

UNIVERSITY CEU - SAN PABLO

POLYTECHNIC SCHOOL

BIOMEDICAL ENGINEERING DEGREE

BACHELOR THESIS

Adaptive sentence similarity applied to

biomedical literature

Author: Juan Gonzalez Cabello
Supervisors: Carlos Oscar Sorzano

July 2021

UNIVERSIDAD SAN PABLO-CEU

ESCUELA POLITÉCNICA SUPERIOR
División de Ingeniería

Datos del alumno

NOMBRE:

Datos del Trabajo

TÍTULO DEL PROYECTO:

Tribunal calificador

PRESIDENTE:

FDO.:

SECRETARIO:

FDO.:

VOCAL:

FDO.:

Reunido este tribunal el ______/______/______, acuerda otorgar al Trabajo Fin de Grado

presentado por Don_______________________________la calificación de _________________.

ACKNOWLEDGMENTS

Me gustaría agradecer a los profesores que han tenido especial paciencia y

dedicación conmigo, aunque no siempre haya sido fácil. En especial a Gabriel Caffarena

y Constantino García. En segundo lugar, al tutor Carlos Oscar Sorzano, que se ha

involucrado y ha guiado este proyecto, preocupándose por que todo avance

correctamente durante el año que ha durado este desarrollo. Por último, a mi madre por

dejarme un lugar donde trabajar y a mis compañeros de universidad Diego Lopez y

Jorge García que con su motivación han hecho posible llegar al final de esta etapa. Por

último, mención especial a Gonzalo Bayón, que ha tirado de nosotros en los peores

momentos y que ha puesto siempre todo lo que está en su mano por que sus compañeros

salgan adelante.

Adaptive sentence similarity applied to biomedical literature

 i

ABSTRACT

Artificial intelligence has been, and still is, a key element in the development

of biotechnology-related technologies, especially for disease diagnosis and drug

development. One of the main advances has been in natural language processing (NLP),

an area of modern computing that has been studied for decades and in which many

goals are still far from being achieved.

The goal of this project is to learn a metric distance between sentences related

to biomedical topics. For this we have created a database from thousands of biomedical

documents and, using state-of-the-art natural language processing techniques, we reduce

each sentence into a high-dimensional vector. These vectors are mapped by our model

to a lower vector space in which phrases coming from the same documents have smaller

distances.

The model we propose has a technical relevance that relies on the training of a

neural network using triplet losses that try to reduce the distance between sentences of

the same class and increase the distance between sentences of different class.

Adaptive sentence similarity applied to biomedical literature

 ii

Adaptive sentence similarity applied to biomedical literature

 iii

RESUMEN

La inteligencia artificial ha sido, y sigue siendo, un elemento clave en el

desarrollo de las tecnologías relacionadas con la biotecnología, sobre todo para el

diagnóstico de enfermedades y desarrollo de fármacos. Uno de los principales avances

ha sido el del procesamiento de lenguaje natural (NLP), un área de la computación

moderna que se estudia desde hace décadas y en la que todavía muchas metas están

lejos de ser alcanzadas.

El objetivo de este proyecto es aprender una distancia métrica entre frases que

tengan relación con tópicos biomédicos. Para esto hemos creado una base de datos a

partir de miles de documentos biomédicos y, haciendo uso de las técnicas más

avanzadas de procesamiento de lenguaje natural, reducimos cada frase en un vector de

alta dimensión. Estos vectores son mapeados por nuestro modelo a un espacio vectorial

inferior en el que tienen distancias menores las frases que vienen de los mismos

documentos.

El modelo que proponemos tiene una relevancia técnica que se apoya en el

entrenamiento de una red neuronal utilizando pérdidas de tripletes que tratan de reducir

la distancia entre frases de la misma clase y aumentar la distancia entre frases de

distinta.

Adaptive sentence similarity applied to biomedical literature

 iv

Adaptive sentence similarity applied to biomedical literature

 v

INDEX

1 INTRODUCTION ... 1

1.1 OBJECTIVES .. 1

1.2 BACKGROUND ... 3

1.3 CRITICAL ANALYSIS ... 4

1.4 BOOK STRUCTURE .. 5

2 NATURAL LANGUAGE PROCCESING .. 7

2.1 NATURAL LANGUAGE.. 7

2.2 CHALLENGES OF NATURAL LANGUAGE AS DATA ... 8

2.3 NATURAL LANGUAGE PROCESSING .. 9

3 WORD REPRESENTATION .. 13

3.1 ONE-HOT ENCODING .. 13

3.2 WORD EMBEDDINGS .. 15

3.2.1 Word2Vec .. 18

3.2.2 Glove ... 20

3.2.3 ELMo... 21

3.3 SENTENCE EMBEDDING ... 24

3.3.1 Doc2Vec .. 24

3.3.2 Transformers ... 25

3.3.3 BERT ... 26

3.3.4 Sentence-BERT.. 26

3.3.5 Universal Sentence Encoder ... 27

4 LOSS FUNCTIONS / ARQUITECTURES ... 28

4.1 DISTANCE LEARNING VS CLASSIFICATOR .. 28

4.2 SIAMESE NETWORK .. 28

4.3 TRIPLET LOSS ... 29

5 MATERIAL AND METHODS .. 33

5.1 PRELIMINARY INVESTIGATION .. 34

5.1.1 State-of-the-art .. 34

5.1.2 Algorithms ... 34

5.2 WEB SCRAPING ... 35

5.3 BUILDING AND TRAINING OUR MODEL .. 37

5.3.1 Data preprocessing ... 38

5.3.2 Functions ... 40

Adaptive sentence similarity applied to biomedical literature

 vi

5.3.3 Model .. 41

5.4 RESULT EXPLORATION .. 43

5.4.1 T-SNE .. 44

5.4.2 Scatter Plot .. 46

5.4.3 Prediction function .. 48

6 RESULTS ... 49

6.1.1 Visual results ... 49

6.1.2 Quantitative results ... 51

7 DISCUSSION ... 53

8 CONCLUSIONS .. 57

9 REFERENCES .. 58

Adaptive sentence similarity applied to biomedical literature

 vii

FIGURE INDEX

FIGURE 1. TOKENIZATION OF WORDS .. 13

FIGURE 2. ONE-HOT ENCODING VECTORS .. 14

FIGURE 3. WORD EMBEDDING VECTORS ... 15

FIGURE 4. DISTANCE AND RELATIONS BETWEEN EMBEDDED WORDS .. 17

FIGURE 5. SCATTER PLOT OF WORD EMBEDDINGS ... 18

FIGURE 6. GLOVE RATIO OF WORDS REPRESENTATION ... 21

FIGURE 7. REPRESENTATION OF POLYSEMIC WORD ... 22

FIGURE 8. ELMO ARQUITECTURE ... 23

FIGURE 9. SIAMESE NETWORK ARQUITECTURE ... 29

FIGURE 10. TRIPLET LOSS ARQUITECTURE .. 30

FIGURE 11. VISUAL REPRESENTATION OF TRIPLET TYPES BASED ON THE NEGATIVES 32

FIGURE 12. WEB PAGE USER INTERFACE ... 36

FIGURE 13. WEB PAGE HTML .. 36

FIGURE 14. EMBEDDING DATA FRAME .. 39

FIGURE 15. TRANSLATION DATA FRAME ... 39

FIGURE 16. ARCHITECTURE OF OUR APPROACH .. 41

FIGURE 17. DETAILED ARCHITECTURE .. 42

FIGURE 18. GENERIC ARCHITECTURE .. 42

FIGURE 19. TRAINING LOS GRAPH ... 43

FIGURE 20. PROJECTION OF POINTS TO X-AXIS .. 44

FIGURE 21. CORRECT REPRESENTATION OF POINTS IN 1-D .. 45

FIGURE 22. RANDOM DISTRIBUTION OF POINTS ... 46

FIGURE 23. MATPLOTLIB SCATTER PLOT .. 47

FIGURE 24. DETAILED SCATTER PLOT ... 47

FIGURE 25. EMBEDDING SPACE IN 2-D .. 49

FIGURE 26. EMBEDDING SPACE IN 3-D .. 50

FIGURE 27. CLUSTER OF POINTS WITH SAME LABEL .. 50

FIGURE 28. POINT WITH DIFFERENT LABEL IN A CLUSTER ... 51

FIGURE 29. RESULT OF CLASSIFICATION FUNCTION... 51

FIGURE 30. EMBEDDING SPACE BEFORE OUR EMBEDDING ... 53

FIGURE 31. EMBEDDING SPACE AFTER OUR EMBEDDING ... 53

FIGURE 32. EARLY SCATTER PLOT OF THE EMBEDDING SPACE .. 54

FIGURE 33. CLUSTER OF NOISE POINTS .. 55

FIGURE 34. ACCURACY GRAPH ... 56

Adaptive sentence similarity applied to biomedical literature

 viii

TABLE INDEX

TABLE 1. QUANTITATIVE RESULTS: ACCURACY OF THE MODEL .. 52

Adaptive sentence similarity applied to biomedical literature

 ix

Adaptive sentence similarity applied to biomedical literature

 1

1 INTRODUCTION

1.1 Objectives

Biomedical engineering has advanced by leaps and bounds in recent decades.

The area of health has always been one of the most important fields of science and in

the times in which we live in the main path it must take in order to evolve is through

technology. This is the reason behind why the figure of the biomedical engineer is

gaining more and more relevance as a support to the usual health workers (clinicians,

pharmacists, researchers...). Biomedical engineering can be divided into two branches,

hardware and software:

• Hardware: Robotics belongs less and less to the world of science

fiction, the amazing advances that have been made in the last century

continue to save millions of lives today. These advances range from the

first hospital machines such as computer tomography or X-ray

machines to exoskeletons and robotic prostheses being developed in the

world's most prestigious laboratories. Although great things have been

achieved, there is still a long way to go in this field, because with the

arrival of new technologies such as artificial intelligence or blockchain,

everything points to the fact that they can be used to help global health.

• Software: On the other hand, we can also find great advances in the field

of algorithms and programming. Mathematics and statistics have gained

unprecedented importance in recent years. With the advent of artificial

intelligence, statistical models designed by engineers and

mathematicians are capable of performing tasks that were previously

reserved for humans. And not humans in general, but experts in the

subject matter at hand. An example of this is how, thanks to the

development of computer vision, a computer can analyze an X-ray and

establish probabilities of finding positives of certain diseases in the

patient, offering support to doctors' decisions that before could only be

Adaptive sentence similarity applied to biomedical literature

 2

achieved with years of study and dedication. And where recent

algorithms excel most is in tasks that humans cannot do, such as

processing and drawing conclusions from millions of nitrogenous bases

in DNA or reconstructing the structure of a protein that exists at the

molecular level using electron microscopy images.

These branches are not independent but support each other to make more

interesting and enhance each other's discoveries. A robotic arm improves considerably if

it is implemented together with an object recognition algorithm since it can be used to

make life easier for handicapped people [1]. Similarly, a microprocessor can be used to

increase the portability of a model and can be used in emergency situations such as an

algorithm for the monitoring and detection of heart disease.

Our goal in this project is to go one step further in the development of software

applied to biomedicine by developing a diagnostic system that uses natural language

processing to search for similarities between a patient's symptoms and the description of

a disease. For this we have used models that represent sentences in a geometric space of

high dimensionality, these representations in the form of numerical vectors are called

embeddings. These representations are generic for language, but we have trained a

second model that reduces the Euclidean distances between embeddings by establishing

relationships in a purely biomedical context. The motivation is to build a classifier that

has as input a sentence describing the symptoms of a patient and can predict to which

document it belongs based on Euclidean distance between embeddings.

For this purpose, we have created a database with text files containing phrases

related to a specific disease (one disease per document). In this way we managed to

reduce the distance between phrases that belong to the same file and to separate in the

vector space the phrases that belong to different documents. We have achieved this by

using a penalty function called triplet loss. Using triplet loss allows us to train a model

that accepts as input three sentences at a time, (two of the same class and one of a

different one) and it learns to represent the sentences in such a way that the first two are

together and these are separated from the last one.

Adaptive sentence similarity applied to biomedical literature

 3

1.2 Background

Among the new technologies that have been developed, we have been able to

take advantage of natural language processing (NLP) to meet the objectives that had

been proposed in this work. NLP is the set of techniques and technologies used to

understand and represent languages that have been generated by humans in a natural

way. It is a field of study that has been developing for several decades but is still far

from reaching its full potential.

The strength of this methodology is the ability to represent words and phrases

in a high-dimensional geometric space. For this, language elements are transformed into

numerical vectors so that representations of words that have similar meanings are close

together in the vector space. This allows us to train deep learning models such as neural

networks that work mostly with numerical inputs.

On the other hand, when trying to classify sentences in hundreds of classes

(one for each document or disease) it is not enough to use a conventional classifier, so

we have been forced to use a penalty function that is able to handle a large amount of

data in high dimensionality spaces. The method we have used is called triplet loss,

which tries to minimize the distance between a baseline input (anchor) and one of the

same class (positive), while maximizing the distance between them and an input with a

different label (negative).

Since it is difficult, if not impossible, to visualize data with hundreds of

dimensions, it has been necessary to transform our results with a dimensionality

reduction, for which we have used t-SNE. T-SNE is a technique for data visualization

that consists of reducing the dimensionality of the data while maintaining its structural

integrity. The algorithm maps the probabilities of finding together all combinations of

points in the high dimensionality space and tries to create a set of points with a similar

distribution but with lower dimensionality, maintaining the clusters of the original

dataset.

Adaptive sentence similarity applied to biomedical literature

 4

1.3 Critical Analysis

So far, new technologies have been used for numerous tasks in the field of

biotechnology, whether to handle immense amounts of patient data, support specialists

in diagnosing diseases, robotics to supplement the needs of people with disabilities, or

even machines that can operate remotely controlled by a surgeon. Deep Learning alone

has already achieved accomplishments that seemed impossible decades ago, such as

surpassing in many cases human capabilities in certain tasks.

Despite this, natural language processing still has some way to go. So far it has

been used for generic tasks using models that are not specialized for medical data such

as chatbots or assistants for doctors. Where NLP is most useful is when processing the

reports that a doctor writes about a patient. Key information that specialists write is lost

in these text reports but is difficult for a computer to extract in a way that can be

properly analyzed. These huge volumes of unstructured data are processed with engines

capable of scrubbing large sets of unstructured health data to discover previously missed

or improperly coded patient conditions.

The problem is that medical language is not as simple as the language used on

a daily basis. Biomedical texts are full of technical terms and acronyms that can confuse

even the most sophisticated model. Thus, NLP models are used that are not trained to

deal with this kind of complex data and do not understand the medical context as well as

they should. For this reason, several articles have started to emerge dealing with the

issue of biomedical language processing, since many statistical models for processing

text perform extremely poorly under domain shift.

An example of this are the models for the Disambiguation of acronyms and

words that can have more than one possible meaning, which in biomedical texts become

especially recurrent [2]. This is an improvement, but falls short of being a NLP model

as such that can perform well in biomedical texts. To achieve this, numerous articles

have been written on the subject, but the vast majority propose something as simple as

fine-tuning existing models or basic transfer learning techniques.

The main alternative to what we propose is BioScentVec by chen et al., a

sentence embedding model for biomedical text data [3]. This proposal outperforms the

Adaptive sentence similarity applied to biomedical literature

 5

state-of-the-art as it re-trains an encoder using health-related data, but does not bring

any advances to the way these models are built. Ours is not based on the training of

another model but takes as input the output of other encoders and reduces its

dimensionality by forming clusters of sentences in the vector space grouping sentences

that talk about the same disease. This has several advantages such as not having to

retrain an encoder from scratch, which saves computational and time costs since these

models usually have millions of weights to modify in each training iteration. Another

advantage is that different encoders can be used to generate the inputs of our model

without the need to modify it, which allows us to compare different implementations

easily looking for the latest results. Finally, our model, by using an unconventional cost

function such as the triplet loss, allows us to form a classifier simply by measuring the

Euclidean distance between the embedding of the sentence to be classified and the rest

of the sentences already labelled in our database, assigning it the class with the highest

similarity.

1.4 Book Structure

The remaining chapters of this paper contain the following information:

Chapters 2, 3 and 4 covers the background of the project. These chapters cover

the state-state-of-the-art of natural language processing and distance learning methods

so when discussing about the architecture and functions used to train the model there is

a prior understanding of the mathematical concepts that support the ideas implemented.

Chapter 5 exposes the entire process that has been followed to achieve the goals

proposed for the project as well as the materials used in each step. It extensively covers

the details of each tool and technique used and explains the code and algorithms that

make up the project.

Chapter 6 presents the results obtained and compares them to other sentence embedding

models.

These results and their implications are discussed in Chapter 7. Chapter 8 is a

conclusion and also sets out the future directions that the project could take to improve

the results obtained.

Adaptive sentence similarity applied to biomedical literature

 6

Adaptive sentence similarity applied to biomedical literature

 7

2 Natural language proccesing

During the last decades, language has been one of the main research objects in

the area of computational techniques. An attempt has been made to analyse the text

based on theories and technologies that have been developed over the years and grew

the furthest with the rise of computers for the purpose of performing useful tasks. These

techniques for automatically manipulating natural language have been called Natural

Language Processing (NLP). From a scientific perspective, NLP aims to model the

cognitive mechanisms underlying the understanding and production of human

languages. From an engineering perspective, NLP is concerned with how to develop

novel practical applications to facilitate the interactions between computers and human

language [4].

Before addressing the different methods used for text processing, it is

necessary to understand what natural language is and why its study is a challenge,

which despite having been a priority for years, continues to be developed and is still far

from over.

2.1 Natural language

Natural language refers to any system of communication used by humans that

has evolved naturally through use of the language and repetition without being

constructed artificially. We avoid including animal communication in our definition of

language as it is controversial and does not add value to our study.

The main form of natural language we are interested in using as data is mainly

text and speech. If you think about how many times a person reads text during the day,

the examples are unlimited: signs, books, user guides, etc... And there is no need to talk

about the importance of the use of speech in people's lives, every interaction between

two humans is done the vast majority of the time through words, even more than

through text.

Adaptive sentence similarity applied to biomedical literature

 8

2.2 Challenges of natural language as data

Language is a very hard thing to learn. Just as it is complicated for a child who

spends the first years of his life learning to speak, or it is complicated for an adult

person trying to learn a new language; it is also hard for the engineer who attempts to

build systems that deal with natural language input or output. [5]

Natural language is complicated mainly because it is messy. It has synonyms,

ambiguities, different expressions to refer to the same entity, and, above all, it has few

rules. Despite this, we understand each other most of the time and can infer the context

from a sentence we hear, and not only this, but also the speaker's emotions, intention,

personality and even style.

A widely used example of the complexity of language processing is sarcasm, it

is very complicated to tell a machine that it must interpret an expression that is used to

say the opposite of what is true.

Las principales tareas que pretenden resolver los sistemas NLP son:

• Word Sequence Tasks: Solve problems related to the sequence of words

and the order they follow. Used for text generation eq. Chatbots or

translators.

• Text Meaning Tasks: The aim is to assign a meaning to the words or

phrases. For this purpose, the input data are transformed into

distributional vectors that collect the features of each phrase or word.

This is a word representation that allows words with similar meaning to

have a similar representation. Used for sentence embedding or finding

similar words.

• Text Classification Tasks: Predicting tags, categories or sentiment.

Used for filtering emails or classifying documents. In our project we

solve this task using techniques meant to solve text meaning tasks: We

represent text in a way that sentences from the same document

In our project we solve classification tasks using techniques meant to solve text

meaning tasks: We use a standard Natural Language Processing (NLP) embedder that

Adaptive sentence similarity applied to biomedical literature

 9

transforms input sentences into high-dimensional vectors. Then, we will map these

vectors into a lower dimensional space in which two embedded vectors should have a

smaller distance if they come from the same document.

This sentence metric will allow in the future to identify the relevant topics

related to a description of a clinical history provided by a person.

2.3 Natural Language Processing

Liddy defines Natural Language Processing as a theoretically motivated range

of computational techniques for analyzing and representing naturally occurring texts at

one or more levels of linguistic analysis for the purpose of achieving human-like

language processing for a range of tasks or applications. [6]

It is important to emphasize the concept of the different levels of linguistics

that she proposes. These are seven, with their respective forms of processing:

• Phonology: Interpretation of speech sounds within and across words.

When developing a natural language processing system that accepts

sounds or spoken speech as information to be processed, it is necessary

to encode the signal into a digital format so that it can be interpreted by

the model used.

• Morphology: Componential analysis of words. Each morpheme in the

word is analysed including prefixes, suffixes and roots. An NLP System

can recognize and assign importance and meaning to each morpheme to

obtain more detailed information about each word.

• Lexical: Word level analysis including lexical meaning and part of

speech analysis. Each word is analysed individually by the NLP

System, but different types of processing are applied for the meaning

assignment. In this level, words are considered just part of speech,

assigning the most probable part-of-speech in case of ambiguity.

• Syntactic: Analysis of words in a sentence in order to uncover the

grammatical structure of the sentence. Words maintain relationships of

Adaptive sentence similarity applied to biomedical literature

 10

structural dependence between them, this is the information obtained

from this level of processing.

• Semantic: Determining the possible meanings of a sentence, including

disambiguation of words in context. This might seem to be the only

level of processing that contributes to the assignment of meaning, but as

we have already seen, it is the set of all the previous levels that make

the correct determination of meaning. An important part of this level is

the disambiguation of words, a single possible meaning is selected from

polysemous words.

• Discourse: Interpreting structure and meaning conveyed by complete

texts beyond a single sentence. NLP systems should take text as a

whole, focusing in dealing with the structure of the text or connections

between sentences.

• Pragmatic: understanding the purposeful use of language in certain

situations. NLP systems deal with the use of real-world knowledge and

understanding of how this impacts the meaning of what is being

communicated.

In any case, the lower levels are the most relevant in the study of natural

language, since it is often not necessary to reach higher levels depending on the

application of the system. On the other hand, it is easier to advance in the development

of the lower levels of processing because these are based on dealing with small units of

language such as phonemes, morphemes or words, guided by rules, which are easier to

analyse than complete texts, contexts or emotions.

For our project we use models that work optimally with complete complex

sentences, so we deal with the first five levels of language processing, leaving aside the

discourse level because we do not get to analyse complete texts, more than a couple of

diagnostic sentences, and we do not deal much with the pragmatic level because the

diagnoses and symptoms of a patient do not usually contain a purpose that depends on

the situation or the context.

Adaptive sentence similarity applied to biomedical literature

 11

In the fragment of Lilly's definition where she mentions computational

techniques, she refers to the different approaches that can be taken when processing

natural language. Li Deng divides these approaches of the general methodology used to

study NLP, from a historical perspective, into three waves listed in the following

sections:

• Rule-Based Approach: (First wave) These are handcrafted system of

rules based on linguistic structures. The experts designed these

programs using symbolic logical rules based on careful representations

and engineering of such knowledge [4]. Rule-Based systems have been

proven to work well specifically but fails when generalizing. The

biggest throwback is that building these kinds of models require expert

knowledge.

• Machine Learning or ‘Traditional’ Approach: (Second wave) Started

with the implementation of shallow machine learning and statistical

models with the explosion of data corpora. Comprises probabilistic

modelling likelihood maximization, and linear classifiers. The system

analyses data from an annotated training set and develops its own

classifier. This still needs to be complemented with hand crafted

features needing some type of expertise. In this second wave, shallow

generative models such as hidden Markov models HMMs [7] began to

be used for spoken language understanding and speech recognition.

Later on, Deng and some colleagues made use of multiple latent layers

of representations for this generative process giving rise to the first

deep learning industrial process [4].

• Neural Network and Deep Learning Approach: (Third wave) Shallow

machine learning from earlier days did not have the capacity to absorb

large amounts of training data, so the algorithms were not powerful

enough. This changed a few years ago with the popularization of deep

learning which achieved best results compared to traditional machine

learning algorithms. The reason of this progress was mainly that in

traditional machine learning, human experts were needed for feature

engineering. Deep learning, by using deep and layered model

structures, broke the difficulties related to the need of manually crafted

Adaptive sentence similarity applied to biomedical literature

 12

features. These models are capable of extracting features by using a

cascade of layers of nonlinear processing units, learning a

representation of the language from scratch and solving general

machine learning tasks dispensing with feature engineering. The

biggest impact of these models has been in the field of speech

recognition. It hardly affects our project apart from the fact that the

main industrial implementations (Microsoft Cortana, Apple Siri,

Amazon Alexa, Google Assistant) are based on Deep learning models,

but it is a good example given the huge impact it has had on technology

in recent years. Despite this, the aforementioned systems are still used

for certain applications. These are the models explored in this project.

[Deep Learning in Natural Language Processing, 2018]

Adaptive sentence similarity applied to biomedical literature

 13

3 Word Representation

[Huang et al, 2019] [Chollet, 2018] Like all other neural networks, deep-

learning models don’t take as input raw text: they only work with numeric vectors.

Vectorizing text is the process of transforming text into numeric vectors or tensors. On

the other hand, NLP have the issue of representing the features from the original text

data, so the goal is that these vectors store semantic information, which allows them to

be associated or dissociated to other vectors (words) according to different grammatical

contexts.

Word-vectorization starts dividing or breaking words in different units called

tokens by a process called tokenization. Once the words have been tokenized, vectors of

numbers are associated to each word, obtaining the numerical representation of the

vectors. These number vectors are used as input for the natural language processing

neural network. which is normally applied with words as input but in the case of our

project a model for encoding whole sentences is used, the universal sentence encoder.

Figure 1. Tokenization of words

3.1 One-Hot Encoding

One-hot encoding is the most common, most basic way to turn a token into a

vector. In this method for vectorization of words each word is associated with a unique

integer index i in order to obtain a vector of length N (the size of the vocabulary) whose

components are all zeros except the one corresponding to position i, which will have

Adaptive sentence similarity applied to biomedical literature

 14

value 1. The result is a vector whose elements are only 1 and 0. Each word is written or

encoded as one hot vector, with each one hot vector being unique. This way the word

can be identified uniquely by its one hot vector and vice versa, so no two words will

have same one hot vector representation.

To clarify, let's say that the word "calculator" occupies position 300 in the list

of words in the alphabetically ordered vocabulary, and that the vocabulary is made up of

171,476 words. In this case the vector associated to the word "calculator" will be a

vector of length 171,476 in which all its positions will have a zero value except for

position 300 which will have a 1. The same can be applied for the rest of the words of

the alphabet or for characters being the vectors of the latter of length 26 (number of

letters in the alphabet).

This way words are represented by vectors and all words in a sentence can be

represented by a matrix constituted by those vectors. The same way a text made up of

different sentences can be represented by an array of matrixes, a three-dimensional

vector that the neural network will accept as input.

There are two major issues with this approach for word embedding. The first

one is related with dimensionality, even if you do not use the complete alphabet

dimension for the encoding, one-hot vectors will always be very high-dimensional and

therefore require large memory space. One-hot encoded data is sparse since the vast

majority of the matrix is filled with zeros so, if our vocabulary has one million words,

each word is represented by 999,999 zeros and a one. The fact that memory

consumption is exponential makes it a very computationally inefficient vectorization

method.

Figure 2. One-hot encoding vectors

Adaptive sentence similarity applied to biomedical literature

 15

The second issue is that there is no meaning associated to the numeric vector.

Because the representation is N-1 zeros and a one, being N the number of dimensions,

the resulting vector do not say much about about the words they represent. For example

the words "dog", "cat" and "squirrel" have a similarity between them that can be easily

seen since they are animal species, so it would be logical to classify them together. With

One-hot vectors this does not happen because you cannot extract any information or

features from the vectors so all the words are at the same distance from each other.

3.2 Word embeddings

Word embeddings are dense vector-representations of words. This method of

vectorization maps each word to a N-Dimensional space being an interesting and

powerful way of associating vectors with words. These real valued vectors are not

arbitrary generated, they are learned through supervised techniques such as neural

network models trained on tasks such as sentiment analysis and document classification

or through unsupervised techniques such as statistical analysis of documents.

Figure 3. Word Embedding Vectors

Complex vectorization methodologies, such as word embedding, emerge from

the need to solve three major problems that arise when using simpler forms of

vectorization:

• Scalability: Simplistic methods such as One-Hot can reach millions of

dimensions if the entire vocabulary of a language is considered. The

computational resources and time required to train a neural network by

feeding it data with such a large number of dimensions is at least

inefficient.

Adaptive sentence similarity applied to biomedical literature

 16

• Sparsity: Is really hard to train models if your data is made up by

millions of zeros and some ones in the right locations. This prevents the

model from generalizing correctly when dealing with test data.

• Context: Creating vectors without taking into account the context and

dependencies between words, leads to a lose of semantic information.

This is really problematic because of similar words having totally

different representations.

Contrary to the vectors obtained after applying one-hot encoding, word

embeddings are low dimensional, it’s common to see word embeddings that are 256-

dimensional, 512-dimensional, or 1,024-dimensional floating-point vectors in contrast

to a million-Dimensional space. Since each vector in the embeddings is densely

populated as opposed to sparse vectors made up almost entirely of zeros, this

methodology also resolves the sparsity issues. Word embeddings learn from data in a

way that captures the shared context and dependencies among the words, one-hot

encoding generates vectors without considering the context in which each word of

vocabulary lies, meaning that not only more dimensions are used, but also less

information is captured.

There are many ways to represent a word with a vector, one possibility being to

simply choose a random vector. The problem with this is that the embedding space

would have no structure. This vector would not provide any improvement over the one-

hot vectors because it would be completely arbitrary and two synonymous words could

end up with completely different vector representations even though the meaning should

have similar embeddings.

Word embeddings are meant to map human language into a geometric space

[chollet]. Vectors have geometric relationships: they can be close to each other in

geometric space, far apart, they can be in the same direction with respect to another

point, etc... The purpose of word embeddings is that these geometric relationships are in

accordance with the semantic relationships of the words they represent. This means that

if a word is synonymous with another word, both are related by their meaning,

therefore, their embeddings should be similar and close in the geometric space.

Likewise, words that have different meanings will be vectorized in representations that

Adaptive sentence similarity applied to biomedical literature

 17

are far from each other. In addition to distance, specific directions in the embedding

space should also be meaningful.

Figure 4. Distance and relations between embedded words

We take the figure 4 above as an example. In the figure, four words are

embedded in a three-dimensional plane: boy, girl, woman and man. It can be seen that

the words have geometric relationships according to their semantic connection. The

horizontal axis could be interpreted as a vector representing gender (from male to

female) while the vertical axis would be a geometric transformation from early age to

adulthood (from boy to man). The same can be applied to other types of words like

verbs, being the verb tense one possible transformation.

The ideal word-embedding space would be one that maps the English (or any

other) language perfectly representing the relations of every word on the dictionary. It is

yet to be computed but it could never be perfect because each language depend on

specific cultures and the context and relation between words varies among different

tasks. The interpretation required to read a legal document is not the same as that

required for a cooking recipe, the importance of each word changes depending on the

task to be performed. In spite of this, we can compute embedding spaces appropriate to

the task at hand. We can visualize these spaces using TSNE visualization (Explained in

other title) and would look like figure 5:

Adaptive sentence similarity applied to biomedical literature

 18

Figure 5. Scatter plot of word embeddings

See how names of food, colored in red, are al together on the top-left of the

graph, while feelings and body parts are in an opposite direction but close to each other,

because those families of words have some kind of semantic relation.

Although we do not use word embedding as such in our project, it is

appropriate to review the main algorithms that led this vectorization methodology to

become the state-of-the-art in word representation:

3.2.1 Word2Vec

This algorithm was proposed for the first time by Thomas Mikolov et al. in

2013 with the paper “Efficient Estimation of Word Representations in Vector Space”. It

takes advantage of the idea of distributional hypothesis, which suggests that words that

we can find used in the same context also have semantic relationship. Knowing which

Adaptive sentence similarity applied to biomedical literature

 19

words have the same semantic meaning, a mapping of words can be made so that they

are close to each other in the geometric space.

Word2Vec consists of training 2-layer neural networks, the first layer being a

simple model that learns continuous word vectors and then trains N-gram NNLM on top

of these representations (NNLM was the state-of-the-art neural network model by the

time that word2vec was proposed). [8]. This 2-layer model takes as input a large set of

sentences (corpus) of text and produces a vector space with hundreds of dimensions.

Each word in the corpus is assigned to a single vector in that space [9].

There are two different flavours of this algorithm, continuous bag of words

(CBOW) and skip-gram:

• CBOW: Given a corpus the model loops on the words of each sentence

and tries to predict the conditional probability of the current word given

its context.

• Skip-gram: Skip-gram is a flipped version of CBOW. The goal is to

predict the surrounding context words given a single target word. A

feature vector is used as an input to the model, when the network fails

to predict the surrounding context, the components of the vector are

adjusted.

This algorithm was a major breakthrough in the field of Word Embeddings

because rather than training the model against input words, it trains words against other

words that neighbour them in the input corpus [10]. This way the relations that the

model captures in the algebraic representation are in a way that they have never been

captured before. For example, if we map the words “boy”, “girl”, “man” and “woman”

in to the vector space, we found out that the word “man” is the similar to “boy” in the

same sense that “woman” is similar to “girl”. This way we can find a word that is

similar to “girl” in the same sense as “man” is similar to “boy” by computing the vector

[11]:

Wrd2Vec[“Man”] - Wrd2Vec[“Boy”] + Wrd2Vec[“Girl”] =

Wrd2Vec[“Woman”] (1)

Adaptive sentence similarity applied to biomedical literature

 20

3.2.2 Glove

GloVe [12] (Global Vectors for Word Representation) arise after a brief silence

in the world of word representation as an improvement to Word2Vec. The advantage of

GloVe is that, unlike Word2vec, GloVe does not rely just on local statistics (local

context surrounding words) to derive semantics of a word but combines them with

global statistics (word co-occurrence) to obtain word vectors and semantic relationships

between them [13].

Without going to go into detail, we review this embedding because as it is a

precursor of some of the models we use in the project. GloVe method is built on the

idea that using a co-occurrence matrix, semantic relationships among words can be

derived. This is a matrix containing information on how many times a word co-occurs

next to another in the same context.

Whit this data we can compute the ratio of a word occurring against a pair of

words. Let's say we have three words i, j and k: this algorithm compute the probability

of finding words i and k together (P_ik) and the probability of finding j and k together

(P_jk). With the ratio P_ik/P_jk the algorithm obtains global information about the

relative position of word k with respect to words i and j in the geometric space. GloVe

uses this mapping of words, added to the Word2Vec local statistics come up with a

principled loss function that is used to train the model that generates the embeddings.

This incorporating global statistics to the model. This is an improvement because

leverages both global and local statistics of a corpus.

Adaptive sentence similarity applied to biomedical literature

 21

Figure 6. GloVe ratio of words representation

3.2.3 ELMo

[14] Word embedding models such as word2vec or Glove were a great

improvement for NLP since they could be used as pre-trained models. These models

had been trained with huge amounts of data and by using them as a starting point to

build models dedicated to specific tasks, it was possible to obtain good results without

having enough data to train. Comparing a sentence classification model used from

scratch with one that uses a pre-trained model gives different results. The former will

not be able to handle or understand the words that do not appear in the training and

being built from scratch it has to learn the embedding, which consumes more training

time. The second one, on the other hand, can handle many more words and since it is an

almost perfect model from the beginning of the training, it will only have to be adapted

to the task to be performed.

Although these models were a breakthrough for the NLP situation at the time,

these models were not perfect. Because of this, people studying NLP began to raise a

problem that had been overlooked. This was that a word with several meanings would

Adaptive sentence similarity applied to biomedical literature

 22

get only one representation in vector space when vectorized by these encoders. It had

been possible to reduce the distance between vectors representing different words that

have the same meaning but not the opposite. Take for example the word "organ",

sometimes it means a part of an organism, but other times it refers to a musical

instrument depending on the context. For a pretrained Word embedding it is impossible

to assign different representations in the vector space depending on the context.

Therefore ELMo was developed to solve this problem.

Figure 7. Representation of polysemic word

ELMo is a function that, instead of using a fixed embedding for each word, it

looks at the entire sentence before assigning each word in it an embedding. So ELMo

could represent the word organ close to words related to body parts when the sentence

was "The heart is a vital organ". On the other hand it could output another different

embedding if the input sentence was "I like to play the organ on Sundays" so that in the

embedding space it would be placed near other musical instruments. The same happens

with other types of words such as verbs, which depending on the pronunciation mean

one tense or another.

To understand how ELMo works it is necessary to first address an architecture

called Long-Short Term memory layers (LTSM). [15] LTSM is a recurrent neural

network (RNN) architecture commonly used to process entire sequences of data in

contrast to networks that process isolated data points. The main idea is that these

networks can maintain information throughout training. This means that when

processing a sentence, it will not do so independently for each word, but will process

the first word and use what it has learned to process the next word, and so on until the

Adaptive sentence similarity applied to biomedical literature

 23

sequence is completed. In this way, when the last word is reached, it will be processed

taking into account the information of all the previous words. In the case of a sentence,

it could be said that it takes into account the context of previous words.

ELMo consists of several layers. The first one consists of an encoder that

simply depends on the syntax of the word and not on the context. This was decided by

its creators so that the comparison with the pre-trained models is fair, being these and

ELMo two models trained from scratch. The rest of the layers are bi-directional LTSM

layers. Using this architecture, the network tries to predict the word taking into account

not only the previous words but also the next one. This results in two embeddings that

when added together produce the final embedding. To obtain these two vectors, ELMo

collapses the outputs of all layers in the network into single vectors. It could use only

the top layer outputs, but Peters et al. demonstrated that the weighted sum of all the

layers give better results.

Figure 8. ELMo Arquitecture

Adaptive sentence similarity applied to biomedical literature

 24

3.3 Sentence Embedding

In recent years, the study of natural language processing has gone one step

further with the development of sentence embedding. With the proposal of bidirectional

networks, which processed knowledge of strings of words, researchers in this field

began to consider the possibility of working with complete sentences instead of

individual words. In the case of large text, using only words would be very tedious and

we would be limited by the information we can extract from the word embeddings.

Sentence embedding techniques represent entire sentences and their semantic

information as vectors. These vectors act as word embeddings, containing the features

and information of the sentence and representing them in the geometric space in the

same way it is done with words. In this section we will review different sentence

embedding techniques including the state-of-the-art and the model we have used.

To represent sentences, we can’t one-hot encode them as it is done with words

because there are so many possible sentences that it would be unpractical. One practical

way to create a sentence representation is to take advantage of the embedding of each

word and calculate the embedding of the whole sentence based on those [16] (e.g.

calculate an average weighted average of the embeddings of the words that form the

phrase).

3.3.1 Doc2Vec

Doc2Vec [17] is an unsupervised algorithm and adds on to the Word2Vec model

by introducing another ‘paragraph vector’. It creates representations of a

document, regardless of its length. But unlike words, documents do not come in

logical structures, so you can't use the same method as word2vec.

The difference that was introduced was a new vector, the paragraph vector.

Thus, when training the model with texts, each text had the vectors of each word

plus a paragraph vector. While the word vectors represent the concept of a word,

the document vector intends to represent the concept of a document. [17] It is a

simple method but one of the first to be implemented for embedding phrases.

Adaptive sentence similarity applied to biomedical literature

 25

3.3.2 Transformers

Transformers [18] are processing units with Encoder-Decoder structure, it was

developed for machine translation, but it has ended up being used for many other tasks.

It is constructed by a stack of encoders that output the data to a group of encoders of the

same number. All of these units are identical in structure. The encoding of the phrase is

performed in the bottom encoder, and this outputs the result to the one directly above.

The key property of the Transformer is that the word in each position flows

through its own path in the encoder, so each path is dependent on each other. Each

encoder consists of a self-attention layer [18] and a feed-forward network. The self-

attention layer associate words in a sentence. For example, in the sentence “The animal

was scared because it was lonely”, this layer allows to associate the word “it” with

“animal.

The encoder [19] takes each word in the input sentence, process it to an

intermediate representation and compares it with all the other words in the input

sentence. The result of those comparisons is an attention score that evaluates the

contribution of each word in the sentence to the key word. The attention scores are then

used as weights for the generation of new embeddings by the feed-forward network.

The decoder takes this intermediate embedding and tries to reconstruct the

original sentence or similar using the hidden states of the encoder. Unlike the encoder,

the decoder uses an addition to the Multi-head attention that is called masking. This

operation is intended to prevent exposing posterior information from the decoder.

These models are mostly used in machine translation. This is because you can

enter a phrase as input, have it transformed into an intermediate embedding by the

encoder and then have it reconstructed by the decoder in another language.

Adaptive sentence similarity applied to biomedical literature

 26

3.3.3 BERT

Bidirectional Encoder Representations from Transformers (BERT) [20] is a

model that takes advantage of the bidirectionality structure used by ELMo but instead of

LTSM layers, it takes advantage of OpenAi transformers. These consist of decoders

from the transformer.

When this idea was proposed there was a problem, and that is that ELMo uses

bidirectional LTSMs, but the transformers train a forward model. If the transformers

had all the information of the present and future of the sentence, the correct answer

would be revealed and would disrupt the learning procedure. [21] To solve this, BERT’s

modelling task masks randomly 15% of words in the input and asks the model to predict

the missing word. Instead of predicting the next word in a sentence, it masks some

percentage of the input tokens at random and predicts those masked tokens.

Another problem is that to train an embedder, you need to establish

relationships between what you want to vectorize, in the case of words you use the

context in a sentence to establish relationships, but in the case of phrases you have to be

more precise. The relation between two sentences is stated as follows: “Given two

sentences (A and B), is B likely to be the sentence that follows A?”, this task forces the

model to learn the relationship between two sentences, which is not directly captured by

language modeling. It also establishes more common relationships to other sentence

embedders such as if one sentence is a paraphrased version of another.

3.3.4 Sentence-BERT

Sentence-BERT (SBERT) [23] is a model for sentence-pair regression task like

textual similarity built by modifying the original BERT network. This model is

currently the state-of-the-art in sentence embedding. This approach is able to derive

semantically meaningful sentence embeddings using Siamese networks (explained in

chapter 4). It tries to cluster similar sentences using these kinds of networks. Then when

trying to find similar sentences it uses a similarity measure like cosine similarity or

Manhatten / Euclidean distance so the most similar network can be found.

Adaptive sentence similarity applied to biomedical literature

 27

This model is what inspired our project but using a different architecture.

Instead of using Siamese networks we have built a triplet architecture using the triplet

loss function.

3.3.5 Universal Sentence Encoder

Inspired by the use of models such as word2vec or GloVe, Universal Sentence

Encoder (USE) [22] is a model developed by tensorflow to be used as a pre-trained

model for different NLP tasks.

It has two variants, the first, unlike BERT, uses Transformer encoders. The

architecture consists of 6 stacked transformer layers. Each layer has a self-attention

module followed by a feed-forward network. Using the properties of encoders, such as

self-attention layers, USE is able to extract the context of the sentence by generating the

embedding of each word. The embeddings of each word are summed element-wise and

divided by the square root of the sentence length, resulting in a 512-dimensional vector.

The second variant uses Deep Averaging Networks (DAN), an architecture

proposed by Iyyer et al. For this, the model averages the embeddings of the words and

feeds them into a 4-layer feed-forward deep neural network that outputs a 512-

dimensional vector. The embeddings and layer weights are learned during training. This

model has less accuracy than the Transformers version but is less computationally

demanding.

For this project we have chosen USE as a pre-trained model for two reasons.

First, because, being tensorFlow it is very easy to implement in Python and it is

prepared for transfer learning tasks. The second reason is that there is a multilingual

variant of this model that has been trained with foreign languages. This is convenient

for our interests since our data is in Spanish.

Adaptive sentence similarity applied to biomedical literature

 28

4 Loss Functions / Arquitectures

4.1 Distance learning vs classificator

It is important for the project to understand the difference between a model that

is trained as a classifier and a model that learns to reduce distances between elements. A

classifier will modify its weights depending on whether it gets a sentence right or

wrong, for example, a neural network to predict whether the input image is a dog or a

cat, the input will be an image and the output will be binary indicating whether it is a

dog or a cat. If it fails, the weights will be modified to increase the accuracy of the

classifier.

A model that learns to reduce the distances between elements can have

different architectures, but normally it compares two or more inputs and as output it

indicates how similar they are. The model will learn to reduce the distance between

them if they are of the same class or maximize this distance if they are different. Some

of these architectures are explained in the following section.

In the case of our model the input is three vectors and the output is a

modification of these vectors so that those of the same class are close to each other and

those of a different class are far from each other.

4.2 Siamese Network

The main problems of a classification model are several:

• There may be a lack of data for some classes, which makes training very

difficult when the model requires many examples of each class.

• If there are too many classes, the model will not be able to learn them all

if it does not have lots and lots of data to learn them from.

• In a task that requires changing the data, a classifier would have to be

trained from scratch each time a new class is to be introduced. This is

very time-consuming and unfeasible if there are frequent modifications.

Adaptive sentence similarity applied to biomedical literature

 29

Siamese neural networks [24] are a pair of identical networks to which two

data are passed to extract their features. A loss function is then used to calculate the

difference between these two vectors and measure their similarity. The most common

loss function used for this type of architectures is contrastive loss, which calculates the

cosine distances between two embeddings. In this way this network can be used to

know if two elements belong to the same class.

Figure 9. Siamese network arquitecture

4.3 Triplet Loss

It is a loss function that tries to optimize in two ways, that two embeddings

with the same label are close to each other in the vector space, and that two examples of

different class are far from each other. For this, a neural network architecture is used

that takes three inputs, but these must meet specific conditions, two of them are of the

same class and the third of a class different from the first two. In this way the triplet loss

function will have the objective that the two positive examples are close to each other

and the negative one is far away.

Adaptive sentence similarity applied to biomedical literature

 30

Figure 10. Triplet loss arquitecture

The first input, used as a reference, is called anchor, while the one of the same

label and the one of a different class are called positive and negative respectively. These

three inputs form a triplet. In addition, the function uses a fourth parameter called

margin. This is a forced distance between the positive and negative, as we will see now

in the formula, this is necessary because otherwise the loss would be 0 whenever the

negative is farther away from the anchor than the positive, even if it is by a small

distance.

For a distance d in the embedding space, the loss of a triplet is defined as:

d(a,p) is the distance between the anchor and the positive, and d(a,n) the

distance between the anchor and the negative. This distance is calculated with Euclidean

distance. The difference between these allows minimizing the distance of the former

while increasing the distance between the latter. This difference is compared with 0 and

(2)

Adaptive sentence similarity applied to biomedical literature

 31

the maximum between the two is chosen, so that if the negative is farther from the

anchor than the positive, the result of the difference will be a negative value and

therefore the los will be 0. This brings the problem that, if the negative is farther than

the positive, but by very little, the function will not push it farther although it would be

optimal. For this reason, a margin α is added to the difference that forces the negative to

exceed the distance of the positive by more than a value α.

Depending on the loss, triplets can be classified into three types, easy triplets,

hard triplets and semi-hard triplets:

• Easy triplets: triplets that have a loss of 0, this occurs when the negative

has a distance with the anchor greater than the distance of the positive

with the anchor plus the margin. These are not modified because the

function considers that if the negative is far enough away (d(a,p) + α) it

will not be penalized.

• Hard triplets: These are the triplets in which the negative is closer to the

anchor than the positive (d(a,n)<d(a,p)). These are the triplets that will

be penalized the most because if our objective is to bring the positives

closer and separate the negatives this indicates the opposite.

• Semi-hard triplets: Triplets in which the distance from the negative to

the anchor is not greater than that of the positive, but still has a loss

greater than zero because it does not exceed the margin.

Ideally, easy triplets should be avoided for training since they give zero losses

and the model takes longer to generalize. The figure 11 shows graphically in geometric

space a representation of the types of triplets depending on the distance of their

components from each other. "a" is the anchor, "p" is the positive, and the rest indicates

which type of negative would be depending on its position.

Adaptive sentence similarity applied to biomedical literature

 32

Figure 11. Visual representation of triplet types based on the negatives

Adaptive sentence similarity applied to biomedical literature

 33

5 MATERIAL AND METHODS

This section of the thesis gives a detailed account of the procedure that was

followed in completing the project as well as the materials used in each step. To carry

out this project we have followed a methodology divided into several phases listed

below:

• Preliminary investigation of the state-of-the-art: We begin with an

exploration of the various scientific articles and books that deal with the

field of natural language processing.

• Preliminary exploration of algorithms: We explored the different

implementations that people have made of the algorithms and loss

functions that we were going to use for our project.

• Web scraping: To start working on the project, we created a database of

documents with text information from the web on different diseases.

Each disease is contained in one independent text file.

• Building our model: To build our model and choose the most suitable

architecture to meet our objectives, we have made use of the knowledge

gathered in the previous steps.

• Training: Once our model was built, we trained it by testing different

settings of the model in order to compare different results.

• Result exploration: Finally, we explored the results by drawing

conclusions about the performance of our model in the different

circumstances in which we have tested it.

The following sections outline the steps that have been followed in these

different phases of the project, detailing the materials and methods used for each one:

Adaptive sentence similarity applied to biomedical literature

 34

5.1 Preliminary investigation

5.1.1 State-of-the-art

Before starting to work on our project we have had to collect information in

order to understand the state-of-the-art of all the branches of knowledge that our project

touches. We have not only explored the current methods but also the precursors of these

methods and their alternatives to opt for a deeper understanding of the subject.

For this we have resorted to books found to read in their electronic and

physical format and above all to scientific articles by the authors of these methodologies

and algorithms. All these documents we have found using Google Scholar, a search

engine dedicated to scholarly literature across a wide variety of disciplines and sources:

articles, theses, books…

On the other hand, the papers that explain algorithms and new proposals in the

field of machine learning are usually of a mathematical nature and assume that the

reader has the necessary scientific background to understand what they propose. To

better understand the complex concepts found in the different papers, we have also had

the help of blogs and didactic audio-visual products found on the web, which explain

the subject in a more open and simplistic way.

5.1.2 Algorithms

Since we are dealing with mathematically complex topics, it is of great help to

learn from the implementations that other people have made of algorithms and functions

that we are interested in using. For this we have mostly resorted to code that can be

found on GitHub. This is a platform that supports developers and allows them to

collaborate and share their projects. It is mainly in remote teamwork as it allows

development teams to work together on the same project and easily create new versions

of software without disrupting the current versions.

These projects can be made public so that everyone can enjoy the progress

made in this project. The implementations we found on GitHub are for completely

different tasks than the ones we are interested in, but it has made things much easier to

Adaptive sentence similarity applied to biomedical literature

 35

have a guide of architectures and structures that work using similar algorithms or based

on the same idea.

5.2 Web Scraping

To create the database used in the training of the model we have obtained all

the information we could using web-scraping methods. The information we have

decided to collect comes from the MedlinePlus website, this is a quality and reliable

medical information website that is open to everyone at all times. The fact that it is non-

profit and non-advertising makes it easy to extract the information we need without too

much noise. All content on the site is produced by the U.S. National Library of

Medicine (NLM). NLM, the world's largest medical library, part of the U.S. National

Institutes of Health (NIH).

Web scraping, or web data extraction is a method used for extracting data from

websites [25]. This process can be carried out manually by extracting information from

web pages, but the term web-scraping usually refers to the automation of processes that

carry out the task of data extraction using bots or automated web browsers. Web pages

are built using text-based mark-up languages (HTML and XHTML), and frequently

contain a wealth of useful data in text form. This is why in recent years and given the

increasing demand for data, new specialized tools have been developed for inspecting

HTML code and extracting the information that these text tags contain.

The process for web scraping in this project can be broadly categorized into

three steps:

• Understand and inspect the web page to find the HTML markers

associated with the information we want.

• Use a specialized tool such as Selenium and/or other Python libraries to

scrape the HTML page.

• Manipulate the scraped data to get it in the format we need.

Adaptive sentence similarity applied to biomedical literature

 36

The first step involves exploring the MedlinePlus webpage so we can

understand how the data is distributed across the user interface. Once we have located

what information we are interested its position we need to inspect the HTML markers

that refer to our needed data. Each piece of text on a web page has its own html marker

assigned to it that contains the information and is accessible to an automated bot. This is

done because bots are nothing like human, you need to give him instructions to find

your desired data since it cannot just look around the page until it sees something that

matches our needs. HTML is the basic component of webs, It defines the meaning and

structure of web content in the most organized and hierarchical way possible, making it

relatively easy to automate search and text extraction processes according to our

established parameters. In the figures 12 and 13 is represented the information about

Alzheimer's disease in two different ways: as seen in the web page intended for users

and as seen in HTML when inspecting the basic code of the web.

Figure 12. Web page user interface

Figure 13. Web page HTML

Adaptive sentence similarity applied to biomedical literature

 37

It can be seen that web page elements are represented by tags in HTML, for

example, a paragraphs are writen between the tags <p> and </p>. These tags help our

scraping tools identify each element making easier the search.

For the second step we used Selenium library for python. Selenium library

allows you to automate web browsers. It is a powerful tool that allows us to use a web

browser as if it were a human. With Selenium you can control any web browser by

programming instructions using python code that are executed in the order you specify.

The possibilities of these commands are almost unlimited in terms of what a human can

do while browsing a web page: you can activate buttons, navigate from one page to

another, enter text, passwords...

We have developed a script to enter the MedlinePlus page, navigate to the

alphabetical list of topics in the form of hyperlinks, find the links to which these links

point using HTML tags and save all the links to all the topics in a list. Using this list

with URLs makes it easy for selenium to open one by one all the pages to extract

information. For each topic, our script searches for the paragraphs that contain the

central information and stores that text in a variable.

In order to manipulate the information and to be able to use it in the way we

are interested in, we save the extracted data in separate text documents. Each text

belonging to the same topic in a separate document. In a later step, we divide each text

into sentences and pass them through the sentence embedding model we want to use,

obtaining for each text as many vectors of the same size as sentences in the document.

These vectors are saved in a dataframe and can be loaded quickly to train our model

without the need to encode again all the sentences.

5.3 Building and training our model

The following sections explain the code attached in the appendix with which

we have built the model. To program the tool, we have used the Python programming

language. In addition to Python, we have used some libraries such as Keras,

Adaptive sentence similarity applied to biomedical literature

 38

TensorFlow. matplotlib, pyPlot or Pandas [26][27][28][29] that facilitate the tasks that

have been necessary to reach the established goals.

• Keras is a deep learning framework that makes easy the building of

models and complex architectures. With Keras you can build layers one

on top of each other and train the model with just a few lines. It uses

TensorFlow for the maths.

• TensorFlow is an end-to-end open source platform for machine learning.

It was developed by google and it is focused on the training of deep

neural networks.

• NumPy is python library that provides tools which facilitate and

optimize the mathematical operations needed for preprocessing of data.

These functions are mostly focused in support for multi-dimensional

arrays and matrices.

• MatPlotLib is a plotting library for creating static, animated and

interactive visualizations in Python. We used it for data exploration.

• Pandas is a Python library specialized in handling and analyzing data

structures. We use ir to easily create dataframes

The code is structured in data preprocessing, build of used functions,

arquitecture and training of the model, result exploration and prediction tool. Let’s take

a closer look at each of them.

5.3.1 Data preprocessing

Our data consists of all the documents that we have extracted from

MedlinePlus. These documents have a file name that corresponds to the disease it deals

with and contains the extracted text containing information about that disease. To create

the data frame that we will use to train our model we have used pandas. The process

consists of a loop that repeats an algorithm for each text: It opens the file, divides the

text into lines and separates them into sentences when they are divided by dots. Each of

Adaptive sentence similarity applied to biomedical literature

 39

the sentences is processed by the Universal Sentence Encoder (USE) and the encoded

output is stored in a list. We have used this model because our data is in a language

other than English and USE has a multilingual version for foreign languages.

In parallel, labels of each sentence are stored in another list. Finally, when all

sentences of all texts have been processed, a dataframe is created with two columns:

"label" and "text". In the "labels" column are the classes to which each of the phrases

they refer to belong, which are stored in the "text" column as vectors.

Figure 14. Embedding data frame

In order to explore the data after training, a dataframe is created identical to the

previous one but without being processed by the USE. This way we will have the real

text that we can read and understand easily.

Figure 15. Translation data frame

Adaptive sentence similarity applied to biomedical literature

 40

In a next step, using this data frame, all sentences consisting of an empty array

are removed from the dataset, in the figure 15 you can see that 4th sentence does not

contain text so it will be removed. Once the data is cleaned, it is randomly divided and

separated into 80% for training and 20% for validation and the labels are stored in a

variable 'Y' and the embeddings in a variable 'X', leaving the data ready to be fed to the

model..

5.3.2 Functions

The two functions that had to be developed for the project are the data

generator and the triplet loss cost function. These functions are used by the model

during training. The data generator feeds the model with three-by-three encodings

(anchor, positive and negative). The triplet loss function calculates the cost of the model

output, this numerical value will be minimized by modifying the weights of the neural

network.

The data generator accepts the variables X and Y with the data and generates

the triplets as outputs. For this it selects a random phrase from the X list to use as

anchor, and searches for its label in the Y list. Then it selects a phrase from the same

class and another from a different class. These will be the positive and negative

respectively. This process is repeated as many times as the batch size (bs) value,

generating bs triplets. Finally, it saves all the triplets in an array and this batch is

outputed to feed the network. Being a distance minimization learning, the Y labels are

only used to find the triplets and are not returned. This is the simplest way to find

triplets, the problem is that it is not optimal since many times the triplets will be easy

triplets, which will have a loss of 0, so it will not provide information to the model.

Ideally only semi-hard and hard triplets should be selected.

The loss function has as input only the margin and the encodings that come out

of the network, the cost of the model is calculated with these three results so it is not

necessary to compare it with the input data of the model. These encodings come out of

the model as a concatenated vector, so the first thing the function will do is to divide

this vector into three equal parts, obtaining the encoding of the anchor, the positive, and

Adaptive sentence similarity applied to biomedical literature

 41

the negative. As a second step it calculates the distance from the anchor to the positive

and the negative using squared Euclidean distance. This distance d is defined by:

Where a, p and n are anchor, positive and negative respectively, and f(x) are

the encodings coming out of the model.

Finally, the loss is calculated, which is given by the Equation 2.

Where alpha is the margin that is forced between positive and negative. This

loss is what the model tries to minimize in each iteration.

5.3.3 Model

The architecture used for the model is quite simple, consists of three inputs that

connect to a dense layer common to the three inputs, a lambda layer for normalization

and a layer that concatenates the three encodings into one vector.

Figure 16. Architecture of our approach

(2)

(3)

(4)

Adaptive sentence similarity applied to biomedical literature

 42

The inputs are three encodings (anchor, positive and negative) of

dimensionality 512, since we have used the Universal Sentence Encoder to process the

sentences, which generates embeddings of 512 floating points. These inputs are

processed in the dense layer, which is the only part of the model with trainable

parameters. For this layer we have used sigmoid activation as it gave much better results

than the other activation functions. The embeddings coming out of this layer are

normalized by L2 normalization and finally concatenated into a single vector that will

be used to calculate the cost. By concatenation, the output of the model will be of

dimension 1536 (512*3). The figure 17 shows the summary of this model.

Figure 17. Detailed architecture

Figure 18. Generic architecture

Adaptive sentence similarity applied to biomedical literature

 43

 Seen globally, the encoding process of a sentence would be to first use a pre-

trained sentence encoder to take advantage of its generic knowledge of the language, the

resulting embedig to introduce it in our model and obtain its final encoding (figure 18).

 Finally we have trained the model with a batch size of 16 and 100 steps per

epoch until it covered. In order to optimize training times we have used the Google

Colab platform that allows using GPU to run Python notebooks. Figure 19 shows the

training and validation graph.

Figure 19. Training los graph

5.4 Result Exploration

For the exploration of the results, it has been necessary to first process the set

of embeddings that we have obtained, since being high dimensionality vectors it is not

possible to interpret the results by means of graphs. For this we have used the t-SNE

algorithm that reduces the dimensionality of the data. Once processed, it has been

possible to use Python visualization tools to interpret the geometric space.

To obtain quantitative results, a function has been constructed that attempts to

classify the test set sentences using Euclidean distance between points. This function

calculates a hit percentage based on whether the actual class appears among the

predictions made.

Adaptive sentence similarity applied to biomedical literature

 44

5.4.1 T-SNE

t-Distributed Stochastic Neighbor Embedding (t-SNE) is a data exploration

technique developed by Laurens van der Maatens and Geoffrey Hinton in 2008 for

dimensionality reduction. It is an unsupervised, non-linear method that stands out for

visualization of high-dimensional data. In simpler terms, t-SNE gives you a feel or

intuition of how the data is arranged in a high-dimensional space [30].

In the case of our project, it is very convenient for us to visualize our data in a

lower dimension than the original one. Since we work with encodings of sentences, with

many features for each of the data, we end up with an algebraic space of too many

dimensions (512 or 1024) to be represented and understood by a human. T-SNE is

especially useful in segmentation problems where you need to see if clusters are

forming in your data. This information cannot be obtained from a geometric space with

hundreds of dimensions, in order to understand how the data is distributed it is

necessary to represent it with a dimensionality that humans can understand: 1-D 2-D or

3D.

Let’s see an example: In the figure 20 below, you can see some data in clusters

in the 2-dimensional space. If we want to lower its dimension to 1-D, we could simply

project the data onto just one of its dimensions, but this will give as a result the overlap

of at least two of the clusters.

Figure 20. projection of points to X-axis

Adaptive sentence similarity applied to biomedical literature

 45

This is not a good representation of our data, since what we are interested in

from the visualization is to know if they are grouped or if the classes are close or far

from each other in the vector space. The 1-D projection implies that the data of classes 1

and 2 are mixed, but as we see in the original data distribution, they are separated and

grouped together. A good representation of this 1-D data would be the figure 21, in

which, despite the reduced dimensionality, the samples maintain a similar distribution.

Figure 21. Correct representation of points in 1-D

This representation is what t-sne is all about, that no information is lost by

reducing the dimensionality of the data, so that accurate conclusions can be drawn

simply by looking at it.

The algorithm first calculates a similarity measure between pairs of points in

the high dimensional space and in the low dimensional space. It then tries to optimize

these two similarity measures using a cost function. Let’s break that down into 3 basic

stages:

• First stage: First the algorithm calculates the Euclidian distances

between pairs of points. To achieve this, it centers a gaussian

distribution on the first point (x_i) and measure the distance to the rest

of the poins (x_j). Then normalized for all points because it is not the

density of the clusters that is relevant, but the fact that they are clusters.

This transform the distances into conditional probabilties (Pij)

representing the similarity between every two points. If two points are

similar under this gaussian circle it means that they are likely to be

neighbors in the hig-dimensional space.

Adaptive sentence similarity applied to biomedical literature

 46

• Second stage: This step is similar to the first one but in the target

dimensionality (low-dimensional space) and using Student t-

distribution instead of gaussian. To do that t-SNE builds a random

dataset with the same number of instances as there are in the high

dimensionality dataset. These points are generated with the same

number of features as dimensions to which we want to reduce (2

features if we want to map our data to 2-D). It will be something like

the figure 22. For this set of points we will calculate the same joint

probability (Qij) but this time using Student t-distribution instead of

Gaussian (hence the name t-SNE). Using this distribution avoids that

the points in the low-dimensional space are too close together and

cannot be distinguished.

Figure 22. Random distribution of points

• Third stage: In the last step t-SNE tries to make the joint probability

distribution Qij of the data points in the low dimension as close as

possible to the probabilities Pij of the high-dimensional space. As a loss

function to calculate the difference between these two sets of

probabilities the algorithm uses the Kullback-Lieber (KL) divergence

[31]. Finally it uses gradient descent to minimize this KL loss function.

From this optimization, we get the values of the points in the low

dimension dataset and use it for our visualization.

5.4.2 Scatter Plot

To represent this data we have used the MatplotLib library for python, which

offers a clean and easy to interpret representation.

Adaptive sentence similarity applied to biomedical literature

 47

Figure 23. MatplotLib scatter plot

To go deeper into these graphs we have used the PlotLy library, which has

allowed us to explore each of the points to interpret the results in more detail as it gives

information about each point (label, text, etc...).

Figure 24. Detailed scatter plot

Adaptive sentence similarity applied to biomedical literature

 48

5.4.3 Prediction function

Finally, in order to test the model in an alternative way to the visual one, we

have written a simple prediction function that allows us to classify sentences. This

classification is done in the simplest possible way: we compute the embedding of the

sentence we want to represent and position it in the vector space. To know its class we

look for the nearest neighboring points and assign the class they have.

It should be noted that the objective of this model is not to build a perfect

classifier, since there are already too many classes (the model was trained sentences

from more than 1000 documents) very similar to each other and the data are sentences

that could belong to many of them. What we are trying to do with this vectorization is to

classify a phrase into a generic class or topic. For example if we introduce the phrase

"among the symptoms is the intense pain in the left side of the chest", and the classes of

the neighboring points that we obtain as a result are, "heart attack", "angina" and

"pericarditis", we would take it as a success although the real class that we want to

obtain is "heart failure". This is because it has succeeded in placing the input phrase in

the zone of the embedding space that corresponds to heart diseases.

For this reason, to measure the accuracy we have created a function that has as

input the phrase to classify, its real label and a t value (threshold). It returns the classes

of the t nearest points, depending on the threshold that is introduced, being by default

this value 5. It also returns a boolean that is True if the real class is among the classes of

the neighbors, and False if not, this way, with the threshold it is possible to give a

margin of error to the classifier and compute numerical values that reflect how close the

model is to predicting the real classes of the sentences. With this classifier we can

compute predictions for the test set data set and get a higher percentage of success

which will be higher the higher the t-threshold.

Adaptive sentence similarity applied to biomedical literature

 49

6 RESULTS

The results obtained have been measured in two different ways, by a visual

exploration and by using a prediction function in the test set that allows computing an

accuracy value that gives an insight of how the model is performing.

6.1.1 Visual results

To have a first perception of how the model is working we have represented

the embedding space in a 2- and 3-dimensional plane, in this way we can easily identify

if clusters are forming between the vector representations of phrases that belong to the

same class. In the figure 25 you can see this scatter plot in which each point is a phrase

and each colour represents the class to which the point

belongs

Figure 25. Embedding space in 2-D

We can also visualize de data un 3D, but it is harder to get an insight from this

representation:

Adaptive sentence similarity applied to biomedical literature

 50

Figure 26. Embedding space in 3-D

Although this visualization gives us an idea of how the data is distributed, we

cannot know to which class each cluster belongs and why it is being distributed in the

geometric space. This is why we have also created an interactive scatterplot that allows

us to analyze each cluster and even each class. When you hover the mouse over a point,

it tells you what phrase it is and what class it belongs to. For example, let's see in detail

what the accumulation of red dots of the coordinates (-50,-40) in the figure 25 is about.

Figure 27. Cluster of points with same label

Adaptive sentence similarity applied to biomedical literature

 51

Figure 28. Point with different label in a cluster

As we can see in figures 27 and 28 most of them belong to the class "high

pressure in pregnancy" and the phrases refer to pregnancy or related. The items that do

not belong to this class refer to the same topics.

6.1.2 Quantitative results

We can use the prediction function in two ways, to classify single sentences or

to calculate a model accuracy value. Let's see an example of the classification of an

isolated sentence.

Figure 29. Result of classification function

Adaptive sentence similarity applied to biomedical literature

 52

 The figure 29 shows the classification results. The first section indicates the

sentence to be classified and its actual label. The following sections indicate the class of

the nearest neighbours to this point. In this case we have used a threshold of 5, so the 5

nearest neighbours will be shown.

 In these results it can be seen that the actual prediction was not correct until the

third attempt, but all the attempts talk about the kidneys. This is the reason for including

a threshold in the function, to give a margin since we are not interested in getting it right

on the first try, but to place it in an area where the surrounding sentences deal with the

same topic.

On the other hand, to obtain numerical values of the model performance, we

iterate the test set with the function, and we take as a success the presence of the real

class in the results that are returned. In this way, the higher the threshold, the higher the

probability of success because more possible classes are returned. Once all the data has

been iterated, the success percentage can be calculated.

Table 1. Quantitative results: Accuracy of the model

N 1 2 3 4 5 7 10 15 20

% 33.8% 42.1% 48.7% 54.6% 58% 62.8% 66.2% 69.6% 72.4%

Adaptive sentence similarity applied to biomedical literature

 53

7 DISCUSSION

In the scatter plots it can be seen that indeed the sentences belonging to the

same class have been put together in the geometrical space. In the following figures 30

and 31 you can see a comparison of the plane with the data represented before being

processed by our model and afterwards.

Figure 30. Embedding space before our embedding

Figure 31. Embedding space after our embedding

Adaptive sentence similarity applied to biomedical literature

 54

It can be clearly seen how, despite the noise introduced by the data, many

sentences have formed clusters when passing through the model. In the figure 32 you

can see the representation of the data when the project started, using far fewer classes

than we currently use to train the model. Generally, the clusters are well defined and

separated from each other. This tells us that the triplet loss function is very susceptible

to noise, since, when using an internet phrase database, there is a lot of data that is

repeated or does not provide information about the class to which it belongs.

Figure 32. Early scatter plot of the embedding space

The points that are mixed at coordinates (30,25) are generic phrases that the

model cannot classify as they do not provide information and are repeated for different

classes. An example of this could be the sentence "Treatment can improve symptoms"

or "In severe cases hospitalization is required". This type of sentence can talk about any

disease that has treatment or is severe, which is why the model is not able to group them

with their classes and they are considered noise for the model.

Adaptive sentence similarity applied to biomedical literature

 55

When exploring a particular cluster, it can be seen that although the classes do

not coincide between the points, they deal with the same topic. In the example of the

figure 33, the data are from different classes but all of them are about hair.

Figure 33. Cluster of noise points

In the same way, when trying to predict a point, the prediction function does

not always get it right on the first try, but the results it displays are generally related to

each other and to the sentence to be classified. In the example given in the "Results"

section, the function does not get it right until the third attempt, but all the results are

related to each other because they refer to diseases affecting the kidneys.

Finally, the accuracy table gives good results, a 33.8% hit rate with a single

attempt, although not a good score for a classifier, indicates that the model is really

bringing embeddings of the same class closer together. As the threshold is increased, the

accuracy increases dramatically to 62.8% when it reaches 7 attempts. Setting the

threshold higher than this value does not make much difference. This may be because, if

the class is not among the 7 closest points, it is most likely a misclassified phrase.

Adaptive sentence similarity applied to biomedical literature

 56

Figure 34. Accuracy Graph

The graph shows how the accuracy converges as the threshold of the prediction

function increases.

With this combination of techniques to explore the data we can conclude that

the result has been satisfactory. The aim of this project was to explore the possibilities

presented by new advances in artificial intelligence and to put them into practice in

order to improve, as far as possible, the state of the art of NLP. We have used a loss

function that until now had been used almost exclusively for image processing and we

have obtained results that show that it also improves results for specific NLP tasks that

pre-trained models cannot cover.

Adaptive sentence similarity applied to biomedical literature

 57

8 CONCLUSIONS

According to the objectives that had been set, which were to achieve a model

capable of representing sentences in such a way that they are grouped in the geometric

space according to their biomedical relationships, the results have been satisfactory.

Depending on the threshold we set, good results can be obtained, indicating that the

model is capable of grouping the sentences according to their medical subject. So it can

be concluded that it is feasible to use distance learning such as triplet loss to improve

NLP models performance for specific tasks.

As future lines we could consider the comparison of performances using

different pre-trained models such as BERT. We could also improve the selection of

triplets to accelerate training and with more computational resources it would be

possible to increase the batch size for generalization. It would also greatly improve the

quality of the model to increase the quality of the data by reducing the noise in it.

Adaptive sentence similarity applied to biomedical literature

 58

9 REFERENCES

[1] Lopez Pizarro, D. “Feeding robotic arm prototype based on mouth spatial positioning”. Ceu San Pablo, 2021

[2] Stevenson, M., Guo, Y., Gaizauskas, R., & Martinez, D. (2008). Disambiguation of biomedical text using

diverse sources of information. BMC bioinformatics, 9(11), 1-11.

[3] Chen, Q., Peng, Y., & Lu, Z. (2019, June). BioSentVec: creating sentence embeddings for biomedical texts. In

2019 IEEE International Conference on Healthcare Informatics (ICHI)

[4] Deng, L., Li, J., Huang, J. T., Yao, K., Yu, D., Seide, F., ... & Acero, A. (2013, May). Recent advances in deep

learning for speech research at Microsoft. In 2013 IEEE International Conference on Acoustics, Speech and

Signal Processing

[5] Ogiela, M. R., & Ogiela, U. (2010). The use of mathematical linguistic methods in creating secret sharing

threshold algorithms. Computers & Mathematics with Applications

[6] Liddy, E. D. (2001). Natural language processing.

[7] Guo, D., Zhou, W., Li, H., & Wang, M. (2017). Online early-late fusion based on adaptive HMM for sign

language recognition. ACM Transactions on Multimedia Computing, Communications, and Applications

[8] Bengio, Y., Ducharme, R., Vincent, P., & Janvin, C. (2003). A neural probabilistic language model. The journal

of machine learning research, 3, 1137-1155.

[9] “Introduction to Word Embeddings and its Applications” https://medium.com/compassred-data-

blog/introduction-to-word-embeddings-and-its-applications-8749fd1eb232

[10] “A simple Word2vec tutorial” https://medium.com/@zafaralibagh6/a-simple-word2vec-tutorial-61e64e38a6a1

[11] Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., & Dean, J. (2013). Distributed representations of words and

phrases and their compositionality. In Advances in neural information processing systems.

[12] Pennington, J., Socher, R., & Manning, C. D. (2014, October). Glove: Global vectors for word representation. In

Proceedings of the 2014 conference on empirical methods in natural language processing

[13] “Intuitive Guide to Understanding GloVe Embeddings” https://towardsdatascience.com/light-on-math-ml-

intuitive-guide-to-understanding-glove-embeddings-b13b4f19c010

[14] Peters, M. E., Neumann, M., Iyyer, M., Gardner, M., Clark, C., Lee, K., & Zettlemoyer, L. (2018). Deep

contextualized word representations. arXiv preprint arXiv:1802.05365.

[15] Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural computation, 9(8), 1735-1780.

[16] “What are Sentence Embeddings and why are they useful?” https://engineering.talkdesk.com/what-are-sentence-

embeddings-and-why-are-they-useful-53ed370b3f35

[17] A gentle introduction to Doc2Vec

[18] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., ... & Polosukhin, I. (2017).

Attention is all you need. In Advances in neural information processing systems

[19] “Neural Machine Translation with Transformers” https://galhever.medium.com/neural-machine-translation-

with-transformers-69d4bf918299

[20] Devlin, J., Chang, M. W., Lee, K., & Toutanova, K. (2018). Bert: Pre-training of deep bidirectional transformers

for language understanding.

[21] “The Illustrated BERT, ELMo, and co. (How NLP Cracked Transfer Learning)”

http://jalammar.github.io/illustrated-bert/

[22] Cer, D., Yang, Y., Kong, S. Y., Hua, N., Limtiaco, N., John, R. S., ... & Kurzweil, R. (2018). Universal sentence

encoder

[23] Reimers, N., & Gurevych, I. (2019). Sentence-bert: Sentence embeddings using siamese bert-networks. arXiv

preprint arXiv:1908.10084.

[24] Koch, G., Zemel, R., & Salakhutdinov, R. (2015, July). Siamese neural networks for one-shot image recognition.

In ICML deep learning workshop (Vol. 2).

[25] “Web scraping” https://en.wikipedia.org/wiki/Web_scraping

[26] https://keras.io

https://medium.com/compassred-data-blog/introduction-to-word-embeddings-and-its-applications-8749fd1eb232
https://medium.com/compassred-data-blog/introduction-to-word-embeddings-and-its-applications-8749fd1eb232
https://towardsdatascience.com/light-on-math-ml-intuitive-guide-to-understanding-glove-embeddings-b13b4f19c010
https://towardsdatascience.com/light-on-math-ml-intuitive-guide-to-understanding-glove-embeddings-b13b4f19c010
https://engineering.talkdesk.com/what-are-sentence-embeddings-and-why-are-they-useful-53ed370b3f35
https://engineering.talkdesk.com/what-are-sentence-embeddings-and-why-are-they-useful-53ed370b3f35
https://galhever.medium.com/neural-machine-translation-with-transformers-69d4bf918299
https://galhever.medium.com/neural-machine-translation-with-transformers-69d4bf918299
http://jalammar.github.io/illustrated-bert/
https://en.wikipedia.org/wiki/Web_scraping
https://keras.io/

Adaptive sentence similarity applied to biomedical literature

 59

[27] https://www.tensorflow.org/?hl=es-419

[28] https://matplotlib.org

[29] https://pandas.pydata.org/

[30] “Introduction to Word Embeddings and its Applications” https://medium.com/compassred-data-

blog/introduction-to-word-embeddings-and-its-applications-8749fd1eb232

[31] Belov, D. I., & Armstrong, R. D. (2011). Distributions of the Kullback–Leibler divergence with applications.

British Journal of Mathematical and Statistical Psychology

https://www.tensorflow.org/?hl=es-419
https://matplotlib.org/
https://pandas.pydata.org/
https://medium.com/compassred-data-blog/introduction-to-word-embeddings-and-its-applications-8749fd1eb232
https://medium.com/compassred-data-blog/introduction-to-word-embeddings-and-its-applications-8749fd1eb232

