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Resumen

La microscopía electrónica se ha convertido en una herramienta fundamental

en la investigación biológica por su enorme capacidad de aumento en comparación

con otras técnicas de microscopía tradicionales. Sin embargo, tales prestaciones

tienen un precio, y es que las imágenes obtenidas mediante un microscopio de

electrones contienen grandes cantidades de ruido. ¿Cual es el límite aceptable

para ese ruido?. Y no menos importante ¿Cómo podemos estimar la calidad de

una micrografía si no tenemos ninguna referencia con la que compararla?

El objetivo de este proyecto es precisamente ese: elaborar un programa que

produzca una estimación sin referencias de la calidad de volúmenes de reconstruc-

ción obtenidos mediante microscopía electrónica de manera que podamos saber de

manera aproximada la resolución que poseen. Para ello se examinan una serie de

técnicas propuestas por otros investigadores para la evaluación de la calidad de imá-

genes convencionales sin referencias y se detallan una serie de pruebas realizadas

en Matlab para determinar si dichos métodos pueden aplicarse a los volúmenes

3D con los que trabajamos. Asimismo, se profundiza en el que consideramos más

prometedor y se introducen una serie de modificaciones en el algoritmo para adap-

tarlo al trabajo en tres dimensiones, mejorar su precisión y robustecerlo frente al

ruido.

En una última fase se implementa nuestro algoritmo en lenguaje C++, uti-

lizando el entorno de desarrollo Eclipse y el paquete xmipp utilizado en la unidad

de biocomputación del Centro Nacional de Biotecnología (CNB), y se realizan

pruebas para comprobar que su funcionamiento es conforme a lo esperado.

9





Abstract

The overwhelming magnifying capacity that electron microscopy delivers has

made this technique fundamental in biological investigation. However, such ex-

cellent performance has a drawback, as the images obtained using electron micro-

scopes have high amounts of noise. What is the maximum amount of this noise we

can accept? How can we grade the quality of a micrograph if we lack any reference

for comparison?

This thesis works on that challenge: we want a program that can successfully

produce a blind quality estimation index of a given 3D micrograph reconstruction

volume, so that we can approximate the resolution of the volume. To do this we

first examined various blind quality estimation methods for conventional images

proposed by different researchers, and we also performed preliminary tests with

Matlab to determine whether those techniques can be applied to our protein micro-

graphs or not. After this we looked more deeply into the most promising algorithm

and made some improvements to it, adapting it to 3D environments, upgrading its

precision and strengthening it against noise.

Finally, we implemented this improved algorithm in C++ language, using the

Eclipse development environment and the Xmipp package, used by the biocomput-

ing unit at Centro Nacional de Biotecnología (CNB). A series of tests were then

performed to verify that the final program fulfilled the goals we set.
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Chapter 1
Introduction

1.1 Why electron microscopy?

Even though the Greeks and Romans already knew about the magnifying prop-

erties of pieces of glass and water orbs, and although primitive spectacles were used

as early as the late 13th century, we cannot properly talk about microscopy un-

til the Renaissance. The earliest microscopes were mere tubes with lenses in one

end, and, as the total magnification of the instrument did not exceed x10, these

were used to entertain the public by viewing fleas and other small insects, and

consequently named "flea glasses".

Figure 1.1: Hooke’s microscope

It is not certain who invented the

first compound microscope, but most

evidence points to Hans and Zacharias

Janssen, two Dutch spectacle makers,

as the first to experiment with several

lenses in a tube. In 1609, Galileo heard

of these experiments and formulated

the principles of lenses, which helped

him to produce a much better magni-
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20 CHAPTER 1. INTRODUCTION

fying instrument with one convex and one concave lens. In 1665, Robert Hooke

published his Micrographia, a collection of biological micrographs. After this, the

more refined lenses crafted by Anton van Leeuwenhoek would lead to a further

breakthrough. But it was not until 1860, when Ernst Abbe discovered the Abbe

sine condition, that trial and error was largely abandoned as a means of making

improvements.

Present day instruments are much more finely crafted and can provide huge

magnifications. However, even a microscope with perfect lenses and perfect illumi-

nation cannot discern objects smaller than half the wavelength of light: 0, 275µm.

Such instruments are also extremely limited when observing transparent objects

such as living cells, which have to be dyed before they can be studied, altering

their original structure.

Figure 1.2: Transmission Electron Microscope

Thus, as the inherent limitations of optical microscopes are due to the wave-

length of the photon, this was overcome by using electrons instead of photons. The

wavelength of the electron is 100,000 times shorter than that of visible light, and so
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it can produce resolutions sharper than 50 pm. There are various kinds of electron

microscopes; among the most important are Transmission Electron Microscopes

(TEM, see 1.2) or Scanning Electron Microscopes (SEM).

Figure 1.3: Mitochondria

In TEM microscopy a beam of elec-

trons is transmitted through an ex-

tremely thin sample. First, the beam

is generated from a source which can

be made of tungsten or lantanum hex-

aboride. Then, it goes through a se-

ries of magnetic lenses that aim and

focus it. Immediately afterwards, the

electron stream interacts with a sample

of the specimen to be analyzed. The

magnetic lenses which follow amplify

and correct the image, which will be

recorded on the fluorescent screen and

the camera at the bottom. The image

of a mitochondria shown in 1.3 was obtained using a transmission electron micro-

scope, as were all the images used in this thesis. The process occurs at near vacuum

conditions, at pressures of 10−4KPa, to avoid air interfering with the electrons.

One of the key elements of successful TEM analysis, as it is fairly complex, is

the preparation of the sample (figure 1.4 shows the high complexity of an adequate

TEM sample). In TEM, specimens must roughly measure a couple hundred nm

wide for the electrons to go through them. Additionally, biological structures

are extremely fragile, and inside the microscope they must withstand vacuum

conditions and constant electron radiation. To protect them they can be fixed

with a negative staining material, like uranyl acetate, or they can be embedded in

vitreous ice at liquid nitrogen temperatures.
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Just as the contrast of light microscope samples can be enhanced by using a

light-absorbing dye, TEM samples’ contrast can be enhanced by staining them

with a metallic compound, such as gold. The metal will absorb or deflect electrons

which would otherwise reach the fluorescent screen, greatly improving contrast.

However, this also means that electrons are not allowed to penetrate inside the

structures of the sample, limiting the information acquired to their surface. The

metallic dye will also produce artifacts in the resulting image, ultimately limiting

its maximum resolution to 20 Å.

Figure 1.4: TEM sample

Cryo-electron microscopy is the alternative to the tincture. The sample is

frozen at liquid nitrogen temperatures without it being stained or fixed, and thus,

allowing observation in their native environment. This technique also allows deeper

structural observation in samples, as electrons are no longer blocked by the dye in

the surface of those structures. This is the most common way of preparing TEM

samples nowadays.
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1.2 Blind image quality estimation

Biological samples being extremely sensitive to radiation, electron exposure

must be kept low to observe the sample without destroying it. This also means

that the images obtained have a high amount of randomly distributed noise. There

are several techniques that help to raise this signal to noise ratio, but even with

these improvements noise is an extremely significant quality-limiting factor in the

final resulting micrograph. Thus, evaluating the quality of the output image is

crucial for determining wether it is valid for us to study it or should be discarded.

Figure 1.5: The same image with different qualities

Figure 1.5 shows two identical images of Big Ben. It is, however, obvious that

the image on the left is the sharper. Comparing two identical images presents a

problem which has quite a simple solution. Although a great number of algorithms

can compare both pictures and select the best one, this is not the case with TEM

micrographs: we do not have a flawless reference to compare with, nor a set of

identical images from which to select the sharpest one. Only one image is available,
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and any estimation must be based on the mathematical properties of that image.

Figure 1.6: JPEG blocking

Blind image quality estimation is

an extremely relevant subject nowa-

days, as well as a very active field for

research: a multitude of theses, arti-

cles and studies have proposed new im-

age quality assessment frameworks. In

this thesis we have examined three dif-

ferent ways of estimating. One of the

papers we have studied uses the block-

ing caused by JPEG compression to

grade the quality of the image ana-

lyzed. Figure 1.6 shows the "blocking"

phenomenon characteristic of this type

of compression when the the ratio is too high.

Figure 1.7: Edge detection

Another article proposes calculat-

ing the anisotropy histograms of con-

secutively blurred images to find pos-

sible patterns. The third, and ulti-

mately successful, method introduces a

new concept: "Just Noticeable Blur"

(JNB), which consists of measuring the

edge widths for every pixel of the im-

age and returning the beta norm of all

these values. Figure 1.7 shows the im-

age edges, the actual edge width will be

the amount of pixels between a pixel la-

beled as edge and the closest extrema.

These methods are more profoundly analyzed and tested in Chapter 2.
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1.3 What were we aiming for?

Objectives

We want to develop software which can successfully determine whether 3D

electron microscopy micrographs are sharp enough to be considered for their study

with no other reference but the micrograph itself. The program will produce an

index which, ideally, should have a linear relation to the actual resolution of the

volume.

Procedure

To attain this objective we first analyzed papers with different blind image

quality estimation algorithms. We chose three of these algorythms and performed

some preliminary tests using the Matlab software kindly provided by the authors.

The method developed by R. Ferzli and L. Karam stood out for the promising re-

sults it delivered, and so, using their idea, we developed a 3D version with B-spline

interpolation, which is tailored for the specific 3D volume material we work with.

To do this we have used C++ language with the Eclipse development environment

and XMipp, the X-Windows-based Microscopy Image Processing Package by the

Biocomputing Unit at CNB (Centro Nacional de Biotecnología).

Evaluation

Finally, we tested the new program using a set of volumes with decreasing

resolution as inputs, and obtained a quality index for each one. These indexes

were then analyzed to confirm wether the linearity we initially intended is met.
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Chapter 2
Three ways to estimate image quality

2.1 No-Reference Perceptual Quality Assessment for JPEG

Images

2.1.1 Introduction

Our first choice is the algorithm proposed by Z. Wang, H. R. Sheikh and

A. C. Bovik in their article “No-reference perceptual quality assessment of jpeg

compressed images” [1].

JPEG image compression algorithm provides a lossy compression method based

on the Discrete Cosine Transform. The most noticeable effects of the loss of quality

caused by this compression are blurring and blocking. This paper proposes an

efficient way to extract features that can be used to reflect the relative magnitudes

of these artifacts.

Denoting the test image signal as x(m,n)∀mε [1,M ], n ε [1, N ], the algorithm

proposed by Wang and his team has the following steps:

27
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1. A differencing signal along each horizontal line is calculated:

dh(m,n) = x(m,n+ 1)− x(m,n), n ε [1, N − 1]

2. Blockiness is measured in neighboring pixels in the boundaries of each 8x8

block:

Bh = 1
(bN/8c−1)

∑M
i=1

∑bN/8c−1
j=1 |dh(i, 8j)|

3. The activity of the image is measured using two different factors:

(a) First, the average absolute difference between in-block image samples:

Ah = 1
7 [ 8
M(N−1)

∑M
i=1

∑N−1
j=1 |dh(i, j)| −Bh]

(b) Second, zero-crossing rate is calculated:

Zh = 1
M(N−2)

∑M
i=1

∑N−2
j=1 zh(m,n)

where zh is defined as:

zh =

 1 if horizontal ZC at dh(m,n);

0 otherwise.

4. The vertical features are calculated using analog methods, and the final over-

all features can be obtained:

B = Bh+Bv
2 ; A = Ah+Av

2 ; Z = Zh+Zv
2
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5. These features have to be combined in a way that constitutes a proper quality

assessment model. The authors propose the following combination:

S = α+ βBγ1Aγ2Zγ3

where parameters α , β , γ1, γ2 and γ3 are calculated using a non-linear

regression.

The score values range within 1 and 10, with 10 representing the best quality. It is

possible that the output obtained for our image is not within this range, since the

parameters are not properly trained for the type of images we will be evaluating.

This is not a problem as we are only testing whether the quality index obtained

is linear with the actual quality of the image. If the results are good enough we

shall proceed to adapt this algorithm for the use with 3D volumes.

2.1.2 Testing

The first problem to be faced is that standard JPEG 8bit/pixel grey-scale

images are assumed; that is, with a numerical value that varies within 0 and 255.

Our images are not restricted by those limits and may even have negative values.

Our data matrix must be rescaled before we begin with the testing:

0 255
minval

 

 

 

maxval

Figure 2.1: Re-scaling performed
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Figure 1 shows the scaling we performed. A projection of the values between

the minimum and the maximum to the interval 0-255 allows our rescaled matrix

to fit to JPEG requirements: y = 255 ∗ x−minval
maxval−minval

The algorithm is tested with each slice of the volume. The same slice is dis-

played below as an example, sorted in increasing resolution order:

20 40 60 80 100 120 140

20
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80
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120

140

(a) 0.05 resolution
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140

(e) 0.4 resolution

Figure 2.2: Samples from each batch of test pictures
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Since each array is made slicing a 143x143x143 3D image volume, and every

possible dimension is probed, the total amount of images of each sets will be

3x143=429. Quality index is measured for each individual picture and each set

global quality is calculated as the average of them.

global_index =
∑429
i=1 quality_index(i)

429

For each volume file an average quality index was calculated:

Source global_index

1FFKfull_noisy_0_05 74,8308

1FFKfull_noisy_0_1 39,4677

1FFKfull_noisy_0_2 21,8124

1FFKfull_noisy_0_3 29,4332

1FFKfull_noisy_0_4 33,5586

Table 2.1: Average quality index for different resolutions

2.1.3 Results

As we predicted, average results are not contained between 1 and 10, but

range from 33 to 75. However, magnitude is not the most critical issue, it can be

solved with a simple rescaling. Our aim is to find a linear relationship between

the resolution and the image quality indexes given by the algorithm. Then we can

adapt it to our specific images and grade their quality. As we can see in Table 2.1

this algorithm does not behave in the linear way we are searching. See Figure 2.3

for a graphical display of that information.
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Results were quite promising for the first three volumes: the algorithm could

sort them in increasing resolution order with no problem. We can see that in

the linear behavior displayed in the first three points of the graph. However this

tendency changed in the 4th and 5th batches, which were the highest resolution

ones, but the algorithm failed to detect this improvement and delivered a higher

value. This was probably caused because of the blurring produced by the lowpass

filtering smoothened the noise in the empty spaces of the volume, and the algorithm

interpreted this as a lower entropy sign, delivering a better quality estimation.

0_05 resol 0_1 resol 0_2 resol 0_3 resol 0_4 resol
20

30

40

50

60

70

80

Figure 2.3: Quality Index/Resolution graph

In the real micrography analysis conditions we will be working with such low

resolution samples are scarce, and this algorithm might never be moved out of its

confidence region, but it is critical to ensure that if it happens our program is going

to discard the volume. This means that we cannot make solid predictions based

on the method proposed by Wang and his team, and thus, it has to be ruled out

of the test list.
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2.2 Quality Evaluation of Blurred and Noisy Images

Through Local Entropy Histograms

2.2.1 Introduction

The next algorithm to be studied was proposed in the article “Quality Eval-

uation of Blurred and Noisy Images Through Local Entropy Histograms” by G.

Cristóbal and S. Gabarda [2].

Shannon and Wiener proposed the definition of entropy as a measure of the

information content per symbol coming from a stochastic source. This idea was

later extended to yield a more general concept of entropy. Among these more

general forms of entropy we find Rényi entropy which has the following form when

applied to a discrete space-frequency distribution P [n, k] :

Rα = 1
1−α log

∑
n

∑
m
Pα[n, k]

where n is the spatial variable and k the frequency variable.

However, entropy is calculated over probability density functions. The space-

frequency distribution is not a real probability density function, as it does not

preserve either the positivity constraint P [n, k] ≥ 0 , nor the unity energy condition∑
k P [n, k] = 1. Some normalization is therefore necessary.

1. To satisfy the first condition:

Q[n, k] = P [n, k] ∗ P ∗ [n, k] / Q[n, k] ≥ 0 ∀n, k
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2. To satisfy the second one:

P̆ [n, k] = Q[n,k]
N
2 −1∑

k=−N2

Q[n,k]

/

N
2
−1∑

k=−N
2

P̆ [n, k] = 1

With this transformation, P̆ [n, k] rows are formally correct probability density

functions, and the notion of entropy is applicable. In this paper the authors propose

to use the Renyi entropy ecuation shown in the figure above, with α = 3 to build

the mathematical model:

R̆3 = −1
2 log2(

∑
n

∑
k

P̆ 3[n, k])

By fixing the spatial variable a pixel-wise measure is obtained:

R[n] = −1
2 log2(

∑
k

P̆ 3[n, k])

Thus, the entropy result for each pixel depends on the space-frequency dis-

tribution associated to each pixel. For this particular problem, and inspired by

quantum mechanics, the Pseudo Wigner Distribution (PWD) was chosen. The

authors specifically used the Wigner distribution discrete aproximation proposed

by Claasen and Mecklembräuker:

W [n, k] = 2

N
2
−1∑

m=−N
2

z[n+m]z∗[n−m]e−2i(
2πm
N

)k

variable n represents time and variable k represents frequency. The shifting pa-

rameter m allows change of position and direction, but this movement is limited

by N, which is the PWD window. In these tests N=8 is chosen.
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As explained before, the value of R depends not only on the pixel which the

calculation was made on, but also on the direction that was taken to calculate the

PWD associated to each pixel. Six different directions are proposed:

θs ε [0◦, 30◦, 60◦, 90◦, 120◦, 150◦]

R[n, θ] is not a valid parameter to measure whole image characteristics since

it depends on the individual pixel it is measured on. From this point on the mean

average of the values obtained from all the pixels in the image will be used:

R[θs] =

∑
n
R3[n,θs]

M

where M is the total amount of pixels of the image.The anisotropic quality index

(AQI) is defined as the standard deviation of the resulting set of values:

σ = 2

√
S∑
s=1

(µk −R[θs])/S

where µk is the mean of the values of R for each direction θs: µk =

S∑
s=1

R[θs]

S
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2.2.2 Applying the algorithm to our problem

For this test phase we will use the interface provided by the authors, which has

the following work scheme: It will receive an image as input, generate a batch of

20 additional images by increasingly filtering or adding noise to the original image,

show the profile of the anisotropy for each of the 21 images of the set, and provide

a result of the AQI for the original image.

Figure 2.4: Algorithm test scheme

A typical profile produced would be similar to this:
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Figure 2.5: Example profile of AQIs

We applied this procedure to 6 notable frames between frame 50 and 100, in

which the highest amount of information is concentrated. In the following pages

each slice is displayed with its histogram. A table with the measured AQI is also

shown for each volume.
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Frame 50 60 70 80 90 100

AQI 0.009684 0.010549 0.013124 0.012021 0.008663 0.0057073

Table 2.2: AQI for 1FFKfull_0_5

(a) Frame 50 (b) Profile (c) Frame 60 (d) Profile

(e) Frame 70 (f) Profile (g) Frame 80 (h) Profile

(i) Frame 90 (j) Profile (k) Frame 100 (l) Profile

Figure 2.6: 1FFKfull_0_5
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Frame 50 60 70 80 90 100

AQI 0.005565 0.007140 0.008344 0.008006 0.004791 0.003467

Table 2.3: AQI for 1FFKfull_0_4

(a) Frame 50 (b) Profile (c) Frame 60 (d) Profile

(e) Frame 70 (f) Profile (g) Frame 80 (h) Profile

(i) Frame 90 (j) Profile (k) Frame 100 (l) Profile

Figure 2.7: 1FFKfull_0_4
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Frame 50 60 70 80 90 100

AQI 0.004479 0.006050 0.006941 0.006569 0.004023 0.002967

Table 2.4: AQI for 1FFKfull_0_3

(a) Frame 50 (b) Profile (c) Frame 60 (d) Profile

(e) Frame 70 (f) Profile (g) Frame 80 (h) Profile

(i) Frame 90 (j) Profile (k) Frame 100 (l) Profile

Figure 2.8: 1FFKfull_0_3
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Frame 50 60 70 80 90 100

AQI 0.002773 0.004257 0.004678 0.004399 0.002649 0.002006

Table 2.5: AQI for 1FFKfull_0_2

(a) Frame 50 (b) Profile (c) Frame 60 (d) Profile

(e) Frame 70 (f) Profile (g) Frame 80 (h) Profile

(i) Frame 90 (j) Profile (k) Frame 100 (l) Profile

Figure 2.9: 1FFKfull_0_2
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Frame 50 60 70 80 90 100

AQI 0.003445 0.004938 0.005973 0.005412 0.004250 0.002677

Table 2.6: AQI for 1FFKfull_0_1

(a) Frame 50 (b) Profile (c) Frame 60 (d) Profile

(e) Frame 70 (f) Profile (g) Frame 80 (h) Profile

(i) Frame 90 (j) Profile (k) Frame 100 (l) Profile

Figure 2.10: 1FFKfull_0_1
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Frame 50 60 70 80 90 100

AQI 0.0004427 0.0005447 0.0008370 0.0005389 0.0004948 0.0004316

Table 2.7: AQI for 1FFKfull_noisy_0_5

(a) Frame 50 (b) Profile (c) Frame 60 (d) Profile

(e) Frame 70 (f) Profile (g) Frame 80 (h) Profile

(i) Frame 90 (j) Profile (k) Frame 100 (l) Profile

Figure 2.11: 1FFKfull_noisy_0_5
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Frame 50 60 70 80 90 100

AQI 0.0038091 0.0041742 0.0045495 0.0042796 0.0036305 0.0034163

Table 2.8: AQI for 1FFKfull_noisy_0_4

(a) Frame 50 (b) Profile (c) Frame 60 (d) Profile

(e) Frame 70 (f) Profile (g) Frame 80 (h) Profile

(i) Frame 90 (j) Profile (k) Frame 100 (l) Profile

Figure 2.12: 1FFKfull_noisy_0_4
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Frame 50 60 70 80 90 100

AQI 0.0032698 0.0038384 0.0044091 0.0043860 0.0030880 0.0028363

Table 2.9: AQI for 1FFKfull_noisy_0_3

(a) Frame 50 (b) Profile (c) Frame 60 (d) Profile

(e) Frame 70 (f) Profile (g) Frame 80 (h) Profile

(i) Frame 90 (j) Profile (k) Frame 100 (l) Profile

Figure 2.13: 1FFKfull_noisy_0_3
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Frame 50 60 70 80 90 100

AQI 0.0032216 0.0041459 0.0044814 0.0045287 0.0031106 0.0025650

Table 2.10: AQI for 1FFKfull_noisy_0_2

(a) Frame 50 (b) Profile (c) Frame 60 (d) Profile

(e) Frame 70 (f) Profile (g) Frame 80 (h) Profile

(i) Frame 90 (j) Profile (k) Frame 100 (l) Profile

Figure 2.14: 1FFKfull_noisy_0_2
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Frame 50 60 70 80 90 100

AQI 0.0049264 0.0061564 0.0073384 0.0067250 0.0054106 0.0038814

Table 2.11: AQI for 1FFKfull_noisy_0_1

(a) Frame 50 (b) Profile (c) Frame 60 (d) Profile

(e) Frame 70 (f) Profile (g) Frame 80 (h) Profile

(i) Frame 90 (j) Profile (k) Frame 100 (l) Profile

Figure 2.15: 1FFKfull_noisy_0_1
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2.2.3 Results

The following table has all the data gathered for the volumes to which gaussian

noise was not added:

Resol Frame 50 Frame 60 Frame 70 Frame 80 Frame 90 Frame 100

0.5 0.009684 0.010549 0.013124 0.012021 0.008663 0.0057073

0.4 0.005565 0.007140 0.008344 0.008006 0.004791 0.003467

0.3 0.004479 0.006050 0.006941 0.006569 0.004023 0.002967

0.2 0.002773 0.004257 0.004678 0.004399 0.002649 0.002006

0.1 0.003445 0.004938 0.005973 0.005412 0.004250 0.002677

Table 2.12: AQI for noiseless volumes

Although the algorithm successfully sorted the four highest resolution volumes

by decreasing quality order, the one with the lowest resolution is not detected

properly and a higher quality estimate is delivered:

0_05 resol 0_1 resol 0_2 resol 0_3 resol 0_4 resol
3
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10
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−3

Figure 2.16: Noiseless performance

However, noiseless conditions are improbable: We must analyze the results for

volumes which have gaussian noise for a sample of normal conditions. The following

table displays all the data for the volumes that have gaussian noise added:
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Resol Frame 50 Frame 60 Frame 70 Frame 80 Frame 90 Frame 100

0.5 0.0004427 0.0005447 0.0008370 0.0005389 0.0004948 0.0004316

0.4 0.0038091 0.0041742 0.0045495 0.0042796 0.0036305 0.0034163

0.3 0.0032698 0.0038384 0.0044091 0.0043860 0.0030880 0.0028363

0.2 0.0032216 0.0041459 0.0044814 0.0045287 0.0031106 0.0025650

0.1 0.0049264 0.0061564 0.0073384 0.0067250 0.0054106 0.0038814

Table 2.13: AQI for noiseless volumes

The behavior of the algorithm when the input has gaussian noise added changes

radically. We no longer see an inverse correspondence between the AQI and the

resolution for the highest quality volumes:

0_05 resol 0_1 resol 0_2 resol 0_3 resol 0_4 resol
0
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−3

Figure 2.17: Noisy performance

Predictability is of critical importance for this work. We need our program to

behave in a similar and predictable manner no matter what the input features are.

It is not acceptable that noise interferes to the degree where detection is biased

and a misleading result is provided.
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2.2.4 Conclusion

After conducting these tests we noticed that the algorithm created by G.

Cristóbal and S. Gabarda does not behave the same way regardless of the in-

put. It was designed to analyze standard images, which are completely different

from the micrographies we work with, and results are not sufficient for us to base

our program on this method.

As with Wang’s algorithm, we have to rule out this method as well.
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2.3 A No-Reference Objective Image Sharpness Metric

Based on the Notion of Just Noticeable Blur (JNB)

2.3.1 Introduction

After the two previous unsuccessful experiences we now try the method pro-

posed in the work “A No-Reference Objective Image Sharpness Metric Based on

the Notion of Just Noticeable Blur (JNB)” by R. Ferzli and L. J. Karam [3]. In-

stead of using JPEG compression phenomena or entropy, the authors propose the

concept of just noticeable blur (JNB) and a probability summation model as a

means of obtaining a no-reference sharpness metric.

Human visual sensitivity (HVS) cannot detect very subtle changes in the sharp-

ness and contrast of an image, and so, up to a certain threshold, blurriness around

an edge will be masked. This threshold is what the authors call JNB. However,

since HVS varies from one individual to another subjective tests are required to

determine the JNB depending on local contrast for the average individual. We are

not going to explain these tests in detail, but the results are shown in the table

displayed below:

Contrast = ‖foreground− background‖ σJNB ωJNB

20 0.86 5

30 0.848 5

50 0.818 5

64 0.578 3

128 0.448 3

192 0.345 3

255 0.305 3

Table 2.14: Measured σJNB and ωJNB for different contrasts
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The σJNB magnitude is the standard deviation of the Gaussian filter that

would produce precisely JNB blurring, and ωJNB is the equivalent width in pixels

for that σ.

The probability summation model that the authors propose considers a set

of independent detectors placed on each edge pixel location noted as ei. The

probability of detecting blur distortion on a specific pixel is determined by the

following function:

P (ei) = 1− exp(−| ω(ei)

ωJNB(ei)
|β)

Consequently, the probability of detecting blur distortion over a region of interest

R is:

Pblur(R) = 1−
∏
eiεR

(1− P (ei))

If both expressions are combined we get:

Pblur(R) = 1− exp(−Dβ
(R))

where D(R) is equivalent to:

D(R) = (
∑
eiεR

| ω(ei)

ωJNB(ei)
|β)

1
β

The algorithm proposed uses image blocks of 64x64 pixels. First Sobel edge

detector is run over the entire image, then the blocks are examined to determine

whether they are smooth blocks or edge blocks. If a block is found to have a higher

number of edge pixels than a threshold, it is considered to be an edge block. In

the contrary case, the block is labeled as smooth and it will not be processed at

all, as smooth blocks do not contribute to the blur perception. The probability of

detecting blur distortion in the whole image will then be:

Pblur(I) = 1−
∏
RbεI

(1− Pblur(Rb))
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where, as seen before, Rblur(Rb) is:

Pblur(Rb) = 1− exp(−Dβ
(Rb)

)

Once again, combining both expressions yields:

Pblur(I) = 1− exp(−Dβ)

where D stands for:

D = (
∑
Rb

|DRb |
β)

1
β

The resulting blur distortion measure D is then normalized by the amount of

blocks labeled formerly as edge blocks, with the proposed no-reference objective

sharpness metric being the following:

S = (
L

D
)

with L as the amount of processed blocks.
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2.3.2 Tests

For this preeliminary test we used the Matlab software provided by Ferzli and

Karam. However some slight modification had to be made: instead of picking a

fixed size block of 64 we changed the code so that block size was an additional

input parameter. We were then able to test block sizes of 143 (whole frame), 64,

32 and 16 for each resolution. The test procedure was therefore similar to the

one used with Wang’s algorithm, with the volume sliced into its 143 frames and

the JNBM_compute function called to calculate quality index estimation for each

frame. This was done for each block size and each resolution.
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Figure 2.18: Quality estimation results for each block size and resolution
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The results of these calculations can be found in Figure 2.18 (in decreasing

resolution order: blue, red, yellow, green and black):

These preeliminary findings show that results are better for bigger block sizes

than for smaller ones. We then chose to set the block size to 143x143 (the whole

frame) as execution time was substantially smaller. However, we noticed that for

0.1 resolution unexpected behavior occurs on the most outer frames:
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0.26

Figure 2.19: Lowest resolution behavior

The quality index provided for 0.1 resolution rises rapidly in the frames which

border the protein, surpassing even the values obtained for the same frames of the

0.2 resolution volume. This behavior is due to the way the probability of detecting

blur in the image is obtained:

P (ei) = 1− exp(−| ω(ei)

ωJNB(ei)
|β)

ωJNB values can be found in 2.14. Between contrast values of 50 and 64, ωJNB
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varies from 3 to 5. For all the resolutions except 0.1 ωJNB remains constant as 3,

but in those specific frames of the 0.1 resolution volume, contrast value is lower

than 50, so ωJNB changes to 5 and quality estimation value increases suddenly.

To deal with this minor flaw we have made one additional slight modification

in the code.

widthjnb = [5∗ ones (1 , 60 ) 3∗ones (1 , 30 ) 3∗ones (1 ,180) ] ;

Instead of using the ωJNB values provided we substituted them for a constant

array, so that no undesired changes would occur regardless of the contrast value:

widthjnb = [3∗ ones (1 ,270) ] ;

The same tests were performed again, and we obtained the following values:
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Figure 2.20: Smooth behavior
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2.3.3 Results

As seen in 2.21 the correspondence between resolution and the quality index

is strongly linear. If we calculate the average of all the results obtained for each

resolution we can see this linearity very clearly:

0_1 resol 0_2 resol 0_3 resol 0_4 resol 0_5 resol
0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

Figure 2.21: Linear behavior

Based on these results we can estimate image quality based on the results of the

JNB prediction which will have a very strong correspondence with the resolution

of the volume analysed. We believe that these results are conclusive enough to

stop searching and base our program on this method.
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Chapter 3
Our version of the algorithm

3.1 Introduction

In the previous section we examined different methods of obtaining blind im-

age quality estimations, we explained their mathematical formulation and we per-

formed several quick tests to find out whether they were useful for solving our

problem or not. These preliminary results showed that the image quality esti-

mation method described in the work by R. Ferzli and L. Karam was extremely

promising for determining the quality of our 3D micrography reconstruction vol-

umes.

However, as it was merely a preliminary test phase, only a rough analysis was

made. In this section we will examine this in depth, describing the requirements

which had to be met as well as other necessary modifications, and lastly the final

version of the algorithm will be explained.

59
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3.1.1 Summary of the algorithm by Ferzli and Karam

As we previously saw, R. Ferzli and L. Karam studied the minimum amount

of blurriness around an edge that the average individual would discern, calling

this concept Just Noticeable Blur (JNB). First, this was quantified as being the

standard deviation of the Gaussian filter which would produce such blurring, and

afterwards this was converted to its equivalent in pixels: ωJNB. However, the ac-

tual widths of the edges in the picture must be measured in order to compare them

with JNB width. As we can see in Figure 3.1, which is directly taken from their

work, R. Ferzli and L. Karam propose searching for the local extrema immediately

before and after the pixel being analyzed.

Figure 3.1: Edge width

Having introduced these two concepts, the probability of detecting blur in a specific

point ei is, as seen in chapter 2:

P (ei) = 1− exp(−| ω(ei)

ωJNB(ei)
|β)
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Which, extended to a certain region R yields the following expression:

Pblur(R) = 1−
∏
eiεR

(1− P (ei))

If both expressions are combined we get:

Pblur(R) = 1− exp(−Dβ
(R))

where D(R) is equivalent to:

D(R) = (
∑
eiεR

| ω(ei)

ωJNB(ei)
|β)

1
β

To find the probability of detecting blur over a whole image, we have to extend

this expression to the entire number of regions comprised by the image:

Pblur(I) = 1−
∏
RbεI

(1− Pblur(Rb))

which can be simplified to:

Pblur(I) = 1− exp(−Dβ)

where D stands for:

D = (
∑
Rb

|DRb |
β)

1
β

The resulting parameter D, normalized by the total number of regions, is the

proposed quality estimation metric. Figure 3.2 explains how this algorithm works

visually.
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Sobel edge detection
N =edge pixels

on every block

N <

thresh-

hold?

smooth block,

not processed

edge block

find JNB width for

that local contrast

compute edge width

for each edge pixel

compute block

distortion

compute overall dis-

tortion with β = 3, 6

normalize by the

number of edge blocks

Proposed sharp-

ness metric is 1/D

yes

no

Figure 3.2: Flowchart
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3.1.2 Simplifications made

As explained in the preceding chapter, we had to make the JNB width param-

eter constant to ensure that the linear relationship between resolution and quality

index was preserved. By examining the references in Ferzli and Karam’s paper we

were led to the work "A no-reference perceptual blur metric" by P. Marziliano, F.

Dufaux, S. Winkler and T. Ebrahimi [4], which proposed a similar way to measure

blur, but in a much simpler fashion.

Marziliano et al eliminate the JNB usage and say that blur measure should be

the sum of all edgewidths present in the image, divided by the number of edge

pixels. A flowchart of the algorithm is displayed below:

Find strong vertical edges in the image

Find local extrema before and after the edge

Find edgewidth

Blur = Sum of all edgewidths
Number of edges

Figure 3.3: Yet another flowchart

Note that this metric does not divide the image into blocks, but processes it

as a whole. This agrees with the experimental results we obtained in Chapter 2

as well, and so in our implementation we will process entire images rather than

blocks.
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3.2 Requirements

3.2.1 Full 3D point of view

It was stated previously that the methods we studied are aimed at 2D images.

For the test phase we simply divided the micrograph volume into slices and treated

each one as an individual image, but this is not good enough for the final algorithm.

We need full 3D processing to guarantee optimal results and this was achieved

through a twofold effort.

Vectors

(1, 0, 0)

(0, 1, 0)

(0, 0, 1)

( 1√
2
, 1√

2
, 0)

( 1√
2
, 0, 1√

2
)

(0, 1√
2
, 1√

2
)

( 1√
3
, 1√

3
, 1√

3
)

(−1√
3
, 1√

3
, 1√

3
)

( 1√
3
, −1√

3
, 1√

3
)

( 1√
3
, 1√

3
, −1√

3
)

Table 3.1: Directions

First, as the only-vertical approach

seen in the methods we examined is suf-

ficient for 2D images but not for 3D

volumes, we have taken an additional

step and now search for edge widths in

~i, ~j, ~k and additional directions, which

are represented in Table 3.1. We be-

lieve that processing volumes in these

directions allows us to consider their

3D features and provides a sound al-

gorithm performance. The calculated

widths associated to edge pixels will be

stored in an auxiliary volume. As these

widths will be calculated successively

for each different direction, this volume

will only store the minimum width associated to a pixel. If the calculated width

for a particular direction is higher, it will be discarded.

Second, as prior to this edge width search the protein edges must be enhanced

by some edge detection algorithm, such as Sobel. Since this method is mainly

focused towards 2D images, we need a version which is compatible with 3D pro-
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cessing. To overcome this we relied heavily on Fernando Fuentes’s masters thesis:

"Single particle electron microscopy volume restoration" [5]. In this work he devel-

oped a Sobel version in which he substituted the partial derivatives with B-Spline

derivatives in x, y and, as an improvement for 3D processing, z as well. We will

explain what B-Splines are in the next section.

3.2.2 B-Spline interpolation

Conventional images are typically several hundreds if not thousands of pixels

wide. The methods we tested take steps of 1 pixel in each iteration, which com-

pared to the overall size of the image are relatively small and consequently produce

only minor errors. However, our 3D reconstruction volumes hardly measure 150

pixels wide, which makes a 1 pixel leap unacceptably large compared to total size.

This high step-size ratio might lead to significant errors during volume processing;

it is thus necessary to find a way to take smaller steps. This way is interpolation,

and more specifically, spline interpolation

Figure 3.4: Polynomial interpolation

Interpolation consists of estimating new data points within the range of a

discrete set of known data points. There are several kinds of interpolation, among
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which we find linear, polynomial or spline, to name only a few. As the name implies,

linear interpolation considers the interpolant to be a straight line that joins the two

data points together. This is a quick and easy way of interpolating, but not very

precise and has the massive disadvantage of producing non-differentiable outputs.

A more sophisticated approach is polynomial interpolation: here, straight lines

are substituted for polynomials, which can vary in degree. For n data points

there is exactly one polynomial of degree n− 1 which goes through all the points.

However, this process is quite expensive computationally, and the output might be

flawed by oscillatory artifacts due to Runge’s phenomenon.

To avoid these disadvantages (or at least dramatically reduce them) we can

use spline interpolation. Splines are piecewise polynomials where the pieces are

smoothly connected together. The fit might be exact or approximate depending

on whether we choose interpolating splines or least-squares splines, and they vary

as well in degree, from the most simple continuous representations to the most

complex ones. Among the splines the most used are B-splines due to the high

computational efficiency provided by their short support, as it is known that B-

splines have the minimal support for a given approximation order. The following

mathematical calculations are done in a single-dimensional space. To extend them

to 2D tensor products must be considered:

ϕ2D(x, y) = ϕ1D(x)·ϕ1D(y)

Polynomials are not the only functions capable of interpolating. Whittaker

proved that, if the xi data points are regularly distributed, the series

C(x) =

∞∑
i=−∞

yisinc(
x− xi
T

)

also interpolates the input measurements (sinc is defined as sinc(x) = sen(πx)
πx ).

C(x) is known as cardinal function and, as Shannon stated, it is unique for any

function whose maximum frequency is smaller than 1
2T Hz. This is not only true for
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bandlimited functions, as Shannon’s sampling theorem can be extended to a larger

space of functions, such as the Hilbert space of L2 functions or even all functions

that are square-integrable in the Lebesgue sense. Consequently, the generalized

sampling theorem is defined as:

C(x) =

∞∑
i=−∞

ci·ϕi(x)

where ci are coefficients computed from the input data and ϕi(x) is a shifted

version of a basis function ϕ(x).

For bandlimited functions the basis function used is ϕ(x) = sinc( xT ), which is

the most widely known thanks to the sampling theorem. However, sinc decays

very slowly and the convolutions needed for the inner product are impractical, so

a more computationally attractive ϕ is in order. The shortest valid function is the

box function:

ϕ(x) = β0(
x

T
) =

1 |x| < T
2

0 |x| > T
2

which is the cardinal B-spline of degree 0.

To obtain the cardinal B-spline of degree n we only have to convolve β0(x) with

itself n times. Consequently, β1 will be a triangular function, and β2 a parabolic

function Their equations can be found below, assuming T=1:

β1(x) =

1− |x| |x| ≤ 1

0 |x| > 1

β2(x) =


3
4 − |x|

2 |x| ≤ 1
2

1
2(|x| − 3

2)2 1
2 < |x| ≤

3
2

0 |x| > 3
2
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β3(x) =


2
3 + 1

2 |x|
2(|x| − 2) |x| ≤ 1

1
6(2− |x|)3 1 < |x| ≤ 2

0 |x| > 2

In general, the cardinal B-spline of degree n can be expressed as:

βn(x) =
1

n!

n+1∑
k=0

(−1)k
(
n+ 1

k

)(
x−

(
k − n+ 1

2

))n
+

where (x)n+ is the one sided n-th power of x, (x)n+ =

nn x ≥ 0

0 x < 0

The representation of signals using cardinal B-splines is closely related with

interpolation. For instance, the use of β0 is equivalent to nearest-neighbor inter-

polation, while the use of β1 is very similar to linear interpolation. β3 provides the

best compromise between complexity and approximation error. It can be proven

that the following expression is an interpolating spline:

ϕint(x) =
∞∑

i=−∞
qint[i]ϕi(x)

where qint[i] is the l2 sequence defined as the inverse Z transform of Qint(z) =

1
∞∑

k=−∞
ϕ(kT )z−k

and ϕ(x) = βn( xT )
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3.2.3 Noise immunity

Figure 3.5: Volume frames where noise can be perceived

Noise adds an amount of uncertainty to any source of information, and this is

as undesirable as it is inevitable. Our software has to withstand the high amount

of noise inherent to images obtained through electron microscopy, without signifi-

cantly varying the output from that which an ideal noiseless source would produce.

Figure 3.5 shows true noisy slices compared with ideal noiseless ones.

Figure 3.6: Noise effect

It is obvious that such an amount of noise would

pose a problem, and it did when running Sobel edge

detection, as the function failed to discern which

parts were valid data and which were discardable

background (see Figure 3.6).

Again, Fernando Fuentes examined this issue

in his master’s thesis, and he programmed a back-

ground detection function that, given a reconstruc-

tion volume, generates a mask which allows background areas to be identified.

Using this mask we can successfully eliminate background noise, leaving only the

noise that affects the molecule areas, which is simpler to compensate for.
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Thus, for the given molecule the following mask was calculated:

Figure 3.7: Calculated mask

This was done in a 3 step operation:

• First, confidence regions are calculated using the following distribution:

x− µX
SX√
NX

≡ tNx−1

• Second, pixels are processed taking into account those regions to detect

whether they are noise or not. The planes which conform the borders of

the volume are considered to be noise and the rest of the pixels are analyzed

inwards from those planes to the central pixels.

• Third, to avoid isolated pixels, a morphology closing operation is performed.

This merges all areas together into a single unified mask.

Figure 3.7 shows the original mask, but, as the selection threshold was slightly

restrictive, a dilation was applied, and thus we got:

Figure 3.8: Dilated mask
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If we apply that mask to the noisy edge volume we get:

Figure 3.9: Masked edge volume

The difference is substantial, and this is even clearer if we compare the noisy

preprocessed slices directly with the ones which have been masked:

Figure 3.10: Noisy frames vs masked frames

We believe that this masking process makes our algorithm extremely robust

against the noise produced by electron microscopy. In the next section we explain

how our algorithm actually works.
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3.3 Our implementation

To summarize, our program has to be capable of processing the full 3D features

of our volumes, using B-spline interpolation to enable resolutions sharper than 1

pixel, as well as being relatively noise-proof. Even though it is built as a single

function, we can discern two distinct parts in our program. The first is aimed at

finding which pixels are relevant edge pixels, while the second’s objective is to find

the edge width associated to each of those pixels.

3.3.1 First part

The following flowchart corresponds to the first part, and will give the reader

a rough idea of its mechanics before this is explained in depth later:

input 3D

volume

mask

generation

sobel edge

detection

mask dilation
masked

sobel volume

thresholdedge pixels

Figure 3.11: Edge pixel search

After the input volume is introduced, two operations run in parallel: on one
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side we run Fuentes’s background detect function to calculate the mask needed

to eliminate background noise, and on the other side we run Sobel edge detection

function. This enhances the edges in the original volume, but is highly affected by

noise. This can be seen in in Figure 3.12.

Figure 3.12: Mask calculation and edge enhancing

As explained in the last section, the mask here is too restrictive and, as well as

removing the background, it might also eliminate valuable areas close to the edges

of the molecule, which are less intense but interesting nonetheless. To prevent this

from happening we apply a dilation to this mask, and allow more pixels to get

through the masking operation.

Figure 3.13: Dilated mask
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The next step is to mask the enhanced-edge volume with our newly dilated

mask. This allows all the relevant information-related pixels to remain unaltered

while the background noisy ones are eliminated.

Figure 3.14: Masked edge volume

It remains to be decided which of these pixels are truly the edge pixels of the

molecule. To do this a threshold is established. If the numerical value of the pixel

exceeds this threshold, it is considered an edge pixel; otherwise, it is ignored.

−100 −80 −60 −40 −20 0 20 40 60 80 100
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

3σ
volume

99,7%

Figure 3.15: Threshold explanation

We determined experimentally that a threshold equal to three times the standard
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deviation of the values in the volume was appropriate, as 99,7% of the possible nu-

merical grayscale values are included in the interval. Figure 3.15 shows a Gaussian

distribution of random values in the interval (−100, 100) with a mean of µ = 0

and a standard deviation σ = 25.

After this, if the value of the pixel in the masked edge volume was superior to

the threshold it was tagged as edge. Otherwise it was set to 0. This was done for

all the pixels in the volume and the results can be seen in Figure 3.16

Figure 3.16: Edge pixels volume

White pixels are edge, the rest are non-edge. The next part of the program

will use this volume to determine which pixels have to be processed and which do

not.
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3.3.2 Second part

This part’s task is the calculation of the edge width associated to every pixel

tagged as edge in the first part. This is done with the function edge_width. A

rough idea of the way this function works is displayed in the following chart:

B-spline inter-

polated volume

position=0

edge

pixel?

calculate edge width

on given direction

end of

volume?
position++ store in widths volume

end

yes

no

yes

no

Figure 3.17: edge_width function flowchart

Once again the original input volume is used to calculate the B-spline interpo-

lated volume. As we explained in the requirements section, this is needed to enable

a much sharper edge width calculation. "edge_width" will receive 4 input param-

eters: B-spline coefficient volume, edge volume, a newly created widths volume (to
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store local widths), a vector to indicate the direction of the extrema search and a

step size, which will determine how big the increment between iterations will be.

If a pixel is tagged as edge, then edge_width function will search for the closest

maximum and minimum pixel value, the local width being the distance among

them. Figure 3.18 shows the numerical values of the vector situated at slice 80

and column 70 (in (1,0,0) direction).

16 18 20 22 24 26 28 30
20

40

60

80

100

120

140

160

local min

local max

edge pixel

edge width

Figure 3.18: Edge width explanation

Pixel 24 is tagged as edge, at pixel 27 we find the local maximum and at pixel

22 we find the local minimum. Consequently, the local edge width associated to

pixel (80,70,24) is 5 pixels when considering (1,0,0) direction. This is done for

every pixel in the volume, and for every possible direction. Even though different

edge widths will be found for the same pixels depending on which direction we are

searching in, only the minimum width will be considered.
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Partial results are displayed here as independent volumes, but this is only for

illustrative purposes.

Figure 3.19: Widths in (1,0,0)

Figure 3.20: Widths in (0,1,0)

Figure 3.21: Widths in (0,0,1)

The real process consists of the function overwriting the width value stored in

that position if the width found is inferior, and so, after the function is run on a new
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direction, the widths stored in the volume will be more precise, until eventually

the final result is achieved after all directions have been examined (Figure 3.22).

Figure 3.22: Final width volume

All that remains is to calculate the average width per edge pixel:

avg edgewidth =

∑
edge width

number of edge pixels

The quality estimation metric we propose is:

metric =
1

avg edgewidth

These two operations are implemented in the "calculateIBW" function.
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Chapter 4
Results and analysis

The tests performed in this final stage follow the same pattern as the preceding

ones in this thesis: volumes with known resolutions are used, and the program is

run with these as inputs. We then compare the results obtained with the resolution

of the input and attempt to find a linear relationship. Noiseless volumes are

considered first, followed immediately by noisy inputs. Finally, we compare both

noiseless and noisy results and draw conclusions about linearity and how noise

affects the program’s performance.

81
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4.1 Noiseless performance

Sample Resolution Resolution IBW

0.5 0.296782

0.4 0.176937

0.3 0.120723

0.2 0.0873584

0.1 0.0446705
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Sample Resolution Resolution IBW

0.05 0.0234004

Table 4.1: Quality index estimation for noiseless volumes

It is clear that decreasing resolution implies decreasing the quality index esti-

mation value. Figure 4.1 shows this relationship visually:
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Figure 4.1: Noiseless performance

Our program behaves as expected when working with noiseless volumes, but,

as real volumes have noise, further testing is still needed.
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4.2 Noisy performance

Sample Resolution Resolution IBW

0.5 0.511684

0.4 0.194247

0.3 0.128721

0.2 0.0882885

0.1 0.0.0451057
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Sample Resolution Resolution IBW

0.05 0.0236174

Table 4.2: Quality index estimation for noisy volumes

Figure 4.2 shows the Resolution IBW values for every resolution, and here we

can discern that decreasing resolution once again implies decreasing IBW values.

However, we also find that the value for 0.5 resolution breaks the linear tendency

of the other values:
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Figure 4.2: Noisy performance



86 CHAPTER 4. RESULTS AND ANALYSIS

4.3 Analysis

Figure 4.3 shows both noiseless and noisy performance graphs overlapped. We

can see that Resolution IBW values are very similar in both environments, having

in addition a linear relationship with the true resolution of the volumes.
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Figure 4.3: Comparison

The exception to this, however, is when 0.5 resolution noisy volume is analyzed,

as Resolution IBW for that volume nearly doubles the expected value. This poses

no problem for the successful use of this program, as 0.5 and 0.05 resolutions

are two extreme cases which are very unlikely to occur in real experiments. The

typical resolution values that an electron microscope would produce are indicated

in Figure 4.3 by a green box, and it can be easily observed that for these values

the program’s performance is optimal.



Chapter 5
Conclusions and future steps

When, back in September, the objectives of this thesis were established, we

wanted to design and implement a program which could help researchers determine

the sharpness of a 3D micrograph reconstruction volume using no other reference

but the volume itself.

Several papers by different researchers were studied, in which blind image qual-

ity estimation metrics were proposed for conventional images. One of these was

chosen and modifications were made to ensure good performance when dealing

with reconstruction volumes.

The final program meets all of the initial requirements, as 3D computing, sharp

resolution and noise resistance were considered in the design phase. Test results

prove that the estimation produced has a highly linear relationship with true res-

olution, and is also extremely robust against noise.

For future improvement, more thorough testing is proposed. We have proven

the relationship between Resolution IBW and the true resolution of the volume

using 12 different volumes, but, as these volumes were produced by filtering and

adding noise to the original volume, it would be extremely useful if the program

were tested using other micrographs and other types of molecules. This would

allow a more precise understanding of how the program behaves in all situations.
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Appendix

.1 resolution_ibw

/∗←↩

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗←↩

∗

∗ Authors : Car los Oscar S . Sorzano ( coss@cnb . c s i c . e s )

∗ Alvaro Cape l l

∗

∗ This program i s f r e e so f tware ; you can r e d i s t r i b u t e i t and/ or modify

∗ i t under the terms o f the GNU General Publ ic L i cense as publ i shed by

∗ the Free Software Foundation ; e i t h e r v e r s i on 2 o f the License , or

∗ ( at your opt ion ) any l a t e r v e r s i on .

∗

∗ This program i s d i s t r i b u t e d in the hope that i t w i l l be us e fu l ,

∗ but WITHOUT ANY WARRANTY; without even the impl i ed warranty o f

∗ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

∗ GNU General Publ ic L i cense f o r more d e t a i l s .

∗

∗ You should have r e c e i v ed a copy o f the GNU General Publ ic L i cense

∗ along with t h i s program ; i f not , wr i t e to the Free Software

∗ Foundation , Inc . , 59 Temple Place , Su i t e 330 , Boston , MA

∗ 02111−1307 USA

∗

∗ Al l comments concern ing t h i s program package may be sent to the

89
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∗ e−mail address 'xmipp@cnb . c s i c . e s '

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗←↩

∗/

#inc lude <iostream>

#inc lude " reso lut ion_ibw . h"

#inc lude <data/ f i l t e r s . h>

/∗ Read parameters ←↩

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− ∗/

void ProgResolutionIBW : : readParams ( )

{

fnVol = getParam ( "− i " ) ;

fnOut = getParam ( "−o" ) ;

}

/∗ Usage ←↩

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− ∗/

void ProgResolutionIBW : : defineParams ( )

{

addUsageLine ( "Evaluate the r e s o l u t i o n o f a volume through the i nv e r s e ←↩

border widths " ) ;

addParamsLine ( " − i <f i l e > : Volume to eva luate " ) ;

addParamsLine ( " [−o < f i l e =\"\">] : Volume with the border ←↩

widths o f the edge voxe l s " ) ;

}

/∗ Show ←↩

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− ←↩

∗/

void ProgResolutionIBW : : show ( ) const

{

i f ( verbose==0)

return ;

std : : cout << "Input volume : " << fnVol << std : : endl

<< "Output widths : " << fnOut << std : : endl

;

}

/∗ Run ←↩

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− ←↩
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∗/

//#de f i n e DEBUG

void ProgResolutionIBW : : run ( )

{

V . read ( fnVol ) ;

//Mask gene ra t i on

Image<double> aux ;

double bg_mean ;

MultidimArray<double> Vmask ;

detectBackground ( V ( ) , aux ( ) , 0 . 1 , bg_mean ) ;

#i f d e f DEBUG

aux . write ( "PPPmask_no_ero_03 . vo l " ) ;

#end i f

//Mask volume e r o s i on to expand the mask boundar ies

Vmask . initZeros ( V ( ) ) ;

erode3D ( aux ( ) , Vmask , 18 ,0 ,2 ) ;

// Correc t ion o f some f l aws produced in the edges o f the mask volume

FOR_ALL_DIRECT_ELEMENTS_IN_ARRAY3D ( Vmask )

i f (k<=4 | | i<=4 | | j<=4 | |

k>=FINISHINGZ ( Vmask )−4 | | i>=FINISHINGY ( Vmask )−4 | | j>=FINISHINGX (←↩

Vmask )−4)

DIRECT_A3D_ELEM ( Vmask , k , i , j )=1;

aux ( )=Vmask ;

#i f d e f DEBUG

aux . write ( "PPPmask_ero_03 . vo l " ) ;

#end i f

// Sobel edge de t e c t i on app l i ed to o r i g i n a l volume

Image<double> Vedge ;

computeEdges ( V ( ) , Vedge ( ) ) ;

#i f d e f DEBUG

Vedge . write ( "PPPvolume_sobel_unmask_03 . vo l " ) ;

#end i f
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//Masked volume gene ra t i on

const MultidimArray<double> &mVedge=Vedge ( ) ;

FOR_ALL_DIRECT_ELEMENTS_IN_MULTIDIMARRAY ( mVedge )

i f ( DIRECT_MULTIDIM_ELEM ( Vmask , n )==1)

DIRECT_MULTIDIM_ELEM ( mVedge , n )=0;

#i f d e f DEBUG

Vedge . write ( "volume_sobel_mask_03 . vo l " ) ;

#end i f

double minval , maxval , avg , stddev ;

// Inve r t the mask to meet computeStats_within_binary_mask requi rements

FOR_ALL_DIRECT_ELEMENTS_IN_MULTIDIMARRAY ( Vmask )

i f ( DIRECT_MULTIDIM_ELEM ( Vmask , n )==1)

DIRECT_MULTIDIM_ELEM ( Vmask , n )=0;

e l s e

DIRECT_MULTIDIM_ELEM ( Vmask , n )=1;

//Threshold i s 3 t imes the standard dev i a t i on o f unmasked p i x e l va lue s

double thresh ;

computeStats_within_binary_mask ( Vmask , mVedge , minval , maxval , avg , ←↩

stddev ) ;

thresh=3∗stddev ;

// Fina l edge volume generated by s e t t i n g to 1 p o s i t i o n s with va lue s > ←↩

th r e sho ld

Image<double> Vaux ;

Vaux ( ) . initZeros ( mVedge ) ;

FOR_ALL_DIRECT_ELEMENTS_IN_MULTIDIMARRAY ( mVedge )

i f ( DIRECT_MULTIDIM_ELEM ( mVedge , n )>=thresh )

DIRECT_MULTIDIM_ELEM ( Vaux ( ) , n )=1;

#i f d e f DEBUG

Vaux . write ( " volumen_bordes_definitivo_03 . vo l " ) ;

#end i f

const MultidimArray<double> &mVaux=Vaux ( ) ;



.1 resolution_ibw 93

// Sp l ine c o e f f i c i e n t volume from o r i g i n a l volume , to a l low <1 step ←↩

s i z e s

MultidimArray<double> Volcoeffs ;

Volcoeffs . initZeros ( V ( ) ) ;

produceSplineCoefficients (3 , Volcoeffs , V ( ) ) ;

//Width parameter volume i n i t i a l i z a t i o n

Image<double> widths ;

widths ( ) . resizeNoCopy ( V ( ) ) ;

widths ( ) . initConstant (1 e5 ) ;

double step=0.25;

Matrix1D<double> direction (3 ) ;

// Ca l cu l a t i on o f edge width f o r 10 d i f f e r e n t d i r e c t i o n s , i f a sma l l e r ←↩

value i s found f o r a d i f f e r e n t

// d i r e c t i o n on a given po s i t i o n the former value i s ove rwr i t t en

// Di r e c t i on (1 , 0 , 0 )

VECTOR_R3 ( direction , 1 , 0 , 0 ) ;

edgeWidth ( Volcoeffs , mVaux , widths ( ) , direction , step ) ;

// D i r e c t i on (0 , 1 , 0 )

VECTOR_R3 ( direction , 0 , 1 , 0 ) ;

edgeWidth ( Volcoeffs , mVaux , widths ( ) , direction , step ) ;

// D i r e c t i on (0 , 0 , 1 )

VECTOR_R3 ( direction , 0 , 0 , 1 ) ;

edgeWidth ( Volcoeffs , mVaux , widths ( ) , direction , step ) ;

// D i r e c t i on (1 , 1 , 0 )

VECTOR_R3 ( direction , ( 1 / sqrt (2 ) ) , (1/ sqrt (2 ) ) , 0 ) ;

edgeWidth ( Volcoeffs , mVaux , widths ( ) , direction , step ) ;

// D i r e c t i on (1 , 0 , 1 )

VECTOR_R3 ( direction , ( 1 / sqrt (2 ) ) , 0 , (1/ sqrt (2 ) ) ) ;

edgeWidth ( Volcoeffs , mVaux , widths ( ) , direction , step ) ;

// D i r e c t i on (0 , 1 , 1 )

VECTOR_R3 ( direction , 0 , ( 1 / sqrt (2 ) ) , (1/ sqrt (2 ) ) ) ;
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edgeWidth ( Volcoeffs , mVaux , widths ( ) , direction , step ) ;

// D i r e c t i on (1 , 1 , 1 )

VECTOR_R3 ( direction , ( 1 / sqrt (3 ) ) , (1/ sqrt (3 ) ) , (1/ sqrt (3 ) ) ) ;

edgeWidth ( Volcoeffs , mVaux , widths ( ) , direction , step ) ;

// D i r e c t i on (−1 ,1 ,1)

VECTOR_R3 ( direction ,−(1/ sqrt (3 ) ) , (1/ sqrt (3 ) ) , (1/ sqrt (3 ) ) ) ;

edgeWidth ( Volcoeffs , mVaux , widths ( ) , direction , step ) ;

// D i r e c t i on (1 ,1 ,−1)

VECTOR_R3 ( direction , ( 1 / sqrt (3 ) ) , (1/ sqrt (3 ) ) ,−(1/sqrt (3 ) ) ) ;

edgeWidth ( Volcoeffs , mVaux , widths ( ) , direction , step ) ;

// D i r e c t i on (1 ,−1 ,1)

VECTOR_R3 ( direction , ( 1 / sqrt (3 ) ) ,−(1/sqrt (3 ) ) , (1/ sqrt (3 ) ) ) ;

edgeWidth ( Volcoeffs , mVaux , widths ( ) , direction , step ) ;

#i f d e f DEBUG

std : : cout << "width s t a t s : " ;

widths ( ) . printStats ( ) ;

std : : cout << std : : endl ;

widths . write ( "PPPwidths . vo l " ) ;

#end i f

double ibw=calculateIBW ( widths ( ) ) ;

std : : cout << " Reso lut ion ibw= " << ibw << std : : endl ;

i f ( fnOut !="" )

widths . write ( fnOut ) ;

}
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.2 edge_width

void ProgResolutionIBW : : edgeWidth ( const MultidimArray<double> &volCoeffs ,

const MultidimArray<double> &edges ,

MultidimArray <double>& widths , const ←↩

Matrix1D<double> &dir ,

double step ) const

{

double forward_count , backward_count , slope ;

Matrix1D<double> pos_aux_fw (3 ) , pos_aux_bw (3 ) , pos (3 ) , pos_aux (3 ) , ←↩

next_pos (3 ) , Kdir ;

Kdir=step∗dir ;

// V i s i t a l l e lements in volume

FOR_ALL_ELEMENTS_IN_ARRAY3D ( edges )

{

//Check f o r border p i x e l s

i f ( A3D_ELEM ( edges , k , i , j ) !=0)

{

// r e s e t a l l counter s

forward_count=0;

backward_count=0;

VECTOR_R3 ( pos_aux_fw , j , i , k ) ;

pos_aux_bw=pos=pos_aux_fw ;

// f i nd out i f p i x e l magnitude grows or de c r ea s e s

pos_aux=pos ;

pos_aux+=dir ;

double value_plus_dir=volCoeffs . interpolatedElementBSpline3D (←↩

XX ( pos_aux ) , YY ( pos_aux ) , ZZ ( pos_aux ) ) ;

pos_aux=pos ;

pos_aux−=dir ;

double value_minus_dir=volCoeffs . interpolatedElementBSpline3D (←↩

XX ( pos_aux ) , YY ( pos_aux ) , ZZ ( pos_aux ) ) ;

slope=value_plus_dir−value_minus_dir ;
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double sign ;

i f ( slope>0)

sign=1;

e l s e

sign=−1;

// cur rent_pixe l i s mu l t i p l i e d by the s ign , so only one ←↩

cond i t i on i s enough to de t e c t an

//extremum no matter i f the p i x e l va lue s i n c r e a s e or dec r ea se

double current_pixel=sign∗volCoeffs .←↩

interpolatedElementBSpline3D

( XX ( pos_aux_fw ) , YY ( pos_aux_fw ) , ZZ (←↩

pos_aux_fw ) ) ;

double next_pixel ;

bool not_found ;

// Search f o r l o c a l extremum ahead o f the edge in the g iven ←↩

d i r e c t i o n

do

{

not_found=true ;

next_pos=pos_aux_fw+Kdir ;

next_pixel=sign∗volCoeffs . interpolatedElementBSpline3D

( XX ( next_pos ) , YY ( next_pos ) , ZZ ( next_pos ) ) ;

i f ( next_pixel>current_pixel )

{

current_pixel=next_pixel ;

pos_aux_fw=next_pos ;

forward_count++;

}

e l s e

{

not_found=f a l s e ;

}

}

whi l e ( not_found ) ;

current_pixel=sign∗volCoeffs . interpolatedElementBSpline3D
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( XX ( pos_aux_bw ) , YY ( pos_aux_bw ) , ZZ ( pos_aux_bw ) ) ;

// Search f o r l o c a l extremum behind o f the edge in the g iven ←↩

d i r e c t i o n

do

{

not_found=true ;

next_pos=pos_aux_bw−Kdir ;

next_pixel=sign∗volCoeffs . interpolatedElementBSpline3D

( XX ( next_pos ) , YY ( next_pos ) , ZZ ( next_pos ) ) ;

i f ( next_pixel<current_pixel )

{

current_pixel=next_pixel ;

pos_aux_bw=next_pos ;

backward_count++;

}

e l s e

{

not_found=f a l s e ;

}

}

whi l e ( not_found ) ;

// I f the width found f o r t h i s p o s i t i o n i s sma l l e r than the one←↩

s t o r e s in edges volume

// be f o r e i t i s ove rwr i t t en

i f ( ( forward_count+backward_count )<A3D_ELEM ( widths , k , i , j ) )

{

A3D_ELEM ( widths , k , i , j )=forward_count+backward_count ;

}

}

}

}



.3 calculate_IBW

double ProgResolutionIBW : : calculateIBW ( MultidimArray <double>& widths ) ←↩

const

{

double total , count ;

total=count=0;

FOR_ALL_ELEMENTS_IN_ARRAY3D ( widths )

{

double width=A3D_ELEM ( widths , k , i , j ) ;

i f ( width<1e4 )

{

total+=width ;

count++;

}

}

double avg = total/count ;

r e turn 1 .0/ avg ;

}
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