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Three-dimensional electron microscopy allows direct visualization of biological macromolecules close
to their native state. The high impact of this technique in the structural biology field is highly corre-
lated with the development of new image processing algorithms. In order to achieve subnanometer
resolution, the size and number of images involved in a three-dimensional reconstruction increase
and so do computer requirements. New chips integrating multiple processors are hitting the market
at a reduced cost. This high-integration, low-cost trend has just begun and is expected to bring real
supercomputers to our laboratory desktops in the coming years. This paper proposes a parallel imple-
mentation of a computation-intensive algorithm for three-dimensional reconstruction, ART, that takes
advantage of the computational power in modern multicore platforms. ART is a sophisticated iterative
reconstruction algorithm that has turned out to be well suited for the conditions found in three-
dimensional electron microscopy. In view of the performance obtained in this work, these modern
platforms are expected to play an important role to face the future challenges in three-dimensional
electron microscopy.

� 2008 Elsevier Inc. All rights reserved.
1. Introduction

Three-dimensional electron microscopy (3D-EM) allows struc-
ture determination of macromolecular assemblies at subnanome-
ter resolution and, recently, up to near-atomic level (Zhou, 2008).
High resolution structural studies demand huge computational
costs that derive from the size and number of the images involved
as well as the computational complexity of the algorithms. One of
the most demanding stages in 3D-EM is 3D reconstruction. Parallel
and distributed computing has been traditionally used to cope
with those requirements (e.g. Bilbao-Castro et al., 2006; Yang
et al., 2007; Fernández, 2008).

Transmission electron microscopy images of thin biological
specimens represent two-dimensional projections of the 3D mac-
romolecular structure. From the information contained in a set of
EM images a useful estimate of the 3D structure under study can
be determined (Fernández et al., 2006; Frank, 2006). The 3D recon-
struction problem can then be defined by the following statement:
Given a collection of projection images g, determine the 3D struc-
ture f that produced the images g. This problem has to be solved
ll rights reserved.

ro).
under the conditions that the image data, as well as the informa-
tion about the geometry of data collection that relates g to f, are
imperfect; in particular, both the density information in the images
and the information regarding the projection direction are cor-
rupted by substantial noise and the contrast transfer function of
the electron microscope.

The different three-dimensional reconstruction methods used
in 3D-EM are typically classified as transform and series expansion
methods. The essence of transform methods is to find a mathemat-
ical procedure that describes the recovery of f from its ideal data,
and then implement this procedure making use of the actual data.
The well-known algorithm called weighted back-projection (WBP)
belongs to this family (Radermacher, 1992). Series expansion
methods are basically different from a transform method, since
no attempt is made to find a mathematical expression for the solu-
tion of the original problem. In this case f is approximated by a dis-
cretized version that can be expressed as a linear combination of
some fixed basis functions (e.g. voxels), and the problem is then
modelled as a large system of linear equations to be solved by
iterative methods (Herman, 1980, 1998). Algorithms such as ART,
CAV or SIRT (Gilbert, 1972; Herman, 1998; Censor et al., 2001) be-
long to this family. In general, series expansion methods are more
robust under noisy situations, but demand more computational
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resources than the transform methods. This work focuses on block-
ART (from now ART) because of its relatively fast convergence rate
to the final solution and the reported robust behaviour under noisy
conditions (Marabini et al., 1997, 1998; Sorzano et al., 2001;
Fernández et al., 2002). ART has been successfully used in
numerous experimental studies by 3D-EM (e.g. Llorca et al.,
1999).

There exist two main parallelization strategies (Mattson et al.,
2004; Fernández, 2008). One of them uses message-passing li-
braries like MPI (Gropp et al., 1994) or PVM (Geist et al., 1994) to
communicate and coordinate processes running on (generally) dif-
ferent interconnected machines (multicomputers) (Hennessy and
Patterson, 2007). Its main drawback is that it is difficult to pro-
gram. An additional drawback of multicomputers is the high com-
munication latencies due to the interconnection networks,
depending on the particular architecture of the system. On the
other hand, the cost of such systems is usually low as broadly
available technologies are used. Better specialized networks could
be used but at expenses of increased costs. Parallel implementa-
tions of some iterative reconstruction algorithms using message-
passing on multicomputers have been successfully used in the field
(Fernández et al., 2004; Bilbao-Castro et al., 2006; Yang et al.,
2007). This parallelization strategy is well suited to algorithms
where communications/synchronizations between different pro-
cessors do not happen frequently in comparison with processing
time. Well suited algorithms are SIRT, CAV and block versions of
them (SART, BiCAV, etc.) as they are inherently parallel because
multiple images can be concurrently processed (Bilbao-Castro
et al., 2006). On the other hand, there exist other iterative algo-
rithms like ART, which are inherently sequential (images are pro-
cessed one after the other) and parallelism is only possible at a
very low level (sub-image level). Such algorithms would not totally
benefit from this parallelization strategy because of the substantial
communication/synchronization penalties, obtaining low speed-
ups.

The other main parallelization strategy consists of using
shared-memory machines, where multiple processors share the
same memory (multiprocessors) (Hennessy and Patterson,
2007). Thus, parallel processes can communicate with each other
through reading/writing from/to memory, which is much faster
than using external networks. Such machines have been histori-
cally quite expensive due to their limited market and high devel-
opment costs. Nevertheless, and due to the physical limits being
reached on single processor development, general-purpose pro-
cessor manufacturers, such as Intel, AMD and others, are now
encapsulating multiple processors (usually known as cores)
within a single chip (Geer, 2005). This has translated rapidly into
low-cost, highly efficient, shared-memory desktop machines.
This parallelization strategy is well suited for all reconstruction
algorithms but is limited by the available number of processors
(generally limited by technical reasons). Thus, the main advanta-
ges of multi-core machines are its low communication latencies
and cost, allowing the development of parallel versions of algo-
rithms, like ART, which cannot benefit from multicomputer
strategies.

The shared-memory programming paradigm has been used in
this work by means of multi-threading. A thread is a part of a
process that is run in parallel along with other parts of the code.
Multi-threading can make full use of the new multi-core plat-
forms (Fernández, 2008; Herlihy and Shavit, 2008; Mattson
et al., 2004) and any shared-memory computing platform in gen-
eral. The multi-threaded ART (mt-ART) implementation pre-
sented here uses threads to perform calculations in parallel.
mt-ART is available at http://xmipp.cnb.csic.es as part of the
open source package Xmipp (Marabini et al., 1996; Sorzano
et al., 2004).
2. Algorithm and implementation

This section describes the ART algorithm and expounds some
basic aspects involved in the parallel implementation.

2.1. The ART algorithm

ART belongs to the series expansion methods. In these methods
it is assumed that the solution f may be approximated by the
expression:

f ðrÞ ’
XJ

j¼1

xjbjðr� rjÞ ð1Þ

where bjðr� rjÞ is the basis element (e.g. voxels) centered at posi-
tion rj. The task then becomes that of estimating the coefficients
of the expansion series, that is, the J-dimensional vector x whose
jth component is xj (see Herman (1980) for details).

In 3D-EM the data collection method is linear so the ith mea-
sured image yi ð1 6 i 6 IÞ can be approximated by:

yi ’
XJ

j¼1

li;jxj ð2Þ

where li;j is what the ith measurement would be if the structure
consisted of only the jth basis function. Our understanding of the
data collection procedure usually allows us to calculate (or, at least,
to estimate) the li;j.

The algorithm produces a sequence of J-dimensional vectors
xð0Þ;xð1Þ; . . .. Typically xð0Þ is chosen to be the vector of all zeros,
and the process stops after cycling all the data for some integer
number of times. In the step going from xðkÞ to xðkþ1Þ we pick the
next equality from Eq. (2) to be considered; we denote the index
associated with that equality by ik. Then

xðkþ1Þ ¼ xðkÞ þ k
yik
� lik � xðkÞ

lik � lik

lik ð3Þ

where yik
is the experimental image considered.

Note that the algorithm, as described above, does not depend on
the choice of the basis functions. For this work we have chosen the
so-called blob basis functions following the recommendations of
Matej and Lewitt (Lewitt, 1990, 1992; Matej and Lewitt, 1995,
1996). A comment to be made is that using blobs as basis functions
is efficacious in noisy situations (Matej et al., 1994; Marabini et al.,
1997, 1998; Sorzano et al., 2001; Fernández et al., 2002).

2.2. Parallelization of the reconstruction algorithm

In ART the experimental images yik
are processed sequentially

producing a sequence of progressively refined estimates of the vol-
ume (x). Therefore, a parallel approach based on domain decompo-
sition where multiple images are concurrently processed is
discarded. A finer grain, lower level, parallel approach is thus nec-
essary where the volume is divided in subdomains (typically as
many as available processing units, at least) that are processed in
parallel. Our parallel approach for mt-ART, devised for shared-
memory platforms, is based on decomposition of the J-dimensional
vector x into T subsets, or slabs of slices, that are processed in par-
allel by different threads. In the processing of each image yik

(see
Eq. (3)), there are two barriers to synchronize the threads: one at
the beginning and the other at the end of the processing of the im-
age. Furthermore, there is another synchronization operation (via
mutual-exclusion) for the computation of the effective projection
of the current model lik � xðkÞ, owing to the data dependency derived
from the fact that different basis functions from different slabs are
projected to the same point in the projection space. Only when this

http://xmipp.cnb.csic.es
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projection is computed, the backprojection of the error yik
� lik � xðkÞ

can be performed.
Parallel reconstruction based on slab decomposition is not new

(Fernández, 2008). There have already been different message-
passing strategies for iterative reconstruction methods in 3D-EM
also based on decomposition of the volume into independent slabs
that are reconstructed in parallel (e.g. SIRT or Conjugate Gradient
in Spider (Yang et al., 2007)). Similar strategies have also been used
for non-iterative methods, such as WBP in Spider (Yang et al.,
2007) or inverse Fourier methods in Bsoft (Heymann and Belnap,
2007) or in AUTO3DEM (Marinescu and Ji, 2003; Yan et al.,
2007). This decomposition into slabs, or even into individual slices,
are normally used for parallel reconstruction in electron tomogra-
phy (Perkins et al., 1997; Fernández et al., 2002, 2004, 2008).

Uniform distribution of the workload across different threads is
essential to obtain good parallel performance as well as good sca-
lability. Our implementation will be better understood if we note
here that: (i) the vector x represents a volume and it is stored in
the computer as a 3D array (this data structure makes the compu-
tation of lik easier) and (ii) the shape of the reconstructed volume
may be either a sphere or a cube (see Fig. 1).

For cubic shaped reconstruction, load balancing can be obtained
by assigning the same number of slices to each thread. Neverthe-
less, such a load-balancing schema is not efficient if the volume
to reconstruct is spherical (see Fig. 1(a)). Such inefficiency comes
from the fact that the slice size (number of blobs in the slice) de-
creases with its distance to the center of the sphere (see
Fig. 1(b)) and so does the time needed to process them. To over-
come this problem, an on-demand assignment of slices to threads
could be implemented. This way, a thread which is processing a
low-loaded slice would request a new slice whereas other threads
are still working on other, more populated slices. This schema
would limit idle threads but would involve an extra overload
which could, potentially, affect scalability. An easier solution has
been adopted independently of the volume to reconstruct (cubic
or spherical): let T be the number of threads and S be the number
of slices then, the slice s will be assigned to the thread t ¼ smodT
(see Fig. 1(b)).

2.3. Parallelization of blobs-to-voxels conversion

Working with blobs has many advantages in terms of robust-
ness against noise but is not convenient for data visualization since
most programs work with voxels. Therefore, a conversion step is
desirable after completion of the reconstruction process. This step
is rather time-consuming and might even turn out to be the most
demanding step when reconstructing large volumes from a small
Fig. 1. (a) Composition showing the restriction sphere used to reduce the computing time
Load balancing technique implemented. Threads 0 and 1 will process 7 slices while thre
processed by thread 2 are larger than those assigned to threads 0 and 1.
set of images, as in tomography (Fernández et al., 2002) or 2D-
Crystals (Marabini et al., 2004).

The conversion is made by evaluating Eq. (1) at the center rj of
each voxel (which are placed in different positions from those used
by the blobs). This evaluation is performed by adding the contribu-
tion of each blob to each voxel. In the sequential case the imple-
mentation of this algorithm is straightforward but for the parallel
case special care must be taken to avoid voxel values being modi-
fied at the same time by two different threads (see Fig. 2 for
details).

As in the parallelization of the reconstruction algorithm, all the
blobs belonging to a slice are assigned to the same thread. Never-
theless, this time an on-demand policy is used where a thread will
request a new slice as soon as it finishes the previously assigned
one and becomes idle. A potential conflict may appear when two
threads process neighbor slices. To tackle this problem, an explicit
mechanism controls that a sufficient separation (in terms of over-
lapping blobs) exists between slices being processed at a time.
Such separation will depend on the size chosen by the user for
the blob radius. The program controls the separation issue by using
a status vector (see Fig. 3).

3. Experimental evaluation

To test the parallel performance, four phantoms of sizes:
64 � 64 � 64, 128 � 128 � 128, 256 � 256 � 256 and 512 � 512 �
512 were created. Such sizes cover the most common scenarios
on electron microscopy studies. For each phantom, a set of 100
projection images were produced. The number of images in typical
3D-EM studies varies from a few thousands to hundreds of
thousands but, since the parallelization is made by dividing the
volume in subsets, the actual number of images is not relevant
for parallel performance measurements. In addition to these tests
we have checked that the algorithm performs appropriately with
experimental data. One experimental test with an icosahedral
virus (see San Martín et al., 2008 for details) is reported in this
article. A total of 190,260 projections (3171 experimental projec-
tions and 60-fold symmetry) with a size of 275 � 275 pixels were
used.

The experiments were performed in two shared-memory plat-
forms with quite different architectures. We denote them as
‘‘Machine8” and ‘‘Machine16” and their characteristics are:

� ‘‘Machine8”: Xeon based Dell Poweredge 1900 workstation,
with 2 � Xeon E5320 Quad-Core, counting for a total of 8 pro-
cessing ‘‘cores‘‘, and a total amount of 16 GB of RAM memory.
The processors were running at 1.86 GHz, with a Level-1 cache
for a 3D reconstruction. The sphere is centered inside the original cubic volume. (b)
ad 2 will process 6 slices. Nevertheless, the load is still kept balanced as the slices



Fig. 2. Blobs (presented here as circles), overlap each other to effectively cover the
reconstruction space. Therefore, the value of each voxel (grey cubes) is the result of
the contribution of many blobs.

Fig. 3. Mutual-exclusion and load-balancing strategy for blobs-to-voxels conver-
sion. A vector contains the status of each slice. 0 means that such a slice has not
been processed yet and that it is eligible for immediate processing. �1 means that
the slice is being or has been processed. Positive values mean the slice is locked due
to its proximity to one or more slices being processed. When a slice is processed, its
entry in the status vector gets a value of �1, and the entries of the immediate
neighbors that have not been processed yet are incremented in one unit in order to
lock them. When the processing of a slice is finished, the entries of the neighbor,
locked slices are decremented in one unit. In this example, we have two threads
working to convert four slices. Shaded boxes represent a change in the value. At the
first step, one thread starts working on the first slice and locks (to avoid proximity
problems and considering a blob radius of 1) the neighbor slice. At the second step,
the other thread starts working on the first slice whose value is 0, thus the neighbor
slices are locked by incrementing the corresponding entries in the status vector (so
the neighbor on the left side gets a value of 2, and that on the right gets a value of 1).
At the third step, the first thread finishes with the first slice, and decrements the
entry of the neighbor slice in one unit. At the fourth step, the second thread finishes
with the slice it was working on, and thus decrements the entries of the neighbor
slices. At the fifth step, the first thread starts working on one of the slices not
processed yet (i.e. with value 0). In this case, the neighbor slices are not locked since
they were already processed (denoted by an entry with value �1). A similar
situation happens in step 6.

22 J.R. Bilbao-Castro et al. / Journal of Structural Biology 165 (2009) 19–26
of 64 KB (per core) and a Level-2 cache of 8 MB (shared, per cou-
ple of cores). Cache coherence was maintained through the stan-
dard MESI protocol (Hennessy and Patterson, 2007).

� ‘‘Machine16”: Itanium2 based SGI Altix 330 machine. It was
comprised of 8 interconnected nodes, each containing two pro-
cessors at 1.5 GHz and 8 GB of RAM. Therefore, the machine had
a total of 16 processors and 64 GB of memory. The interconnec-
tion is implemented through a high bandwidth proprietary net-
work. Processors had a Level-1 cache of 32 KB, a Level-2 cache of
256 KB and a Level-3 cache of 4 MB. Cache coherence was main-
tained through the standard MESI protocol (Hennessy and
Patterson, 2007). This machine had a scalable shared-memory
or distributed-shared-memory architecture, meaning that the
physically separate memory (8 nodes with 8 GB RAM memory
each) can be addressed as one virtually unique memory system
of 64 GB, but the processors have non-uniform memory access
(NUMA) as the latency depends on the physical location of the
data.

At the time of purchase, the market price of Machine16 was around
eight times that of Machine8. Both machines were running the
same operating system (openSUSE 10.2). The compiler used was
GNU gcc.

For each combination of phantom size and machine, two differ-
ent types of experiments were carried out. The first type consisted
of cubic shaped reconstructions, whereas the second one restricted
the reconstructions to a smaller sphere circumscribed by the cubic-
volume. For the ART reconstruction, a single loop through the
images was used. The parallel experiments were done using a
power-of-two number of threads, up to the number of processors
available in the machine (8 for Machine8 and 16 for Machine16).
For statistical purposes, each experiment was repeated 5 times
and the average computing time was measured. For performance
assessment, each experiment was also repeated using the original
sequential ART implementation running on a single processor.

Prior to the performance evaluation, an analysis of the load bal-
ancing scheme proposed for spherical reconstructions was carried
out in order to assess its ability to keep a balanced scenario. The
number of basis functions processed by each thread, for the differ-
ent datasets and numbers of threads, was computed. It turned out
that the number of blobs processed by each thread was quite sim-
ilar and the absolute deviations from the average were less than
1%. Therefore, we could conclude that the scheme proposed here
managed to balance the workload.

The performance of the parallel algorithms was measured by
computing (i) the reconstruction time, (ii) the conversion time
and (iii) the speed-up metric. The reconstruction time is the time
needed to process all the images and generate the 3D reconstruc-
tion expressed as a set of blobs. This time depends on the size of
the problem, comprising both the number and size of projections.
The conversion time is the time needed to convert the blob volume
to a voxel volume, and it only depends on the volume size. Finally,
the execution performance and scalability were assessed by means
of the speed-up metric, which is denoted as:

SN ¼ Tseq=TN ð4Þ

where Tseq denotes the execution time for the sequential version of
the program and TN represents the parallel execution time for N
threads.

Tables 1 and 2 contain average times and speed-ups obtained
by mt-ART for cubic and spherical reconstructions, respectively.
The average times and speed-ups for the reconstruction step are
also plotted in Figs. 4 and 5, respectively. The time dedicated to
the conversion from blobs to voxels has turned out to be signifi-
cantly lower than the reconstruction from only 100 images. So, it
should be expected to be negligible in experimental structural
studies involving thousands of images. Therefore, in the following
we will focus on the reconstruction time, rather than on the total
time, to draw some general, major conclusions.

Tables 1 and 2 clearly point out that, for the same number of
threads, the average times for Machine8 are smaller than those ob-
tained for Machine16, for both cubic and spherical reconstruction.
Moreover, in general the speed-ups prove to be better for Ma-
chine8 than for Machine16. The speed-ups for Machine8 shown
in Fig. 5 have turned out to be near-linear with the number of
threads/processors used. However, Machine16 exhibits a slightly
different behaviour that may be caused by the fact that the access
to the memory is not uniform for all of the processors due to the
NUMA architecture.

Under ideal conditions, the speed-up for parallel implementa-
tions could be equal to the number of processors used. Neverthe-



Table 1
Summary of the results for cubic reconstruction. Average computation times (s) and speed-ups (boldfaced) for the reconstruction and conversion steps are shown as a function of
the volume size, number of threads, and the machine used. The speed-up was computed as the ratio between the sequential and the parallel time.

Machine8 Machine16

Reconstruction Speed-up Conversion Speed-up Total Speed-up Reconstruction Speed-up Conversion Speed-up Total Speed-up

64 � 64 � 64
Sequential 17.10 — 1.06 — 18.17 — 41.72 — 2.55 — 44.23 —
2 threads 8.15 2.10 0.63 1.69 8.79 2.07 21.35 1.95 2.76 0.92 24.11 1.83
4 threads 4.39 3.89 0.35 3.01 4.75 3.83 12.35 3.38 1.09 2.34 13.44 3.30
8 threads 2.80 6.12 0.22 4.90 3.01 6.03 10.89 3.83 0.57 4.48 11.46 3.86
16 threads — — — — — — 9.28 4.49 0.67 3.80 9.95 4.44

128 � 128 � 128
Sequential 139.31 — 8.52 — 147.83 — 319.52 — 20.48 — 340.00 —
2 threads 66.59 2.09 4.99 1.71 71.58 2.07 163.51 1.95 11.84 1.73 175.35 1.94
4 threads 34.44 4.05 2.69 3.17 37.13 3.98 86.19 3.71 8.95 2.29 95.14 3.57
8 threads 18.78 7.42 1.54 5.54 20.32 7.27 54.37 5.88 4.52 4.53 58.89 5.77
16 threads — — — — — — 37.12 8.61 3.72 5.50 40.84 8.32

256 � 256 � 256
Sequential 1071.72 — 68.24 — 1139.96 — 2495.51 — 163.68 — 2659.19 —
2 threads 511.39 2.10 36.93 1.85 548.32 2.10 1271.26 1.96 94.93 1.72 1366.20 1.95
4 threads 258.76 4.14 22.84 2.99 281.59 4.05 671.36 3.72 68.71 2.38 740.06 3.59
8 threads 143.80 7.45 11.35 6.01 155.15 7.35 442.79 5.64 34.27 4.78 477.06 5.57
16 threads — — — — — — 281.28 8.87 20.52 7.98 301.80 8.81

512 � 512 � 512
Sequential 8614.65 — 548.77 — 9163.43 — 19906.51 — 1316.18 — 21222.69 —
2 threads 4101.07 2.10 291.64 1.88 4392.71 2.09 10120.29 1.97 755.56 1.74 10875.85 1.95
4 threads 2068.89 4.16 158.43 3.46 2227.32 4.11 5121.90 3.89 551.63 2.39 5673.53 3.74
8 threads 1103.46 7.81 89.10 6.16 1192.57 7.68 3355.56 5.93 254.14 5.18 3609.70 5.88
16 threads — — — — — — 2201.40 9.04 151.81 8.67 2353.21 9.02

Table 2
Summary of the results for spherical reconstruction. Average computation times (s) and speed-ups (boldfaced) for the reconstruction and conversion steps are shown as a
function of the volume size, number of threads, and the machine used. The speed-up was computed as the ratio between the sequential and the parallel time.

Machine8 Machine16

Reconstruction Speed-up Conversion Speed-up Total Speed-up Reconstruction Speed-up Conversion Speed-up Total Speed-up

64 � 64 � 64
Sequential 9.89 — 0.58 — 10.46 — 25.34 — 1.40 — 26.74 —
2 threads 4.71 2.10 0.34 1.76 5.05 1.94 12.97 1.95 0.81 1.75 13.78 1.94
4 threads 2.70 3.66 0.20 2.95 2.90 3.37 7.07 3.58 1.28 1.11 8.35 3.21
8 threads 1.73 5.72 0.14 4.38 1.86 5.24 6.12 4.14 0.40 3.55 6.52 4.11
16 threads — — — — — — 5.62 4.51 0.29 4.88 5.91 4.53

128 � 128 � 128
Sequential 82.48 — 4.61 — 87.09 — 204.24 — 11.28 — 215.51 —
2 threads 40.13 2.06 2.63 1.81 42.76 1.94 103.74 1.97 5.98 1.89 109.71 1.97
4 threads 21.81 3.78 1.52 3.13 23.33 3.56 58.83 3.47 6.59 1.71 65.42 3.30
8 threads 11.68 7.06 0.92 5.17 12.60 6.60 44.30 4.61 2.73 4.13 47.03 4.58
16 threads — — — — — — 23.75 8.60 1.93 5.86 25.67 8.40

256 � 256 � 256
Sequential 647.44 — 37.02 — 684.46 — 1633.42 — 90.90 — 1724.31 —
2 threads 314.84 2.06 20.45 1.86 335.29 1.95 832.00 1.96 50.36 1.80 882.35 1.95
4 threads 163.97 3.95 12.14 3.13 176.11 3.72 470.89 3.47 55.07 1.65 525.96 3.28
8 threads 91.71 7.06 7.12 5.33 98.83 6.63 354.79 4.60 23.94 3.79 378.73 4.55
16 threads — — — — — — 194.50 8.40 13.19 6.88 207.70 8.30

512 � 512 � 512
Sequential 5260.07 — 302.24 — 5562.30 — 13050.93 — 731.49 — 13782.42 —
2 threads 2552.30 2.06 163.55 1.87 2715.85 1.96 6540.15 1.97 395.92 1.88 7036.07 1.96
4 threads 1281.50 4.10 96.04 3.18 1377.54 3.87 3415.78 3.82 357.52 2.08 3773.30 3.65
8 threads 706.61 7.44 57.25 5.34 763.86 6.97 2535.67 5.15 163.00 4.56 2698.66 5.11
16 threads — — — — — — 1495.56 8.73 99.47 7.46 1595.03 8.64
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less, there exist different aspects that make the real scenario not so
favorable and limit the theoretical maximum speed-up, as stated
by the well-known Amdahl’s Law in the computer architecture
field. In this case, for example, the initialization of variables and
other structures is sequential, meaning that such part of the code
will not benefit from parallelization. Also, synchronization points
exist in the code that make threads to stay idle from time to time
waiting for other operations to be finished. In that sense, mt-ART
on Machine8 exhibits near optimal speed-up. A point worth com-
menting is the slight super-speed-up behaviour for few threads on
Machine8, which may derive from a better exploitation of the on-
chip cache hierarchy.

On the other hand, the speed-up curves show an improvement
with the problem size, regardless of the platform. The higher ratio
of computation versus synchronization among threads is the
underlying cause. Similarly, cubic reconstructions have also shown
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Fig. 4. Curves representing the average time required to perform the reconstruction for: (a) Machine8 and cubic reconstruction, (b) Machine8 and spherical reconstruction,
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higher speed-ups than those confined to a sphere, owing to the
higher computation–synchronization ratio. So, the cubic case
scales better than the spherical one. Nevertheless, in practice, the
user will look for the fastest response and that will come from
the spherical reconstruction. For the most demanding case, the
512 � 512 � 512 volume, we get a reconstruction time of
1103.46 s for Machine8 and eight processors and 3355.56 s for Ma-
chine16 and 8 processors for the cubic case. In contrast, for the
spherical case, we get the final result in just 706.61 s for Machine8
and 8 processors and 2535.67 for Machine16 and 8 processors. This
represents an improvement factor of 1.6 and 1.3 for Machine8 and
Machine16, respectively, when comparing the cubic versus the
spherical reconstructions times.

Therefore, in view of the average reconstruction times and
the speed-up curves, Machine8 outperforms Machine16 on the
execution of mt-ART and, due to its much lower purchase cost,
has a significantly better performance-to-cost ratio. Moreover,
mt-ART on Machine8 succeeds in achieving a reduction of com-
putation time that is almost linear with the number of proces-
sors used.

The parallel implementation of ART has also been tested on
experimental data of adenovirus (San Martín et al., 2008). Fig. 6
shows the reconstruction of the icosahedral virus using a total of
190,260 projections (3171 experimental projections, 60-fold sym-
metry) with a size of 275 � 275 pixels. With the original, sequen-
tial implementation of ART available on Xmipp, the execution
time on the best machine (Machine8), for the cubic reconstruction,
was 27.87 days. When run using mt-ART with eight threads on the
same machine, the execution time was 3.77 days. Therefore, the
speed-up obtained for this experimental case was around 7.37. In
the case of the spherical reconstruction, the sequential ART execu-
tion took 13.14 days, while the same experiment running on 8 pro-
cessors took 1.92 days, which represents a speed-up of 6.92. These
results are consistent with the speed-up figures obtained with
phantom data.
4. Conclusions

The work presented here has shown that it is possible to signif-
icantly accelerate 3D reconstructions using iterative reconstruction
algorithms such as ART even without a high investment on dedi-
cated, specific-purpose high performance hardware. In that sense,
this work even demonstrates that a relatively simple desktop
workstation using recent technology can yield better performance
than eight times more expensive hardware designed for parallel
computation.

In a few years to come, it is expected that the number of proces-
sors integrated in a single chip will grow exponentially, giving lab-
oratories the possibility to perform high performance computing at
a fraction of the present cost. In fact, new consumer hardware is al-
ready being equipped with four cores chips at a really low cost.
Also, memory and hard disk storage prices drop, leading to more
powerful, inexpensive machines.
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Fig. 6. 3D reconstruction of the adenovirus capsid obtained using mt-ART with
eight threads on Machine8, 190,260 projections and one cycle through the data. It
was completed on 3.77 days versus 27.87 days for the sequential version of the
program.
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Therefore, the authors suggest that this kind of ‘‘affordable” par-
allelism should be taken into account for current and future devel-
opments in the field of 3D-EM. The authors also feel that high
performance computing on these modern platforms is going to
play an important role for the future 3D-EM challenges like struc-
tural elucidation of large macromolecular assemblies at atomic
resolution.
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