|. The problem is minimizindjw|| subject to constraints (5.27b), the corresponding
Lagrangianis

1 2 &
L=3lwl®=> Af(x,y)) (5.28)
2 W= 2
where {Aj,i = 1,...n;A; > 0} are theLagrangianmultipliers. To minimize Equa-

tion is equivalent to maximize the distance between two SVM poinitsogl)
and to minimize the distance of the same points to the boundaries of SVM.
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The dualLagrangianproblem is to maximize
n 1 n n
= J;"J - QJZ 3 M) Top(xi) (5.29)

over allAj > 0 with 37_; Ajyj = 0. The weight vectow can be obtained via

n

Z iYiox) (5.30)

andwg can be computed using any set of support veotﬁstith associated values of
A$Y > 0 with Equatior) 5.27b.

Non separable data

For non separable data, the margin in Equafion $.27a must be adjusted by a slack
variable; > 0, Equation 5.2%a and Equation 5.28 become

Yi (@' @0g) +wo) > 1-0; (5.31a)
1 2 c : C . . .
L= 3wl +C1;crJ —;1)\,f(x,,y,) (5.31b)

the corresponding dual problem is maximized over all B; < Cwith 37_; Ajy; =0
To minimize Equation 5.31b is equivalent to maximize the distance between two SVM
points (1/ ||w]|), to minimize the distance of the same points to the boundaries of SVM
and the cost for those points that are not inside of the boundaries.

The weight vectow can be obtained via

w= % Ajyiex) (5.32)
=1

andwp can be computed using any set of support veotf)stith associated values of
0<AJY < Owith Equatior@b.

The prediction formula for an observation in SV{;, j € SV} (set of support
vectors with associated valuesXq) is

n

g(x) = sign(w' @(x) +wp) = sign( Ajy00) T o(x) +Wo> (5.33)

jesv
@(x)T@(y) is also calleckernel function K(x,y), Equatior] 5.38 can be replaced by
n

jeSV

g(x) = sign( )\,-y,-K(xj,x)ero) (5.34)

5.5.2 Results

As we have presented kernels, they can sometimes improve the separability of the two
classes of samples by performing an projection of the data into a higher dimensional
feature space. Choice of the kernel the actual form of the nonlinearity is relatively
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unimportant([14], we choose the polynomial basis function kernels. However, degrees
of freedom @lof) and costs@) may improve the classification, they can be obtained
by an iterative process choosidg f andC for which misclassification error rate is a
minimum. The process is carried out with the data, results are shown in[Tabje 5.12.
These results are used to design our SVM classifiers.

PNS PNS fresh PNS cryo| 1JPM 1JPM fresh 1JPM cryo
dof 3 5 4 2 4 5
C 3 1 3 9 1 3

Table 5.12: Minimum misclassification error rate according to the number of degrees
of freedom and the costs

Once again, the wholeJPM dataset performs better classification tHRNS in
respect to the estimation of the error rate. The mean error estimatiddHbdt is
0.378 £ 0.02 whereas the mean fBNSis 0.392 + 0.02 (see Tablg 5.15). Concerning
the sampled data (fresh or cryo) the error estimation is also lower fa3fi\é dataset.
Within the divided data the 1JPM performs slightly better classification than PNS in
respect to misclassification error rate (see Tgbleg 5.15). The smallest misclassification
error with SVM is obtained with the 1JPM dataset, for 10-fold cross-validation and
bootstrap techniques, without distinction between their conservation type, its value is
of 0.378+0.02

10 Fold Cross—Validation

all IJPN- o 1]+
all PNSH ot []-+®
fresh 1IJPN o oo+ [I} -o000
fresh PNS- {1 -4
cryo 1IJPN- + -1 - 4o
cryo PNSH or[[J]4o 0
I & X & &
o o o o o
error rate

Figure 5.11: 10-fold cross validation for both set of data IJPM and PNS, each set of
data is represented entirely or is divided by the cryo-conservation feature

Histograms of classification error rate are shown in Figure]5.12. Vertical gray line
represents the error rate with the CPNS scoring in Table 5.3, the black line represents
the mean of the error rate with SVM procedure in Tgble]5.15. Error rate with SVM
procedure (black) is always below the error rate with CPNS scoring (grey), except in
the case of thawed-zygotes, this is the same result as for LDA and trees classifiers.
Once again, we must keep in mind the fact that almost all cryo-preserved zygotes are
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misclassified.
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Figure 5.12: Histogram of 10-fold cross validation for both set of data IJPM and PNS,
each set of data is represented entirely or is divided by the cryo-conservation feature

true'\ pred

all data

bad good

fresh

bad good

bad

cryo
good

bad
good

0.418+ 0.0156

0.215+ 0.0156

0.163t 0.0156
0.204t 0.0156

0.225+ 0.0222
0.206+ 0.0209

0.246t 0.0222
0.323t 0.0208

0.601+ 0.0188
0.22+0.0171

0.092% 0.0188
0.0856- 0.0171

Table 5.13: Confusion matrix for 10-fold cross-validation for [JPM data

true'\ pred

all data

bad good

fresh

bad good

bad

cryo
good

bad
good

0.425+ 0.0143
0.224+ 0.0118

0.169+ 0.0143
0.183+ 0.0118

0.26+ 0.017
0.337: 0.0209

0.225+ 0.017
0.178+ 0.0209

0.59+ 0.0169
0.229+ 0.00841

0.102t 0.0169
0.0796- 0.00841

Table 5.14: Confusion matrix for 10-fold cross-validation for PNS data

€all €fresh €cryo Esplit
PNS | 0.392+ 0.0185| 0.438+ 0.0277 0.33t£0.0198 | 0.384+ 0.0176
IJPM | 0.3784+0.0226 | 0.452+ 0.0332 0.313: 0.0274| 0.3824 0.0202

Table 5.15: Summary of 10-fold error rates

5.5.3 Conclusion

SVM approach lead to an overall lower misclassification rate compared to LDA, how-
ever, they show lower stability. The main conclusion of this this section is that the
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Bootstrap Error
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Figure 5.13: Bootstrap error rate both set of data IJPM and PNS, each set of data is
represented entirely or is divided by the cryo-conservation feature

€all €fresh €cryo Esplit
PNS | 0.414+0.0102 | 0.467+ 0.0158 0.314- 0.0116| 0.39+ 0.00822
IJPM | 0.399+ 0.0135| 0.4714+0.0178 0.34+-0.0148 | 0.405+ 0.011

Table 5.16: Summary bootstrap error rates

smallest misclassification error with SVM is obtained with the 1JPM dataset, for 10-
fold cross-validation and bootstrap techniques, without distinction between their con-
servation type, its value is d@.378 + 0.02 for 10-fold cross-validation. The mis-
classification error obtained with the PNS dataset, for 10-fold cross-validation is of
0.384 4+ 0.0176, latter we will see that SVM leads to the best classification for the
PNS dataset.

5.6 Random Forest

assumptions: none

space partitioning:  hypercubes "bagging"

free parameters: number of variables in the random subset at each node, hum-
ber of trees in the forest

advantages: more robust against overfiting, more robust than other classi-
fiers with respect to noise

disadvantage: "black box" approach

A Random Forestis a classifier that is built from multiple trees generated from
random sampling of the observations, and the features. One of the reason for perform-
ing random forest to our data is that random forest is robust against over-fitting [23],
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normally leading to poor performance. Another reason for choosing Random Forest is
that Random Forest is more robust with respect to noise than other classification meth-
ods [23]. And as seen with PCA, noisy IJPM features has a strong contribution to the
overall variance for the IJPM dataset.

Ideally, we would want to find a biological meaning of a correctly classified sample,
hence understanding Random Forest "black box" is needed. For this purpose, internals
estimates of variable importance are computed in Section 5.6.4

5.6.1 Mathematical background

As seen in Section 5.4, each node in standard trees are split using the best split among
all variables, whereas in a random forest, each node is split using the best among a
subset of features randomly chosen at that node. The random forest process involves
four steps. Leh be the number of samples, andletn x p) be the whole training set.

1. Samplen bootstrap subsets= {L,...,Ln} with replacement

2. Usel, to construct the tree classifid without pruning (see Sectidgn %.4), at
each node of, m split random features are selected, the best split from these
features is retained.

3. Ty are used to predict samples that are nat,ncalledout-of-bagand labeled
LS (L=L,ULS)

4. Final prediction is unweighted prediction for eamit-of-bagestimators

A variable importance estimation can also be computed before usifigto predict
the out-of-bag data (St¢p 3). If we randomly permute the value for one variable for the
out-of-bag samples, this will result in substantially decreasing our ability to classify
each individual in the sample, we can find a variable importance estimation.

The size of each bootstrap sample is equal to the size of the original training set,
but they are drawn with replacement, so each one contains some duplicates of certain
training points and leaves out other training points completely.

5.6.2 Results

Two parameters control the algorithm, the number of variables in the random subset at
each node and the number of trees in the forest. The choice of the number of features
per nodens and number of treesr may improve the classification, they are obtained

by an iterative process choosing for which misclassification error rate is a minimum.
Random Forest was run growing and combining 2000 trees. Results are showed in
Table[5.1}. These results are used throughout this section to design our Random Forest
classifiers.

PNS PNSfresh PNScryo IJPM  1JPM fresh  1IJPM cryo
nb of features| 1 5 1 8 1 1

Table 5.17: Minimum misclassification error rate according to the number of features,
usually one or two features gives near optimum results [23]

Convergence of the error rate for the IJPM and the PNS datasets are illustrated in
Figure[5.14. In both cases, to ensure convergence Random Forest is run growing and
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combining 100 cycles (gray lines), and then the misclassification error rate averaged
(black bold line). The generalization error rate for forest do not converge as the number
of features increase, however the number of trees doeés [23].

IJPM: nb of trees selection PNS: nb of trees selection

OOB error (%)
OOB error (%)

nb of trees nb of trees

Figure 5.14: Error rate of the prediction on the IJPM and PNS data function of the
number of trees; the x-th tree being the error rate for all trees up to the x-th. Error
converges to 0.34 and 0.39, respectively

For the Random Forest approach, the variance of the error estimates for the PNS
data is also is smaller that those based on the IJPM data certainly due to noise as seen
for the latter classifiers.

In order to assess the benefits of splitting the dataset into fresh and cryo zygotes,
the error obtained with the splitted data set and the error obtained with all data are
compared. Within the splitted data the IJPM is better than PNS in respect to misclassi-
fication error rate (0.376 < 0.4), concerning all data together PNS is also better (0.338
< 0.394) the difference between the datasets can be considered as significant as the
quartiles of IJPM and PNS in 10-fold cross-validation are well separated. Results are
showed in Table 5.20. Hence, we compaffy' with e}f™, finally e}f™ < e}

(0.338 < 0.376). The smallest misclassification error with trees is obtained with the
IJPM dataset. For 10-fold cross-validation and bootstrap techniques, without distinc-
tion between their conservation type, its value i9&38+ 0.02

Histograms of classification error rate are shown in Fifure|5.16. Vertical gray line
represents the error rate with the CPNS scoring in Table 5.3, the black line represents
the mean of the error rate with the Random Forest procedure in [Table 5.20. Error
rate with Random Forest procedure (black) is always below the error rate with CPNS
scoring (grey) even in the worst of iteration, except in the case of thawed-zygotes.
Hence, the classification with Random Forest is always better even in the worst of

iteration.

all data fresh cryo
true\ pred bad good bad good bad good
all data fresh cryo
true/perd bad good bad good bad good
bad 0.4794 0.0143 0.102t 0.0142 0.23+0.0198 0.241 0.0198 0.671+0.0113 0.0231 0.0113
good 0.2364 0.0109 0.182+ 0.0109 0.188+ 0.0227 0.34% 0.0227 0.299+ 0.00744 0.00706- 0.00744

Table 5.18: Confusion matrix for 10-fold cross-validation for [JPM data

5.6.3 Conclusion

The main conclusion of this section is that the smallest misclassification error with
Random Forest is obtained with th#PM dataset without distinction between their
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10 Fold Cross—Validation
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Figure 5.15: 10-fold cross validation for both set of data IJPM and PNS, each set of
data is represented entirely or is divided by the cryo-conservation feature
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Figure 5.16: Histogram of 10-fold cross validation for both set of data IJPM and PNS,
each set of data is represented entirely or is divided by the cryo-conservation feature

conservation type, its value 6338+ 0.02 for 10-fold cross-validation. Furthermore,
with IJPM dataset, the classification with any grown forest is always more accurate
than with CPNS.
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all data fresh cryo
true\ pred bad good bad good bad good
all data fresh cryo
true/perd bad good bad good bad good
bad 0.507+ 0.0106 0.0863- 0.0106 0.177+ 0.0167 0.308t 0.0167 0.685+ 0.00725 0.00673- 0.00725
good 0.308+ 0.00809 0.099- 0.00808 0.197+ 0.0226 0.318t 0.0226 0.289+ 0.00913 0.0194- 0.00913

Table 5.19: Confusion matrix for 10-fold cross-validation for PNS data

€all €fresh €cryo Esplit
PNS | 0.3944+ 0.015 | 0.505+ 0.03 0.296+ 0.0127| 0.440.0158
IJPM | 0.33840.0187| 0.42940.0364 0.322-0.0146| 0.376+ 0.0194

Table 5.20: Summary of 10-fold error rates

Bootstrap Error

all 1IJPN- HH
all PNSH 1]
fresh 1JPN- H 4
fresh PNS- |
cryo 1IJPN- HH
cryo PNS- |
| | | | |
(qV] o < Lo (o]
o o o o P

bias—corrected apparent error rate

Figure 5.17: Bootstrap error rate both set of data IJPM and PNS, each set of data is
represented entirely or is divided by the cryo-conservation feature

\ €all \ €fresh €eryo \ Esplit
PNS | 0.396+ 0.00707 | 0.52+ 0.00212 0.308t 0.000707| 0.414+ 0.00141
IJPM | 0.375+ 0.00647| 0.468+ 0.0108 0.324- 0.00735 | 0.396+ 0.00676

Table 5.21: Summary bootstrap error rates

5.6.4 Variable importance

For the purpose of understanding Random Forest "black box", internals estimates of
variable importance are computed. The importance of variables changes depending on
the input parameter controlling the number of variables used at each node. Results in
this section are obtained by setting the parameter to the values of Tafle 5.17.

As |IJPM dataset gives more accurate results, we focus our analysis on it. Fig-
ure[5.18 is the percent increase in misclassification rate as compared to the out-of-bag



5.6 Random Forest 58

rate. Figuré 5.119 represents the variation of importance of the 10 first features. First
feature represented by its boxplot is clearly detached from the others, then the decay is
slow.
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Figure 5.18: IJPM’s 40 first features, the importance of each one is as percent increase
in misclassification

The first featurdineVarO f NucRAvg is clearly the most important feature in re-
spect to Random Forest classification accuracy. This measure reflects the polarization
and alignment of the minority nucleoli.

We compare feature selection based on eaclresstson Kendall andKolmogorov
of Sectior{ 4.2.4 and Random Forest feature selection listed in[Table 5.22. Eight of ten
significant variables are in the 15 first features selected with Random Forest. Two of
themdif fOfNuclandnucleoleg are in the 26-th and 50-th position, respectively.

feature score  pearson kedall kolmagRF position
1 | diffOfNucl 1 X X X 26
2 | OolemmaB 0.966 x X X 2
3 | alphaMin 0.959 x X X 7
4 | ZS.4bis.Line.position 0.939 x X X 5
5 | nucleoles2 0.939 x X X 50
6 | CorticalB 0.922 x X X 12
7 | alpha3D2 0.899 — X X 4
8 | distOfNucl2ToPronLine 0.895 X X X 8
9 | distOfNuclBigToLineAvgRel 0.892 — X X 9
10 | distOfNucliToLineAvgRel 0.875 — X X 15

Table 5.22: Columns are marked with a cross if the feature is significant for each test

The number of features cutoff is not clearly defined, indeed a cutoff step in Fig-
ure[5.18 is not obvious. Moreover, choosing features form 5.22 is not clear.
Once again, this study reflects the difficulties establishing cutt-off in our features.
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Figure 5.19: IJPM’s 10 first features variation

Concerning PNS dataset, the featdistrNuclis totally detached from the others,
we will see later that this variable is strongly correlated with the conservation type. This
feature represented by the first boxplot of Fig@f is significantly more important
than the others, indeed its quartiles are well separated.
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Figure 5.20: 40 first variable most important as percent increase in misclassification

5.6.5 Supervised Classification with conservation type

In Sectior{ 4.1.2, we find that the preservation state of the zygotes was strongly corre-
lated to its success. Hence, it is interesting to find features influenced by the preserva-
tion. Thus, we use th Random Forest algorithm which is usually adapted for a measure
of feature importance. We ran 100 random forest, using 2000 trees in each of them to
estimate the importance represented in Fifure|5.22.
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Figure 5.21: Variable importance as percent increase in misclassification

IJPM: cryo prediction
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Figure 5.22: Variable importance as percent increase in misclassification for cryo-
preserved zygotes

First seven of ten features are in relation to the polarisation of the nucleoli (see
Sectior] 2.]1). We can conclude, that this measure is influent to the classification of the
preservation type, at least with our dataset. Hence, if we examine these distributions a
little bit closer, our measures tells us théthin nucleoli dispersions and dispersion
in respect to the "pronuclei line" (see Secctior] Z]1) increases when the zygotes
were cryo-preserved(see Figur¢ 5.23). Furthermore, in these ten first features two
of them are measurements of Oolemma "radius” (Oolemma is fitted to an ellipse),
Oolemma is smaller for cryo-preserved zygotes.
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Figure 5.23: Fresh (left image) and Frozen-thawed zygote (right image), nucleoli dis-
persions increases when the zygotes were cryo-preserved



Chapter 6

Improvement

The goal of this project is to improve the implantation rate of the zygotes that is cur-
rently about 16% for fresh and 10% for frozen zygotes when 8-10 zygotes are collected
and fertilized. The misclassification rates computed in our analysis of the classifiers is
not representative for the real improvement that can be achieved by using a better clas-
sifier. An improvement of 6% in the misclassification rate (CPNS compared to IJPM)
affects to the selection of a single zygote. However, the implantation rate is the output
of a much more complex process. First, two zygotes must be chosen from a set of 8
to 10 fresh zygotes (the rest of the zygotes are frozen). If these two zygotes failed to
lead to pregnancy, then other two zygotes must be chosen among the frozen ones. This
process is repeated until success or there are no more zygotes. An improvement of
6% in the misclassification rate affects to the selection of each zygote. Therefore, the
expected gain in the probability of success should be larger than 6%. Furthermore, to
accurately compute this probability, the probability of success of a fresh zygote and a
frozen zygote must be taken into account. In this section we develop the theory that
allows computing the probability of success of the whole process. As an exercise, we
start our discussion with a strategy in which only one zygote is selected at a time. This
will serve us as basis to develop the more complicated theory for the case of selecting
(as is done in practice) two zygotes at a time.

Selection of one zygote at a time

In this section we study the case in which we first select a single fresh zygote and freeze
the rest. If it does not lead to pregnancy, then we take another one from among the
frozen ones and repeat this procedure until one of the zygotes succeed or there no more
zygotes. We assume that there is initidllyfresh zygotes. We refer to fresh zygotes
with the labelF and to cryo zygotes with lab€&l. We refer to zygotes actually leading
to pregnancy with the labe&b (Good zygotes) and to zygotes actually not leading to
pregnancy with the labd (Bad zygotes). Independently of whether a zygote is good
or bad, the classifier classifies it as good or bad. We refer to zygotes classified as
good with the labef and to zygotes classified as bad with the ldbdfor the sake of
clarity, at some points we start our discussion with three zygotes and, subsequently, we
generalize tiN zygotes.

Each fresh zygote has a probabiliyG|F) and p(B|F) = 1 — p(G|F) of being
Good or Bad (correspondingly(G|C) and p(B|C) when they are frozen). These
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probabilities are assumed to be known by previous experience. Our analysis of the
confusion matrix of each classifier give us the probabilities of being classified with a
label when the zygote actually have some other label. These probabilities are different
depending on whether the zygotes are fresh or not. For instance, the confusion matrix
gives us information about the probability that a Good, fresh zygote is classified as
good, that isp(g|GNF). Tabl summarizes all the probabilities provided by the
confusion matrices. Note that given a zygote that is actually Good, it must hold that
p(9lGNF)+ p(b|GNF) = 1. That means that all rows of the confusion matrices must
add up to 1.

classified as bad classified as good
actually Bad p(b|BNF) p(g/BNF)
actually Good p(b|GNF) p(g|GNF)

classified as bad classified as good
actually Bad p(b|BNC) p(gBNC)
actually Good p(b|GNC) p(g|GNC)

Table 6.1: Probabilities provided by the confusion tables.

The first zygote in our case is selected ambifgesh zygotes. Thus, the probability
of success at the first zygote can be computed as follows.

Given any fresh zygote, there are four possibilities: either it is Good and it is clas-
sified as good (this will occur with probabilitp(G N g|F)), or it is Good and it is
classified as badp(GNb|F)), or it is Bad and it is classified as good(BNg|F)),
or it is Bad and it is classified as bag(BNb|F)). These probabilities can be easily
computed with the data available (confusion matrices and the probability of a fresh
zygote of being Good). For instance(GnNglF) = p(g/GNF)p(G|F). If a zy-
gote is classified as bad (either if it is actually Good or Bad), it will not be selected.
Thus, we are left only with three possibilities: it is Good and it is classified as good
(p(GNg|F)), oritis Good and it is classified as bag GNb|F)), or it is classified as
bad((b|F) = p(b|GNF)p(G|F) + p(b|BNF)p(BIF)).

Given three zygotes, we will achieve success at the first choice if at least one zygote
is Good and it is classified as good. Thus, there are only six possible successful cases
summerized in Table 6.2 wher&#|F represents the number of fresh zygotes that are
actually Good and are classified as good. For instance, the first case indicates that
the three of them are Good and classified as good (success is guaranteed). Int the
second case two of them are Good and classified as good and the other one is Bad but
classified as good. In this case, success is achieved with probability 2/3 since we have
three zygotes classified as good but only two are really Good. In the last case, two of
the zygotes are classified as bad, so they will not be chosen (independently of whether
they are actually Good or Bad). The only zygote that is classified as good is actually
Good and, for this reason, success is guaranteed.

In general, the probability of success given a certain combination of zygotes
(#Gg|F,#Bg|F, #b|F) can be easily computed as

#Gg|F
F,#BgF,#b|F) = ——~ 1
p(succes¥GalF, #BalF. #IF) = 2" e 6.1)
We will achieve success at the first zygote if we are in any of the situations in
Table[6.2. Thus, we need to compute the probability of encountering each case. These
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#GgF #BglF #b|F | p(succes#Gg|F,#Bg|F,#b|F)
3 0 0 1
2 1 0 z
2 0 1 1
1 2 0 1
1 1 1 ;
1 0 2 1

Table 6.2: Probability of success at the first choice.

probabilities in turn depend on the probability of a single zygote of being actually
Good and classified as good, of being actually Bad and classified as good, or of being
classified as bad(Gng|F),p(BNg|F),p(b|F)).

The first case (#Gg|F = 3,#Bg|F = 0,#b|F = 0)) occurs with probabilityp(Gn
glF)3p(BNg|F)°p(b|F)° since we need the three zygotes be of the same type. We
represent this case g, Gg, Gg) meaning that the first zygote is actually Good and
classified as good3g), the second is alsBgand so is the third. Thus, we can see there
is a single combination of zygote labels leadii@g, Gg, Gg)) to the first case. How-
ever, we can find three label combinations leading to the second (@gg5g, Bg),
(Gg,Bg,Gg), (Bg,Gg,Gg). Thus, its probability is B(GNg|F)2p(BNg|F ) p(b|F)°.

In general, the probability of each case follows a multinomial distribution whose gen-
eral term is

P(#GQF,#BgF,#0|F|N) =
N—#Gg|F\ (N—#Gg|F —#Bg|F (6.2)
(soge) (oage ) ("Chr ) P(GNgIF)*eIF p(BNgIF) I p(blF )"
Finally, with N = 3 zygotes, the probability of succeeding at the first zygote can be
computed as

p(succestN =3,F) = p(succesd,0,0)p(3,0,0/3)+ p(succesk,1,0)p(2,1,0|3)+
p(succes,0,1)p(2,0,1|3) + p(succesd, 2,0)p(1,2,03)+
p(succesd, 1,1)p(1,1,1|3) + p(succesd, 0,2)p(1,0,23),
(6.3)
and, in general,

p(succesiN,F) =

(6.4)
—#G
S hegr1 ZQ'BQ‘FET p(successGg|F, #Bg|F, #b|F ) p(#Gg|F, #Bg|F, #b|F|N),

where #B|F = N —#Gg|F —#Bg|F.

Finally, if we haveN = 3 zygotes, our current strategy chooses a fresh one. If
it fails to lead to pregnancy, we choose a cryo zygote. If it fails, we take the third
zygote. The probability of succeeding at choice 1 is, we have already proved it,
p(succesiN = 3,zygote= 1) = p(succes8,F). Therefore, we fail with probability
p(failure|N = 3,zygote= 1) = 1 — p(succesfN = 3,zygote= 1). Thus, the probabil-
ity of succeeding at zygote number 2 (that was frozerp(&iccesiN = 3,zygote=
2) = p(failure|N = 3,zygote= 1)p(succestN = 2,C). Note that the probability of
succeeding at zygote number 2 is the probability of failing at zygote number 1 and the
succeeding with a cryo zygote among 2 (because one of the 3, the fresh one, has already
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failed). Finally, if zygote number 2 fails, the probability of succeeding at zygote num-
ber 3 isp(succesN = 3,zygote= 3) = p(failure|N = 3,zygote= 1)p(failure|N =
2,zygote= 2)p(succesN = 1,C). Table[ 6.8 summarizes this reasoning.

Egg numbei  p(succesiN = 3,zygote=)

1 p(success|3,F)
2 (1-p(success|3,F))p(success|2,C)
3 (1-p(success|3,F))(1-p(success|2,C))p(success|1,C)

Table 6.3: Probability of success selecting one zygote at a time.
In general, the probability of succeeding at zygote nunnlger

. p(succes@N, F) . i=1
p(succesmv | ) = { (1— p(succes\,F)) (ﬂlj;]é (1— p(succesN — j +1AC))) p(succes\ —i+1,C)0 i#1 (65)

Finally, with N zygotes, the overall probability of success of this strategy is the sum
of the probabilities of succeeding at any zygote between INartklat is,

p(succesiN) = i p(succesiN, i) (6.6)

Selection of two zygotes at a time

Our previous analysis addresses a strategy that is not the currently followed in practice.
Instead of selecting a single fresh zygote and freezing the rest, the current strategy
works with pairs of zygotes. First, a pair of fresh zygotes is chosen and the rest are
frozen. If both zygotes fail, then other two zygotes are thawed and implanted. If they
fail too, other two zygotes are defrozen. This procedure is iterated until success or
there are no more zygotes.

Although selecting a single zygote at a time is different from selecting a pair, our
previous analysis helps calculating the probability of success of the actual implantation
strategy. Equatiorjs §.5 apd 6.6 remain the same in the case of selecting two zygotes if
instead of interpretingas the number of the zygotieis the number of the pair ard
is the total number of pairs. The main difference between selecting pairs and selecting
single zygotes comes at Equat[on|6.4. Giwepairs of fresh zygotes, the probability
of succeeding taking a pair of zygotes is given by

p2(succesN, F) =

p1(succes@N, F) + pi(succes2N — 1,F) — p1(succes@N, F)p; (succes@N — 1,F)

(6.7)
wherepz(succesiN, F) is the probability of succeeding after selecting a pair among
2N zygotes, andp;(succesiM, F) is the probability of succeeding after selecting a
single zygote amonlyl zygotes (this probability is the one given in Equafior] 6.4).

Results

The probability of obtaining a Good zygote if it is freshgG|F) = 0.17 while if it is
thawed it drops t@(G|C) = O.]ﬂ With these probabilities at hand and the confusion

1Data from theLABRcenter, 2003
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matrices corresponding to each of the classifiers studied in this report, we compute the
probability of having a pregnancy with our best classifier Random Forest for 1JPM,
and SVM for PNS, finally we compare it to the CPNS. Results are summarized in
Figure[6.]. The probability of success after 4 attempts (i.e. 8 zygotes) for CPNS
(human expert visual inspection of six zygotes) iS0d308 for PNS dataset it is of
0.582and for IJPM dataset it is di.656 We also compute PNS with Random Forest
and obtair0.388

With 1IJPM dataset and Random Forest, the first step represents an improvement
in respect to CPNS of 21.4%. Improvement in the following step is of 7.4%. As
state above, the gain in the probability of success is larger than the improvement of
the classification error rate. PNS dataset with SVM also leads to an improvement in
respect to CPNS of 9.6%, the following step imprvement is of 9.4%.

CPNS - 15 Threshold - PNS - Random Forest -

P (success at pair 1)=0.262496 P (success at pair 1)=0.304239

P (success at pair 2)=0.0239758 P (success at pair 2)=0.0450919

P (success at pair 3)=0.0148499 P (success at pair 3)=0.0274029

P (success at pair 4)=0.00626926 P (success at pair 4)=0.0114865

Total probb of success = 0.307591 Total probb of success=0.38822

PNS - SVM - IJPM - Random Forest -

P (success at pair 1)=0.359229 P (success at pair 1)=0.47636

P (success at pair 2)=0.118515 P (success at pair 2)=0.0975371

P (success at pair 3)=0.0722277 P (success at pair 3)=0.0575458

P (success at pair 4)=0.0316486 P (success at pair 4)=0.0244482
Total probb of success=0.58162 Total probb of success=0.655891

Table 6.4: Probability of success computations applying CPNS, SVM to PNS dataset
and Random Forest to PNS and IJPM datasets

Four groups of vertical lines are represented in Figurg 6.1, each group represents
a transfer procedure. Although, this procedure is iterated until success or there are no
more zygotes, we fix four iterations. Within each data set (IJPM and PNS), implan-
tation rates increase rapidly, then levels off. 1JPM is always above CPNS and PNS,
indicating a significant improvement. Classification with [JPM dataset is clearly more
accurate.

Implantation Rate Comparison
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Figure 6.1: Implantation rate comparison after four transferts
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Conclusion

Our aim in this study is to make morphometric measurements and observations based
on digital images of zygotes in order to predict the likely outcome. To achieve this
two methods are available: one of them is to use a plug-itnfiageJdeveloped at the

EPFL in collaboration with thd ABR Laboratories. The collected dataset is labeled
aslJPM for ImageJPronuclear Morphometrit easurements. The other method is a
visual inspection of six zygotes characteristics lab&BiE for PronuclearScore, each
characteristic can take values from 1 to 3 (from worst to best).

In this report, we study the power of each individual feature to classify the "zygote
class". For doing this, we measure the degree of association between each feature and
the "zygote class". The degree of association is measured differently depending on
the nature of the feature: categorical or continuous. Categorical data were, type of
conservation of the zygotes fresh and frozen and insemination typg| BfFCSIf]
we use the Chi-Square test which evaluates the independence of two variables, since
its assumptions were fulfilled. Our analysis shows that the insemination type does not
affect the class of the zygotg{ = 0.015 andp — value= 0.9011 not significant). On
the other hand, the conservation state of the zygotes is strongly correlated to its success
(x? = 7.333 for p— value< 0.01 significant). In fact, the difference between those two
classes were so large, that in our classification studies we also had to analyze zygotes
separately depending on whether they were fresh or not.

Concerning continuous features, in principle the degree of association is measured
with Pearson product-moment correlation. However, the assumptions of this measure
were violated by our data. Alternatively, we used two other measures of association,
Kendall's Tau correlation and Kokmogorov-Smirnov goodness-of-fit. Seven features
were significant in respect to the class "good" or "bad", for each test Pearson, Kendall
and Kolmogorov.

In order to measure the contribution of each feature to the overall variance, we
made use of PCA. PCA was computed using the correlation matrix, as we wanted to
give to all features the same weight. The decrease in contributions from the principal
components were relatively low. To obtain 99% of the overall variance, 37 first com-
ponents had to be used; with ten components we had only 52% of the overall variance
(see Figure??). We cannot conclude that any feature has a strong contribution to the
overall variance. Furthermore, significant variables obtained with the degree of associ-
ation tests, were widespread on the PCA axis. This means that they are not too much

Lin vitro fertilisation
2|ntra-Cytoplasmic Sperm Injection
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correlated among them and, therefore, they bring enough information about the data
set.

10 first components: 0.52 % of variance

0.089
8.51 %
6.62 %
6.17 %
52%

0,064 511%
4.68 %
4.6 %

4.07 %
0.044 3.94 %
3.59 %
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Comp.1 Comp.7 Comp.13 Comp.20 Comp.27 Comp.34
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Figure 7.1: Relative variance of the 37 first components, 99% of the overall variance

Then, we compared results obtained with several well-known classification meth-
ods, to identify zygotes with high implantation potential based on PNS and IJPM
datasets. To compare the performance of the classifiers cross-validation within the
original data set and bootstrap techniques were used to provide a nearly unbiased esti-
mate.

In order to assess the benefits of splitting the dataset into fresh and cryo zygotes
when classifying, the error obtained with the divided data set and the error obtained
with all data were compared. The error for a given classifier using all data was referred
to asey, while the error with the splitted dataset was cabiggls:.

LDA is a classical statistical approach for predicting samples of unknown classes,
based on training samples with known classes. LDA tries to provide more class sep-
arability and draw a decision region between the given classes maximizing the ratio
of between-class variance to the within-class variance in any particular dataset guar-
anteeing maximal separability. CPNS scoring was seen as an LDA classification with
an unitary weight vector, the threshold was already established by the laboratory to 15.
This selection was confirmed by computing the implantation rate as function of the
CPNS (see Figurie 7.2). Indeed, the implantation rate increases for all zygotes when
the cumulated pronuclear score is greater than 8. At level 15 the implantation rate is
maximum,.

The smallest misclassification error with equiweighted LDA (CPNS) is obtained
without distinction between their conservation type, its value,js= 0.398 for 10-
fold cross-validation. For frozen-thawed zygotes the accuracy of the classifier was very
low. In fact, all frozen zygotes were classified as bad. However, the overall classifier
accuracy was of 0.3, this fact was explained by the small number of thawed-zygotes in
our sample, only 26 of 59 (2626+ 59) = 0.3) were good. Even if we compare all our
classifiers with this accuracy, this fact was taken in account.

The whole 1JPM dataset performs better classification than PNS for conventional
LDA in respect to the estimation of the error rate. The mean error estimation for IJPM
without distinction between their conservation type wgs= 0.36 + 0.02 whereas
the mean for PNS was®9 + 0.01. However, the variance of the error estimates for
the PNS data was smaller that those based on the IJPM data due to noise (PNS took
only 3 values, whereas values of IJPM were continuous).
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Error Rate with CPNS
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Figure 7.2: Implantation rate as function of the cumulated pronuclear score (CPNS)

Trees classifiers lead to an overall higher misclassification rate compared to LDA,
furthermore trees showed lower stability, interquartile ranges were broader than those
previously computed with LDA. Therefore, our preliminary analysis suggested that
trees in our case were less useful than LDA. However, trees are a useful method to
summarize data and to make a quick human diagnostic. Indeed, two quick human
diagnostics can be made before the transfer, the first is to calculate the CPNS score and
the second is to drop the zygote down the tree of Figuile 7.3. The advantage of using our
tree classifier is that a zygote with a score under 15 can be considered as any zygote.
Hence, allowing a classification with all zygotes as opposed to the CPNS classification.
This advantage is that in our sample, only 10% zygotes have a score over or equal to
15. The smallest misclassification error with tree was obtained with the PNS dataset,
for 10-fold cross-validation and bootstrap techniques, without distinction between their
conservation type, its value wasef; = 0.414+0.02for 10-fold cross-validation.

Classification Tree for PNS data
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Figure 7.3: Classification Tree for PNS data
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Support vector machine (SVM) model is a nonlinear discriminant analysis. The ba-
sic idea of SVM is to seek for a separating non-linear decision boundary maximizing a
margin between two classes with a higher dimensional feature space. SVM approach
leaded to an overall lower misclassification rate compared to LDA, however, it's sta-
bility was also lower. The smallest misclassification error with SVM was obtained
with the IJPM dataset, for 10-fold cross-validation and bootstrap techniques, without
distinction between their conservation type, its value was,pf= 0.378 + 0.02 for
10-fold cross-validation.

Random Forest is a classifier that is built from multiple trees generated from ran-
dom sampling of the observations, and the features. One of the reason for performing
random forest to our data was that random forest is robust against over-fitting, and it is
more robust with respect to noise than other classification methods [23]. And as seen
with PCA, noisy IJPM features had a strong contribution to the overall variance for
the IJPM dataset. For the purpose of understanding Random Forest "black box", in-
ternals estimates of variable importance were computed. Handling interactions among
variables is another advantage compared to LDA.

The smallest misclassification error with Random Forest is obtained with the 1IJPM
dataset. For 10-fold cross-validation and bootstrap techniques, without distinction be-
tween their conservation type, its value isegff = 0.338+ 0.02. Difference between
the datasets can be considered as significant as the quartiles of IJPM and PNS in 10-fold
cross-validation are well separated.

Overall, we have found that the Random Forest approach both leads to an over-
all lower misclassification rate as well as to a more stable assessment of classification
errors compared with the developed methods (additional methods can be neural net-
works, k-nearest neighbor classifier, ...). Therefore, our preliminary analysis suggest
that Random Forest may be more useful than other methods to classify samples based
on digital images. However, the misclassification rates computed in our analysis of the
classifiers is not representative of the real improvement that can be achieved by using
a better classifier. Hence, we develop the theory that allows to compute the probabil-
ity of success of an implantation process. Another reason of developing this theory is
that our sample is not a random sample, in fact we chose the zygotes leading to mul-
tiple pregnancies, and therefore the sampling distributions are biased, this bias is also
corrected by this procedure.

Implantation Rate Comparison
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Figure 7.4: Implantation rate comparison after four transferts
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We compute the probability of having a pregnancy with our best classifier Random
Forest for IJPM, and SVM for PNS, finally we compare it to the CPNS. The probability
of success after 4 attempts (i.e. 8 zygotes) for CPNS 308 for PNS dataset it is
of 0.582and for IJPM dataset it is &f.656

With 1IJPM dataset and Random Forest, the first step represents an improvement
in respect to CPNS of 21.4%. Improvement in the following step is of 7.4%. As
state above, the gain in the probability of success is larger than the improvement of
the classification error rate. PNS dataset with SVM also leads to an improvement in
respect to CPNS of 9.6%, the following step improves to 9.4%.

Four groups of vertical lines are represented in Figurg 7.4, each group represents
a transfer procedure. Although, this procedure is iterated until success or there are no
more zygotes, we fix four iterations. Within each data set (IJPM and PNS), implan-
tation rates increase rapidly, then levels off. 1JPM is always above CPNS and PNS,
indicating a significant improvement. Classification with IJPM dataset is clearly more
accurate.

No study has attempted to evaluate the contribution of morphological characteris-
tics of zygotes automatically detected by an advanced image analysis tool, these char-
acteristics can be used as markers of future embryo developmental competence using
statistical tools. Statistical tools allow us to transfer only the embryos classified as
"good" while minimizing the high order multiple pregnancies. However, to assess our
results theses experiments must be done with more data.
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