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ABSTRACT 

Artificial intelligence has been, and still is, a key element in the development 

of biotechnology-related technologies, especially for disease diagnosis and drug 

development. One of the main advances has been in natural language processing (NLP), 

an area of modern computing that has been studied for decades and in which many 

goals are still far from being achieved. 

The goal of this project is to learn a metric distance between sentences related 

to biomedical topics. For this we have created a database from thousands of biomedical 

documents and, using state-of-the-art natural language processing techniques, we reduce 

each sentence into a high-dimensional vector. These vectors are mapped by our model 

to a lower vector space in which phrases coming from the same documents have smaller 

distances. 

The model we propose has a technical relevance that relies on the training of a 

neural network using triplet losses that try to reduce the distance between sentences of 

the same class and increase the distance between sentences of different class. 
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RESUMEN 

La inteligencia artificial ha sido, y sigue siendo, un elemento clave en el 

desarrollo de las tecnologías relacionadas con la biotecnología, sobre todo para el 

diagnóstico de enfermedades y desarrollo de fármacos. Uno de los principales avances 

ha sido el del procesamiento de lenguaje natural (NLP), un área de la computación 

moderna que se estudia desde hace décadas y en la que todavía muchas metas están 

lejos de ser alcanzadas. 

El objetivo de este proyecto es aprender una distancia métrica entre frases que 

tengan relación con tópicos biomédicos. Para esto hemos creado una base de datos a 

partir de miles de documentos biomédicos y, haciendo uso de las técnicas más 

avanzadas de procesamiento de lenguaje natural, reducimos cada frase en un vector de 

alta dimensión. Estos vectores son mapeados por nuestro modelo a un espacio vectorial 

inferior en el que tienen distancias menores las frases que vienen de los mismos 

documentos. 

El modelo que proponemos tiene una relevancia técnica que se apoya en el 

entrenamiento de una red neuronal utilizando pérdidas de tripletes que tratan de reducir 

la distancia entre frases de la misma clase y aumentar la distancia entre frases de 

distinta. 
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1 INTRODUCTION 

 

1.1 Objectives 

Biomedical engineering has advanced by leaps and bounds in recent decades. 

The area of health has always been one of the most important fields of science and in 

the times in which we live in the main path it must take in order to evolve is through 

technology. This is the reason behind why the figure of the biomedical engineer is 

gaining more and more relevance as a support to the usual health workers (clinicians, 

pharmacists, researchers...). Biomedical engineering can be divided into two branches, 

hardware and software: 

• Hardware: Robotics belongs less and less to the world of science 

fiction, the amazing advances that have been made in the last century 

continue to save millions of lives today. These advances range from the 

first hospital machines such as computer tomography or X-ray 

machines to exoskeletons and robotic prostheses being developed in the 

world's most prestigious laboratories. Although great things have been 

achieved, there is still a long way to go in this field, because with the 

arrival of new technologies such as artificial intelligence or blockchain, 

everything points to the fact that they can be used to help global health. 

• Software: On the other hand, we can also find great advances in the field 

of algorithms and programming. Mathematics and statistics have gained 

unprecedented importance in recent years. With the advent of artificial 

intelligence, statistical models designed by engineers and 

mathematicians are capable of performing tasks that were previously 

reserved for humans. And not humans in general, but experts in the 

subject matter at hand. An example of this is how, thanks to the 

development of computer vision, a computer can analyze an X-ray and 

establish probabilities of finding positives of certain diseases in the 

patient, offering support to doctors' decisions that before could only be 
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achieved with years of study and dedication. And where recent 

algorithms excel most is in tasks that humans cannot do, such as 

processing and drawing conclusions from millions of nitrogenous bases 

in DNA or reconstructing the structure of a protein that exists at the 

molecular level using electron microscopy images. 

These branches are not independent but support each other to make more 

interesting and enhance each other's discoveries. A robotic arm improves considerably if 

it is implemented together with an object recognition algorithm since it can be used to 

make life easier for handicapped people [1]. Similarly, a microprocessor can be used to 

increase the portability of a model and can be used in emergency situations such as an 

algorithm for the monitoring and detection of heart disease. 

Our goal in this project is to go one step further in the development of software 

applied to biomedicine by developing a diagnostic system that uses natural language 

processing to search for similarities between a patient's symptoms and the description of 

a disease. For this we have used models that represent sentences in a geometric space of 

high dimensionality, these representations in the form of numerical vectors are called 

embeddings. These representations are generic for language, but we have trained a 

second model that reduces the Euclidean distances between embeddings by establishing 

relationships in a purely biomedical context. The motivation is to build a classifier that 

has as input a sentence describing the symptoms of a patient and can predict to which 

document it belongs based on Euclidean distance between embeddings.  

For this purpose, we have created a database with text files containing phrases 

related to a specific disease (one disease per document). In this way we managed to 

reduce the distance between phrases that belong to the same file and to separate in the 

vector space the phrases that belong to different documents. We have achieved this by 

using a penalty function called triplet loss. Using triplet loss allows us to train a model 

that accepts as input three sentences at a time, (two of the same class and one of a 

different one) and it learns to represent the sentences in such a way that the first two are 

together and these are separated from the last one. 
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1.2 Background 

Among the new technologies that have been developed, we have been able to 

take advantage of natural language processing (NLP) to meet the objectives that had 

been proposed in this work. NLP is the set of techniques and technologies used to 

understand and represent languages that have been generated by humans in a natural 

way. It is a field of study that has been developing for several decades but is still far 

from reaching its full potential. 

The strength of this methodology is the ability to represent words and phrases 

in a high-dimensional geometric space. For this, language elements are transformed into 

numerical vectors so that representations of words that have similar meanings are close 

together in the vector space. This allows us to train deep learning models such as neural 

networks that work mostly with numerical inputs.  

On the other hand, when trying to classify sentences in hundreds of classes 

(one for each document or disease) it is not enough to use a conventional classifier, so 

we have been forced to use a penalty function that is able to handle a large amount of 

data in high dimensionality spaces. The method we have used is called triplet loss, 

which tries to minimize the distance between a baseline input (anchor) and one of the 

same class (positive), while maximizing the distance between them and an input with a 

different label (negative). 

Since it is difficult, if not impossible, to visualize data with hundreds of 

dimensions, it has been necessary to transform our results with a dimensionality 

reduction, for which we have used t-SNE. T-SNE is a technique for data visualization 

that consists of reducing the dimensionality of the data while maintaining its structural 

integrity. The algorithm maps the probabilities of finding together all combinations of 

points in the high dimensionality space and tries to create a set of points with a similar 

distribution but with lower dimensionality, maintaining the clusters of the original 

dataset. 
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1.3 Critical Analysis 

So far, new technologies have been used for numerous tasks in the field of 

biotechnology, whether to handle immense amounts of patient data, support specialists 

in diagnosing diseases, robotics to supplement the needs of people with disabilities, or 

even machines that can operate remotely controlled by a surgeon. Deep Learning alone 

has already achieved accomplishments that seemed impossible decades ago, such as 

surpassing in many cases human capabilities in certain tasks. 

Despite this, natural language processing still has some way to go. So far it has 

been used for generic tasks using models that are not specialized for medical data such 

as chatbots or assistants for doctors. Where NLP is most useful is when processing the 

reports that a doctor writes about a patient. Key information that specialists write is lost 

in these text reports but is difficult for a computer to extract in a way that can be 

properly analyzed. These huge volumes of unstructured data are processed with engines 

capable of scrubbing large sets of unstructured health data to discover previously missed 

or improperly coded patient conditions. 

The problem is that medical language is not as simple as the language used on 

a daily basis. Biomedical texts are full of technical terms and acronyms that can confuse 

even the most sophisticated model. Thus, NLP models are used that are not trained to 

deal with this kind of complex data and do not understand the medical context as well as 

they should. For this reason, several articles have started to emerge dealing with the 

issue of biomedical language processing, since many statistical models for processing 

text perform extremely poorly under domain shift. 

An example of this are the models for the Disambiguation of acronyms and 

words that can have more than one possible meaning, which in biomedical texts become 

especially recurrent [2]. This is an improvement, but falls short of being a NLP model 

as such that can perform well in biomedical texts. To achieve this, numerous articles 

have been written on the subject, but the vast majority propose something as simple as 

fine-tuning existing models or basic transfer learning techniques. 

The main alternative to what we propose is BioScentVec by chen et al., a 

sentence embedding model for biomedical text data [3]. This proposal outperforms the 
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state-of-the-art as it re-trains an encoder using health-related data, but does not bring 

any advances to the way these models are built. Ours is not based on the training of 

another model but takes as input the output of other encoders and reduces its 

dimensionality by forming clusters of sentences in the vector space grouping sentences 

that talk about the same disease. This has several advantages such as not having to 

retrain an encoder from scratch, which saves computational and time costs since these 

models usually have millions of weights to modify in each training iteration. Another 

advantage is that different encoders can be used to generate the inputs of our model 

without the need to modify it, which allows us to compare different implementations 

easily looking for the latest results. Finally, our model, by using an unconventional cost 

function such as the triplet loss, allows us to form a classifier simply by measuring the 

Euclidean distance between the embedding of the sentence to be classified and the rest 

of the sentences already labelled in our database, assigning it the class with the highest 

similarity. 

1.4 Book Structure 

The remaining chapters of this paper contain the following information:  

Chapters 2, 3 and 4 covers the background of the project. These chapters cover 

the state-state-of-the-art of natural language processing and distance learning methods 

so when discussing about the architecture and functions used to train the model there is 

a prior understanding of the mathematical concepts that support the ideas implemented. 

Chapter 5 exposes the entire process that has been followed to achieve the goals 

proposed for the project as well as the materials used in each step. It extensively covers 

the details of each tool and technique used and explains the code and algorithms that 

make up the project. 

Chapter 6 presents the results obtained and compares them to other sentence embedding 

models. 

These results and their implications are discussed in Chapter 7. Chapter 8 is a 

conclusion and also sets out the future directions that the project could take to improve 

the results obtained. 
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2 Natural language proccesing 

During the last decades, language has been one of the main research objects in 

the area of computational techniques. An attempt has been made to analyse the text 

based on theories and technologies that have been developed over the years and grew 

the furthest with the rise of computers for the purpose of performing useful tasks. These 

techniques for automatically manipulating natural language have been called Natural 

Language Processing (NLP). From a scientific perspective, NLP aims to model the 

cognitive mechanisms underlying the understanding and production of human 

languages. From an engineering perspective, NLP is concerned with how to develop 

novel practical applications to facilitate the interactions between computers and human 

language [4]. 

Before addressing the different methods used for text processing, it is 

necessary to understand what natural language is and why its study is a challenge, 

which despite having been a priority for years, continues to be developed and is still far 

from over. 

2.1 Natural language 

Natural language refers to any system of communication used by humans that 

has evolved naturally through use of the language and repetition without being 

constructed artificially. We avoid including animal communication in our definition of 

language as it is controversial and does not add value to our study.  

The main form of natural language we are interested in using as data is mainly 

text and speech. If you think about how many times a person reads text during the day, 

the examples are unlimited: signs, books, user guides, etc... And there is no need to talk 

about the importance of the use of speech in people's lives, every interaction between 

two humans is done the vast majority of the time through words, even more than 

through text. 
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2.2 Challenges of natural language as data 

Language is a very hard thing to learn. Just as it is complicated for a child who 

spends the first years of his life learning to speak, or it is complicated for an adult 

person trying to learn a new language; it is also hard for the engineer who attempts to 

build systems that deal with natural language input or output. [5] 

Natural language is complicated mainly because it is messy. It has synonyms, 

ambiguities, different expressions to refer to the same entity, and, above all, it has few 

rules. Despite this, we understand each other most of the time and can infer the context 

from a sentence we hear, and not only this, but also the speaker's emotions, intention, 

personality and even style. 

A widely used example of the complexity of language processing is sarcasm, it 

is very complicated to tell a machine that it must interpret an expression that is used to 

say the opposite of what is true. 

Las principales tareas que pretenden resolver los sistemas NLP son: 

• Word Sequence Tasks: Solve problems related to the sequence of words 

and the order they follow. Used for text generation eq. Chatbots or 

translators. 

• Text Meaning Tasks: The aim is to assign a meaning to the words or 

phrases. For this purpose, the input data are transformed into 

distributional vectors that collect the features of each phrase or word. 

This is a word representation that allows words with similar meaning to 

have a similar representation. Used for sentence embedding or finding 

similar words. 

• Text Classification Tasks: Predicting tags, categories or sentiment. 

Used for filtering emails or classifying documents. In our project we 

solve this task using techniques meant to solve text meaning tasks: We 

represent text in a way that sentences from the same document 

In our project we solve classification tasks using techniques meant to solve text 

meaning tasks: We use a standard Natural Language Processing (NLP) embedder that 
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transforms input sentences into high-dimensional vectors. Then, we will map these 

vectors into a lower dimensional space in which two embedded vectors should have a 

smaller distance if they come from the same document.  

This sentence metric will allow in the future to identify the relevant topics 

related to a description of a clinical history provided by a person. 

2.3 Natural Language Processing  

Liddy defines Natural Language Processing as a theoretically motivated range 

of computational techniques for analyzing and representing naturally occurring texts at 

one or more levels of linguistic analysis for the purpose of achieving human-like 

language processing for a range of tasks or applications. [6] 

It is important to emphasize the concept of the different levels of linguistics 

that she proposes. These are seven, with their respective forms of processing: 

• Phonology: Interpretation of speech sounds within and across words. 

When developing a natural language processing system that accepts 

sounds or spoken speech as information to be processed, it is necessary 

to encode the signal into a digital format so that it can be interpreted by 

the model used. 

• Morphology: Componential analysis of words. Each morpheme in the 

word is analysed including prefixes, suffixes and roots. An NLP System 

can recognize and assign importance and meaning to each morpheme to 

obtain more detailed information about each word. 

• Lexical: Word level analysis including lexical meaning and part of 

speech analysis. Each word is analysed individually by the NLP 

System, but different types of processing are applied for the meaning 

assignment. In this level, words are considered just part of speech, 

assigning the most probable part-of-speech in case of ambiguity. 

• Syntactic: Analysis of words in a sentence in order to uncover the 

grammatical structure of the sentence. Words maintain relationships of 
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structural dependence between them, this is the information obtained 

from this level of processing.  

• Semantic: Determining the possible meanings of a sentence, including 

disambiguation of words in context. This might seem to be the only 

level of processing that contributes to the assignment of meaning, but as 

we have already seen, it is the set of all the previous levels that make 

the correct determination of meaning. An important part of this level is 

the disambiguation of words, a single possible meaning is selected from 

polysemous words.  

• Discourse: Interpreting structure and meaning conveyed by complete 

texts beyond a single sentence. NLP systems should take text as a 

whole, focusing in dealing with the structure of the text or connections 

between sentences. 

• Pragmatic: understanding the purposeful use of language in certain 

situations. NLP systems deal with the use of real-world knowledge and 

understanding of how this impacts the meaning of what is being 

communicated. 

In any case, the lower levels are the most relevant in the study of natural 

language, since it is often not necessary to reach higher levels depending on the 

application of the system. On the other hand, it is easier to advance in the development 

of the lower levels of processing because these are based on dealing with small units of 

language such as phonemes, morphemes or words, guided by rules, which are easier to 

analyse than complete texts, contexts or emotions.  

For our project we use models that work optimally with complete complex 

sentences, so we deal with the first five levels of language processing, leaving aside the 

discourse level because we do not get to analyse complete texts, more than a couple of 

diagnostic sentences, and we do not deal much with the pragmatic level because the 

diagnoses and symptoms of a patient do not usually contain a purpose that depends on 

the situation or the context.  
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In the fragment of Lilly's definition where she mentions computational 

techniques, she refers to the different approaches that can be taken when processing 

natural language. Li Deng divides these approaches of the general methodology used to 

study NLP, from a historical perspective, into three waves listed in the following 

sections: 

• Rule-Based Approach: (First wave) These are handcrafted system of 

rules based on linguistic structures. The experts designed these 

programs using symbolic logical rules based on careful representations 

and engineering of such knowledge [4]. Rule-Based systems have been 

proven to work well specifically but fails when generalizing. The 

biggest throwback is that building these kinds of models require expert 

knowledge. 

• Machine Learning or ‘Traditional’ Approach: (Second wave) Started 

with the implementation of shallow machine learning and statistical 

models with the explosion of data corpora. Comprises probabilistic 

modelling likelihood maximization, and linear classifiers. The system 

analyses data from an annotated training set and develops its own 

classifier. This still needs to be complemented with hand crafted 

features needing some type of expertise. In this second wave, shallow 

generative models such as hidden Markov models HMMs [7] began to 

be used for spoken language understanding and speech recognition. 

Later on, Deng and some colleagues made use of multiple latent layers 

of representations for this generative process giving rise to the first 

deep learning industrial process [4].  

• Neural Network and Deep Learning Approach: (Third wave) Shallow 

machine learning from earlier days did not have the capacity to absorb 

large amounts of training data, so the algorithms were not powerful 

enough. This changed a few years ago with the popularization of deep 

learning which achieved best results compared to traditional machine 

learning algorithms. The reason of this progress was mainly that in 

traditional machine learning, human experts were needed for feature 

engineering. Deep learning, by using deep and layered model 

structures, broke the difficulties related to the need of manually crafted 
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features. These models are capable of extracting features by using a 

cascade of layers of nonlinear processing units, learning a 

representation of the language from scratch and solving general 

machine learning tasks dispensing with feature engineering. The 

biggest impact of these models has been in the field of speech 

recognition. It hardly affects our project apart from the fact that the 

main industrial implementations (Microsoft Cortana, Apple Siri, 

Amazon Alexa, Google Assistant) are based on Deep learning models, 

but it is a good example given the huge impact it has had on technology 

in recent years. Despite this, the aforementioned systems are still used 

for certain applications. These are the models explored in this project. 

[Deep Learning in Natural Language Processing, 2018] 
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3 Word Representation 

[Huang et al, 2019] [Chollet, 2018] Like all other neural networks, deep-

learning models don’t take as input raw text: they only work with numeric vectors. 

Vectorizing text is the process of transforming text into numeric vectors or tensors. On 

the other hand, NLP have the issue of representing the features from the original text 

data, so the goal is that these vectors store semantic information, which allows them to 

be associated or dissociated to other vectors (words) according to different grammatical 

contexts.  

Word-vectorization starts dividing or breaking words in different units called 

tokens by a process called tokenization. Once the words have been tokenized, vectors of 

numbers are associated to each word, obtaining the numerical representation of the 

vectors. These number vectors are used as input for the natural language processing 

neural network. which is normally applied with words as input but in the case of our 

project a model for encoding whole sentences is used, the universal sentence encoder. 

 

Figure 1. Tokenization of words 

 

3.1 One-Hot Encoding 

One-hot encoding is the most common, most basic way to turn a token into a 

vector. In this method for vectorization of words each word is associated with a unique 

integer index i in order to obtain a vector of length N (the size of the vocabulary) whose 

components are all zeros except the one corresponding to position i, which will have 
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value 1. The result is a vector whose elements are only 1 and 0. Each word is written or 

encoded as one hot vector, with each one hot vector being unique. This way the word 

can be identified uniquely by its one hot vector and vice versa, so no two words will 

have same one hot vector representation. 

To clarify, let's say that the word "calculator" occupies position 300 in the list 

of words in the alphabetically ordered vocabulary, and that the vocabulary is made up of 

171,476 words. In this case the vector associated to the word "calculator" will be a 

vector of length 171,476 in which all its positions will have a zero value except for 

position 300 which will have a 1. The same can be applied for the rest of the words of 

the alphabet or for characters being the vectors of the latter of length 26 (number of 

letters in the alphabet). 

This way words are represented by vectors and all words in a sentence can be 

represented by a matrix constituted by those vectors. The same way a text made up of 

different sentences can be represented by an array of matrixes, a three-dimensional 

vector that the neural network will accept as input.  

There are two major issues with this approach for word embedding. The first 

one is related with dimensionality, even if you do not use the complete alphabet 

dimension for the encoding, one-hot vectors will always be very high-dimensional and 

therefore require large memory space. One-hot encoded data is sparse since the vast 

majority of the matrix is filled with zeros so, if our vocabulary has one million words, 

each word is represented by 999,999 zeros and a one. The fact that memory 

consumption is exponential makes it a very computationally inefficient vectorization 

method. 

 

Figure 2. One-hot encoding vectors 
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The second issue is that there is no meaning associated to the numeric vector. 

Because the representation is N-1 zeros and a one, being N the number of dimensions, 

the resulting vector do not say much about about the words they represent. For example 

the words "dog", "cat" and "squirrel" have a similarity between them that can be easily 

seen since they are animal species, so it would be logical to classify them together. With 

One-hot vectors this does not happen because you cannot extract any information or 

features from the vectors so all the words are at the same distance from each other. 

3.2 Word embeddings 

Word embeddings are dense vector-representations of words. This method of 

vectorization maps each word to a N-Dimensional space being an interesting and 

powerful way of associating vectors with words. These real valued vectors are not 

arbitrary generated, they are learned through supervised techniques such as neural 

network models trained on tasks such as sentiment analysis and document classification 

or through unsupervised techniques such as statistical analysis of documents. 

 

Figure 3. Word Embedding Vectors 

Complex vectorization methodologies, such as word embedding, emerge from 

the need to solve three major problems that arise when using simpler forms of 

vectorization: 

• Scalability: Simplistic methods such as One-Hot can reach millions of 

dimensions if the entire vocabulary of a language is considered. The 

computational resources and time required to train a neural network by 

feeding it data with such a large number of dimensions is at least 

inefficient. 
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• Sparsity: Is really hard to train models if your data is made up by 

millions of zeros and some ones in the right locations. This prevents the 

model from generalizing correctly when dealing with test data. 

• Context: Creating vectors without taking into account the context and 

dependencies between words, leads to a lose of semantic information. 

This is really problematic because of similar words having totally 

different representations. 

Contrary to the vectors obtained after applying one-hot encoding, word 

embeddings are low dimensional, it’s common to see word embeddings that are 256-

dimensional, 512-dimensional, or 1,024-dimensional floating-point vectors in contrast 

to a million-Dimensional space. Since each vector in the embeddings is densely 

populated as opposed to sparse vectors made up almost entirely of zeros, this 

methodology also resolves the sparsity issues. Word embeddings learn from data in a 

way that captures the shared context and dependencies among the words, one-hot 

encoding generates vectors without considering the context in which each word of 

vocabulary lies, meaning that not only more dimensions are used, but also less 

information is captured.  

There are many ways to represent a word with a vector, one possibility being to 

simply choose a random vector. The problem with this is that the embedding space 

would have no structure. This vector would not provide any improvement over the one-

hot vectors because it would be completely arbitrary and two synonymous words could 

end up with completely different vector representations even though the meaning should 

have similar embeddings.  

Word embeddings are meant to map human language into a geometric space 

[chollet]. Vectors have geometric relationships: they can be close to each other in 

geometric space, far apart, they can be in the same direction with respect to another 

point, etc... The purpose of word embeddings is that these geometric relationships are in 

accordance with the semantic relationships of the words they represent. This means that 

if a word is synonymous with another word, both are related by their meaning, 

therefore, their embeddings should be similar and close in the geometric space. 

Likewise, words that have different meanings will be vectorized in representations that 



Adaptive sentence similarity applied to biomedical literature 

 17 

are far from each other. In addition to distance, specific directions in the embedding 

space should also be meaningful.  

 

Figure 4. Distance and relations between embedded words 

We take the figure 4 above as an example. In the figure, four words are 

embedded in a three-dimensional plane: boy, girl, woman and man. It can be seen that 

the words have geometric relationships according to their semantic connection. The 

horizontal axis could be interpreted as a vector representing gender (from male to 

female) while the vertical axis would be a geometric transformation from early age to 

adulthood (from boy to man). The same can be applied to other types of words like 

verbs, being the verb tense one possible transformation. 

The ideal word-embedding space would be one that maps the English (or any 

other) language perfectly representing the relations of every word on the dictionary. It is 

yet to be computed but it could never be perfect because each language depend on 

specific cultures and the context and relation between words varies among different 

tasks. The interpretation required to read a legal document is not the same as that 

required for a cooking recipe, the importance of each word changes depending on the 

task to be performed. In spite of this, we can compute embedding spaces appropriate to 

the task at hand. We can visualize these spaces using TSNE visualization (Explained in 

other title) and would look like figure 5: 
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Figure 5. Scatter plot of word embeddings 

See how names of food, colored in red, are al together on the top-left of the 

graph, while feelings and body parts are in an opposite direction but close to each other, 

because those families of words have some kind of semantic relation. 

Although we do not use word embedding as such in our project, it is 

appropriate to review the main algorithms that led this vectorization methodology to 

become the state-of-the-art in word representation: 

3.2.1 Word2Vec 

This algorithm was proposed for the first time by Thomas Mikolov et al. in 

2013 with the paper “Efficient Estimation of Word Representations in Vector Space”. It 

takes advantage of the idea of distributional hypothesis, which suggests that words that 

we can find used in the same context also have semantic relationship. Knowing which 
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words have the same semantic meaning, a mapping of words can be made so that they 

are close to each other in the geometric space. 

Word2Vec consists of training 2-layer neural networks, the first layer being a 

simple model that learns continuous word vectors and then trains N-gram NNLM on top 

of these representations (NNLM was the state-of-the-art neural network model by the 

time that word2vec was proposed). [8]. This 2-layer model takes as input a large set of 

sentences (corpus) of text and produces a vector space with hundreds of dimensions. 

Each word in the corpus is assigned to a single vector in that space [9]. 

There are two different flavours of this algorithm, continuous bag of words 

(CBOW) and skip-gram: 

• CBOW: Given a corpus the model loops on the words of each sentence 

and tries to predict the conditional probability of the current word given 

its context. 

• Skip-gram: Skip-gram is a flipped version of CBOW. The goal is to 

predict the surrounding context words given a single target word. A 

feature vector is used as an input to the model, when the network fails 

to predict the surrounding context, the components of the vector are 

adjusted. 

This algorithm was a major breakthrough in the field of Word Embeddings 

because rather than training the model against input words, it trains words against other 

words that neighbour them in the input corpus [10]. This way the relations that the 

model captures in the algebraic representation are in a way that they have never been 

captured before. For example, if we map the words “boy”, “girl”, “man” and “woman” 

in to the vector space, we found out that the word “man” is the similar to “boy” in the 

same sense that “woman” is similar to “girl”. This way we can find a word that is 

similar to “girl” in the same sense as “man” is similar to “boy” by computing the vector 

[11]: 

Wrd2Vec[“Man”] - Wrd2Vec[“Boy”] + Wrd2Vec[“Girl”] = 

Wrd2Vec[“Woman”] (1) 
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3.2.2 Glove 

GloVe [12] (Global Vectors for Word Representation) arise after a brief silence 

in the world of word representation as an improvement to Word2Vec. The advantage of 

GloVe is that, unlike Word2vec, GloVe does not rely just on local statistics (local 

context surrounding words) to derive semantics of a word but combines them with 

global statistics (word co-occurrence) to obtain word vectors and semantic relationships 

between them [13]. 

Without going to go into detail, we review this embedding because as it is a 

precursor of some of the models we use in the project. GloVe method is built on the 

idea that using a co-occurrence matrix, semantic relationships among words can be 

derived. This is a matrix containing information on how many times a word co-occurs 

next to another in the same context.  

Whit this data we can compute the ratio of a word occurring against a pair of 

words. Let's say we have three words i, j and k: this algorithm compute the probability 

of finding words i and k together (P_ik) and the probability of finding j and k together 

(P_jk). With the ratio P_ik/P_jk the algorithm obtains global information about the 

relative position of word k with respect to words i and j in the geometric space. GloVe 

uses this mapping of words, added to the Word2Vec local statistics come up with a 

principled loss function that is used to train the model that generates the embeddings. 

This incorporating global statistics to the model. This is an improvement because 

leverages both global and local statistics of a corpus. 
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Figure 6. GloVe ratio of words representation 

3.2.3 ELMo 

[14] Word embedding models such as word2vec or Glove were a great 

improvement for NLP since they could be used as pre-trained models. These models 

had been trained with huge amounts of data and by using them as a starting point to 

build models dedicated to specific tasks, it was possible to obtain good results without 

having enough data to train. Comparing a sentence classification model used from 

scratch with one that uses a pre-trained model gives different results. The former will 

not be able to handle or understand the words that do not appear in the training and 

being built from scratch it has to learn the embedding, which consumes more training 

time. The second one, on the other hand, can handle many more words and since it is an 

almost perfect model from the beginning of the training, it will only have to be adapted 

to the task to be performed. 

Although these models were a breakthrough for the NLP situation at the time, 

these models were not perfect. Because of this, people studying NLP began to raise a 

problem that had been overlooked. This was that a word with several meanings would 
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get only one representation in vector space when vectorized by these encoders. It had 

been possible to reduce the distance between vectors representing different words that 

have the same meaning but not the opposite. Take for example the word "organ", 

sometimes it means a part of an organism, but other times it refers to a musical 

instrument depending on the context. For a pretrained Word embedding it is impossible 

to assign different representations in the vector space depending on the context. 

Therefore ELMo was developed to solve this problem. 

 

Figure 7. Representation of polysemic word 

ELMo is a function that, instead of using a fixed embedding for each word, it 

looks at the entire sentence before assigning each word in it an embedding. So ELMo 

could represent the word organ close to words related to body parts when the sentence 

was "The heart is a vital organ". On the other hand it could output another different 

embedding if the input sentence was "I like to play the organ on Sundays" so that in the 

embedding space it would be placed near other musical instruments. The same happens 

with other types of words such as verbs, which depending on the pronunciation mean 

one tense or another. 

To understand how ELMo works it is necessary to first address an architecture 

called Long-Short Term memory layers (LTSM). [15] LTSM is a recurrent neural 

network (RNN) architecture commonly used to process entire sequences of data in 

contrast to networks that process isolated data points. The main idea is that these 

networks can maintain information throughout training. This means that when 

processing a sentence, it will not do so independently for each word, but will process 

the first word and use what it has learned to process the next word, and so on until the 
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sequence is completed. In this way, when the last word is reached, it will be processed 

taking into account the information of all the previous words. In the case of a sentence, 

it could be said that it takes into account the context of previous words. 

ELMo consists of several layers. The first one consists of an encoder that 

simply depends on the syntax of the word and not on the context. This was decided by 

its creators so that the comparison with the pre-trained models is fair, being these and 

ELMo two models trained from scratch. The rest of the layers are bi-directional LTSM 

layers. Using this architecture, the network tries to predict the word taking into account 

not only the previous words but also the next one. This results in two embeddings that 

when added together produce the final embedding. To obtain these two vectors, ELMo 

collapses the outputs of all layers in the network into single vectors. It could use only 

the top layer outputs, but Peters et al. demonstrated that the weighted sum of all the 

layers give better results. 

 

Figure 8. ELMo Arquitecture 
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3.3 Sentence Embedding 

In recent years, the study of natural language processing has gone one step 

further with the development of sentence embedding. With the proposal of bidirectional 

networks, which processed knowledge of strings of words, researchers in this field 

began to consider the possibility of working with complete sentences instead of 

individual words. In the case of large text, using only words would be very tedious and 

we would be limited by the information we can extract from the word embeddings. 

Sentence embedding techniques represent entire sentences and their semantic 

information as vectors. These vectors act as word embeddings, containing the features 

and information of the sentence and representing them in the geometric space in the 

same way it is done with words. In this section we will review different sentence 

embedding techniques including the state-of-the-art and the model we have used. 

To represent sentences, we can’t one-hot encode them as it is done with words 

because there are so many possible sentences that it would be unpractical. One practical 

way to create a sentence representation is to take advantage of the embedding of each 

word and calculate the embedding of the whole sentence based on those [16] (e.g. 

calculate an average weighted average of the embeddings of the words that form the 

phrase).  

3.3.1 Doc2Vec 

Doc2Vec [17] is an unsupervised algorithm and adds on to the Word2Vec model 

by introducing another ‘paragraph vector’. It creates representations of a 

document, regardless of its length. But unlike words, documents do not come in 

logical structures, so you can't use the same method as word2vec. 

The difference that was introduced was a new vector, the paragraph vector. 

Thus, when training the model with texts, each text had the vectors of each word 

plus a paragraph vector. While the word vectors represent the concept of a word, 

the document vector intends to represent the concept of a document. [17] It is a 

simple method but one of the first to be implemented for embedding phrases. 
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3.3.2 Transformers 

Transformers [18] are processing units with Encoder-Decoder structure, it was 

developed for machine translation, but it has ended up being used for many other tasks. 

It is constructed by a stack of encoders that output the data to a group of encoders of the 

same number. All of these units are identical in structure. The encoding of the phrase is 

performed in the bottom encoder, and this outputs the result to the one directly above.  

The key property of the Transformer is that the word in each position flows 

through its own path in the encoder, so each path is dependent on each other. Each 

encoder consists of a self-attention layer [18] and a feed-forward network. The self-

attention layer associate words in a sentence. For example, in the sentence “The animal 

was scared because it was lonely”, this layer allows to associate the word “it” with 

“animal. 

The encoder [19] takes each word in the input sentence, process it to an 

intermediate representation and compares it with all the other words in the input 

sentence. The result of those comparisons is an attention score that evaluates the 

contribution of each word in the sentence to the key word. The attention scores are then 

used as weights for the generation of new embeddings by the feed-forward network. 

The decoder takes this intermediate embedding and tries to reconstruct the 

original sentence or similar using the hidden states of the encoder. Unlike the encoder, 

the decoder uses an addition to the Multi-head attention that is called masking. This 

operation is intended to prevent exposing posterior information from the decoder. 

These models are mostly used in machine translation. This is because you can 

enter a phrase as input, have it transformed into an intermediate embedding by the 

encoder and then have it reconstructed by the decoder in another language. 
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3.3.3 BERT 

Bidirectional Encoder Representations from Transformers (BERT) [20] is a 

model that takes advantage of the bidirectionality structure used by ELMo but instead of 

LTSM layers, it takes advantage of OpenAi transformers. These consist of decoders 

from the transformer.  

When this idea was proposed there was a problem, and that is that ELMo uses 

bidirectional LTSMs, but the transformers train a forward model. If the transformers 

had all the information of the present and future of the sentence, the correct answer 

would be revealed and would disrupt the learning procedure. [21] To solve this, BERT’s 

modelling task masks randomly 15% of words in the input and asks the model to predict 

the missing word. Instead of predicting the next word in a sentence, it masks some 

percentage of the input tokens at random and predicts those masked tokens. 

Another problem is that to train an embedder, you need to establish 

relationships between what you want to vectorize, in the case of words you use the 

context in a sentence to establish relationships, but in the case of phrases you have to be 

more precise. The relation between two sentences is stated as follows: “Given two 

sentences (A and B), is B likely to be the sentence that follows A?”, this task forces the 

model to learn the relationship between two sentences, which is not directly captured by 

language modeling. It also establishes more common relationships to other sentence 

embedders such as if one sentence is a paraphrased version of another. 

3.3.4 Sentence-BERT 

Sentence-BERT (SBERT) [23] is a model for sentence-pair regression task like 

textual similarity built by modifying the original BERT network. This model is 

currently the state-of-the-art in sentence embedding. This approach is able to derive 

semantically meaningful sentence embeddings using Siamese networks (explained in 

chapter 4). It tries to cluster similar sentences using these kinds of networks. Then when 

trying to find similar sentences it uses a similarity measure like cosine similarity or 

Manhatten / Euclidean distance so the most similar network can be found. 
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This model is what inspired our project but using a different architecture. 

Instead of using Siamese networks we have built a triplet architecture using the triplet 

loss function. 

3.3.5 Universal Sentence Encoder 

Inspired by the use of models such as word2vec or GloVe, Universal Sentence 

Encoder (USE) [22] is a model developed by tensorflow to be used as a pre-trained 

model for different NLP tasks. 

It has two variants, the first, unlike BERT, uses Transformer encoders. The 

architecture consists of 6 stacked transformer layers. Each layer has a self-attention 

module followed by a feed-forward network. Using the properties of encoders, such as 

self-attention layers, USE is able to extract the context of the sentence by generating the 

embedding of each word. The embeddings of each word are summed element-wise and 

divided by the square root of the sentence length, resulting in a 512-dimensional vector. 

The second variant uses Deep Averaging Networks (DAN), an architecture 

proposed by Iyyer et al. For this, the model averages the embeddings of the words and 

feeds them into a 4-layer feed-forward deep neural network that outputs a 512-

dimensional vector. The embeddings and layer weights are learned during training. This 

model has less accuracy than the Transformers version but is less computationally 

demanding. 

For this project we have chosen USE as a pre-trained model for two reasons. 

First, because, being tensorFlow it is very easy to implement in Python and it is 

prepared for transfer learning tasks. The second reason is that there is a multilingual 

variant of this model that has been trained with foreign languages. This is convenient 

for our interests since our data is in Spanish. 
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4 Loss Functions / Arquitectures 

4.1 Distance learning vs classificator 

It is important for the project to understand the difference between a model that 

is trained as a classifier and a model that learns to reduce distances between elements. A 

classifier will modify its weights depending on whether it gets a sentence right or 

wrong, for example, a neural network to predict whether the input image is a dog or a 

cat, the input will be an image and the output will be binary indicating whether it is a 

dog or a cat. If it fails, the weights will be modified to increase the accuracy of the 

classifier. 

A model that learns to reduce the distances between elements can have 

different architectures, but normally it compares two or more inputs and as output it 

indicates how similar they are. The model will learn to reduce the distance between 

them if they are of the same class or maximize this distance if they are different. Some 

of these architectures are explained in the following section. 

In the case of our model the input is three vectors and the output is a 

modification of these vectors so that those of the same class are close to each other and 

those of a different class are far from each other. 

4.2 Siamese Network 

The main problems of a classification model are several:  

• There may be a lack of data for some classes, which makes training very 

difficult when the model requires many examples of each class. 

• If there are too many classes, the model will not be able to learn them all 

if it does not have lots and lots of data to learn them from. 

• In a task that requires changing the data, a classifier would have to be 

trained from scratch each time a new class is to be introduced. This is 

very time-consuming and unfeasible if there are frequent modifications. 
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Siamese neural networks [24] are a pair of identical networks to which two 

data are passed to extract their features. A loss function is then used to calculate the 

difference between these two vectors and measure their similarity. The most common 

loss function used for this type of architectures is contrastive loss, which calculates the 

cosine distances between two embeddings. In this way this network can be used to 

know if two elements belong to the same class.  

 

Figure 9. Siamese network arquitecture 

4.3 Triplet Loss 

It is a loss function that tries to optimize in two ways, that two embeddings 

with the same label are close to each other in the vector space, and that two examples of 

different class are far from each other. For this, a neural network architecture is used 

that takes three inputs, but these must meet specific conditions, two of them are of the 

same class and the third of a class different from the first two. In this way the triplet loss 

function will have the objective that the two positive examples are close to each other 

and the negative one is far away.  
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Figure 10. Triplet loss arquitecture 

The first input, used as a reference, is called anchor, while the one of the same 

label and the one of a different class are called positive and negative respectively. These 

three inputs form a triplet. In addition, the function uses a fourth parameter called 

margin. This is a forced distance between the positive and negative, as we will see now 

in the formula, this is necessary because otherwise the loss would be 0 whenever the 

negative is farther away from the anchor than the positive, even if it is by a small 

distance. 

For a distance d in the embedding space, the loss of a triplet is defined as: 

     

d(a,p) is the distance between the anchor and the positive, and d(a,n) the 

distance between the anchor and the negative. This distance is calculated with Euclidean 

distance. The difference between these allows minimizing the distance of the former 

while increasing the distance between the latter. This difference is compared with 0 and 

(2) 
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the maximum between the two is chosen, so that if the negative is farther from the 

anchor than the positive, the result of the difference will be a negative value and 

therefore the los will be 0. This brings the problem that, if the negative is farther than 

the positive, but by very little, the function will not push it farther although it would be 

optimal. For this reason, a margin α is added to the difference that forces the negative to 

exceed the distance of the positive by more than a value α. 

Depending on the loss, triplets can be classified into three types, easy triplets, 

hard triplets and semi-hard triplets: 

• Easy triplets: triplets that have a loss of 0, this occurs when the negative 

has a distance with the anchor greater than the distance of the positive 

with the anchor plus the margin. These are not modified because the 

function considers that if the negative is far enough away (d(a,p) + α) it 

will not be penalized. 

• Hard triplets: These are the triplets in which the negative is closer to the 

anchor than the positive (d(a,n)<d(a,p)). These are the triplets that will 

be penalized the most because if our objective is to bring the positives 

closer and separate the negatives this indicates the opposite. 

• Semi-hard triplets: Triplets in which the distance from the negative to 

the anchor is not greater than that of the positive, but still has a loss 

greater than zero because it does not exceed the margin. 

Ideally, easy triplets should be avoided for training since they give zero losses 

and the model takes longer to generalize. The figure 11 shows graphically in geometric 

space a representation of the types of triplets depending on the distance of their 

components from each other. "a" is the anchor, "p" is the positive, and the rest indicates 

which type of negative would be depending on its position. 
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Figure 11. Visual representation of triplet types based on the negatives 
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5 MATERIAL AND METHODS 

This section of the thesis gives a detailed account of the procedure that was 

followed in completing the project as well as the materials used in each step. To carry 

out this project we have followed a methodology divided into several phases listed 

below:  

• Preliminary investigation of the state-of-the-art: We begin with an 

exploration of the various scientific articles and books that deal with the 

field of natural language processing.  

• Preliminary exploration of algorithms: We explored the different 

implementations that people have made of the algorithms and loss 

functions that we were going to use for our project. 

• Web scraping: To start working on the project, we created a database of 

documents with text information from the web on different diseases. 

Each disease is contained in one independent text file. 

• Building our model: To build our model and choose the most suitable 

architecture to meet our objectives, we have made use of the knowledge 

gathered in the previous steps. 

• Training: Once our model was built, we trained it by testing different 

settings of the model in order to compare different results. 

• Result exploration: Finally, we explored the results by drawing 

conclusions about the performance of our model in the different 

circumstances in which we have tested it. 

The following sections outline the steps that have been followed in these 

different phases of the project, detailing the materials and methods used for each one: 
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5.1 Preliminary investigation 

5.1.1 State-of-the-art 

Before starting to work on our project we have had to collect information in 

order to understand the state-of-the-art of all the branches of knowledge that our project 

touches. We have not only explored the current methods but also the precursors of these 

methods and their alternatives to opt for a deeper understanding of the subject. 

For this we have resorted to books found to read in their electronic and 

physical format and above all to scientific articles by the authors of these methodologies 

and algorithms. All these documents we have found using Google Scholar, a search 

engine dedicated to scholarly literature across a wide variety of disciplines and sources: 

articles, theses, books… 

On the other hand, the papers that explain algorithms and new proposals in the 

field of machine learning are usually of a mathematical nature and assume that the 

reader has the necessary scientific background to understand what they propose. To 

better understand the complex concepts found in the different papers, we have also had 

the help of blogs and didactic audio-visual products found on the web, which explain 

the subject in a more open and simplistic way. 

5.1.2 Algorithms 

Since we are dealing with mathematically complex topics, it is of great help to 

learn from the implementations that other people have made of algorithms and functions 

that we are interested in using. For this we have mostly resorted to code that can be 

found on GitHub. This is a platform that supports developers and allows them to 

collaborate and share their projects. It is mainly in remote teamwork as it allows 

development teams to work together on the same project and easily create new versions 

of software without disrupting the current versions.  

These projects can be made public so that everyone can enjoy the progress 

made in this project. The implementations we found on GitHub are for completely 

different tasks than the ones we are interested in, but it has made things much easier to 
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have a guide of architectures and structures that work using similar algorithms or based 

on the same idea. 

5.2 Web Scraping 

To create the database used in the training of the model we have obtained all 

the information we could using web-scraping methods. The information we have 

decided to collect comes from the MedlinePlus website, this is a quality and reliable 

medical information website that is open to everyone at all times. The fact that it is non-

profit and non-advertising makes it easy to extract the information we need without too 

much noise. All content on the site is produced by the U.S. National Library of 

Medicine (NLM). NLM, the world's largest medical library, part of the U.S. National 

Institutes of Health (NIH). 

Web scraping, or web data extraction is a method used for extracting data from 

websites [25]. This process can be carried out manually by extracting information from 

web pages, but the term web-scraping usually refers to the automation of processes that 

carry out the task of data extraction using bots or automated web browsers. Web pages 

are built using text-based mark-up languages (HTML and XHTML), and frequently 

contain a wealth of useful data in text form. This is why in recent years and given the 

increasing demand for data, new specialized tools have been developed for inspecting 

HTML code and extracting the information that these text tags contain. 

The process for web scraping in this project can be broadly categorized into 

three steps: 

• Understand and inspect the web page to find the HTML markers 

associated with the information we want. 

• Use a specialized tool such as Selenium and/or other Python libraries to 

scrape the HTML page. 

• Manipulate the scraped data to get it in the format we need. 
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The first step involves exploring the MedlinePlus webpage so we can 

understand how the data is distributed across the user interface. Once we have located 

what information we are interested its position we need to inspect the HTML markers 

that refer to our needed data. Each piece of text on a web page has its own html marker 

assigned to it that contains the information and is accessible to an automated bot. This is 

done because bots are nothing like human, you need to give him instructions to find 

your desired data since it cannot just look around the page until it sees something that 

matches our needs. HTML is the basic component of webs, It defines the meaning and 

structure of web content in the most organized and hierarchical way possible, making it 

relatively easy to automate search and text extraction processes according to our 

established parameters. In the figures 12 and 13 is represented the information about 

Alzheimer's disease in two different ways: as seen in the web page intended for users 

and as seen in HTML when inspecting the basic code of the web. 

 

Figure 12. Web page user interface 

 

Figure 13. Web page HTML 



Adaptive sentence similarity applied to biomedical literature 

 37 

It can be seen that web page elements are represented by tags in HTML, for 

example, a paragraphs are writen between the tags <p> and </p>. These tags help our 

scraping tools identify each element making easier the search.  

For the second step we used Selenium library for python. Selenium library 

allows you to automate web browsers. It is a powerful tool that allows us to use a web 

browser as if it were a human. With Selenium you can control any web browser by 

programming instructions using python code that are executed in the order you specify. 

The possibilities of these commands are almost unlimited in terms of what a human can 

do while browsing a web page: you can activate buttons, navigate from one page to 

another, enter text, passwords...  

We have developed a script to enter the MedlinePlus page, navigate to the 

alphabetical list of topics in the form of hyperlinks, find the links to which these links 

point using HTML tags and save all the links to all the topics in a list. Using this list 

with URLs makes it easy for selenium to open one by one all the pages to extract 

information. For each topic, our script searches for the paragraphs that contain the 

central information and stores that text in a variable. 

In order to manipulate the information and to be able to use it in the way we 

are interested in, we save the extracted data in separate text documents. Each text 

belonging to the same topic in a separate document. In a later step, we divide each text 

into sentences and pass them through the sentence embedding model we want to use, 

obtaining for each text as many vectors of the same size as sentences in the document. 

These vectors are saved in a dataframe and can be loaded quickly to train our model 

without the need to encode again all the sentences. 

5.3 Building and training our model 

 

The following sections explain the code attached in the appendix with which 

we have built the model. To program the tool, we have used the Python programming 

language. In addition to Python, we have used some libraries such as Keras, 
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TensorFlow. matplotlib, pyPlot or Pandas [26][27][28][29] that facilitate the tasks that 

have been necessary to reach the established goals. 

• Keras is a deep learning framework that makes easy the building of 

models and complex architectures. With Keras you can build layers one 

on top of each other and train the model with just a few lines. It uses 

TensorFlow for the maths. 

• TensorFlow is an end-to-end open source platform for machine learning. 

It was developed by google and it is focused on the training of deep 

neural networks. 

• NumPy is python library that provides tools which facilitate and 

optimize the mathematical operations needed for preprocessing of data. 

These functions are mostly focused in support for multi-dimensional 

arrays and matrices. 

• MatPlotLib is a plotting library for creating static, animated and 

interactive visualizations in Python. We used it for data exploration. 

• Pandas is a Python library specialized in handling and analyzing data 

structures. We use ir to easily create dataframes  

The code is structured in data preprocessing, build of used functions, 

arquitecture and training of the model, result exploration and prediction tool. Let’s take 

a closer look at each of them. 

5.3.1 Data preprocessing 

Our data consists of all the documents that we have extracted from 

MedlinePlus. These documents have a file name that corresponds to the disease it deals 

with and contains the extracted text containing information about that disease. To create 

the data frame that we will use to train our model we have used pandas. The process 

consists of a loop that repeats an algorithm for each text: It opens the file, divides the 

text into lines and separates them into sentences when they are divided by dots. Each of 
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the sentences is processed by the Universal Sentence Encoder (USE) and the encoded 

output is stored in a list. We have used this model because our data is in a language 

other than English and USE has a multilingual version for foreign languages. 

In parallel, labels of each sentence are stored in another list. Finally, when all 

sentences of all texts have been processed, a dataframe is created with two columns: 

"label" and "text". In the "labels" column are the classes to which each of the phrases 

they refer to belong, which are stored in the "text" column as vectors. 

 

Figure 14. Embedding data frame 

In order to explore the data after training, a dataframe is created identical to the 

previous one but without being processed by the USE. This way we will have the real 

text that we can read and understand easily.  

 

Figure 15. Translation data frame 
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In a next step, using this data frame, all sentences consisting of an empty array 

are removed from the dataset, in the figure 15 you can see that 4th sentence does not 

contain text so it will be removed. Once the data is cleaned, it is randomly divided and 

separated into 80% for training and 20% for validation and the labels are stored in a 

variable 'Y' and the embeddings in a variable 'X', leaving the data ready to be fed to the 

model.. 

5.3.2 Functions 

The two functions that had to be developed for the project are the data 

generator and the triplet loss cost function. These functions are used by the model 

during training. The data generator feeds the model with three-by-three encodings 

(anchor, positive and negative). The triplet loss function calculates the cost of the model 

output, this numerical value will be minimized by modifying the weights of the neural 

network. 

The data generator accepts the variables X and Y with the data and generates 

the triplets as outputs. For this it selects a random phrase from the X list to use as 

anchor, and searches for its label in the Y list. Then it selects a phrase from the same 

class and another from a different class. These will be the positive and negative 

respectively. This process is repeated as many times as the batch size (bs) value, 

generating bs triplets. Finally, it saves all the triplets in an array and this batch is 

outputed to feed the network. Being a distance minimization learning, the Y labels are 

only used to find the triplets and are not returned. This is the simplest way to find 

triplets, the problem is that it is not optimal since many times the triplets will be easy 

triplets, which will have a loss of 0, so it will not provide information to the model. 

Ideally only semi-hard and hard triplets should be selected. 

The loss function has as input only the margin and the encodings that come out 

of the network, the cost of the model is calculated with these three results so it is not 

necessary to compare it with the input data of the model. These encodings come out of 

the model as a concatenated vector, so the first thing the function will do is to divide 

this vector into three equal parts, obtaining the encoding of the anchor, the positive, and 
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the negative. As a second step it calculates the distance from the anchor to the positive 

and the negative using squared Euclidean distance. This distance d is defined by: 

 

 

Where a, p and n are anchor, positive and negative respectively, and f(x) are 

the encodings coming out of the model. 

Finally, the loss is calculated, which is given by the Equation 2. 

    

Where alpha is the margin that is forced between positive and negative. This 

loss is what the model tries to minimize in each iteration. 

5.3.3 Model 

The architecture used for the model is quite simple, consists of three inputs that 

connect to a dense layer common to the three inputs, a lambda layer for normalization 

and a layer that concatenates the three encodings into one vector. 

 

Figure 16. Architecture of our approach 

(2) 

(3) 

(4) 
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The inputs are three encodings (anchor, positive and negative) of 

dimensionality 512, since we have used the Universal Sentence Encoder to process the 

sentences, which generates embeddings of 512 floating points. These inputs are 

processed in the dense layer, which is the only part of the model with trainable 

parameters. For this layer we have used sigmoid activation as it gave much better results 

than the other activation functions. The embeddings coming out of this layer are 

normalized by L2 normalization and finally concatenated into a single vector that will 

be used to calculate the cost. By concatenation, the output of the model will be of 

dimension 1536 (512*3). The figure 17 shows the summary of this model. 

 

Figure 17. Detailed architecture 

 

Figure 18. Generic architecture 
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 Seen globally, the encoding process of a sentence would be to first use a pre-

trained sentence encoder to take advantage of its generic knowledge of the language, the 

resulting embedig to introduce it in our model and obtain its final encoding (figure 18).  

 Finally we have trained the model with a batch size of 16 and 100 steps per 

epoch until it covered. In order to optimize training times we have used the Google 

Colab platform that allows using GPU to run Python notebooks. Figure 19 shows the 

training and validation graph. 

 

Figure 19. Training los graph 

5.4 Result Exploration 

For the exploration of the results, it has been necessary to first process the set 

of embeddings that we have obtained, since being high dimensionality vectors it is not 

possible to interpret the results by means of graphs. For this we have used the t-SNE 

algorithm that reduces the dimensionality of the data. Once processed, it has been 

possible to use Python visualization tools to interpret the geometric space. 

To obtain quantitative results, a function has been constructed that attempts to 

classify the test set sentences using Euclidean distance between points. This function 

calculates a hit percentage based on whether the actual class appears among the 

predictions made. 
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5.4.1 T-SNE 

t-Distributed Stochastic Neighbor Embedding (t-SNE) is a data exploration 

technique developed by Laurens van der Maatens and Geoffrey Hinton in 2008 for 

dimensionality reduction. It is an unsupervised, non-linear method that stands out for 

visualization of high-dimensional data. In simpler terms, t-SNE gives you a feel or 

intuition of how the data is arranged in a high-dimensional space [30].  

In the case of our project, it is very convenient for us to visualize our data in a 

lower dimension than the original one. Since we work with encodings of sentences, with 

many features for each of the data, we end up with an algebraic space of too many 

dimensions (512 or 1024) to be represented and understood by a human. T-SNE is 

especially useful in segmentation problems where you need to see if clusters are 

forming in your data. This information cannot be obtained from a geometric space with 

hundreds of dimensions, in order to understand how the data is distributed it is 

necessary to represent it with a dimensionality that humans can understand: 1-D 2-D or 

3D. 

Let’s see an example: In the figure 20 below, you can see some data in clusters 

in the 2-dimensional space. If we want to lower its dimension to 1-D, we could simply 

project the data onto just one of its dimensions, but this will give as a result the overlap 

of at least two of the clusters. 

  

Figure 20. projection of points to X-axis 
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This is not a good representation of our data, since what we are interested in 

from the visualization is to know if they are grouped or if the classes are close or far 

from each other in the vector space. The 1-D projection implies that the data of classes 1 

and 2 are mixed, but as we see in the original data distribution, they are separated and 

grouped together. A good representation of this 1-D data would be the figure 21, in 

which, despite the reduced dimensionality, the samples maintain a similar distribution. 

 

Figure 21. Correct representation of points in 1-D 

This representation is what t-sne is all about, that no information is lost by 

reducing the dimensionality of the data, so that accurate conclusions can be drawn 

simply by looking at it. 

The algorithm first calculates a similarity measure between pairs of points in 

the high dimensional space and in the low dimensional space. It then tries to optimize 

these two similarity measures using a cost function. Let’s break that down into 3 basic 

stages: 

• First stage: First the algorithm calculates the Euclidian distances 

between pairs of points. To achieve this, it centers a gaussian 

distribution on the first point (x_i) and measure the distance to the rest 

of the poins (x_j). Then normalized for all points because it is not the 

density of the clusters that is relevant, but the fact that they are clusters. 

This transform the distances into conditional probabilties (Pij) 

representing the similarity between every two points. If two points are 

similar under this gaussian circle it means that they are likely to be 

neighbors in the hig-dimensional space. 
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• Second stage: This step is similar to the first one but in the target 

dimensionality (low-dimensional space) and using Student t-

distribution instead of gaussian. To do that t-SNE builds a random 

dataset with the same number of instances as there are in the high 

dimensionality dataset. These points are generated with the same 

number of features as dimensions to which we want to reduce (2 

features if we want to map our data to 2-D). It will be something like 

the figure 22. For this set of points we will calculate the same joint 

probability (Qij) but this time using Student t-distribution instead of 

Gaussian (hence the name t-SNE). Using this distribution avoids that 

the points in the low-dimensional space are too close together and 

cannot be distinguished.  

 

Figure 22. Random distribution of points 

• Third stage: In the last step t-SNE tries to make the joint probability 

distribution Qij of the data points in the low dimension as close as 

possible to the probabilities Pij of the high-dimensional space. As a loss 

function to calculate the difference between these two sets of 

probabilities the algorithm uses the Kullback-Lieber (KL) divergence 

[31]. Finally it uses gradient descent to minimize this KL loss function. 

From this optimization, we get the values of the points in the low 

dimension dataset and use it for our visualization. 

5.4.2 Scatter Plot 

To represent this data we have used the MatplotLib library for python, which 

offers a clean and easy to interpret representation. 
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Figure 23. MatplotLib scatter plot 

To go deeper into these graphs we have used the PlotLy library, which has 

allowed us to explore each of the points to interpret the results in more detail as it gives 

information about each point (label, text, etc...). 

 

Figure 24. Detailed scatter plot 
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5.4.3 Prediction function 

Finally, in order to test the model in an alternative way to the visual one, we 

have written a simple prediction function that allows us to classify sentences. This 

classification is done in the simplest possible way: we compute the embedding of the 

sentence we want to represent and position it in the vector space. To know its class we 

look for the nearest neighboring points and assign the class they have.  

It should be noted that the objective of this model is not to build a perfect 

classifier, since there are already too many classes (the model was trained sentences 

from more than 1000 documents) very similar to each other and the data are sentences 

that could belong to many of them. What we are trying to do with this vectorization is to 

classify a phrase into a generic class or topic. For example if we introduce the phrase 

"among the symptoms is the intense pain in the left side of the chest", and the classes of 

the neighboring points that we obtain as a result are, "heart attack", "angina" and 

"pericarditis", we would take it as a success although the real class that we want to 

obtain is "heart failure". This is because it has succeeded in placing the input phrase in 

the zone of the embedding space that corresponds to heart diseases.  

For this reason, to measure the accuracy we have created a function that has as 

input the phrase to classify, its real label and a t value (threshold). It returns the classes 

of the t nearest points, depending on the threshold that is introduced, being by default 

this value 5. It also returns a boolean that is True if the real class is among the classes of 

the neighbors, and False if not, this way, with the threshold it is possible to give a 

margin of error to the classifier and compute numerical values that reflect how close the 

model is to predicting the real classes of the sentences. With this classifier we can 

compute predictions for the test set data set and get a higher percentage of success 

which will be higher the higher the t-threshold. 
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6 RESULTS 

The results obtained have been measured in two different ways, by a visual 

exploration and by using a prediction function in the test set that allows computing an 

accuracy value that gives an insight of how the model is performing. 

6.1.1 Visual results 

To have a first perception of how the model is working we have represented 

the embedding space in a 2- and 3-dimensional plane, in this way we can easily identify 

if clusters are forming between the vector representations of phrases that belong to the 

same class. In the figure 25 you can see this scatter plot in which each point is a phrase 

and each colour represents the class to which the point 

belongs

 

Figure 25. Embedding space in 2-D 

We can also visualize de data un 3D, but it is harder to get an insight from this 

representation: 
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Figure 26. Embedding space in 3-D 

Although this visualization gives us an idea of how the data is distributed, we 

cannot know to which class each cluster belongs and why it is being distributed in the 

geometric space. This is why we have also created an interactive scatterplot that allows 

us to analyze each cluster and even each class. When you hover the mouse over a point, 

it tells you what phrase it is and what class it belongs to. For example, let's see in detail 

what the accumulation of red dots of the coordinates (-50,-40) in the figure 25 is about. 

 

Figure 27. Cluster of points with same label 
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Figure 28. Point with different label in a cluster 

As we can see in figures 27 and 28 most of them belong to the class "high 

pressure in pregnancy" and the phrases refer to pregnancy or related. The items that do 

not belong to this class refer to the same topics. 

6.1.2 Quantitative results 

We can use the prediction function in two ways, to classify single sentences or 

to calculate a model accuracy value. Let's see an example of the classification of an 

isolated sentence.  

 

Figure 29. Result of classification function 
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 The figure 29 shows the classification results. The first section indicates the 

sentence to be classified and its actual label. The following sections indicate the class of 

the nearest neighbours to this point. In this case we have used a threshold of 5, so the 5 

nearest neighbours will be shown.  

 In these results it can be seen that the actual prediction was not correct until the 

third attempt, but all the attempts talk about the kidneys. This is the reason for including 

a threshold in the function, to give a margin since we are not interested in getting it right 

on the first try, but to place it in an area where the surrounding sentences deal with the 

same topic. 

On the other hand, to obtain numerical values of the model performance, we 

iterate the test set with the function, and we take as a success the presence of the real 

class in the results that are returned. In this way, the higher the threshold, the higher the 

probability of success because more possible classes are returned. Once all the data has 

been iterated, the success percentage can be calculated. 

Table 1. Quantitative results: Accuracy of the model 

N 1 2 3 4 5 7 10 15 20 

% 33.8% 42.1% 48.7% 54.6% 58% 62.8% 66.2% 69.6% 72.4% 
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7 DISCUSSION 

In the scatter plots it can be seen that indeed the sentences belonging to the 

same class have been put together in the geometrical space. In the following figures 30 

and 31 you can see a comparison of the plane with the data represented before being 

processed by our model and afterwards. 

 

Figure 30. Embedding space before our embedding 

 

Figure 31. Embedding space after our embedding 
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It can be clearly seen how, despite the noise introduced by the data, many 

sentences have formed clusters when passing through the model. In the figure 32 you 

can see the representation of the data when the project started, using far fewer classes 

than we currently use to train the model. Generally, the clusters are well defined and 

separated from each other. This tells us that the triplet loss function is very susceptible 

to noise, since, when using an internet phrase database, there is a lot of data that is 

repeated or does not provide information about the class to which it belongs.  

 

Figure 32. Early scatter plot of the embedding space 

The points that are mixed at coordinates (30,25) are generic phrases that the 

model cannot classify as they do not provide information and are repeated for different 

classes. An example of this could be the sentence "Treatment can improve symptoms" 

or "In severe cases hospitalization is required". This type of sentence can talk about any 

disease that has treatment or is severe, which is why the model is not able to group them 

with their classes and they are considered noise for the model. 
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When exploring a particular cluster, it can be seen that although the classes do 

not coincide between the points, they deal with the same topic. In the example of the 

figure 33, the data are from different classes but all of them are about hair. 

 

Figure 33. Cluster of noise points 

In the same way, when trying to predict a point, the prediction function does 

not always get it right on the first try, but the results it displays are generally related to 

each other and to the sentence to be classified. In the example given in the "Results" 

section, the function does not get it right until the third attempt, but all the results are 

related to each other because they refer to diseases affecting the kidneys. 

Finally, the accuracy table gives good results, a 33.8% hit rate with a single 

attempt, although not a good score for a classifier, indicates that the model is really 

bringing embeddings of the same class closer together. As the threshold is increased, the 

accuracy increases dramatically to 62.8% when it reaches 7 attempts. Setting the 

threshold higher than this value does not make much difference. This may be because, if 

the class is not among the 7 closest points, it is most likely a misclassified phrase. 
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Figure 34. Accuracy Graph 

The graph shows how the accuracy converges as the threshold of the prediction 

function increases. 

With this combination of techniques to explore the data we can conclude that 

the result has been satisfactory. The aim of this project was to explore the possibilities 

presented by new advances in artificial intelligence and to put them into practice in 

order to improve, as far as possible, the state of the art of NLP. We have used a loss 

function that until now had been used almost exclusively for image processing and we 

have obtained results that show that it also improves results for specific NLP tasks that 

pre-trained models cannot cover. 
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8 CONCLUSIONS 

According to the objectives that had been set, which were to achieve a model 

capable of representing sentences in such a way that they are grouped in the geometric 

space according to their biomedical relationships, the results have been satisfactory. 

Depending on the threshold we set, good results can be obtained, indicating that the 

model is capable of grouping the sentences according to their medical subject. So it can 

be concluded that it is feasible to use distance learning such as triplet loss to improve 

NLP models performance for specific tasks. 

As future lines we could consider the comparison of performances using 

different pre-trained models such as BERT. We could also improve the selection of 

triplets to accelerate training and with more computational resources it would be 

possible to increase the batch size for generalization. It would also greatly improve the 

quality of the model to increase the quality of the data by reducing the noise in it. 
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