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a b s t r a c t

The Transmission Electron Microscope provides two-dimensional (2D) images of the specimens under
study. However, the architecture of these specimens is defined in a three-dimensional (3D) coordinate
space, in volumetric terms, making the direct microscope output somehow ‘‘short’’ in terms of
dimensionality. This situation has prompted the development of methods to quantitatively estimate
3D volumes from sets of 2D images, which are usually referred to as ‘‘three-dimensional reconstruction
methods’’. These 3D reconstruction methods build on four considerations: (1) The relationship between
the 2D images and the 3D volume must be of a particularly simple type, (2) many 2D images are needed
to gain 3D volumetric information, (3) the 2D images and the 3D volume have to be in the same
coordinate reference frame and (4), in practical terms, the reconstructed 3D volume will only be an
approximation to the original 3D volume which gave raise to the 2D projections. In this work we will
adopt a quite general view, trying to address a large community of interested readers, although some
sections will be particularly devoted to the 3D analysis of isolated macromolecular complexes in the
application area normally referred to as Single Particle Analysis (SPA).

� 2015 Elsevier Inc. All rights reserved.
Introduction

Our field of work is the experimental resolution of the
three-dimensional structure of macromolecular complexes using
the Transmission Electron Microscope (TEM)1 under cryogenic
condition, an area also known as cryo EM. Within this broad topic,
we will focus on three-dimensional reconstruction techniques,
which is one of the basic steps in the structural resolution process.
Note that cryo EM is experiencing a profound ‘‘revolution’’ nowadays
thanks to several key technological and methodological advance-
ments, such as the advent of Direct Electron Detectors and new
image processing methods. We refer to other contributions in this
Special Issue to properly review the state of the art in this field, so
that in the following we focus on the crucial step of how to obtain
three-dimensional quantitative information from TEM images.

The search towards always richer information is intrinsic to the
human being. Indeed, there are many situations in which a certain
type of information is experimentally measured, but our real
interest goes beyond these measurements and it pertains to
another property ‘‘related’’ to them. In other words, we measure
‘‘something’’, but we are interested in ‘‘something else’’. In a very
broad sense, these cases are usually referred to as ‘‘inverse prob-
lems’’, which can be expressed in a more formal way as

g ¼ Hf ð1Þ

with g being our measurements, f being our desired property, and H
describing the physical process that links our measurement with
the desired property. Since we want to obtain f from g, we have
to invert, or ‘‘reverse’’, H leading to

f ¼ H�1g ð2Þ

and thus the name of ‘‘inverse problems’’.
Quite naturally, our ability to obtain f from g will greatly depend

on the inversion properties of H. In the case of Transmission
Electron Microscopy (TEM), g refers to sets of 2D images collected
at the microscope, f to the 3D structure of our specimen, and H con-
veys the detailed information on how the electron microscope
interacts with the specimen under study, producing concrete sets
of 2D images. Once H is known, we have to find the conditions
under which H�1 can indeed be realized, first from a somehow
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abstract mathematical perspective, and then as practically imple-
mented in a computer.

The procedure described above is very general, and it applies
not only to electron microscopy but to most areas of biomedical
imaging. However, the work with isolated macromolecular com-
plexes, normally referred to as Single Particle Analysis (SPA), intro-
duces some crucial differences with respect to other imaging
modalities. Indeed, in a typical biomedical imaging application in
a clinical context, we have a well-defined and unique f, the patient,
from whom a number of images (X-ray radiographies) are going to
be collected in order to calculate a 3D map. However, a macro-
molecular complex is a very dynamic entity, so the probability is
large to have in our sample under investigation not only one f,
but a whole sets of different f’s, corresponding to different confor-
mational states, giving rise to a mixed population of g’s. Clearly, the
formulation above has to be extended to take into account this
situation. Furthermore, a large number of applications in EM are
characterized by uncertainties about the way images have been
collected, besides always been affected by heavy noise.

This paper is organized in the following manner. In Section ‘2D
images and 3D volumes: Basic relationships’ we will review the
basics of the way electrons interact with the specimen in the
microscope, producing a 2D image. In practical terms, we will be
dealing with the characterization of H. We will also address
some of the most common strategies to collect sets of images.
Section ‘From 2D images to 3D volumes: Reconstruction methods’
will then concentrate on ways to invert H, and these will be the
different reconstruction methods. At this stage we will present
the way the 3D reconstruction process is performed in practice,
introducing the notion of a ‘‘3D reconstruction workflow’’, particu-
larized to SPA; this topic will be covered in Section ‘A typical 3D
reconstruction workflow in SPA’. Quite naturally, any reconstruc-
tion process starts with a detailed characterization of the initial
experimental images, which will then be addressed in Section ‘Ch
aracterizing the initial experimental images’. However, we have
already indicated that the simple mathematical framework of
g ¼ Hf has to be extended to accommodate for the conformational
flexibility of macromolecular complexes, besides a large number of
experimental uncertainties and noise. This topic will be covered in
Section ‘From 2D images to 3D volumes: A posteriori projection
assignment and classification’. Further elaborating on extensions
of the basic reconstruction framework, we will briefly discuss the
case of more elaborated H’s, typical of certain demanding applica-
tions; this will be covered in Section ‘On more complicated rela-
tionships: When simplification breaks’. Finally, we will present a
general discussion in Section ‘Discussion and conclusion’.
2 Formally, the projection equation can be written as

gðsÞ ¼ Projff ðrÞgðsÞ ¼
Z 1

�1
f ðHT sþ ze3Þdz

where HT ¼
1 0
0 1
0 0

0
@

1
A; s 2 R2 is a 2D coordinate in the image, r 2 R3 is a coordinate

in the 3D volume, and e3 ¼ ð0;0;1ÞT is the z-axis.
2D images and 3D volumes: Basic relationships

In this Section we will address three main questions: (1) Which
is the relationship between the 3D volume of the specimen under
investigation and its associated 2D images?, (2), Is one image
enough to obtain a 3D reconstruction, and if this is not the case,
how many are needed? and, (3), In practical terms, how 2D images
are collected?

A Transmission Electron Microscope works by using highly
accelerated electrons as ‘‘light source’’, and focusing these elec-
trons onto an image thanks to electromagnetic lenses. Typical
accelerating voltages are in the order of 200 kVolts, producing elec-
trons with associated wavelengths of about 2.5 pm. It is quite clear
that, as an instrument, the imaging limitations of the electron
microscope are not due to the (very small) wavelength being used
(much less than one thousandth of an Å), but to imperfections of
the electromagnetic lenses (naturally, the specimen itself may
introduce additional limitations, such as those related to dose
sensitivity, the material surrounding the sample of interest, or
beam induced movement). Electrons interact with the biological
specimen under study as negatively charged particles, providing
experimental information on the three-dimensional Coulomb
(i.e., electrostatic) potential of the specimen. Considering that the
typical atomic composition of macromolecular complexes is
formed by elements of relatively low atomic number (like carbon,
oxygen or hydrogen), and that the specimens themselves are small
(a ribosome is in the order of 250Å, as an example), it is normally
considered that the interaction between the accelerated electrons
and the biological matter is very weak. So weak, in fact, that only
some of the electrons going through the specimen interact with
some of its atoms, and that the result of this interaction is ‘‘only’’
a change of the associated phase of the electron (they are not
absorbed or, in general, loose energy). Under these simplified con-
ditions, it is possible to model electron microscopy images as if the
whole three-dimensional structure of the specimen would be
‘‘condensed’’ into an image perpendicular to the electron direction;
in other words, as if the whole Coulomb potential would be
‘‘summed’’ (integrated) along the direction of the electron beam
into each point of the resulting image. We refer to images formed
in this ‘‘condensed’’ manner as ‘‘projection images’’ of the speci-
men under study (the reader is referred to Hawkes [8], Hawkes
and Kasper [9], Frank [7] for further details). We can express the
concepts presented above in a simple mathematical way as 2:

EM Image ¼ Projectionðbiological specimenÞ ð3Þ

where ‘‘Projection’’ is an operation performing a summation (line
integral) along the electron beam trajectory.

g ¼ line integralðf Þ ð4Þ

Once understood how images are formed, we may start thinking
about how the three-dimensional process can take place. Indeed,
the field of 3D reconstruction from 2D images may be regarded,
at first glimpse, as somehow ‘‘magic’’, and it is not at all obvious
that a whole ‘‘dimension’’ can be gained from lower dimensionality
data by some mathematical procedure. The question is so fascinat-
ing that back in 1917, with no concrete experimental application in
mind whatsoever, the Austrian mathematician Johann Radon
derived a way to perform this process under a certain set of condi-
tions (a translation in English of this fundamental work can be
found in Radon [19]). The first and most critical one was that the
lower dimensionality data had to be obtained as line integrals over
the higher dimensionality space. Translated into a 2D/3D case, it
required that the 2D images had to be projections of the 3D volume,
which is exactly the relationship that exists (within approxima-
tions) between transmission electron microscopy images and the
3D biological specimen under investigation, as we have presented
in previous paragraphs. Radon inversion formula certainly estab-
lished the feasibility of performing the 3D reconstruction process,
but the actual answer was not very practical, since it required an
infinite number of noiseless projection images to perform the
inversion.

A simple way to have a very practical understanding of the rela-
tionship between 2D projection images and its associated 3D vol-
ume is to formulate the case in Fourier space. We refer to Fourier
space as the range of a very well-known operation known as the
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‘‘Fourier transform’’, such as when applied to either the 3D
Coulomb potential of a biological specimen or to any of its projec-
tion image in 2D, it creates a new 3D volume or a new 2D image in
the so-called ‘‘Fourier space’’ (on the contrary, we will refer to the
space where the original Coulomb potential and its 2D projection
exists as ‘‘real space’’). The Fourier transform is a fundamental tool
in the analysis of many processes, and we will be making a limited
use of it in the next paragraphs and sections. In a mathematical
way, the 3D Fourier Transform (abbreviated FT) of a volume v,
noted as V, is obtained from v as

VðRÞ ¼ FTfvðrÞg ¼
Z

R3
vðrÞe�hR;ridr ð5Þ

where r 2 R3 is the 3D spatial coordinate in real space, and R 2 R3 is
the 3D spatial frequency. In much the same way, the Fourier
Transform of a 2D image i, noted as I, is obtained as

IðSÞ ¼ FTfiðsÞg ¼
Z

R2
iðsÞe�hS;sids ð6Þ

where s 2 R2 is the 2D spatial coordinate in real space, and S 2 R2 is
the 2D spatial frequency.

For the particular case in which the 2D images are projections of
a 3D volume, it is possible to prove (reviewed in Kak and Slaney
[12], Sorzano et al. [25]) a fundamental relationship that exists
between V and I (that is, the Fourier Transform of v and i), known
as the ‘‘central slice theorem’’. Indeed, while a projection image i
has condensed information about the whole volume v, I (the
Fourier Transform of i) has information of only a slice of V (the
Fourier Transform of v). Even more, the direction in which I slices
V is the same projection direction that generated i from v, as shown
in Fig. 1.

It is now simple to have an intuitive answer to our previous
question of ‘‘Is one image enough to obtain a 3D reconstruction,
and if this is not the case, how many are needed?’’. Indeed, the case
of having only one projection image is the one shown in Fig. 1 in
Fourier space, where we only have one plane, one ‘‘slice’’, going
through V. Clearly, with just one plane we cannot have a good
understanding of the volume V, and many more slices in multiple
directions are needed to properly estimate it. How many projec-
tions images are needed is a more difficult question to answer in
a quantitative manner.

Let consider the simple case in which the specimen is rotated
inside the microscope column around a fixed axis while images
Fig. 1. Relationship between a 2D projection image (i) and its corresponding 3D volum
geometry in Fourier space is shown on the right hand side (note that the Fourier Transform
we have represented it as a very large sphere V). In general, notation in Fourier is in ca
are being acquired (Fig. 2); it is assumed that images are taken at
a constant angular increment of h. In principle, h could be as small
as desired but, in practical terms, decreasing h implies collecting
more images, and hence to increase the total radiation dose
received by the specimen. Clearly, a compromise must be found
between h and acceptable dose. Still, intuitively, decreasing h
makes more precise our coverage of V, so the just referred limit
in h must translate into a loss of precision in our estimate of V. A
general formula to calculate the number of images required to per-
form a 3D reconstruction to a certain resolution R (by resolution
we refer to the capacity to see fine details in a volume) was pro-
vided by Crowther et al. [4] as:

R ¼ Dh ð7Þ

where D is the diameter of the reconstructed specimen, and h is the
above described constant angular increment.

Let us now explore the question of how many images are
needed from a digital computing point of view, where all magni-
tudes are finite and discrete (we have pixels or voxels, not contin-
uous densities), we will particularize a number of equations to this
situation, starting with Eqs. (1) and (2) (reviewed in Carazo [3]).
Indeed, in the expression g ¼ Hf , when g is a set of M images of
dimension N � N pixels, f is a volume of dimension N3 voxels and
H is a linear operator, H transforms into a matrix of dimension
N2M � N3. If we further follow the convention of presenting pixels
and voxels in lexicographic order (that is, piling the first line of the
image on top of the second line, and so on, followed by one image
after the other), the expression g ¼ Hf becomes

g1

g2

..

.

gN2M

0
BBBB@

1
CCCCA ¼

h1;1 h1;2 � � � h1;N3
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..

. ..
. . .

. ..
.
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0
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f 1

f 2

..

.

f N3

0
BBBB@

1
CCCCA ð8Þ

In other words, we have a linear system of N3 unknowns for which
we need at least N3 equations (assuming all equations are indepen-
dent, which is not really the case, although we will treat them that
way as a simplification). Considering that the total number of equa-
tions is given by the size of each image ðN � NÞ multiplied by the
number of images M, we need at the very least N images, so that
N � N � N ¼ N � N �M. However, this simple calculation assumes
that there is no noise in the images, which is not at all the case.
Noise translates into making the equations inconsistent, so that,
e (v). On the left hand side we present the geometry in real space, while the same
V of a finite volume v would extend over all Fourier space, although, for simplicity,

pital letters, while it is in small letters in italic for real space magnitudes.



Fig. 2. Single-axis tilt image collection geometry, both in real space – left hand side– and Fourier space – right hand side.
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for instance, 2 + 2 will not be equal to 4, but to some random num-
ber close to 4. Intuitively, if the equations are inconsistent, we will
need many more images than N � N � N. But, how many more?
Remember that the reconstruction process is an inverse problem,
and that in order to calculate f we must invert, in some way, H.
This was, in fact, Eq. 2, which stated that f ¼ H�1g. In this formula-
tion it is clear that, in a general setting, we need as many images as
required to properly invert H which, quite naturally, lead us to focus
on the nature of H, that is intimately linked to the third question we
wanted to address in this section, (3), In practical terms, how 2D
images are normally collected? In the following we are going to
focus on two common strategies to experimentally collect sets of
images and their impact on H.

The first data collection scheme we will present is known as
single axis tilt, and it is the most common one in Tomography,
while the second one will not involve any tilting at all, and it is
mostly used in high resolution studies of macromolecular
complexes.

The single axis tilt geometry has already been introduced
(Fig. 2), and it is used not only in TEM, but in most clinical applica-
tions of tomographic techniques as well. Images are collected by
tilting the specimen at known angles around a fixed axis. The size
of each of the images is generally large, of several thousand pixels
in the x and y dimensions, while the volume to be reconstructed
has usually the same dimensions than the images along x and y,
but a fraction of them along the z axis. Let consider the case of
images of 4000 pixels side, and a volume of 4000 pixels in x and
y, but only 1000 pixels along the z directions. The system of
Fig. 3. Conceptual representation of a biological sample of a certain macromolecular co
layer of amorphous ice in arbitrary orientations. Electrons are coming from above (arro
projection direction.
equations g ¼ Hf will then be of dimensions 4000 � 4000 �M � 1
for g (M being the number of images), 4000 � 4000 � 1000� 1 for
f, and (4000 � 4000 � 1000� 4000 � 4000 �M) for H. Following the
rationale presented above, we would require at least M = 1000
images; however, dose considerations on the specimen force us
to decrease the number of images to around 100. Furthermore,
unfortunately these 100 images cannot be obtained at equidistant
angles, but there is a limit to the maximum tilt angle achievable in
the TEM, so that tilting by more than 60 or 70 degrees is impossible
(both because of the mechanics of the goniometer and because the
images would no longer be projection images). Therefore, the sys-
tem of equations will be badly undetermined, which will reduce
the precision (the resolution) of our reconstructions, at the same
time that produces instabilities, requiring some form of smoothing
on the volume.

Let now consider the no tilting geometry mentioned before
(Fig. 3), specially designed to study purified macromolecular com-
plexes, an area of study normally referred to as Single Particle
Analysis (SPA). The key concept is that the sample is formed by,
essentially, multiple copies of the same complex (in blue in
Fig. 3), trapped in a solid matrix of amorphous ice at random orien-
tations. If we now focus on the subimages containing just one com-
plex, each of them can be regarded as a projection image of the
specimen under study at some random projection direction. Note
that there are multiple differences with the previously presented
geometry. Now we refer as the specimen to the molecular complex
under study, occupying only a small fraction of the EM field of
view, while before the specimen did not have any restriction and
mplex (in blue) under observation at the TEM. Specimens are suspended on a thin
ws). Note that each specimen would generate a projection image from a different
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occupied the whole large image. Putting some numbers to this new
collection geometry, the vector g will be formed by M images of a
size around 250 � 250 pixels, while the volume will be typically of
the same dimensions than the images, of dimension around
250� 250� 250 pixels. As before, we would expect the minimum
number of images to be 250. However, there are two fundamental
differences with the previous case: (1) The projection direction for
each complex is not known a priori, introducing 5 more degrees of
freedom per image in the system, three rotations and two transla-
tions and, (b), We aim at high resolution, which forces us to explic-
itly consider the very noisy nature of our images without
introducing smoothing operations into the calculation of the
volume. In practical terms, this situation increases the number of
required images by orders of magnitude, to the tens of thousands,
if not more.
From 2D images to 3D volumes: Reconstruction methods

In this section we will build over the knowledge of H, the
projection operator, aiming at ‘‘inverting’’ its effect. That is, to
obtain f, the reconstructed 3D volume, from a set of images g
obtained following a certain geometry coded in H. In other words,
we want to study practical ways to invert H, so as to obtain f by
f ¼ H�1g (as a general reference, the reader is referred to the book
by Herman [10]).

Series expansion methods

Starting from the algebraic way we have used to represent the
EM process in previous sections, probably the most obvious
manner to address the reconstruction process is by considering
methods to solve systems of linear equations. Remember that we
need to estimate as many unknowns as voxels in the volume, from
as many equations as pixels are in the set of images. Note, also, that
images are noisy (typically, they have much more noise than
signal, up to an order of magnitude more in power), so that most
equations will be inconsistent. In other words, in some Eqs. 2 + 2
will be equal to 3 and in others to 5, depending on the noise.
But, which type of solutions may be adequate for an inconsistent
system of equation?. This question was posed about half a century
ago by the Hungarian mathematician Cornelius Lanczos [14], who
suggested that an acceptable solution should be as much in agree-
ment with all the equations as possible, in some well-defined way,
proposing an iterative method to find one such a solution.

Building on Lanczos works, a family of reconstruction methods
has evolved under the general name of Series Expansion Methods.

These methods are particularly well suited to deal with arbi-
trary geometries of data collection as well as to explicitly incorpo-
rate a priori information about the volume to be reconstructed or
about the image formation process. On the other hand, they tend
to be slower, in terms of computer time, than other reconstruction
approaches.

Backprojection

Leaving the discrete formulation used in previous sections, and
returning to the original formulation of the reconstruction problem
by Radon, another approach has aimed at solving Radon inverse
equation in an approximate manner under a certain set of condi-
tions, leading to the filtered backprojection algorithm.

Backprojection is indeed a very popular reconstruction method
in electron microscopy as well as in most clinical biomedical appli-
cations, probably due to its simplicity and speed. However, the
approach suffers specially when there are gaps in the projection
geometry, as it is, for instance, the case of Transmission Electron
Tomography. Still, the general performance of backprojection in a
large number of experimental applications is remarkable, making
it a very successful method.
Fourier-based methods

The Fourier Transform (FT) introduced in Section ‘2D images
and 3D volumes: Basic relationships’ can also be used in the recon-
struction process, so that V (the Fourier Transform of the specimen
Coulomb potential v) can be estimated from the ‘‘slices’’ in Fourier
space coming from the Fourier Transform of the experimental
images. Indeed, Fig. 2 shows how the different slices in Fourier
space tend to fill up volume V. Still, there is a very important issue
with the use of the Fourier Transform in reconstruction, in that it is
a rather slow operation unless a certain computational method is
used, known as the Fast Fourier Transform (FFT). However, the
FFT requires the data samples coming from the different slices to
be equally spaced, preferably in a Cartesian lattice. Therefore, some
form of interpolation is required to go from the set of experimental
values to a regular grid, which must be precise and fast.

A very positive value of Fourier-based reconstruction methods
is that they tend to be fast and, especially, their computational cost
is almost the same irrespective of the number of experimental
images. This is so because although the interpolation stage will
vary depending on the number of images, all further operations
will take exactly the same time. Naturally, the handling of data
in Fourier space may be sometimes less intuitive than in real space,
including the appearance of some artifacts. Still, the use of these
methods is increasing in all fields, and a good comparison of
several methods can be found in Abrishami et al. [1].
A typical 3D reconstruction workflow in SPA

Although there are many possible workflows leading to the 3D
reconstruction of a biological specimen, in the following we will
focus on a particular one, presenting in this way the basic process-
ing steps. The workflow in a typical single particle reconstruction
starts by recording micrographs in an electron microscope (see
Fig. 4). After being digitized, a screening is performed to select
the best initial images (this step will be further addressed in next
Section). Micrographs can also be downsampled to improve the
signal to noise ratio and accelerate subsequent calculations.
Then, particles are selected (or picked) from micrographs, either
manually or automatically, extracted and saved for further use.
Some preprocessing may be applied while extracting, such as: fil-
ters, contrast inversion and others. Particles are usually sorted
according to a quality factor to identify possible outliers, like
wrongly picked images.

At this point, the gallery of particles may be used as input for 2D
classification algorithms, so as to detect possible heterogeneities
due to sample contamination, different conformations or different
specimens, followed by the calculation of a low resolution initial
map. Some images may be discarded and not considered in subse-
quent steps.

There are several approaches to produce an initial low resolu-
tion 3D map. The programs used in this step usually produce a col-
lection of possible 3D maps that are visually inspected. After one of
the initial volumes is selected, an iterative refining algorithm will
carefully assign projection directions to each of the input images.
Some of these refining algorithms can also be used for dealing with
heterogeneity, by comparing several initial 3D references with the
gallery of particles.

Identifying and analyzing 3D heterogeneity is, however, still
technically challenging. Regarding the classification of images into
homogeneous data sets – that is, grouping together images



Fig. 4. Left panel:Typical EM workflow. Right panel, from top to bottom: micrograph, gallery of particles, class averages and 3D map. Images courtesy of Nunez-Ramirez et al.
[16].
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produced by projecting a specific conformation of the specimen
under study – many alternatives have been proposed. One of the
most popular ones is based on maximum likelihood (ML) [22,21].
ML methods modify the 3D references so that the probability that
a given 3D reference would produce a given experimental data set
is maximized. When more than one 3D reference is used, each
experimental image has a given probability of being produced by
each of the available references in each of the different projection
directions. This probability depends on (1) the pixel-by-pixel sim-
ilarity and (2) the parameters needed to transform the experimen-
tal image into the reference projection (extent of the shifts and
noise statistics). This probability is converted into weights that
control the contribution that a particular image will make to each
of the new 3D references in each of the projection directions.

This basic workflow has been recently expanded after the
development of radiation-hardened CMOS-detectors that can
directly detect electrons. These new Direct Electron Detectors –
also known as DEDs – can be used to record cryo-EM data with
very high signal to noise ratio. Additionally, DED’s have also shown
how during the 1 to 2 s exposure normally required to acquire a
micrograph, biological specimens suffer small movements that
blur high-resolution features, these are the so called Beam
Induced Movements [2]. Indeed, DEDs record images at a rate of
many frames per second, effectively producing a ‘‘movie’’, so that
the different movie frames can be compared and aligned in order
to detect movements on the Åscale. Once the movements of the
particles are detected, they may be reversed in the computer pro-
ducing much sharper, motion-corrected particles.

Characterizing the initial experimental images

Previous sections have presented the field of 3D reconstruction
from EM images in a somehow simplified manner, modelling TEM
images as simple projection images of the specimen under study.
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Indeed, a further step towards realism is to consider that the
projection images are modified, or more precisely, modulated by
a certain function that takes into account the effect of the electron
microscope on the ideal projection images. The electron micro-
scope, as any experimental image formation system, modifies the
ideal projections. These modifications are usually referred to as
aberrations. We can easily understand these aberrations, or modi-
fications of the ideal projection images, in a more familiar image
formation system, the eye. You may think of the eye of a person
affected by myopia, for example. In this case, the image formation
system (the eye) affects or modifies the ideal images by a defocus
aberration that produces a blurring in the resultant experimental
images. Note that myopia can be easily corrected by glasses, but
aberrations introduced by an electron microscope are more diffi-
cult to correct.

The modifications introduced by an Electron Microscope to the
ideal projections are characterized by the Contrast Transfer
Function (CTF), which is directly related to the most important
aberrations of the microscope, and is defined in Fourier space.
The Fourier Transform I of an ideal image i is then related with
the Fourier Transform of the experimental image I0 through the
CTF by

I0ðRÞ ¼ IðRÞCTFðRÞ ð9Þ

where R is the location in Fourier space, also referred as 2D spatial
frequency. The CTF depends on the 2D spatial frequency, which
means that the action of the electron microscope depends on the
size of the object details. The first process after obtaining the exper-
imental micrographs consists in the obtention of the CTF of each of
them. The screening of the CTFs permits to reject bad quality micro-
graphs. A reason to discard micrographs may be the presence of
strongly asymmetric rings (astigmatism) or rings that fade in a
particular direction (drift), see Fig. 5.

From Expression 9, we can observe that in order to obtain I,
which is free from the electron microscope aberrations, and
perform a proper reconstruction process, the CTF has first to be
estimated, and then somehow inverted.
From 2D images to 3D volumes: A posteriori projection
assignment and classification

Up to this moment we are presenting a ‘‘traditional’’ reconstruc-
tion process, as it is usually addressed in other biomedical fields.
However, there are important differences between, for instance,
the reconstruction of some brain features of a patient on a fixed
and well-known medical scanner, and the structural study of a
macromolecular complex on an electron microscope. We will con-
centrate on two of these differences, the first one is related to our
knowledge of the projection geometry, and the second one refers
to macromolecular structural flexibility and/or presence of differ-
ent molecular species.
Fig. 5. CTF examples of a good quality micrograph (left), a bad quality micrograph affec
[16].
Common to all reconstruction methods presented in previous
sections is the need to know the projection geometry, that is,
knowing the directions from which the projection images were
obtained, so that H is fully characterized. Indeed, this is not usually
an issue on a clinical setting, since the scanner operates acquiring
images following a predetermined pattern, normally fixed by the
manufacturer. However, in the ‘‘no tilt’’ data collection geometry
for the study of macromolecular complexes introduced previously,
the projection directions are not known a priori, raising the need to
find them a posteriori. This latter requirement is very specific to
TEM applications, and its fulfillment represents one of the most
complex processes in the course of a 3D reconstruction. In princi-
ple, it is possible to separate the step of estimating the projection
directions from the step of estimating the volume [27]. This is done
by exploiting an interesting property of projections in Fourier
space: any two projections share a line in Fourier space along
which Fourier coefficients are the same (note that this line is differ-
ent for every pair of projections). However, this procedure may be
error-prone due to the difficulty of finding the common lines in the
presence of noise (recall that the signal to noise ratio is smaller
than 0.1). Even if raw projections are gathered into similar groups
(2D classes), the amount of local minima in this search of common
lines is so large that the probability of finding a relatively correct
structure is rather low in practice. A more practical approach iter-
atively alternates between the two steps, leading to a truly inter-
twined process: we need the geometry to estimate the volume,
and we need a volume to estimate the geometry. In turn, this sit-
uation leads to a key issue, as it is the choice of the initial volume
to be used in the iterative process, the so called ‘‘Initial Model
Problem’’. There are quite a number of methods to estimate an ini-
tial model ([27,18,17,20,23,24,6,28], and others), and even there is
a Web Service to help in its determination http://scipion.cnb.csic.
es/myfirstmap, but it still represents a critical step in many struc-
tural studies.

Let us now focus on issues related to the precise definition of
the specimen under study. Clearly, in a clinical setting there is a
unique specimen under study. Indeed, we aim at, for instance,
studying the particular brain of the patient under investigation,
which has a unique 3D distribution of densities. On the contrary,
in the case of studying macromolecular complexes, we image thou-
sands of allegedly identical particles. However, in practice, they
may be intrinsically flexible, alternate between different confor-
mational states, have different binding states, or, simply, not be
as pure as initially thought. In all these cases the reconstruction
problem has to be extended, so that to model the process of obtain-
ing the projection geometry a posteriori as well as the situation in
which the experimental set of projection images were coming from
n different volumes and not just from one.

Note that the complexity introduced by previous considerations
is rather large, since not only the projection direction for each
image has to be estimated a posteriori, but also the actual volume
ted by astigmatism (middle), and a bad quality micrograph affected by drift (right)

http://scipion.cnb.csic.es/myfirstmap
http://scipion.cnb.csic.es/myfirstmap
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giving rise to that projection has to be selected from n possible can-
didates [15,22,26,21]. Furthermore, normally n is not known a pri-
ori, requiring an additional exploratory work, which may be further
complicated by the fact that the macromolecule may not be pre-
senting n distinct conformations, but actually fluctuate on a rather
continuous conformational range [11].

The main way to address macromolecular flexibility has been to
extend current methods to estimate the projection direction of an
image given a certain initial model, to the case in which several
models are provided. The image is assigned to the volume that
maximizes a certain similarity measure. However, the space in
which we have to optimize this similarity measure has many
dimensions and, on top of it, all input measurements are extremely
noisy, which results in a complex space of solutions characterized
by having many local minima. Let us make a simple calculation on
how big this solution space is. Let consider that we are reconstruct-
ing a volume of size 250� 250� 250 pixels from 25,000 images of
size 250� 250 pixels. The solution space has a dimension that
coincides with the number of voxels of the volume and the orien-
tation parameters (5 per image), conforming a space of
250 � 250 � 250 þ 25;000 � 6 variables (3 Euler angles + 2 in-plane
shifts + 1 model selection) = 15,625 M + 150 k = 15,775 millions of
variables. In practice, it is unfeasible to globally search a so large
space, so that we are forced to use methods that are known to stop
at local minima. It is now very clear why the Initial Model Problem
has been highlighted before, because usually our search will stop at
some local optima close to our initial model. Of course, given these
considerations, our quest will be towards developing methods to
reduce the existence of local optima, moving from a situation like
the one in Fig. 6 (top) to the one in Fig. 6 (bottom). Indeed, if we
Fig. 6. Top: Difference between local minima and global minimum of an objective
function: the global minimum is the minimum value of a given function, while local
minima are the smallest values of the function only in a certain neighbourhood.
Bottom: The objective function f ðxÞ has been smoothed by a surrogate function f sðxÞ
whose global minimum is close to the global minimum of f ðxÞ.
successfully reduce the number of local optima, it will now be
much more likely that starting from a number of different initial
models, we will still reach the same result, which will be the global
optimum, or close to it, even if our searches would still be local.
The key question then, is how to accomplish this simplification
of the landscape of the objective function.

Let consider a very simple case: we impose the volume to be
smooth, which implies that we strongly reduce the number of
degrees of freedom since each voxel cannot be independent from
its surroundings. We may reduce the number of degrees of free-
dom to as few as 0.5 or 1 % of the number of voxels and still recon-
struct a macromolecule to a resolution of about 15–20 Å. Naturally,
many local optima will then disappear, since the dimension of the
search has been strongly reduced. This smoothing effect can be
obtained by reducing the resolution (the details) of the initial mod-
els, which is certainly the most common method used in the field,
although other basis, like wavelets or hyperspherical harmonics,
may be more suitable to promote a reduced representation of the
macromolecules. This process can be further elaborated, incorpo-
rating other desired properties of the volume and formulating
the problem on a statistical framework. This latter approach is
the one followed by the family of Maximum Likelihood methods
[22,21], which have effectively opened a new dimension in the
study of macromolecular flexibility.

Still, many complexes may not have distinct conformational
states, but explore a continuous of conformations, a case that can-
not be easily fitted under the considerations presented before. How
can they be analyzed? The situation of continuous flexibility is
characterized by the macromolecule following a certain conforma-
tional trajectory, with the possibility of occupying at a given time
any point along this trajectory. This problem has been addressed
more recently than the case of discrete states [11,5], being a very
active line of research.

A common issue associated to all optimization schema so far, is
their high computational cost. Indeed, the task of projection direc-
tion and 3D structural class assignment is the one demanding more
computational resources nowadays, which can be measured by
years of CPU and weeks of clock-wall time for a typical experimen-
tal case. Ways to find alternative views, formulating the problem in
substantially faster manners, are in real need, being a clear subject
of research.
On more complicated relationships: When simplification
breaks

In this section we will briefly elaborate on the case in which
some of the basic simplifications we have done along this work
do no longer hold, as it happens when aiming at very high resolu-
tion or working with very thick objects.

In Section ‘2D images and 3D volumes: Basic relationships’ we
described that only a small fraction of the electrons that arrive to
the specimen interacts with it, being the consequence a variation
in the associated phase of the electrons. Moreover, these interact-
ing electrons are scattered following a diverging path from the
unscattered electrons straight path. Depending on the scattering
pattern characteristics of the specimen, the size of the lens and
its distance to the sample, not all the scattered electrons are col-
lected by the lens to be focused onto the camera sensor (see
Fig. 7). This loss of electrons produces a contribution in the projec-
tion images known as amplitude contrast, which is independent of
the phase contrast contribution. This amplitude contrast contribu-
tion has its own CTF function, which complements the phase con-
tribution CTF in such a way that at the frequencies where the
contributions of the phase CTF is maximal, the amplitude contribu-
tion is zero, and viceversa (reviewed in Kirkland [13]). In addition,



Fig. 7. Simplified model of a Transmission Electron Microscope, where some of the scattered electrons are blocked by the optics, leading to an amplitude contrast regime.
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previously we have considered that the interaction between elec-
trons and matter is so weak that the resulting images could be
approximated by the integration of the Coulomb potential along
the projection axis, leading to projection images. However, this
sentence is essentially true only under the assumption of the spec-
imen being very thin. In the case of thick specimens, the contribu-
tion to the projection images is no longer in the direct way
described in Eq. 3, but in an expression closely related to the
well-known Beer–Lambert law:

EM ImageThick ¼ I0eProjectionðbiological specimenÞ; ð10Þ

where I0 is the projection image measured in the absence of
specimen.

Furthermore, the assumption that the specimen is thin enough
also makes it to be homogeneous in focus, that is, all its features
are affected by the same CTF. Obviously, if this were not to be
the case, then a different CTF should be considered for each part
of the specimen, and the general framework presented so far
would simply not be applicable. But, how small is ‘‘small’’ in previ-
ous sentences? In which cases is this complicated situation of real
biological importance? Let us answer these questions referring to a
recent work on Adenovirus Zhou et al. [29], where it was consid-
ered that for this large virus, with a capsid of approximately
1300Å, these effects already had a noticeable effect at about
8Åresolution.
Discussion and conclusion

The capability to obtain quantitative three-dimensional infor-
mation on molecular complexes and cellular components from sets
of transmission electron microscopy images has a deep impact in
structural and cell biology, specially when coupled with very pow-
erful sample preservation procedures, such as cryogenic condi-
tions. Indeed, nowadays to reach quasi atomic information from
samples containing purified macromolecular complexes directly
imaged at the microscope is starting to be more and more com-
mon, making this technology very interesting for biochemists
and cell biologists at large. However, the mathematical and algo-
rithmic concepts empowering this approach are not that common
and certainly not that obvious, but they have to be mastered by
anybody wishing to use this approach and extract new biological
information. It has been with this idea in mind how we have
approached the writing of this work, keeping the equations not
only to the bare minimum but to the bare concepts, at the same
time that highlighting the core ideas that make possible the whole
approach, including discussing about those experimental condi-
tions for which some of the basic mathematical assumptions
may start to break.
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