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Abstract

The field of biological image analysis has undergone significant transformations over the past
few decades due to advancements in microscopy techniques and computer vision. The journey
of biological image processing and subesequent analysis started with the transition from
traditional photographic imaging to digital acquisition, enabling the development of computer-
based algorithms for noise reduction, contrast enhancement, and object counting. From the
1970s to the 1990s, fundamental algorithms for image segmentation, object recognition, and
feature extraction were established, laying the foundation for quantitative analysis of cellular
structures. The introduction of machine learning and artificial intelligence approaches into
biological image analysis is a significant turning point, leading to high-throughput analysis of
large-scale microscopy datasets. The synergistic integration of computer vision and biology
fields has given rise to bioimage analysis, a multidisciplinary field for extracting quantitative
information of images acquired from biological samples for further obtain meaningful
biological insights. Bioimage analysis deals with increasing volumes of microscopy data
generated by current high-throughput microscopy modalities. Therefore, the emergence
of interdisciplinary collaborations between biologists and computer scientists led to the
development of specialized tools and platforms for image analysis and data management.

The primary objectives of this thesis revolve around extending the customization and
automation in the quantitative analysis of fluorescence microscopy images (single-particle
tracking, image registration, cell-type classification...) at the National Centre for Biotechnol-
ogy (CNB). Hence with the establishment of a Quantitative Image Analysis Unit (QIAU),
we aimed to leverage cutting-edge microscopy facilities and advance quantitative biology
and bioimaging power at CNB. The thesis also emphasizes the transition from qualitative to
quantitative analysis, involving the development of tools to extract quantitative information
from large image datasets, and implementing real-time image processing. The thesis presents
several open-source tools to address these objectives. Cell-TypeAnalyzer, a Fiji plugin
which facilitates the user-defined classification of specific cell types based on morphological,
intensity, and spatial features. TrackAnalyzer which focuses on single-particle tracking
(SPT) analysis, providing a user-friendly interface for customizable SPT analyses, including
spot detection, trajectory reconstruction, or diffusion and motion analysis. The thesis also



xxii

introduces the OFM-Corrector protocol, which offers real-time image registration to com-
pensate for geometric distortions in fluorescence microscopy images. These tools aimed to
enhance the accuracy, reproducibility, and efficiency of bioimage analysis.

Overall, the thesis contributes to the evolution of automated and quantitative analysis in
optical microscopy, with implications for understanding complex biological processes at the
cellular level. Furthermore, the tools and methods presented in this thesis offer potential for
further development and integration with existing microscopy platforms, paving the way for
more efficient, accurate, and user-friendly bioimage analysis.

Keywords: bioimage analysis, optical microscopy, fluorescence microscopy, image process-
ing, automation, quantitative analysis, cell-type, image registration, single-particle tracking,
open-source, chromatic aberration, real-time.



Resumen

El campo del análisis de imágenes biológicas ha experimentado transformaciones significati-
vas en las últimas décadas debido a los avances en las técnicas de microscopía y la visión
por computadora. El procesamiento de imágenes biológicas y su posterior análisis comenzó
con la transición de la imagen fotográfica tradicional a la adquisición digital, lo que permitió
el desarrollo de algoritmos basados en computadora para la reducción de ruido, realce de
contraste y conteo de objetos. Desde la década de 1970 hasta la de 1990, se establecieron
algoritmos fundamentales para la segmentación de imágenes, el reconocimiento de objetos y
la extracción de características, sentando las bases para el análisis cuantitativo de estructuras
celulares. La introducción del aprendizaje automático e inteligencia artificial en el análisis
de imágenes biológicas es un punto de inflexión sin precedente, lo que lleva al análisis de
alto rendimiento de grandes conjuntos de datos de microscopía a gran escala. La simultánea
integración de la visión por computadora y biología ha dado lugar al análisis de bioimágenes,
un campo multidisciplinario para extraer información cuantitativa de imágenes adquiridas
de muestras biológicas para obtener conocimientos biológicos significativos. El análisis de
bioimágenes se ocupa del aumento de volúmenes de datos de microscopía generados por
las actuales modalidades de microscopía de alto rendimiento. Por lo tanto, la aparición de
colaboraciones interdisciplinarias entre biólogos y científicos de la computación condujo al
desarrollo de herramientas y plataformas especializadas para el análisis de imágenes y la
gestión de datos.

Los objetivos principales de esta tesis giran en torno a la ampliación de la personalización
y la automatización en el análisis cuantitativo de imágenes de microscopía de fluorescencia
(seguimiento de partículas individuales, registro de imágenes, clasificación de tipos de
células...) en el Centro Nacional de Biotecnología (CNB). Por lo tanto, con la creación de una
Unidad de Análisis Cuantitativo de Imágenes (QIAU), teníamos como objetivo aprovechar las
instalaciones de microscopía de vanguardia y avanzar en la potencia de la biología cuantitativa
y la bioimagen en el CNB. La tesis también enfatiza la transición de un análisis cualitativo
a uno cuantitativo, que implica el desarrollo de herramientas para extraer información
cuantitativa de grandes conjuntos de datos de imágenes e implementar el procesamiento
de imágenes en tiempo real. La tesis presenta varias herramientas de código abierto para
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abordar estos objetivos. Cell-TypeAnalyzer, un plugin de Fiji que facilita la clasificación
definida por el usuario de tipos de células específicos basada en características morfológicas,
de intensidad y espaciales. TrackAnalyzer se enfoca en el análisis de seguimiento de
partículas individuales (SPT), proporcionando una interfaz fácil de usar para análisis de SPT
personalizables, que incluyen la detección de puntos, la reconstrucción de trayectorias o el
análisis de difusión y movimiento. La tesis también presenta el protocolo OFM-Corrector,
que ofrece el registro de imágenes en tiempo real para compensar las distorsiones geométricas
en las imágenes de microscopía de fluorescencia. Estas herramientas tienen como objetivo
mejorar la precisión, la reproducibilidad y la eficiencia del análisis de bioimágenes.

En resumen, la tesis contribuye a la evolución del análisis automatizado y cuantitativo
en la microscopía óptica, con implicaciones para la comprensión de procesos biológicos
complejos a nivel celular. Además, las herramientas y métodos presentados en esta tesis ofre-
cen potencial para un desarrollo adicional e integración con las plataformas de microscopía
existentes, allanando el camino para un análisis de bioimágenes más eficiente, preciso y fácil
de usar.

Palabras clave: análisis de bioimágenes, microscopía óptica, microscopía de fluorescencia,
procesamiento de imágenes, procesamiento de imágenes, automatización, análisis cuanti-
tativo, tipo de célula, registro de imágenes, seguimiento de partículas individuales, código
abierto, aberración cromática, tiempo real.
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Chapter 1

Introduction

Microscopy revolutionized our understanding of biological systems, exploring cells and
tissues at cellular and molecular levels. Over the past 50 years, parallel advancements in
imaging techniques and computational tools enabled researchers to extract detailed infor-
mation and gain profound insights into complex biological processes [1]. The journey of
image processing and biological image analysis began with the emergence of digital imaging
technologies in the late 20th century. This transition from traditional photographic imaging
to digital acquisition, allowed researchers to capture, store and manipulate images digitally,
leading to the exploration of computer-based algorithms for such as noise reduction, con-
trast enhancement, and image restoration. With digital imaging becoming more prevalent,
rudimentary algorithms for intensity quantification and object counting were developed,
specifically tailored for biological imaging and enabling quantitative analysis of microscopy
images.

Early methods were labor-intensive and limited in scope, but from the 1970s to the 1990s,
fundamental algorithms for image segmentation, object recognition and feature extraction
were devised. These algorithms, based on mathematical models and statistical approaches, en-
abled the identification and quantification of cellular structures. Image registration algorithms
were also developed to align images from different time points or modalities. Advances in
computer vision, machine learning and statistical modeling further expanded the capabilities
of image processing. Powerful algorithms now handle diverse imaging modalities, from
brightfield and fluorescence microscopy to electron microscopy [2]. Additionally, tools ex-
panded to encompass sophisticated quantitative algorithms to extract features of morphology,
cellular dynamics, and molecular interactions. The simultaneous integration of multiple
microscopy modalities, provided a comprehensive understanding of biological systems,
enabling researchers to probe cellular structures and functions from different perspectives.



2 Introduction

The turn of the new millennium, witnessed the integration of machine learning and
computational intelligence approaches into the field of biological image analysis. Techniques
such as neural networks or random forests were included to automate image analysis, re-
ducing manual intervention and subjective interpretations [3]. These methods facilitated
the recognition of complex patterns, enabling high-throughput analysis of large-scale mi-
croscopy datasets [4]. In the early 2000s, with the explosive growth of biological data, the
integration of bioinformatics and bioimage analysis became crucial for extracting mean-
ingful insights from large-scale microscopy datasets. Researchers recognized the need for
efficient data management, analysis, and interpretation of the increasing volumes of data.
The field witnessed the emergence of interdisciplinary collaborations among biologists and
computer scientists, leading to the development of specialized tools and platforms for image
analysis, data management and visualization. In this regard, image databases, standardized
file formats, and open-source software repositories became essential resources, fostering a
collaborative and open scientific ecosystem. Accordingly, the advent of high-throughput
microscopy and high-content screening propelled the demand for automated approaches.
High-content screening emerged as a powerful technique for large-scale biological assays,
allowing researchers to screen thousands of compounds and identify novel biological targets.
Furthermore, the rapid advances in robotics, microscopy automation and computational
resources enabled the analysis of enormous datasets having thousands or even millions of
images. All of the above gave rise to powerful algorithms for object recognition and data
mining, automatically developed to extract complex information, such as cell morphology,
subcellular localization, and protein-protein interactions, at an unprecedented scale.

In the last decades, the integration of convolutional neural networks (CNNs), has rev-
olutionized bioimage analysis. The ability of CNNs to automatically learn hierarchical
representations from large amounts of labeled data has significantly surpassed traditional
approaches for image segmentation, object detection and image classification [5]. The
availability of large annotated datasets, combined with the advancements in computational
hardware, has fueled the rapid progress of deep learning-based methods, opening up unprece-
dented possibilities for studying complex biological phenomena and accelerating the pace
of discovery [6]. All of the above elucidates a bioimage analysis field which will undoubt-
edly witness further breakthroughs, driven by technological advancements, interdisciplinary
collaborations, and the ever-increasing demand for more sophisticated analytical tools in
microscopy.



1.1 Research Problem 3

1.1 Research Problem

Back in 2019 when this thesis began, the CNB (National Centre for Biotechnolgy) (http:
//www.cnb.csic.es/) held the distinction of being the largest research center within the
Spanish National Research Council (CSIC), boasting considerable personnel and funding
resources. By the end of 2016, the CNB had a workforce of 640 employees. Among its
key strengths was the scientific-technical services platform, which offered cutting-edge tech-
nology in structural and cellular biology, genetically modified organism models, genomics,
proteomics, computational biology, and synthetic biology. Over the past decade years, CNB
researchers made impressive contributions, publishing over 1000 scientific articles, with
79% of them in top quartile journals within their respective fields. More than half of these
publications were the result of international collaborations. The center boasts one member of
European Molecular Biology Organization (EMBO) and eight European Research Counci
(ERC) project leaders among its scientists. Recognized for its excellence in life sciences, the
CNB ranked among the top three Spanish centers in the field according to the Nature Index
and Scimago Institutions Ranking. Furthermore, the center was awarded the prestigious
Severo Ochoa Center of Excellence accreditation in both 2014 and 2018.

The CNB possesses cutting-edge microscopy facilities at national and international level.
In 2016, significant investments were made for a unique 200kV FEI Talos Arctica electron
microscope, the sole one of its kind in Spain. This electron microscopy service provides
European-level access through infrastructures such as iNext (https://inext-discovery.
eu/), Instruct (https://instruct-eric.org/) and Corbel. A big amount of money was
invested in the Advanced Light Microscopy Facility (ALMF) (https://www.cnb.csic.es/
index.php/es/investigacion/servicios-cientificos/light-microscopy), which
includes high-resolution microscopes such as total internal reflection fluorescence (TIRF) and
stimulated emission depletion (STED) for gene expression detection and protein localization.
These advanced microscopes can generate up to 1 terabyte of images per day depending
on the operational mode. At that time, ALMF was one of the few facilities allowing ex-
ternal researchers to access these microscopes through research networks such as Campus
Internacional de Excelencia UAM+CSIC, RedLab Madrid, and REMoA. Apart from these
high-performance instruments, the AKMF service includes a Leica TCS SPs multispectral
confocal microscope and a Leica Dl/l160008 fluorescence microscope, both equipped with
an incubation system for experiments involving temporal changes.

In that context of growing need to process vast amounts of microscopy data, the Quantita-
tive Image Analysis Unit for Microscopy (QIAU) (http://www.cnb.csic.es/index.php/
es/component/k2/item/1669-quantitative-image-analysis-unit) was established
at the end of 2019 with a clear purpose: to provide advanced image analysis and support,

http://www.cnb.csic.es/
http://www.cnb.csic.es/
https://inext-discovery.eu/
https://inext-discovery.eu/
https://instruct-eric.org/
https://www.cnb.csic.es/index.php/es/investigacion/servicios-cientificos/light-microscopy
https://www.cnb.csic.es/index.php/es/investigacion/servicios-cientificos/light-microscopy
http://www.cnb.csic.es/index.php/es/component/k2/item/1669-quantitative-image-analysis-unit
http://www.cnb.csic.es/index.php/es/component/k2/item/1669-quantitative-image-analysis-unit
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enhancing the capabilities of state-of-the-art microscopy equipment at both regional and
national levels. The unit’s foundation lied in recognizing the significance of quantifying
processes and observed events through microscopy, as it plays a crucial role in advanc-
ing quantitative biology and objectively measuring hypotheses in cellular and molecular
biology research. The proposed QIAU primarily focused on processing images acquired
by the ALMF, which operated at an occupancy level of over 80% of the annual available
microscope time. Furthermore, since 2009, the CNB had been an European reference center
for image processing in the field of structural biology (Instruct Image Processing Centre
(I2PC)). The software produced by I2PC (http://scipion.i2pc.es) has over 1000 users
distributed worldwide. Dr. Sozano, who would oversee that new image analysis unit for light
microscopy, was the technical director of I2PC. Thus the goal was to expand this strategy to
light microscopy, by facilitating the transition from a predominantly qualitative and manual
data analysis to a massive and quantitative analysis, fostering rapid advancements in Systems
Biology. The aim was to complement the visual information provided by the acquisitions with
quantitative parameters which enable objective access to the maximum numeric information.
The technological challenges went beyond processing speed and automation of advanced
image analysis operations, such as capturing the spatio-temporal complexity of cellular and
subcellular dynamics. This included tasks such as particle and interaction detection, tracking,
cell event detection and quantification of diffusion phenomena, and more.

1.2 Motivation

Until 2022, CNB-CSIC held the prestigious status of a Severo Ochoa Center of Excellence.
This thesis is expected to make a significant contribution to the field of bioimage processing
to become a leading center in quantitative biology and bioimaging. To achieve this, the
center leveraged recently acquired cutting-edge microscopy equipment, encompassing both
electron and optical microscopy, at the regional and national levels. Already recognized
internationally for developing image processing algorithms for electron microscopy, the goal
of this thesis was to extend automation and quantification capabilities to optical microscopy
as well.

1.3 Objectives

The general goal of this dissertation, structured as a compendium of papers, emphasizes
automating image processing techniques for fluorescence microscopy images acquired at
the Advanced Light Microscopy Unit. The primary goal was to enable the transition from

http://scipion.i2pc.es
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a predominantly qualitative and manual analysis to a massive and quantitative analysis
approach. The secondary goal of the thesis was to identify the limits of current state-of-the-
art of bioimage analysis and potentially extend these techniques to overcome their constraints.
This was achieved by developing algorithms to address deficiencies observed in routine
quantitative analysis of fluorescence images at ALMF. In particular, the following research
topics have been identified:

1. Extend Automation Capability. One of the primary objectives is to significantly enhance
the automation in image processing algorithms, focusing on tasks such as particle
analysis, event counting, co-localization, spatial statistics, single-particle tracking,
relative fluorescence quantification and cell-type classification. These advancements
are aimed at optimizing the efficiency and accuracy of analysis tasks in ALMF. By
automating these processes, researchers can achieve more streamlined and reliable
results, leading to more meaningful investigations.

2. Transitioning to Massive and Quantitative Analysis. The aim is to move from the
conventional qualitative and manual analysis and embrace a quantitative and massive
analysis for optical microscopy images. This involves establishing a new quantitative
image analysis unit as the central focus, which plays a vital role in the CNB’s plan to
become a leading center in quantitative biology and bioimaging. By adopting a more
objective and high-throughput approach to analysis, this transition promises to provide
more robust and advanced analyses to explore complex biological systems.

3. Enhance the capabilities of bioimage processing pipelines at the ALMF. By integrating
state-of-art advanced image processing techniques into the existing pipeline, the thesis
aims to bridge the gap among cutting-edge image processing techniques and practical
applications in biology. This will involve adapting, optimizing, and developing neces-
sary algorithms to ensure compatibility and functioning within the existing framework.
The thesis seeks to empower researchers with more robust tools to encompass a variety
of imaging modalities and biological specimens, demonstrating the versatility.

4. Implement Real-Time Processing of Fluorescence and Super-resolution Microscopy
Images. The ultimate goal was to achieve streaming processing of fluorescence and
super-resolution images acquired in the ALMF. This goal entailed implementing real-
time image registration techniques to compensate geometric deformations induced by
chromatic aberration while the TIRF microscope is acquiring. By accomplishing this,
it provides immediate aberration-corrected data while the images are being acquired
by the microscope on-the-fly, similar to the existing real-time processing in electron
microscopy at CNB.
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1.4 Outline of the Thesis

This thesis is organized as follows:

• Chapter 2 covers the fundamental principles of image formation in optical microscopy,
with a particular focus on the application of fluorescence microscopy in biological
research. The chapter presents key concepts and techniques used in optical microscopy.
It delves into the basics of image formation, including the role of aberrations in optical
systems, and introduces wavefront, Zernike polynomials, and the point spread function.
Moreover, it covers the fundamentals of fluorescence excitation and emission, Stoke’s
Law, Jablonski diagrams, and challenges such as photobleaching in fluorescence
microscopy. Additionally, the chapter explores fluorescent labeling techniques and
various fluorescence microscopy methods.

• Chapter 3 is dedicated to comprehending the principles of bioimage analysis. It
starts by covering the fundamentals of computer vision, digital images as functions
and explaining the formation process. The concepts of digital images in spatial
and frequency domains are also discussed. Additionally, this chapter introduces the
impact of deep learning and neural networks in the field of bioimage analysis. It
then proceeds to outline the essential stages in a typical bioimage processing and
analysis pipeline. Furthermore, this chapter explores automated solutions to tackle
challenges associated with large and multi-dimensional image datasets, as well as real-
time processing. Emphasize the significance of open-source software, and common
open-source solutions utilized in bioimage analysis are presented.

• Chapter 4 presents the novel image processing and bioimage analysis developed during
this thesis.(***No entiendo lo de los 50 anos). First, we discuss our contribution to cell-
type classification using the Cell-TypeAnalyzer plugin. Next, we explore our work
on single-particle tracking and motion classification using TrackAnalyzer plugin.
Lastly, we detail our contribution to real-time chromatic aberration compensation with
the OFM-Corrector protocol.

• In Chapter 5, a structured compendium of articles and co-authored publications used
for this dissertation is presented, along with a brief overview of each, listed in chrono-
logical order.

• In Chapter 6, the primary conclusions of this dissertation are presented, along with
potential avenues for future research



Chapter 2

Optical Microscopy: Shedding Light on
the Microscopic Realm

Biology relies heavily on observations of natural phenomena to form and validate models of
biological processes. While early observations were done in real-time and in-place, the value
of keeping a visual record became apparent, as it removes spatial and temporal constraints.
This led to the development of current imaging techniques, which are continuously evolving
since the 20th century, and providing new insights into biological dynamics with unprece-
dented spatial and temporal resolution [7]. Biological imaging field has greatly evolved
over time, allowing observation of objects at a huge range of wavelengths, 3D geometries
and nanometer-scale structures. Thereunder, different forms of microscopy can be used to
observe cells and their internal substructures, ranging from advanced light microscopy to
3D cryo-imaging of native frozen samples [8]. The use of Green Fluorescent Proteins (GFP)
has opened up a whole new color palette to be used in fluorescence microscopy, enabling
the study of protein dynamics in living systems by genetically tag protein components. This
chapter serves as an introduction to the field of optical microscopy, offering a comprehensive
overview of its principles, components, techniques and applications. We will delve into the
fundamental concepts of light and its interaction with matter along with image formation
fundamentals understanding how these principles form the basis of optical microscopy. We
will explore the key components of an optical microscope, the various microscopy techniques
which leverage the power of light, advantages and capabilities of each technique, thus open-
ing up new possibilities for studying different types of specimens and phenomena. We will
also touch upon emerging trends and advancements in the field which push the boundaries of
optical microscopy and enable even finer details to be revealed.
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2.1 Unlocking the Hidden World: An Overview of Optical
Microscopy

Optical microscopy is a widely used technique for exploring the microworld in biology,
enabling researchers to understand the intricate biological samples on a small scale. By
utilizing visible light and optical components, it magnifies images, allowing precise ob-
servation and analysis of microscopic structures. Optical microscopy offers non-invasive
visualization of living samples, visualizing specific cellular structures without disrupting
delicate biological processes [9]. This is achieved through fluorescent labeling or brightfield
illumination. Recent advancements in hardware, algorithms and innovative approaches have

Giovanni Battista Amici
(1786-1863)

Ernst Abbe
(1840-1905)

August Köhler
(1866-1948)

Carl Zeiss
(1816-1888)

Fig. 2.1 Historical Perspective of Optical Microscopy: Giovanni Battista Amic, Carl Zeiss,
Ernest Abbe and Agust Köhler

expanded the capabilities of optical microscopy, offering a wealth of information about
cellular structures, dynamics and interactions in cell biology [10–12]. Early advancements
in optical microscopy, such as achromatic objectives [13] by Lister and Amici (illustrated
in Fig.2.1), and collaborations between pioneers such as Ernst Abbe (illustrated in Fig.2.1),
Carl Zeiss (illustrated in Fig.2.1), and Professor August Köhler (illustrated in Fig.2.1), led
to the development of apochromatic lenses and optimized photomicrography. The late 19th

century witnessed further innovations, such as metallographic microscopes, anastigmatic
photolenses, binocular microscopes with prisms, or the first stereomicroscope [14]. In the
early 20th, parfocalized objectives were introduced, and Zeiss pioneered LeChatelier-style
metallographs with infinity-corrected optics. Phase contrast microscopy gained recognition
in the 1950s and remains popular in cell biology, enabling time-lapse cinematography of cell
division.
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2.2 Fundamentals of Image Formation in Optical Microscopy

In optical microscopy (Fig.2.2), image formation involves light interacting with the specimen
and microscope components. Light from a source (e.g., lamp) converges onto the specimen,
enhancing contrast. Interacting with the specimen’s structure and composition, light is ab-
sorbed, transmitted or diffracted. According to Abbe’s theory of image formation, diffracted
light, out of phase (about 180 degrees) with direct light, leads to destructive interference at
the image plane, creating light and dark patterns.
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Fig. 2.2 Image Formation in an Optical Microscope

The objective lens is critical in optical microscopy, collecting transmitted or diffracted
light from the specimen and focusing it to create an intermediate image, which is further
magnified. Its numerical aperture (NA) determines resolving power and ability to capture
fine details, as it indicates the light acceptance angle, affecting light gathering, resolution,
and depth of field. The magnified image is projected onto an imaging plane (e.g., retina,
camera film, or computer chip). The distribution of light and dark areas in the image reveals
valuable information about the specimen structure and composition. Techniques such as
staining or phase contrast imaging can enhance image contrast and reveal finer details [13].
Thus understanding image formation principles in optical microscopy unveils the complexity
of the microscopic world.

2.2.1 Aberrations in Optical Systems

Optical systems typically designed with paraxial optics may overlook optical aberrations
caused by light interacting with lenses [13]. Real optical systems deviate from this ideal path,
presenting aberrations. These aberrations are due to: (1) the real path traveled by the light rays
thought the optical system given by the exact application of Snell’s law and (2) the refractive
index variations as a function of light wavelength. Besides optical aberrations, other factors
such as imperfections of microscope components, relative index mismatch, manufacturing
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defect, and environment factors degrade the optical performance, by impacting resolution,
contrast and image quality in microscopes. Hence quantifying aberrations to be further
compensated is crucial to enhance microscope performance. In this context, aberrations
can be monochromatic or chromatic, stemming from lens or mirror geometry and occurring
during reflection or refraction, even with chromatic light.

Geometrical Aberration: Five Seidel Aberrations In 1857, Seidel identified five con-
stituent aberrations, known as the five Seidel aberrations, for first-order monochromatic
aberrations [15, 16].
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Fig. 2.3 Aberration in optical systems. (A) Examples of showing the effect of three common
optical aberration modes together with corresponding wavefront coefficients. (B) Correc-
tion of Spherical Aberration by using Aspherical Lenses. (C) Correction of Lateral and
Longitudinal Chromatic aberration by using achromatic doublet. (D) Deformable mirror.

• Spherical Aberration. It is a significant in objectives, resulting from the inability of a
spherical lens to focus all incoming light to the same focal point on the optical axis
[17]. It leads to a blurred image with reduced resolution and contrast, causing the
specimen image to appear hazy and slightly out of focus (see Fig. 2.3 (B)). Correction
methods include using aspheric lenses, counteracting with defocus, by lens splitting,
or with higher index glass.
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• Coma Aberration. It occurs due to refraction differences as light rays coming from
an out-of-axis object point pass through different zones of a lens, particularly when
magnification changes across the image and when the microscope is misaligned [18].
This distortion causes asymmetry in the image of an object point resulting in coma-like
shapes (see Fig. 2.3 (B)). Correction methods include using a spaced doublet lens with
a stop in the center.

• Astigmatism. It occurs when a thin bundle of rays, that strikes the lens surfaces
obliquely, forms an astigmatic bean after refraction with two main focal lines: one
in the sagital direction and one in the tangential direction. It is characterized by the
off-axis image of a point appearing as a line or ellipse. So it appears elongated in
one direction and compressed in the perpendicular direction (see Fig. 2.3 (B)) [18].
Correction methods include using a cylindrical lens, higher index glass, counteracting
with defocus, or using a spaced doublet lens with a stop in the center.

• Curvature of Field. This aberration appears when lens elements focal lengths (multi-
plied by refractive indices) not summing up to zero. Modern microscopes use specially
designed objectives, such as plano. The image of a set of extra-axial points may be
perfect but formed on a non-planar surface (Petzval surface)[18]. It can be corrected
with spaced doublet lenses.

• Distortion. Even after compensating all aberrations above, it is possible for light
emanating from points within the object to converge on the image plane at an incorrect
distance from the optical axis. This divergence from linear proportionality with the
object’s distance from the optical axis can result in two types of distortions. If the
distance increases more rapidly than in the object, it leads to pincushion distortion,
causing objects at the periphery to appear stretched or elongated towards the image
edge. Conversely, if this increase is slower, it results in barrel distortion, causing
objects near the center of the field of view (FOV) to appear compressed or squeezed.

Chromatic Aberration CA is a common optical aberration caused by lens disper-
sion affecting quality of images acquired with optical microscopes. It occurs when the
lens focus shifts with the light wavelength due to chromatic dispersion, resulting in
different wavelengths being focused at various positions due to their different speeds
while passing through the optical lenses. As a result, different colors will come to
focus at slightly different planes, leading to blurred and colored edges around objects.
In this context, longitudinal CA (illustrated in Fig.2.3 (C)) occurs when light of dif-
ferent wavelengths does not converge at the same focal point along the optical axis.
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This means that the different colors appear at different distances from the microscope
objective, resulting in color fringing along the axial direction of the image. This type
of CA is more pronounced in high NA lenses and particularly problematic with high
magnification objectives. Lateral CA (illustrated in Fig.2.3 (C)) occurs when light
of different colors focuses at different lateral positions in the image plane. Unlike
longitudinal CA, this aberration becomes more evident towards the periphery, as color
fringing along the edges of the specimen or the FOV. Therefore, reducing CA is
crucial for acquiring high-quality images with accurate color representation. Several
techniques are employed to minimize CA such as achromatic and apochromatic lenses
(illustrated in Fig.2.3 (C)) which combine multiple lens elements made from glasses
with different chromatic dispersion to bring different colors of light to a common
focus, reducing both longitudinal and lateral CA. Some modern microscopy systems
and image processing software offer post-processing algorithms to correct CA. The
use of monochromatic light sources completely eliminates CA since only a single
wavelength is used, hence all rays converge to the same focus.

2.2.2 Wavefront and Zernike Polynomials

Optical aberrations result from deviations in the wavefront at the exit pupil of an optical
system compared to the ideal wavefront of a perfect optical system [19]. When the ideal
wavefront is spherical (non-aberrated), rays from the object point converge to the image point.
However, if the wavefront deviates from spherical, the image becomes aberrated, and rays do
not follow the same optical path, leading to image degradation. The wavefront, defined at the
exit pupil, (described in Fig.2.4(A)) is used to mathematically model the image quality of an
optical system, and the wave aberrations defined as the difference among the actual wavefront
and the spherical one describe the aberrations of the optical system [19]. In optics, the
wavefront of an optical system is described using a linear combination of Zernike polynomials
[20] (Fig.2.4 (B)). Zernike polynomials, in polar coordinates (x = ρcosθ ,y = ρsenθ), are
orthogonal functions representing wavefront shape in terms of coefficients. As most optical
systems have rotational symmetry with circular pupils, these polynomials are suitable for
characterization and correction of aberrations. The wavefront W (ρ,θ) in polar coordinates
can be expressed as a polynomial expansion [21], as described in Fig.2.4 (C).
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2.2.3 Point Spread Function

When using optical microscopy, the acquired image is a blurred representation of the object
due to inherent aberrations in the microscope. The point-spread-function (PSF) describes the
appearance of a point of light emitted by the specimen when observed through the microscope
[22]. The PSF is a 3D diffraction pattern of light (shown in Fig.3.1 (A-B)) emitted from a
point source and transmitted to the image plane through the objective lens. In non-aberrated
optical systems, the diffraction pattern is periodic and symmetrical in both the axial and
lateral planes at the paraxial focal point [23]. However, the diffraction pattern can have
various shapes depending on the imaging system. The axial and lateral resolutions can be
assessed using the PSF (shown in Fig.3.1 (B)), which is generated from optical sections along
the z-axis [23]. As optical microscopy follows a linear and shift-invariant image formation
process, this property enables the image computation through a convolution process as
follows:
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Fig. 2.5 Point spread function of an optical microscope. Lateral and axial perspectives. In
the Cartesian reference system, the origin is positioned at the peak center of the PSF. The
lateral view corresponds to the plane where z equals zero, while the axial view corresponds
to the plane where y equals zero. Axial (with z and y equal to zero) and lateral (with x and y
equal to zero) intensity profiles.

The image degradation can be modeled by assuming a perfect image f blurred by
convolution with a kernel h and corrupted by noise ε:

f̂ (x,y) = f (x,y)⊛h(x,y)+ ε(x,y) (2.1)

The convolution kernel h or PSF, models blurring caused by degradation sources (FOV
and imaging device). Since the PSF is always normalized, it is straightforward to compare
the PSF of different systems and assess their respective imaging capabilities. The PSF
plays a crucial role in characterizing the microscope’s resolution and imaging capabilities,
being typically modeled with a Gaussian Function [24] or by measuring the full-width at
half-maximum (FWHM) of the PSF which measures the distance among the points where
the intensity is half of the maximum.

The Airy Disk and size of the PSF The Airy disk is a 2D diffraction pattern seen
when a point source of light is imaged through an optical system. It has a central bright
spot surrounded by concentric rings and sets the resolution limit. The size of the Airy
disk is determined by the radius of the Airy disk’s central maximum as rairy =

0.61λ

NA .
While the Airy disk represents the diffraction limit and has a fixed size determined
by the NA and wavelength, the PSF is a broader concept which characterizes how
an optical system responds to a point source of light, whose size and shape can vary,
being affected by optics quality or aberrations present in the system
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2.3 Fluorescence Microscopy

Fluorescence microscopy is a dominant technique in life sciences, enabling visualization
and study of specific molecules and structures within cells or tissues. Unlike brightfield
microscopy, it utilizes fluorescent molecules or fluorophores, which absorb excitation light
of a specific wavelength and re-emit it with a longer wavelength (phenomenon called fluores-
cence), allowing selective labeling and precise visualization with exceptional sensitivity. The
process of imaging with fluorescence microscopy involves several steps. First, introducing
into the sample fluorescent probes which are specific to the target of interest. They can be
designed to bind to particular molecules (e.g., antibodies binding to specific proteins) or to
target specific cellular structures. Then fluorophores are excited with specific-wavelength
light, and the emitted fluorescent light is collected by the objective lens. To ensure that only
the emitted fluorescence is observed, filters are used to selectively transmit the emitted light
while blocking the excitation light. Finally, the emitted light is magnified, and detected with
a camera or photomultiplier to convert the light signal into an electronic image.

Detector

Emission Filter

Dichroic Mirror

Objective

Specimen

Excitation Filter

Image

Light 
Source

Fig. 2.6 Process of imaging with fluorescence microscopy. Image is formed by focusing the
emitted flourescence light into a detector which is an electronic system.
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Fig. 2.7 Biological imaging involves a range of techniques developed to explore the struc-
tures within biological systems across various scales, organized by the achievable levels of
resolution.
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Fluorescence microscopy offers advantages over other techniques such as exceptional
sensitivity to detect low concentrations of labeled molecules within complex samples. It also
enables real-time visualization of dynamic processes [25] and finds widespread applications,
as the understanding of cellular structures, molecule localization, interactions and biological
process dynamics [26]. Advances such as confocal and super-resolution microscopy have
further enhanced resolution, making this technique core in many microscopy facilities. In
the following lines, we will explore the principles, instrumentation and advanced techniques
associated with fluorescence microscopy. We will delve into the various labeling strategies,
imaging modalities, shedding light on its immense potential for scientific discovery.

2.3.1 Fluorescence Excitation and Emission Fundamentals

Fluorochromes are chemical compounds having photoreactive properties, absorbing light at
a particular wavelength and emitting light at a longer wavelength. This make them precious
as detection agents. Fluorochromes have distinct absorption and emission spectra (usually
similar to excitation) due to their electronic configurations. Manufacturers specify peak
excitation and emission wavelengths for each fluorochrome.

Emission Spectrum of a Fluorochrome

To analyze the emission spectrum of a specific fluorochrome, it is needed to identify firstly
the wavelength at which it exhibits maximum absorption, usually corresponding with the
excitation peak. The fluorochrome is then stimulated at this wavelength to initiate excitation.
In Fig.2.8, we can observe the absorption spectrum of a typical fluorochrome. The excitation
spectrum of the fluorochrome is determined by monitoring the fluorescence emission at
the wavelength of maximum intensity while exciting the fluorophore with a sequence of
consecutive wavelengths. The emission maximum is selected, allowing only the emission
light at that particular wavelength to reach the detector. The intensity of emitted fluorescence
is quantified by exciting it at different excitation wavelengths, and then recording it as a
function of wavelength. The outcome is a curve, illustrated in Fig.2.8, illustrating the relative
fluorescence intensity resulting from excitation across the spectrum of excitation wavelengths.

2.3.2 Stoke’s Law or Shift

When electrons transition from an excited state (S1, S2) to a ground state (S0), vibrational
energy is lost. This loss of energy causes the emission spectrum to shift towards longer
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Fig. 2.8 The absorption, emission and excitation-emission overlap spectrum of a typical
fluorochrome.

wavelengths compared to the excitation spectrum, as wavelength is inversely proportional to
radiation energy according to E = hc

λ
. Stokes’ Law, or the Stokes’ shift, causes the emission

spectrum to shift towards longer wavelengths due to energy loss during electron transitions.
A larger Stokes’ shift helps separate excitation from emission light. Fluorescence intensity
is maximized by exciting the fluorochrome at its peak excitation wavelength and detecting
emitted light at the peak emission wavelength (or other selected wavelengths). Filters are
used to regulate excitation and emission wavelengths. Figure 2.9 shows similar-shaped
fluorescence intensity curves for absorption and emission, with overlapping excitation and
emission curves at specific wavelengths.
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Fig. 2.9 Observations from Excitation and Emission Spectrums. (A) A typical fluorochrome
absorption-emission spectral diagram. (B) Fluorescence Filter Spectral Profiles.

2.3.3 Separation of Excitation and Emission Wavelengths

Proper filter selection allows the separation of excitation and emission wavelengths (Fig.2.9).
Fluorescence illuminators use interchangeable filters into the light path to control light before
reaching the specimen (excitation) and as it emanates from the specimen (emission). Using a
bright light source for excitation and fluorochromes with satisfactory absorption as well as
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yield, maximizes weak emission light. The molecular extinction coefficient determines the
efficiency of a fluorochrome absorption of excitation light, crucial for subsequent fluorescence
emission. The quantum yield represents the ratio of emitted quanta (energy packets) to
absorbed quanta for the emitted light [27].

2.3.4 Molecular Explanation of Fluorescence: Jablonski Diagrams

The Jablonski energy diagrams [28] (described in Fig.2.10(B)) explain the physical relation
and energy transitions between light absorption and emission from a fluorophore, showing
the different energy levels involved in the photons’ absorption and emission. Representing
energy levels with a vertical axis and transitions with horizontal arrows, these diagrams
provide insights into the photophysical properties of fluorophores [29].

Energy Levels
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Fluorescence (10-10-10-7s)
Phosphorescence (10-6 -10s)
Internal Conversion (10-11-10-9s)
Vibrational Relaxation (10-12-10-10s)
Intersystem Crossing (10-10-10-8s)
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Fig. 2.10 Fundamentals concepts underpinning Fluorescence Microscopy. (A) Cartoon of
fluorescence technique and Stokes Shift. (B) Examplo of Jablonski diagram showing the
possible radiative and non-radiative transitions.

Fluorophores, normally in the ground state S0 (absense of excitation), get excited to
higher energy levels S1 and S2 after absorbing a photon, typically within a few femtoseconds
(10−15 seconds),represented by an upward arrow in the diagram. Following excitation, rapid
non-radiative transitions such as vibrational relaxation occur, where it loses excess energy
through molecular vibrations. This leads to fluorescence emission as the fluorophore returns
to the ground state (S1 level from S0 within picoseconds), emitting a photon of lower energy
(with longer wavelength) than the absorbed photon [30, 31]. In some cases, the fluorophore
may undergo internal conversion, a non-radiative transition from the excited state S1 back to
the ground state S0. However, in most cases, this transition among excited and ground states
results in a fluorescence emission. In this case, after the fluorophore has been excited, it
returns to the ground state S0 by emitting a photon of lower energy (with longer wavelength)
than the absorbed photon. This emission is represented by a downward arrow in the diagram.
In this regard, the time the fluorophore stays in the excited state before emitting a photon is
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called the fluorescence lifetime. This lifetime is directly influenced by factors such as the
environment, molecular interactions and the presence of quenchers.

2.3.5 Dealing with Fading or Photobleaching

Photobleaching is the irreversible photochemical damage of a fluorophore due to light
intensity and molecular oxygen, causing a permanent fading of fluorescent signal [29]. This
leads to two types of artifacts at the molecular level: 1) Fluorophores suddenly disappearing,
resulting in an illusion of faster diffusion and reduced residence times in the detection volume
[32, 33]. 2) Gradual depletion of fluorescence within enclosed small volumes such as cells
or vesicles, and even in two-dimensional systems (membranes), where fresh molecules’
diffusion cannot compensate for fluorophore depletion, leading to distortion in correlation
curves [33]. While photobleaching is inevitable, various approaches can be employed to
mitigate its effects in imaging certain specimens.

• Reducing the light intensity. To reduce light intensity during imaging until only a
portion of fluorophores is bleached. This minimizes photobleaching by reducing
excitation-emission cycles. However, a balance is needed, as lower excitation light
also means lower signal intensity and contrast.

• Reducing the exposure time. By reducing the exposure time to light as it will decrease
the times the fluorophores undergo the excitation-emission cycles. This can be achieved
either by decreasing pixel dwell of laser or by choosing a faster imaging frame rate.

• Adding Anti-Fade Reagents. Immersing a sample on a mounting medium may reduce
photobleaching. Yet, not all dyes respond equally to anti-fade reagents, so the choice
of anti-fade agent should be tailored to the specific dye being used.

• By using Neutral Density Filters. These filters are used in the light path before the light
reaches the excitation filter to decrease excitation intensity. This efficiently allows the
passage of almost all emitted wavelengths by reducing photobleaching. However, this
may also decrease the sample’s signal while reducing its exposure to light.

2.3.6 Fluorescent Labeling Methods

Fluorescent labels are essential for fluorescence-based assays, enabling selective detection,
visualization, and monitoring of non-fluorescent cell types, dynamic cellular processes,
or subcellular structures. While proteins present intrinsic fluorescence (typtophan), often
extrinsic fluorescent labels are needed as imaging agents to enhance fluorescence properties
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during imaging [31, 34]. Various fluorophore labeling techniques exist, as many as protein
diversity, each with its advantages and considerations based on the microscopy technique
and biological system used [35].
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Fig. 2.11 Fluorescent Labeling Methods. (A) Fluorescent stains and probes interact with cell
components or can merge with targeting molecules. (B) Immunofluorescence pairs synthetic
fluorophores with immunoglobulins that selectively bind to specific target protein antigens.
They can also attach to a primary antibody for direct interaction (direct immunofluorescence).
(C) Fluorescent proteins expressed naturally offer a genetic way to visualize cell components.
(D) An example: biotinylation protein conjugation with streptavidin-functionalized quantum
dot.

• Biological Fluorescent Proteins. Derived from biological structures (Fig. 2.11(B)) can
be attached to target proteins (e.g., proteins, enzymes, or antibodies) for labelling [36].
They can be bound into in-vivo proteins and introduced within living cells, bacteria,
or organisms, with lower toxicity compared to synthetic dyes. Recent developments
include photoactivatable, photoswitchable, and photoconvertible fluorochromes for
studying protein dynamics and for single-molecule based Super-resolution microscopy
[30].

• Synthetic Fluorescent Stains and Probes. Synthetic dyes and probes (Fig. 2.11(A)) are
widely used for imaging fixed cells or tissues, selectively staining nucleic acids, lipids,
cellular structures and organelles. For live imaging, cell permeability of the stain or
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probe is crucial. Commonly used examples include Hoechst 33258 and DAPI for
nucleic acids, NileRed and FM dyes for biological membranes, fluorophore-derivatized
phallotoxins for actin filaments and LysoTracker, MitoTracker, and ER-Tracker for
organelle labeling [30].

• Immunofluorescence Staining. Antibody-based staining (Fig. 2.11(C)) is a commonly
used technique, employing synthetic fluorescent dyes coupled to immunoglobulins
to visualize proteins in fixed cells or tissues. It offers higher specimen contrast and
signal amplification, allowing flexibility in choosing fluorescent dyes with different
wavelengths. However, this method is unsuitable for live imaging due to the need
for prior fixation and membrane permeabilization. Multicolor immunofluorescence
enables simultaneous visualization of multiple cellular components [30].

• Graphene Quantum Dots. GQD (Fig. 2.11(D)) are fluorescent nanomaterial with
unique optical and electronic properties for imaging and sensing applications [34].
Despite being stable, compared to organic dyes [37], GQD is a new procedure which
requires improvement for toxicity due to their heavy metal composition and high
stability.

2.3.7 Fluorescence Microscopy Techniques

Throughout the following lines of this section together with the Fig.2.12, it will be found a
brief and technical description of the commonly used fluorescence microscopy techniques.

Widefield Microscopy. This technique (Fig. 2.12(A)) is widely used for studying large-
scale biodynamics [38] in fixed or live cells, tissues, and organisms. It illuminates the entire
FOV and collects emitted fluorescence on a detector. This method provides fast imaging
and simple setup, with reduced photobleaching and phototoxic effects due to a small light
dose for illumination [39, 30]. However, it also captures out-of-focus image information,
compromising image resolution. To address this, structured illumination or post-acquisition
methods such as deconvolution can be applied [40].

Optical Sectioning Microscopy. This methodology (Fig. 2.12(B)) revolutionized optical
imaging by eliminating out-of-focus background light, resulting in improved resolution be-
yond widefield microscopy [41]. However, understanding optical and fluorescence concepts
is crucial for obtaining high-quality images. It is comprised of the following techniques.

• Confocal Laser Scanning Microscopy (CLSM). CLSM uses a scanning laser beam
with a pinhole aperture and photodetectors to reject out-of-focus signals. It consists of
an epifluorescence microscope with laser sources, fluorescent filter sets, a scanning
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mechanism, pinhole apertures, and PMT detectors. The laser beam is raster-scanned
on the specimen, and the emitted light passes through the pinhole aperture while
out-of-focus light is rejected. The PMT converts the intensity into a digital signal for
display. The lateral resolution is around 200 nm, depending on NA and illumination
wavelength [40].

• Spinning-Disk Confocal Microscopy (SDCM). SDCM combines the out-of-focus light
rejection of CLSM with the high sensitivity of widefield microscopy [42]. It is ideal
for high-resolution imaging of small cells, significantly improving image contrast and
signal-to-noise ratio (SNR) by eliminating out-of-focus light. SDCM has advantages
over CLSM, especially for fast in vivo imaging and conditions requiring higher frame
rates. Modern SDCM employs low-intensity excitation light and fast imaging to reduce
photobleaching and phototoxicity simultaneously [43].

• Multiphoton Microscopy (MPM). This method encompasses the simultaneous absorp-
tion of two or more photons produced by NIR femtosecond pulsed laser excitation by
a single fluorophore [44], producing high-resolution 3D images [45]. By eliminating
light coming from out-of-focus planes and not requiring a pinhole near the detector, it
requires small amounts of photons to illuminate the specimen. This efficiently reduces
fluorophore bleaching and phototoxicity, enabling label-free real-time imaging of
biological processes without cell damage [30].

• Ligth-Sheet Fluorescence Microscopy (LSFM). This microscopy technique limits pho-
todamage in live-cell imaging by using a thin sheet of laser light to excite fluorophores
only within a narrow plane, a few hundred nanometers to micrometers [46]. Fluo-
rescent photons emitted by the fluorophores are captured by a detection objective
positioned perpendicularly to the light sheet and then imaged onto a CCD. This fast
acquisition provides high temporal resolution, minimal photobleaching, and reduced
phototoxicity by illuminating only the observed plane [47, 39].

Super-Resolution Optical Microscopy. SRM methods (Fig. 2.12(C)) use advanced
fluorescence imaging techniques to resolve objects beyond the diffraction limit [48]. They
employ engineered excitation light, fluorescent dyes, sensitive detectors, faster processing,
and reconstruction algorithms to reduce the size of the PSF [49]. Recognized with a Nobel
prize in 2014 [50], these methods have enabled molecular resolution at the nanometer scale,
fast live-cell imaging, and volumetric 3D multi-color imaging.

• Super-Resolution Structured Illumination Microscopy. SR-SIM [51] is a super-resolution
technique which surpasses the diffraction limit [52]. Its strengths include compatibility
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with conventional sample preparation, efficient utilization of available photons with
highly sensitive cameras, and reduced excitation power while achieving high-quality
fluorescence detection. It extends widefield capabilities, allowing multi-color imaging
(up to four color channels), optical sectioning, and fast live cell imaging with doubled
lateral and axial resolution compared to optical sectioning microscopes [51].
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Fig. 2.12 Commonly used Fluorescent Microscopy Techniques. Fluorescence imaging
technologies can be classified into three main categories: (A) Widefield Microscopy; (B)
Optical Sectioning Microscopy; (C) Super-resolution Microscopy

• Stimulated Emission Depletion (STED). This imaging approach achieves sub-diffraction
resolution below the limit of λ/2NA [53], preserving optical sectioning and molecular
specificity/sensitivity. It has made significant strides, considering the fluorophore as an
active element in image formation [54]. However, photobleaching and phototoxicity at
high intensities required need to be addressed, with a focus on minimizing excitation
intensity and optimizing fluorophore properties for long-term and live-cell imaging. Im-
proving temporal resolution and range is essential for capturing fast dynamic processes
in living cells. STED faces limitations in thicker samples due to light scattering and
absorption, necessitating advancements in optics and labeling strategies to penetrate
deeper into tissue for broader biological applications.

• Photo-Activated Localization (PALM) and Stochastic Optical Reconstruction (STORM)
Microscopy. PALM and STORM [55–58] are single-molecule localization-based
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super-resolution microscopy techniques. They use photoswitchable fluorescent dyes
or proteins in presence of suitable buffers to achieve high-resolution imaging [59].
These methods stochastically activate a subset of fluorophores with a low-power
laser, followed by photobleaching (PALM) or switching them into a reversible dark
off-state (STORM) using an inactivation laser. Detected emission events are then
used to reconstruct the final image. Both techniques achieve lateral resolutions of 20
nm and axial resolutions of 50−60 nm. While PALM was initially developed with
photoactivable or photoconvertible fluorescent proteins and STORM with synthetic
dyes, both types are now interchangeable in both methods. PALM and STORM have
been extended to multi-color and 3D imaging, making them highly applicable for a
wide range of biological applications. However, careful probe selection is necessary,
especially for multi-color imaging modes [30].



Chapter 3

Bioimage Analysis: Unveiling Insights
from Biological Images

The concept of bioimage analysis emerged from the convergence of microscopy, computer
science and quantitative biology. It employs computational methods to extract quantitative
data from images of biological samples. The transition from analog to digital imaging in
the late 20th century, and benefiting from computer vision and image processing techniques,
facilitates digital images to be stored and processed using computers. Researchers started
applying image processing algorithms to extract meaningful information from biological
images. The advent of high-throughput imaging technologies, such as confocal microscopy,
marked a pivotal moment by enabling the acquisition of vast amounts of image data. This
increased the need for automated and efficient bioimage analysis tools. Therefore, the concept
of bioimage analysis emerged as a result of interdisciplinary collaboration between biologists,
physicists, mathematicians, and computer scientists, to develop tools which could address
the specific challenges of analyzing these complex biological images. Furthermore, in
recent years, open-source software platforms, such as ImageJ and CellProfiler, democratized
access to bioimage analysis tools. Additionally, the shift toward quantitative biology, with
an emphasis on data-driven further propelled the growth of bioimage analysis. This field
continues to expand, offering researchers a robust means to uncover insights into biological
processes, aided by ongoing advancements in imaging technologies and computational
methodologies.

This chapter explores how bioimage analysis, combining microscopy, computer science,
and quantitative biology, revolutionizes insights from biological images. It covers the role
of computer vision and it describes classical and cutting edge methods and applications to
achive the results exhibited in this study. Moreover, open-source software’s impact and its
connection to quantitative biology are discussed.
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3.1 Fundamentals of Computer Vision in Light Microscopy

Human beings possess the innate ability to perceive the three-dimensional world. With the
advent of digital image capturing devices and high performance computers, it is nowadays
possible to obtain information from images in a similar way as the human visual system
does. Computer vision is a field belonging computer science which enables machines to
interpret visual information from their environment, mimicking human visual perception
[60, 61]. It encompasses topics such as image formation, feature detection, segmentation,
object recognition, and tracking. Deep learning techniques such as Convolutional Neural
Networks (CNN) have been widely adopted in contemporary computer vision applications,
enhancing capabilities for wide range of image processing tasks.

3.1.1 Digital Image Formation

A digital image is a function which maps spatial coordinates to intensity values for grayscale
or pseudo-color images. In the continuous domain, it is represented as f (x,y) : R2 →R, with
(x,y) as coordinates and f (x,y) as intensity/color index. In computer graphics, images are
in the discrete domain as F [m,n] : Z2 → R, with (m,n) as pixel coordinates and F [m,n] as
intensity/color index. True color images are maps from R2 → R3. For each position (x,y),
the function f (x,y) is a vector (r,g,b) with the coordinates of the color of the pixel in the
RGB system. Unless specified otherwise, our images are grayscale.

3D Object     Lens     Digitizer
      2D Digital Image

    CCD/CMOS
Sensor

 Digital Camera

Fig. 3.1 Digital Image Formation. An image can be conceived as a 2D function f (x,y), being
x and y the spatial coordinates, and the amplitude of f at any pair of coordinates (x,y) is the
image intensity at that level.

Digital image formation, as shown in Fig.3.1, involves two main processes: sampling
and quantization, which convert the continuous analog image into a discrete digital image.
Sampling captures the analog image at discrete intervals using an image sensor with millions
of pixels. Whereas quantization assigns numerical values to pixels based on intensity or
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color, represented by binary codes (0 to 255 in an 8-bit image). The higher the bit depth, the
more colors and shades of gray it can represent [60].

The mathematical model for digital image formation [62, 63] is given by:

f (x,y) = s(s,y)∗h(x,y)+ ε(x,y) (3.1)

where f (x,y) is the observed digital image, s(x,y) is the continuous analog signal,
h(x,y) is the PSF that models the blur and distortion introduced by the imaging system,
and ε(x,y) is the additive noise introduced by the imaging device.

3.1.2 Digital Image Sensing

Light Sensitive Pixel

Analog-to-digital converter (ADC)

Light Insensitive Pixel

Capacitor and Amplifier (C+A)

A B

Fig. 3.2 Two common types of image sensors used in digital imaging are (A) CCD and (B)
CMOS sensors

Digital image sensors capture light and convert it into electrical signals. These compo-
nents consist of an array of photosensitive elements, representing incoming light at each
pixel to be further processed, stored and displayed as images. Charge-coupled device (CCD)
is a digital image sensor, which work by converting photons into electrical charge. Each
pixel on a CCD sensor is a light-sensitive photodiode accumulating charge proportional to
the light it receives to an output node. CCD are known for their excellent image quality, low
noise, and suitability for applications with low-light conditions. Likewise, in Complementary
Metal-Oxide-Semiconductor (CMOS), each pixel has its own amplifier, which amplifies
the charge generated by the photodiode [63, 60]. This allows for parallel processing of
pixel information, making CMOS faster than CCD, presenting lower power consumption.
Additional components in this process include the lens system, the analog front-end, and
the analog-to-digital converter (ADC). The lens system determines image quality, while the
analog front-end amplifies and filters the analog voltage before ADC conversion.
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3.1.3 Digital Image in Spatial Domain

A digital image is represented in the spatial domain as a 2D function of space, where pixel
values indicate the amplitude at each pixel. Manipulation operations such as smoothing,
sharpening, noise reduction, and edge detection (Fig.3.3) can directly manipulate pixel values
in their spatial coordinates. Moreover, various image properties, such as histogram, mean,
and variance, extracted from the spatial domain to perform further tasks such as image
segmentation or object detection.

Spatial Domain
Input Image

f(x,y)

Enhance

Spatial Filter
T[N(i,j)]

Spatial Domain
Enhanced Image

g(x,y) = T[f(x,y)]

N(i,j)

Fig. 3.3 Digital Image Processing in Spatial Domain. Example of image enhancement via
spatial processing.

Convolution Operation. It involves sliding a matrix (kernel) over each pixel and
its local neighbors in the image. Thus the kernel’s size and values determine the
transformation effect of the convolution operation, allowing various applications such
as sharpening, edge detection, and DL tasks such as classification or object detection.
With the proper padding and trimming operations, it produces a new image of the
same size as the input, where each pixel is a weighted sum of its neighboring pixels.
Mathematically, convolution is described as follows:

g(x,y) = w(x,y)∗ f (x,y) =
a

∑
δx=−a

b

∑
δy=−b

w(δx,δy) f (x−δx,y−δy) (3.2)

where g(x,y) is the output image at position (x,y), f (x,y) is the input image, w(x,y)
is the filter kernel at (x,y) positions. Every element of the filter kernel is considered
by −a ≤ δx ≤ a and −b ≤ δy ≤ b. The operator ∗ denotes convolution.



3.1 Fundamentals of Computer Vision in Light Microscopy 29

3.1.4 Digital Image in Frequency Domain

Digital images can be represented in the frequency domain through the Fourier transform.
Within this domain, spectral properties such as sharpness, contrast and texture can be
analyzed, hard to observe in spatial domain. Fourier transform depicts an image as a sum
of complex sinusoids with different frequencies and orientations. In the frequency domain,
high-frequency components correspond to edges and details in the spatial domain, while
low-frequency components represent smooth regions and gradual intensity changes.

f(x,y)

h(x,y)

g(x,y)

Fig. 3.4 Frecuency domain filtering operation: fourier transform, filter function and inverse
fourier trnasform.

Discrete Fourier Transform. Digital images are discrete, so their Fourier Transform
is also discrete. The 2D Discrete Fourier Transform (DFT) of an image f (x,y) of size
NxM is defined as:

F(u,v) =
N−1

∑
x=0

M−1

∑
y=0

f (x,y)e−i2π
ux
N + vy

M (3.3)

where F(u,v) is the frequency component at spatial coordinates (u,v) in the frequency
domain. f (x,y) is the pixel value at spatial coordinates (x,y) in the spatial domain.
Inverse Fourier Transform. The inverse Fourier Transform (IFT), illustrated in
Fig.3.4, it takes a signal from the frequency domain back to the original spatial domain.
For a two-dimensional grayscale image, the equation for the IFT is given by:

f (x,y) =
1

NM

N−1

∑
u=0

M−1

∑
v=0

F(u,v)ei2π
ux
N + vy

M (3.4)

where f (x,y) is the reconstructed pixel value at spatial coordinates (x,y) in the spatial
domain. N is the width of the image and M is the height.
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3.1.5 Neural Networks and Deep Learning

Neural networks (NNs) consist of interconnected nodes, forming an acyclic graph. These
connections have weights (θ ) and a bias, with an activation function transforming input
into decisions for hidden layers. Through multiple weighted hidden layers, data reaches the
output layer for a solution. If the solution is not satisfactory per loss function, errors trigger
θ updates using activation function gradients [64]. Furthermore, Convolutional Neural
Networks (CNNs) are a specialized type of NNs for training on multidimensional data [65],
which gained popularity since the AlexNet model outperformed ML-based models in 2012
ImageNet Large Scale Visual Recognition Challenge.
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Fig. 3.5 Different neural network architectures. (A) Fully Connected Neural Network (FNN)
where every node of each consecutive layer is connected. (B) Convolutional Neural Network
(CNN) which learns kernels that capture the key features to represent an image.

Deep Learning (DL) has revolutionized biology by automating tasks and integrating
complex data for reliable predictions [64]. Initially developed for computer vision, DL is
currently applied to bioimage analysis[66] tasks such as cell segmentation, detection or
classification (described in detail in Section.3.2). Its implementation benefits from high
variability of images from different phenotypes, imaging modalities and acquisition settings.
The use of Artificial Neural Networks (ANNs) in bioimage analysis dates to late 1980s, with
the popularization of back-propagation algorithm [67]. However, it was massively adopted
decades ago [68–70] for biomedical imaging, not for bioimage analysis until recent years [71–
73]. Additionaly, ML enables computers to learn from data without explicit programming
[74]. It includes supervised and unsupervised learning strategies. Supervised learning is the
task of learning a function that maps an input to an output based on sample input-output
pairs. It uses human-provided "ground truth" labels for model training, minimizing a loss
function evaluated on a testing set [75, 5]. Unsupervised learning, including clustering
and dimensionality reduction, and recently used in single-cell omics analysis [76], utilizes
unlabelled input data to uncover patterns without human-provided examples.
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The U-Net Revolution. U-Net [77, 78] is encoder-decoder initially developed for
biomedical image analysis (detailed in Fig.3.5 (B)), which has encoding levels in the
contracting path (encoder), a bottleneck and decoding levels in the expanding path
(decoder). It was presented in 2015 at the International Symposium on Biomedical
Imaging (ISBI). Since then, it has been extensively used for 2D and 3D cell segmenta-
tion becoming a powerful tool for bioimage analysis, whose effectiveness depends on
the quality and quantity of training data, and tuning of network architecture.

3.1.6 Key Image File Formats in Light Microscopy

Microscopy image file formats are specialized file formats used to store and exchange data
from various types of microscopes and manufacturers. The choice of proper microscopy
file format often depends on the microscopy system, the software employed for acquisition,
and the specific requirements of the analysis. It is important to consider the compatibility
and metadata capabilities of each format to effectively manage and analyze their microscopy
data. Fortunately, the open-source Bio-Formats [79, 80] library enables different formats
to be read by many software such as Fiji or QuPath, and can be installed as a plugin for
ImageJ. Even though it is written in Java, Bio-Formats can also be used within some Python
applications. It is capable of parsing pixels and metadata for various formats, and writing to
several formats.

File Format Description

.CZI (Carl Zeiss Image) Multidimensional,time lapse,Z-stacks,Multiposition experiments

.ZVI (Zeiss Vision Image) HR image, 3x16-bit color and 16-bit,metadata and settings.

.ND2 (Nikon NIS-Elements Data) Metadata, annotations, time series, channels

.LIF (Leica Image File) Multi-channels, metadata, time series, z-stacks

.SCN (Leica SCAN) Pyramidal tiled BigTIFF with non-standard metadata

.OIF (Olympus Image Format) Multi-file format including .tif,.bmp,.txt,.pty,.roi, .lut.

.OIB (Olympus Image Binary) Compound file, storing OIF and associated files within one file

.OME.TIFF (Open Microscopy Environment) Strengths of OME-XML (metadata) and TIFF (pixels).

.OME.ZARR (Open Microscopy Environment) File format for cloud reading and writing image

Table 3.1 List of chief Microscopy-Related File Formats used in bioimaging.
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3.2 Common Phases of a BioImage Processing and Analysis
Pipeline

Advances in microscopy and imaging have increased complexity and volume of biological
data, thus there is a growing need for sophisticated image analysis to automatically process
these large and complex data. In current bioimage analysis pipelines, classical and DL
algorithms synergize to extract meaningful quantitative information from biological images
[81]. Another core aspect are the user-customizable tools, which unveil intricate processes.
Also automation, since the amount of data generated by modern microscopes is staggering,
being manual analysis often impossible. Therefore, reaching automation from the simplest
batch processing to more complex routines, allows for handling large datasets efficiently.
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Fig. 3.6 Common Phases of a Bioimage Processing and Analysis Pipeline. Depending on the
biological issue or the required application, not all steps may be always followed

DL techniques revolutionize bioimage analysis for tasks such as segmentation, detection,
and classification [74]. Integrated correlated multi-modal imaging (CMI) provides a com-
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prehensive view of biological structures [82] from different microscopy modalities. Hence
dealing with data complexity demands efficient compression algorithms and standardization
efforts to address format and metadata heterogeneity (Bio-Formats and OME [79, 80]). Yet,
these challenges continue to reshape bioimage processing, with potential to revolutionize
biology.

3.2.1 Image Restoration: Deconvolution

In optical microscopy, deconvolution (schematically shown in Fig.3.7) is a computerized
inversion method to restore the original image from a blurred one. Deconvolution reduces
out-of-focus blurring and the effects of random noise [22] during the image formation,
compensating for microscope limitations. Deconvolution is highly effective in restoring 3D
fluorescence microscopy from various imaging modalities [40, 83]. There are a variety of
algorithms to perform deconvolution including: linear, iterative and blind methods. Linear
deconvolution is suitable when the blurring process is well-defined and the PSF is known.
Blind deconvolution is employed when neither the PSF nor the original image is known and
aims to estimate both simultaneously. Iterative deconvolution assumes a known PSF and
iteratively refines the image estimate using an optimization process to converge towards a
desired solution. The choice of method depends on the specific characteristics of the image
and the level of information available about the blurring process.
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Biological 
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Microscopy Image

Deconvolution
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Restored Microscopy 
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Imaging System

Fig. 3.7 Deconvolution operates by simulating the distortions that occur during imaging, and
eliminating those distortions to approximate the appearance of the original sample.

Current DL methods [84–86] are promising in restoring details and resolving biological
structures. CNNs create super-resolved images by training with many such pair of low-high
resolution images [87]. To invert the convolution in the spectral domain, we require the
spectrum of the denoised and degraded images, the noise spectrum ε , and the DFT of the
PSF, known as the modulation transfer function (MTF).
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F̂(u,v) = F(u,v)H(u,v)+ ε(u,v) (3.5)

Neglecting the noise (ε), the most straightforward deconvolution method for recovering
an initial (perfect) image from the degraded involves inverse filtering:

F̂(u,v)
H(u,v)

= F(u,v)+
E(u,v)
H(u,v)

→ F(u,v)≈ F̂(u,v)
H(u,v)

(3.6)

using 1/H(u,v) as an inverse filter to remove degradation encounters several problems:
indeterminate or infinite ratios due to zeros in the MTF and noisy data. Another
theoretically solution is the Wiener filtering [40, 22], which minimizes the expected
squared error between the restored and perfect images.

3.2.2 Preprocessing

Preprocessing is a crucial step in bioimage analysis, aiming to enhance image quality for
reliable feature extraction and further analysis. It involves actions such as noise removal,
geometric distortion correction and contrast enhancement, while preserving image details.
Despite deconvolution can handle blurring caused by unstable imaging conditions, hetero-
geneous samples and technical limitations of microscopy system, there are external factors
which can lead to image degradation, potentially biasing biological conclusions. Preprocess-
ing normalizes and standardizes image features, ensuring data consistency and comparability.
Current studies [88–90] strongly empathise the role of preprocessing when applying DL
algorithms in microscopy images, as they remove the effect of noise, thus improving the
efficiency of a model to generate accurate predictions. Accordingly, DL-based preprocesing
outperforms classical methods due to their ability to handle noise variability with higher
accuracy [91, 92]. However, choosing the appropriate the denoising method for a certain
application relies on different factors such as the type and level of noise, the available
computing resources, and the desired level of accuracy.

Image Denoising

Noise in fluorescence microscopy originates from limited resolution during acquisition,
uneven background, out-of-focus light or properties of the fluorescent samples. The main
noise sources are photon shot noise and detector noise. The measured signal xi in Analog-to-
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Digital Counts (ADC) can be represented as:

xi = aϕ(si)+ εi (3.7)

where ϕ(si) denotes the shot noise-affected signal, a is the photon-to-ADC conversion factor,
and εi represents detector noise.
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Fig. 3.8 Denoising and Image Restoration networks. Example of data generated using CARE,
DenoiSeg, Noise2Noise and Noise2Void networks. Input and associated ground truth images
used to train the network along with corresponding predictions are displayed.

Photon shot noise is related with randomness in photon emission and detection, being
higher when fluorescence signal is weak (less photons emitted). Fluorophores emit photons
stochastically, and the number of photons detected at a given time point follows a Poisson
distribution centered around the underlying signal si. Likewise, detector noise (εi) exhibits
a Gaussian distribution, it is inherent to electronics of imaging sensor and readout used
[93]. Denoising methods rely on mathematical and signal processing techniques to reduce
noise and restore the original signal. These approaches encounter challenges in preserving
smoothness, edge protection, texture maintenance, and artifact avoidance [94]. Classical
methods can be classified into linear filtering in which the output pixel value is a weighted
sum of the neighboring pixel values (gaussian smoothing, mean, sobel-operator and laplace
filter), non-linear filtering applying operations which can vary in a non-linear manner based
on the pixel values in the vicinity (min, max, median, std...). Frequency domain methods
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involve manipulating frequency components as noise mainly resides in the high-frequencies,
whereas image information is concentrated in the low-frequencies In this regard, the Wiener
filter uses previously known spectral properties of image and noise to estimate and reduce it,
and the butterworth filters are designed to pass or attenuate specific frequency components.
Moreover, the wavelet-based methods decomposes the image into different scales and de-
noising is performed by thresholding and shrinking wavelet coefficients in these sub-bands
[95]. Variational denoising formulates denoising as an optimization problem, incorporating a
data fidelity term measuring noise difference and a regularization term enforcing smoothness
[96, 97]. Finally, morphological methods (e.g., erosion, dilation...) can be used to reduce
noise in binary images, and the top-hat and bottom-hat transform which highlight and ex-
tract small, bright details or dark features in the image, respectively. Although classical
methods relying on theoretical knowledge of imaging systems to reach higher SNR[19], DL
approaches have shown higher performance directly learning from complex relationships
among noisy images and their corresponding ground truth [98]. Thus DL can be conceived
as a sophisticated mathematical function which maps a noisy image to its clean version [93].
However, a challenge in supervised DL is the requirement of training ground truth images
with minimal noise. DL methods such as CARE [99], DECODE [100], Noise2Noise [101],
Noise2Self [102], Noise2Void [92] and DenoiSeg [92] are described in detail in Fig.3.8.

Image Registration

This is the procedure of finding a spatial deformation to spatially match two images (2D or
3D) [103] from same sample acquired under different conditions, imaging modalities or over
time. Its goal is to find a function g(x) : R2 −→ R2 which maps coordinates from the target
image It onto the source image Is, so that Is(g(x)) (a warped version of the source image)
resembles It(x) as much as possible. There are two transformation models: rigid/affine and
non-rigid/elastic. The simplest one is the rigid model [104] characterized by translation
(x,y,z) and rotation (θ1,θ2,θ3) parameters and isotropic scaling (shown in Fig.3.9(B-D)).
Rigid model preserver distances within the image and parallel lines. On the contrary, when
more distortion is required such as shear (shown in Fig.3.9(E-F)), the transformation model is
affine (shown in Fig.3.9(G)) having three scaling and three shearing parameters, it preserves
parallel lines but not distances. Both rigid and affine models globally align pre-identified
landmark features. While they are relatively robust against local minima, they are accuracy-
limited due to local geometric difference is ignored [105].
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Fig. 3.9 Effect of Rigid and Non-Rigid Transformations. 2D Affine matrices contain 9 values,
6 relative to linear transformations of the X and Y coordinates. B-spline transformations
require a set of control points and knot points.

The mathematical expression of affine transformation can be expressed as:

Ta f f ine =

θ11 θ12 θ13

θ21 θ22 θ23

θ31 θ32 θ33


x

y
z

+

θ14

θ24

θ34

 (3.8)

Conversely, when the deformation goes in different directions and magnitudes across the
image, the transformation model is named elastic/non-rigid. This transformation model can
deal with more sophisticated deformation. These elastic approaches includes elastic/non-rigid
deformations such as thin-plate splines [106], which use a set of control points to estimate
the transformation and B-spline transformations [107, 108], which use a set of control points
and knot points to define a smooth deformation field.

In image registration, an objective function is defined to quantitatively assess the sim-
ilarity of two aligned images. This criterion can be: landmark-based, firstly requiring the
identification of corresponding homologous features as landmarks (points, lines, contours...)
to be then mapped to each other, giving rise to the transformation model of two images; and
intensity-based, which elastically align two images depending on intensity patterns [103].
For such, to optimize the objective function in a global o local manner, an optimization
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procedure is applied [105]. Hence the image registration is solved by iteratively searching
for the parameters θ of a transformation model T which transforms a source (moving) image
Is into the reference space of target (fixed) image It . The best alignment is decided based on
a distance measure d among the fixed and moving image. Registration can then be defined as
argθ mind(T (Is,θ), It).

Bidirectional Image Registration based on Elastic Deformations represented by B-
Splines Elastic deformation elastically simulate local deformations which can capture
non-linear distortions and warping in the image. This approach warps local geometric
features of a Is (moving) for alignment with a It (fixed) image. Unlike rigid transformations,
it can capture non-linear distortions, and it could be based on either a dense non-parametric
model or a parameterized function model. In this regard, B-splines are piece-wise polynomial
functions typically used to model both global and local deformation[107]. Since the B-
spline is controlled locally, it is computationally efficient with many control points due
to the following mathematical property: modifying a control point only affects its local
neighborhood[109]. Moreover, b-splines are extremely useful to model the deformation field
as they can be considered as a set of several functions (one per coordinate) which in turn
are modeled by linear sum of weighted and shifted B-splines. The set of weights, which
are called the B-spline coefficients, fully characterize the transformation. A deformation
model based on B-splines is very versatile and can generate a large variety of nonlinear
elastic deformations, while remaining easy to handle[107]. Thus elastic and consistent image
registration based on B-splines becomes more and more popular since its superiority in
the transparency, applicability, as it high smoothness and continuous transformation with
high topology preservation[109]. The "direct" transformation (from Is to It) is performed,
in which Is is elastically deformed to look as similar as possible to It , while simultaneously,
the "inverse" transformation (from It to Is) is also being computed. Therefore, a pseudo-
invertibility of the final deformation is provided. By reducing the likelihood of being
trapped in a local minimum, this approach enhances the registration process and allows
for simultaneous registration of any number of images. The idea of elastic registration
using vector-spline regularization [107] is known as consistent registration [110]. With
this algorithm the energy functional presented in [107] is extended into a new functional
which incorporates a factor of the deformation field consistency. Furthermore, it simplifies
the search for the optimum deformation and allows registering with no information about
landmarks or deformation regularization[111].
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Fig. 3.10 (A) Bidirectional image registration based on elastic deformations represented by
B-splines. Deformation Estimation from Image Registration based on Elastic Deformations
represented by B-Splines. (B) A warped version of the source image (Is(g(x))) resembles
It(x) as much as possible.

The algorithm relies on minimizing an energy functional, consisting of components:
the dissimilarity between the source and target images in both directions (Eimg),
the optional landmark constraint (Eµ), a regularization term encompassing both
divergence and rotation (Ediv +Erot), and an energy term (Econs) representing the
geometric consistency between bidirectional elastic deformation (from Is to It and
from It to Is). As a result, the energy function now comprises four terms, as follows:

E = wiEimg +wµEµ +(wdEdiv +wrErot)+wcEcons (3.9)

where wc is the specific weight given to the new consistency term.

Similarly, the deformation field is defined as a linear combination of B-splines by follow-
ing:

g(x) = g(x,y) = (g1(x,y),g2(x,y)) = ∑
k,l∈Z2

(
c1,k,l

c2,k,l

)
β

3(
x
sx

− k)β 3(
y
sy

− l) (3.10)

where sx and sy are scalars (sampling steps) controlling the degree of detail of the representa-
tion of the deformation field.

The algorithm implemented in Paper III (detailed in Apendix C) provides invertible
deformation field as it extends unidirectional registration to bidirectional by performing
a simultaneous registration of two images in a single computation (as shown in Fig.3.10
(A-B)).
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3.2.3 Object Detection and Image Segmentation

A common strategy for object detection relies on considering objects as clusters of bright
pixels. One method is to search the local maxima, pixels with higher intensity than neighbors,
to identify objects as peaks. Noise leads to false detections and challenges detection strategy,
but tools such as ImageJ detect local maxima by considering a pixel as a local maximum if
none of its eight neighboring pixels have a higher intensity [112]. The Laplacian of Gaussian
(LoG) filter (detailed described in Fig.3.11), yields precise and robust results. It is sensitive to
bright and roundish objects of a specific size, less affected by noise. To enhance detection, the
LoG-filtered image intensity can be used as a quality metric in which thresholding removes
undesired peaks. Software packages such as FeatureJ, SpotTracker, and TrackMate offer
LoG-based peak detection [113–115]. Furthermore, fitting approaches are key for object
detection when objects lack clear/crisp features or match fitting functions [116]. Image
processing simplifies complex raw images into intermediate images with reduced content,
suitable for fitting. A cell detection method clusters pixels into supervoxels before Gaussian
mixture fitting [117].

-

--

-

Laplacian Filter Gaussian Filter

LoG Filter

Blob 
Detection 
by using 
LoG Filter

Fig. 3.11 Laplacian of Gaussian (LoG) Filter. Input Image needs to be smoothed (by
convolution with the Gaussian filter) then, the smoothed image needs to be convolved with
the 3x3 Laplacian filter to obtain the output image.

Image segmentation is crucial as it splits images into foreground and background. It
enables further bioimage analysis tasks such as object counting, distribution, shape, recog-
nition, tracking, or region removal [118]. Super-resolution fluorescence microscopy and
computer vision have enhanced accuracy and efficiency of cell segmentation, since it plays a
crucial role, enabling analysis of cell count, type, division, and shape [119]. Segmentation
methods include semantic segmentation (Fig.3.12(B)), which classifies each pixel into a
specific category or class, allowing for the identification of objects and regions based on their
semantic meaning. Also, instance segmentation (Fig.3.12(C)), which not only categorizes
pixels into object classes but also distinguishing individual instances of objects within the
same class, enabling unique identification of each object instance. In this regard, Otsu’s
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method [120] is a typical approach for segmentation in biology, which uses gray threshold to
separate foreground and background pixels by minimizing intra-class variance [121].

Instance
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Semantic
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Target 
Image

A B C

Fig. 3.12 Graphical representation of differences among (B) semantic segmentation and (C)
instance segmentation.

Classic segmentation algorithms emphasized gray-level similarity within regions and
discontinuity among regions. Color image segmentation identifies similar pixels and merges
regions [122]. Software such as ImageJ, CellProfiler, CellCognition automate [123]these
steps. Moreover, automated thresholding algorithms reduce shape errors by using image
content to determine thresholds. Morphological operations (dilation, erosion, closing, open-
ing) clean nosiy masks and smooth contours while maintaining size [124–126]. Watershed
approach divides images into catchment basins based on markers but over-segments non-
round/elongated objects [127]. Complex algorithms such as deformable contours (snakes
or level sets) iteratively adjust an initial contour to outline object boundaries using partial-
deritvative equations and shape constraints. Fiji and Icy implement plugins for deformable
contours: E-Snake [128] for Fiji, and various plugins for Icy [129–131]. ML-based seg-
mentation tools, such as Trainable Weka Segmentation utilizes the Weka toolbox [132, 133].
Icy’s Rapid Learning plugin employs RapidMiner, and Texture Segmentation combines color
and texture features. ML methods such as clustering groups similar pixels in images, Pixels
in an M×N image are represented as vectors P = (x,y, I(x,y)), with (x,y) as pixel locations
and I(x,y) as feature vectors. On the other hand, template matching assigns a class to each
pixel by finding the most similar template based on pixel values. The distance ||I(x,y)− rc,k||
is evaluated, where I(x,y) is the pixel value and rc,k is a template for class c. The recognition
result is the class c with the minimum distance [134].

DL-based methods have revolutionized object detection and segmentation. U-Net,
adapted for instance segmentation, predicts cell interiors, edges, and background effectively.
Mask R-CNN [135] and and you-only-look-once (YOLO) [136] adaptations succeeded in
nuclei segmentation and detection, respectively [137]. Building upon U-Net, StarDist [138]
improves nuclei segmentation by predicting star-convex contours, aiding overlapping nuclei
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separation in 2D/3D images. SplineDist [139] extends this to segment more complex shapes.
Benchmark datasets, such as the 2018 Kaggle Data Science Bowl dataset [140], advances
2D nuclei segmentation. However, cell membrane segmentation is tougher due to varied
cell morphology, lacking benchmarking datasets. To overcome these challenges, Cellpose
[141] uses U-net models trained on vast microscopy datasets, predicting spatial gradients for
2D/3D data [142, 143].
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Fig. 3.13 Object Detection and Segmentaion Networks. (A) Examples of using Zero-
CostDL4Mic YOLOv2 notebook to detect and identify cell shape classification from cell
migration bright-field time-lapse dataset. (B) Examples of using U-Net, CellPose and Stardist
networks for instance cell segmentation.

3.2.4 Feature Extraction

Since the early 1960s, advanced computing enables automated feature extraction [144].
Before image classification, relevant features are extracted from biological images [145],
crucial for describing pixels, voxels, and higher-level objects. Feature extraction captures
meaningful information representing specific image patterns, applied to cells, sub-cellular
structures, or tissue regions [146]. Examples (details in Table.3.2) encompass cellular
morphology, organelle structures, and intracellular biomolecule levels [146]. Intensity-based
features quantify intensity regularity within regions, offering insights into distribution and
patterns. These metrics are computed from histograms [147].
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Feature Type Mathematical Definition

Mean;Variance Intensity µ = ∑ I(i, j)
N ; σ2 = ∑(I(i, j)−µ)2

N

Skewness;Kurtosis Intensity SK = ∑(x−X)3

(n−1)SD3 KT = ∑(x−X)4

(n−1)SD4

Haralick Features Intensity

Gabor Filters Intensity g(x,y;λ ,θ ,ψ,σ ,γ) = exp(−x
′2+γ2y

′2

2σ2 ).cos(2πx
′

λ
+ψ)

Area;Perimeter Shape AO = ∑(x,y)∃O B(x,y); P = A−Aeroded

Circularity;Eccentricity Shape C = 4π.A
P2 =; E =

√
1− LMinor

LMa jor

Aspect Ratio;Solidity Shape AR =
LMa jor
LMinor

; S = AO
Aconvexhull

Ferret Diameter Shape FD = maxθ [maxp∃P(p.cos(θ))−minp∃P(p.cos(θ))]

LBP GLCM Texture
Wavelet-based Features Texture WF = ∑

N
n=1 ∑

W
i=1 ∑

H
j=1 |DWT (i, j,n)|p

SGLD Texture 7

Table 3.2 Intensity, shape and texture based features together with corresponding math
equations.

In addition, texture features assess intensity regularity, capturing properties such as
smoothness or roughness [148]. Gray Level Co-occurrence Matrices (GLCM) define tex-
ture via statistical pixel pair relationships at specific distances and angles [149]. Local
binary patterns (LBP) extract local contrast and texture features such as uniformity, contrast,
and entropy [148]. Densitometric features, from Spatial Gray Level Dependence matrix
(SGLD), include entropy, energy, and correlation [150, 151]. Shape features quantify area
and geometric features (Ferret diameter, eccentricity...) [152]. These features are vital in
cell classification, cancer diagnosis, or tissue characterization, revealing abnormalities, and
understanding biological processes. Skeletonization reduces an object to its thinnest repre-
sentation, preserving topology, and extracts branch points, end points, and branch lengths to
evaluate connectivity [111]. Spatial features include distance metrics (nearest and farthest
neighbors) and spatial moments indicating pixel intensity distribution relative to position,
size, and orientation. Examples are the center of mass, a weighted average of pixel intensities
and coordinates, and centroid, an arithmetic mean of pixel coordinates, provide more robust
object location [153].

3.2.5 Feature Selection and Classification

Image classification is a fundamental task in computer vision consequently, in bioimage
analysis, assigns images to predefined classes using distinctive features. It involves dividing
data into training to define classification rules and testing subsets to evaluate performance. To
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enhance efficiency, feature selection identifies most informative features, by simultaneously
eliminating irrelevant, reducing data dimensionality and improving classifier performance.
In the past, assigning objects to specific pre-defined categories was tackled through the
extraction of manually-engineered features, it was time-consuming and biased. Nowadays,
these features, along with predefined class labels, are used to train ML classifiers as k-nearest
neighbors (KNN), support vector machines (SVM), random forests (RF), and decision trees
(DT). Non-parametric algorithms such as KNN, predicts based on similarity of new instances
to labeled instances. SVMs maximize class separation in high-dimensional data. Also,
RF combines decision multiple decision trees trained on random sets of data for improved
generalization, while DTs partition feature space and learn decision rules for class prediction
[154, 146]. DL excels in image classification, surpassing traditional methods in accuracy
and efficiency. Some use DL for embryo quality assessment based on Google’s Inception-V1
architecture [155], others for assessing microscopy focus quality regardless the miscroscopist
[156]. Lastly, DL showed higher performance in cell classification, sub-cellular pattern
recognition [157], protein localization from yeast and humans [158, 159]. Yet, recent
evaluations suggest DL does not always outperform classical methods [160], attributed to
limited training data, which transfer learning can mitigate [98]. Furthermore, image classifier
evaluation is crucial for performance assessment. Metrics such as accuracy, precision, recall,
F1-score, and ROC curves measure effectiveness.

3.2.6 Common Analyses in BioImage Analysis

Cell-Type Analysis

In single-cell data analysis, a typical procedure involves the annotation of cells according to
their phenotype., especially in high-throughput experiments [161, 146]. Recent advancements
have facilitated the evaluation of treatment conditions, enabling the systematic assessment
of cell morphologies. Therefore, assessing the impact of treatments involves measuring
numerous morphological features and comparing changes between conditions [162]. Cell-
Type analysis involves the automatic or semi-automatic identification and categorization
of cells based on their morphological, structural, or functional characteristics observed in
microscopic images. Cell-Type identification has diverse applications in various fields of
life sciences, including cancer diagnosis, neuroscience, drug discover, stem cell research
or immunology. [163, 144]. Defining cell-types was typically subjective and relied on
manual annotations, where experts visually examined images and manually measured specific
features. This approach was time-consuming, subjective, and limited in scalability. Prior
to cell-type analysis, acquired images often undergo preprocessing steps to enhance the
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visibility of cell structures. Then cell segmentation is a critical step where single cells
are delineated from the background and adjacent cells. Subsequently, relevant features
are extracted. These features can include shape descriptors (area, perimeter, aspect ratio,
roundness...), texture analysis, intensity statistics, spatial measurements (spatial distribution,
relationships among cells and their neighbourhood...), or temporal features (cell migration,
cell dynamics...). However, selecting appropriate features and handcrafting them for different
cell types is still challenging. Decades ago, this process aimed to assign specific labels
or annotations to cells, by utilizing specific biomarkers or proteins expressed by cells to
identify their type or state. In recent years, DL approaches have shown significant promise
in overcoming cellular heterogeneity, varying cell shapes and sizes, overlapping cells, and
complex cell structures. Specifically, ML supervised algorithms, allow for training classifiers
using the information contained in the pre-defined markers to detect cells of interest. Once
cell features are extracted, classification algorithms are employed to categorize cells into
different predefined classes. Unsupervised techniques, such as clustering are used to identify
natural groupings cells based on their features (similarity in marker expression or by their
proximity in low dimensional space) without prior class labels.

Grouping Cells by Clustering Cell Phenotype Maximum Probability

A B

Fig. 3.14 Example of cell type analysis by using unsupervised clustering approach. (A)
Expression thresholding of sixteen clusters or cell types. (B) Distribution of maximum
probabilities, each cell is assigned to the class with highest probability.

The approach presented in Paper I (detailed in Appendix A) provides a semi-automated
solution to carry-out cell-type analysis and further user-customizable classification,
easily implementable in most of light microscopy facilities’ daily routines.

Colocalization Analysis

Fluorescence microscopy aids in studying spatial arrangements and protein interactions
through colocalization analysis, revealing cellular functions and mechanisms [164]. However,
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it is not suitable for molecular interactions at super-resolution light microscopy (∼ 70˘90nm).
Colocalization is best for determining if two molecules/proteins associate with the same
structures, subnuclear structures, or membrane domains, though fluorescence overlap does
not guarantee it due to resolution limits. It is assessed visually, quantitatively, and statistically
using co-occurrence (spatial overlap of probes) and correlation (distribution within/among
structures), but careful method selection is crucial for proper analysis [165].

Methods to Quantify Colocalization Colocalization measures distribution of two molecules,
capturing co-occurrence and correlation. Co-occurrence checks molecule presence together,
while correlation measures similarity in concentration variation [166]. Pixel-wise colocal-
ization compares pixel intensity among two channels, generating a scatterplot. Correlation
degree is quantified by a coefficient. However, in super-resolution microscopy, pixel-wise
matching struggles to demonstrate positive spatial correlation due to enhanced resolution
causing limited overlap in closely correlated proteins. Therefore, image resolution and scale
impact on results and interpretation.

Not 
Colocalized
Overlapping 

Nearest Neigbor Ripley’s K Function

Not 
Colocalized

Colocalized
Overlapping 

Object-based ColocalizationPixel-Wise Colocalization Cross-Correlation Colocalization

Colocalized

A B C

Fig. 3.15 Common methods to quantify colocalization. (A) Pixel-Wise Methods. (B) Cross-
Correlation Methods and (C) Object-based Colocalization of Single-Molecule Localization
Microscopy.

Pixel-Wise Colocalization Method Mathematical Definition

Pearson Correlation Coefficient(PCC) PCC = ∑i(Ri−R).(Gi−G)√
∑i(Ri−R)2.∑i(Gi−G)2

Mander’s Overlap Coefficient(MOC) MOC = ∑i(Ri.Gi)√
∑i R2

i .∑i G2
i

Colocalization Coefficients m1,m2 m1 =
∑i Ri,colocal

∑i Ri
, m2 =

∑i Gi,colocal
∑i Gi

Mander’s Colocalization Coefficients (MCC) M1,M2 M1 =
∑i Ri,colocal

∑i Ri
, M2 =

∑i Gi,colocal
∑i Gi

Overlap Coefficients k1,k2 k1 =
∑i Ri.Gi
∑i(Ri)2 , k2 =

∑i Ri.Gi
∑i(Gi)2

Table 3.3 Mathematical definition of common pixel-wise methods to evaluate colocalization.
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Pixel-Wise Colocalization Methods. Illustrated in Fig.3.15(A). Quantifying dual-color
image correlation uses coefficients such as Pearson Correlation Coefficient (PCC) and
Mander’s Overlap Coefficient (MOC) (Table 3.3). PCC measures linear association, while
MOC improves PCC by considering mean intensity variations [167, 168]. m1 and m2

show channel impact, both 1 means perfect colocalization. MCC notes pixel of interest
contribution [169]. k1 and k2 split colocalization into two parameters, discerning each antigen
contribution.

Colocalization by Cross Correlation Function. Intensity-based colocalization often uses
Cross-correlation function (CCF) to assess channel correlation. CCF has two colocaliza-
tion approaches: spatial and temporal. Spatial checks distance-based CCF for providing
information about spatial overlap of molecules or proteins. It needs specific imaging, where
one channel is shifted relative to the other, generating correlation curve as a function of
distance. This method can detect spatial relationships even without signal overlap, great
for super-resolution, but computationally intensive. Conversely, temporal uses time-based
CCF, tracking fluorescence changes for molecular interaction info over time. This method
needs time-lapse, not available for single-frame or fixed samples. This bunch of methods are
illustrated in Fig.3.15(B).

Object-based Colocalization Method Mathematical Definition

Coordinate-based Colocalization Dxi,x(r) =
Nxi,x(r)

Nxi,x(Rmax)
.

R2
max
r2 and Dxi,y(r) =

Nxi,y(r)
Nxi,y(Rmax)

.
R2

max
r2

Ripley’s K-Function Ki j(r) = A
NiN j

∑
Ni
i=1 ∑

N j
j=1

I(di j<r)
wi j

Table 3.4 Mathematical definition of common object-based methods to evaluate colocaliza-
tion.

Object-based Colocalization of Single-Molecule Localization Microscopy (SML). Spatial
statistics in SML microscopy quantify molecular associations without spatial overlap [170].
Malkusch et al. [171], introduced a coordinate-based colocalization, calculating two functions
(Nxi,x(r) and Nxi,y(r), Table 3.4). The first counts x molecules (channel 1) within radius r of
a given localizationxi. The second counts y molecules (channel 2) within same radius r and
maximum distance Rmax. These functions assign correlation to each molecule in SML image,
reflecting spatial association among two molecules. Ripley’s K-function [172] is a key tool,
measuring interaction distance between two molecules. In this context, A is imaging area, Ni

and N j are molecules localized in each channel, I(di j < r) is 1 if di j < r, 0 otherwise. This
bunch of methods are illustrated in Fig.3.15(C).
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Insights into Tracking Analysis

In recent years, image recording and storage have enhanced experiments, enabling obser-
vation of cellular activities and aiding biological applications. Microscopes play a crucial
role in visualizing these time-lapse images and tracking objects over time. Various methods
and tools, employing advanced algorithms and deep learning, have been developed for single
particle tracking (SPT), finding broad applications in stem cell viability, cell dynamics, and
trajectory tracking.

Methods for Single Particle Tracking Jaqaman et al. [173] developed an algorithm
for linking segmented particles over frames using a linear assignment problem (described
in detail in Section 3.2.6). Yang et al. [174] proposed a probability-based framework
with foreground and background markers for particle detection and a multiple mode filter
for motion modeling. Meijering et al. [74] emphasized the challenges in detecting and
tracking small particles in microscopy images and the need for global linking strategies.
Various tools have been proposed for single particle tracking (SPT), including ClusterTrack,
ManualTracking, MTrackJ, Mtrack2, and U-track. Vallotton et al. [175] introduced Tri-
track, a software which simplifies SPT tasks using a graph structure. Chenouard et al.
[176] proposed a Bayesian model and multiple hypothesis tracking algorithm for SPT in
microscopy images. Shuang et al. [177] discussed the difficulties in quantitative analysis of
SPT data and the need for faster and more reliable approaches, including GPU acceleration.
Liang et al. [178] presented a SPT method for managing trajectories, solving data association
problems, and handling pseudo-split/merged particles. Chenouard et al. [179] organized
a competition to compare SPT algorithms and ML models, highlighting the benefits of
multi-frame and multi-track optimization schemes. Jaiswal et al. [180] proposed an SPT
approach based on multi-scale detection and two-step multi-frame association. Smal et al.
[181] compared data association techniques for SPT, finding that multi-frame techniques
generally outperform two-frame techniques. Furthermore, Tinevez et al. [115] developed
TrackMate, an open-source tool for SPT with a user-friendly interface, allowing developers
to create their own algorithms.

In the pre-DL era, the first international competition for tracking methods sparked the idea
of DL-based methods [179]. Tracking still presents some challenges regarding cell stages
which are being overcome by the successful incorporation of DL [182]. DL models have been
trained to classify cell cycle stages and identify cell state trajectories from single-cell data
[183]. While DL approaches show promise in cell division, classical ML methods trained
with smaller datasets remain a competitive alternative in cell identification [184]. Efforts have
been made to train DL models which utilize information from surrounding frames to identify
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cell matching pairs [98], and simulations have been used to build large training sets with less
human intervention [185]. Tools such as DeepLabCut enable automated tracking of points
on organisms with minimal manual annotations [186]. Despite progress in DL-based SPT,
the challenge lies in creating end-to-end solutions [187]. Platforms like ZeroCostDL4Mic
[188] provide accessible DL models for tracking, with compatibility to existing tools such as
TrackMate [115] compatible with DL segmentation models.
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Fig. 3.16 Workflow to perform SPT and subsequent analysis of diffusion for motion clas-
sification. (A) After Acquisition of time-lapse data sets. (B) Localization, detection and
identification of single particles over time. (C) Single particles are linked to build trajectories
and features extracted. (D) Resulting trajectories are characterized and the type of motion
evaluated by applying quantitative analysis of diffusion, MSD and MSS slope.

Solving Particle Tracking as Linear Assignment Problem The linear assignment prob-
lem (LAP) is a fundamental task in SPT analysis (showed in Fig. 3.17), aiming to establish
correspondences among particles detected in consecutive frames. The LAP problem can
be formulated as follows: Given a set of particles detected in frame t and another set of
particles detected in frame t +1, the task is to find the most likely matching pairs of particles
over frames which minimize a specific cost metric. The Jaqaman approach [173] is a widely
used for solving the LAP problem. Hence it introduces the tracking analysis by tackling
the primary challenges faced in SPT: high particle density, particle motion heterogeneity,
temporary particle disappearance and particle merging/splitting.

The LAP algorithm addresses these challenges by linking particles among consecutive
frames and linking resulting track segments to form complete trajectories. Both steps involve
solving global combinatorial optimization problems, which determine the most probable set
of particle trajectories throughout the entire sequence. SPT goes beyond particle detection
and localization; it focuses on establishing correspondence between particle in a sequence
of frames. In Multiple-Hypothesis Tracking (MHT), all possible particle paths within the
expected behavior bounds are constructed based on the given particle positions in each frame.
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Fig. 3.17 Tracking particles through spatially and temporally global assignments involves the
following steps. (A) Creating tracks from an image sequence involves detecting particles in
each frame (step 0), linking particles across consecutive frames (step 1), and subsequently
closing gaps while capturing merging and splitting events among the initial track segments
(step 2). (B) A cost matrix is used to manage particle assignments between frames. (C)
Another cost matrix is used to oversee the process of closing gaps, merging, and splitting.

The solution involves selecting the largest set of paths without conflicts, ensuring global
optimally in both space and time. Nevertheless, this approach is computationally demanding.
In the LAP framework, each potential assignment (partial assignment in the first step and
track segment assignment in the second step) is assigned a cost C. The goal of solving the
LAP in each step is to identify the combination of assignments with the minimum sum of
costs. To handle cases with missing or false detections, the Jaqaman approach incorporates
gap closing, merging, and splitting steps where six potential assignments were in competition:

Type of Event Description

Gap closing g Link the end of one track segment to the start of another
Merge m Link the end of one track segment to a middle point of another
Split s Link the start of one track segment to a middle point of another
Termination d End of a track segment does not link to anything
Initiation b Start of a track segment does not link to anything
NOT merge or split d′ and b′ Middle points introduced for merging and splitting do not link to anything

Table 3.5 List of potential assignments in competition through linear assignment problem in
the Jaqaman approach.

The LAP framework is independent to dimensionality and particle motion types. It is also
not dependent on the physical nature of the particle (single molecule, molecular assembly, or
organelle), except for the choice of a suitable particle-detection method. However, the cost
function needs to be customized for each specific tracking application.
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Trajectory Classification based on Motion Type

Understanding the motion behavior of particles within cells is essential for unraveling cell
processes and protein cell entry mechanisms. Thus single particle needs to be imaged and
their trajectories reconstructed to gain insights into cellular dynamics, migration patterns and
interactions. Motion classification offers a powerful approach to categorize different types of
particle motion, while provides information about their underlying biology in heterogeneous
environments. The diffusion characteristics of trajectories can unravel distinctive motion
patterns, and depending on it, particle movements can be categorized into four basic motion
types [189]: free diffusion, anomalous diffusion, confined diffusion and directed motion. Free
diffusion occurs when particle movements are totally unrestricted, whereas directed diffusion
is an active process which can become evident when small corpuscles are transported by
molecular machines along micro-tubules [190]. Confined diffusion is observable for trapped
particles or particles whose free diffusion is confined by cytoskeletal elements [191]. On the
other hand, anomalous diffusion is commonly traced back to the macromolecular crowding
in the interior of cells, but its precise nature is still under discussion [192].
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Fig. 3.18 Motion Type Classification of Trajectories. (A) After SPT, trajectories are recon-
structed. (B) Trajectory features are computed. (C) MSD of each particle is computed. (D)
MSD curve fitted through data follows one of these models, α is computed to disclose motion
type for Brownian motion. (E) Motion Classification

A trajectory represents the number of N consecutive 2D positions of a particle r j = (x j,y j)

recorded with a constant time interval ∆t over a period of time T = (N −1)∆t. A change
in position from x j to x j+1 is called a step, whose length is defined as the euclidian norm
|x j −x j+1|. A subtrajectory is a part of a trajectory. The mean squared displacement (MSD)
provides valuable insights into the characteristic diffusion behavior exhibited by the particles.
The MSD of the particle j with time lag n∆t is mathematically described as:
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MSD j(n∆t) =
1

N j −n

N j−n

∑
n′=1

∥r j((n′+n)∆t)− r j(n′∆t)∥2 n = 1,2, ...N −1 (3.11)

where r j(n′∆t) is the 2D location of the j-th particle at time n′∆t, and N j is the length of the
j-th trajectory in frames.

For a specific motion type, the MSD curve fitted through the data points should theoreti-
cally follow one of these models described in Table.3.6, where D is the diffusion coefficient,
the anomalous exponent (α < 1), ν is the velocity, rc is the radius of the confinement and
and A1,A2 the shape constants. Then the shape of their MSD underlies the motion dynamics
and captures the specific diffusion patterns displayed by particles.

Diffusion Type Mathematical Description

Normal Diffusion (ND) MSD(n∆t) = 4Dn∆t
Directed Motion with diffusion (DM) MSD(n∆t) = 4Dn∆t +(νn∆t)2

Confined Diffusion (CD) MSD(n∆t)≃ MSD(n∆t)c[1−A1exp(−4A2Dn∆t/MSD(n∆t)c)]
Anomalous Diffusion (AD) MSD(n∆t) = 4D(n∆t)α

Table 3.6 Motion Models characterised by the shape of their MSD curve.

The anomalous exponent (α) is the exponent of the model given by AnomalousDi f ussion
(Table.3.6) fitted to the MSD values estimate by Eq.3.11 by power law. It shows values α ≈ 1
for ND (Brownian motion). However, trajectories showing subdiffusion (α < 1) indicate CD
(0 < α < 0.6) or AD, while those having superdiffusion behaviour (α > 1) indicate DM (α >
1.1). On the other hand, the moment scaling spectrum (MSS) [193] and its slope (SMSS) was
proposed as an approach to improve the calculation of MSD for non-linear diffusion. For
each trajectory j the moments of displacement (µ j,ν) were calculated for ν = 1, ...,6 as a
function of time according to:

µ j,ν(n∆t) =
1

N j −n

N j−n−1

∑
n′=0

∥r j((n′+n)∆t)− r j(n′∆t)∥ν (3.12)

The MSS is just a special case of MSD with ν = 2. In our implementation, we calculate all
moments from ν = 1 to ν = 6 for each trajectory by plotting (µ j,ν) against n∆t in a double
logarithmic plot, getting the scaling moments γ j,ν from assuming each moment µ depends on
the time shift according to µν(n∆)∼ n∆tγµ [194, 193]. Therefore plotting γν against ν gives
the moment scaling spectrum (MSS) and its slope (SMSS) from linear regression discloses the
type of motion [195]: free (SMSS = 0.5), directed (SMSS>0.5), immobile (SMSS < 0.5).
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The method presented in Paper II (detailed in Appendix B) provides a toolbox for
holistic single particle tracking and further user-customizable analysis of tracks.

3.3 Exploring Automated Solutions for BioImage Analysis
Pipelines

Automation in bioimage analysis uses computational algorithms, workflows and tools to
streamline and simplify the analysis of images. It automates repetitive tasks, reducing manual
labor, enhancing efficiency and improving reproducibility. Hence automation reduces human
error, enables high-throughput analysis of large datasets and provides valuable information
from complex biological images in a efficiently reproducible manner. Biologists can focus
on interpretation and discoveries while saving time and effort. Workflow automation tools
offer batch processing, parallel computing and integration with other software and databases
for systematic, automated analysis, resource utilization along with seamless integration with
other scientific tools and data management systems.

This section proposes diverse solutions for handling large and multi-dimensional mi-
croscopy images. It covers challenges and consequences of real-time processing in bioimage
approaches. Additionally, the concept of open source software is discussed, along with
common open source platforms for bioimage analysis.

3.3.1 Dealing with Large and Multi-Dimensional Image Datasets

Recent microscopy advancements enable large volumetric data, posing computational chal-
lenges due to scalability and storage limits. This can lead to time-consuming processing
and inefficiency in terms of memory accessibility, as data going unprocessed [196]. To
address this, automatic approaches streamline image processing and enable efficient handling
of large-scale data, by combining storage infrastructure, computational resources, efficient
algorithms and automation tools. Moreover, implementing pre-processing operations, such as
downsampling or compression, reduces size while preserving key features [90], and decreas-
ing computational demands. Lossy compression also reduces storage needs with minimal
information loss whereas, batch processing optimizes resource use and efficient analysis of
large datasets with multiple image processing steps. Various platforms (e.g.,CellProfiler,
KNIME or Fiji), cloud-based workflow management systems and High-Performance are
readily available. ELIXIR [197] coordinates national resources for databases, software
tools, cloud storage, high performance computing (HPC) and training. Notebooks such
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as CodeOcean or Jupyter offer cloud computing and HPC access but lack comprehensive
workflow management [198]. These platforms automate data processing, analysis and result
generation, ensuring reproducibility, reduced manual intervention by increased productivity.
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Fig. 3.19 (A) EOSC-Life collaboration integrates CellProfiler into Galaxy Project: Automated
workflow by data access (IDR and human protein atlas download), Segmentation and Feature
Extraction (19 galaxy tools intregating 22 CellProfiler modules) and Interactive Notebook
for downstream Biological analysis (Jupyther and R); (B)

Integrating them into scientific workflow management systems (SWMS) [199] such as
Galaxy [200], Nextflow [201], or BIAFLOWS [202] enables comprehensive data integration
and execution of complex analysis on large datasets for reproducibility and interoperability
with different software. Indeed the integration of CellProfiler modules into Galaxy allows
to efficiently handle large datasets in cloud workflows, enabling semi-automated imaging
analysis for faster results. This aligns with the EOSC-Life mission, promoting data man-
agement, storage, and reuse in the cloud for data-driven research in the life sciences [198].
Additionally, parallel processing [203] can distribute computational workloads across multi-
ple processors or computing resources for efficient handling of computationally intensive
tasks on large multi-dimensional datasets. Utilizing parallel computing architectures such as
multi-core CPUs and GPUs, or libraries like CLIJ [204], enables creating GPU-accelerated
workflows for faster image processing compared to existing acceleration techniques such
as ImageJ’s batch mode. Furthermore, large multi-dimensional data demand robust storage
infrastructure for efficient handling of data volume, retrieval and access. Cloud platforms
such as Amazon Web Services (AWS) or Google Cloud Platform (GCP) provide scalable and
on-demand computing resources, enabling flexible storage and processing without significant
upfront infrastructure investment. Scalable solutions such as network-attached storage (NAS)
enable seamless data transfer from microscope-connected computers to analysis workstations,
eliminating the need for external hard drives or remote cloud-based storage.
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3.3.2 Real-Time Processing for BioImage Analysis

Real-time processing is an emerging field with numerous applications [205]. It plays a
crucial role in rapid decision-making scenarios, such as tumor identification [206–209],
traffic monitoring [210, 211], facial recognition, assessing plant health [212, 213], or remote
sensing [214–216]. Real-time applications continuously interact with the environment
they are designed to control. These applications receive input from it, processing input,
reacting to changes, and generating appropriate outputs or altering their internal state [205].
Within bioimage analysis, it implies processing images in real-time or near it, typically
completing the processing before acquiring the next image. In microscopy, it can be referred
to process images on-the-fly as they are being acquired by the microscope in near-real-time,
without storing the dataset or causing time processing delays. This approach enables rapid
feedback, critical for live cell imaging and high-throughput screening, reducing human
influence and saving time for post-processing. Real-time techniques have been applied in
cryo-EM [217, 218] for movie alignment, CTF stimation and particle picking. In optical
microscopy [219], used by including ML supervised algorithm for cell counting and label-free
classification. Another study [220] presents a self-supervised DL-based model for real-time
denoising on a two-photon microscope, achieving high-sensitivity fluorescence imaging.
Real-time image processing requires specialized hardware and software to handle large
data volumes from current microscopy systems. Specialized hardware, such as GPUs, can
parallelize tasks, rapidly processing images as they are being acquired. Streaming processing
applies to various bioimage analysis tasks, including registration, segmentation, tracking
and feature extraction. It provides real-time feedback during live imaging experiments, such
as monitoring fluorescence changes over time. In this context, main challenge is balancing
processing speed and accuracy, often necessitating simplified models which could be rapidly
computed.

The method presented in Paper III (detailed in Appendix C) provides a tool to com-
pensate geometric distortions by performing image registration based on elastic defor-
mations represented by B-splines on-the-fly, while microscope is imaging.

3.3.3 Conceiving the Open Source Software

Open-source software (OSS) emerged from early computing such as TeX typesetting system
[221] and GNU operating system [222]. The Open Source Initiative (OSI) formalized it in
the late 1990s [223], focusing on security, affordability and transparency [224]. Accordingly,
the integration of OSS into bioimage analysis has revolutionize the field by offering freely
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accessible and customizable tools. OSS have democratized bioimage analysis, breaking down
financial and institutional barriers and enabling scientists worldwide to engage in advanced
image analysis. The open-source encourages knowledge exchange and collaboration within
community, regardless of their expertise or location, everyone can contribute to software
development. Furthermore, the open-source promotes transparency and reproducibility, as
the availability of source code allows others to replicate analyses, accelerating scientific
progress by enabling the validation of methods.

All of the tools presented in Paper I, II, II (detailed in Appendix A,B,C) are OSS. The
source code lives on GitHub.

3.3.4 Common Open Source Software for BioImage Analysis

ImageJ, succeeding NIH Image [225], is a popular OS bioimage platform with 30+ years of
development. Its community-driven approach shapes functionalities and bug fixes through
contributed plugins. ImageJ’s Java runtime adoption expanded its user community. Script-
able nature and Macro language enable automation, even for non-programmers. Additional
scripting languages (Groovy, JavaScript, Python...) are now available. ImageJ offers updated
docs, code access, a mailing list, and discussion forum for user interaction, sharing work-
flows and best practices. ImageJ has limitations in handling 5D and struggles with large
datasets from advanced imaging modalities. ImageJ2 [226] and SCIFIO [227] address these
by expanding functionalities for larger datasets and dimensions. Fiji, inspired by ImageJ,
is actively maintained, offering "Update Sites" for plugin management. Another widely
used software is CellProfiler suite, including CellProfiler [228] and CellProfiler Analyst
[229]. It constructs workflows using "modules" within a "pipeline," with shared ∗.cppro j
files. It suits screening assays and adapts to various imaging experiments, while CellProfiler
Analyst blends CellProfiler’s measurements with ML-based single cell classification and data
visualization. Other software iterations include Bio7 [230], SalsaJ [231], and AstroImageJ
[232].New solutions leverage R’s power [233] for data analysis, visualization, and manage-
ment. User-friendly ICY [234] offers diverse plugins and features, with community ratings
aiding plugin selection. It integrates ImageJ, enabling image and ROI exchange. Its GUI
enables to create batch-ready "protocols" shared as scripts in JavaScript or Python. Ilastik
[154] supports ML image segmentation, annotation, pixel/object classification, and tracking
as well as interoperability with other softwares. Moreover, QuPath [235] for digital pathol-
ogy handles large images (> 50kx50kpixels), integrates with ImageJ, and supports Groovy
scripting (own QuPath API). Finally, Bio-Formats [79] ensures file format interoperability
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among software. KNIME [236] is a workflow createor which integrates APIs of varios
software through a GUI for seamless workflow integration. See Table.3.7 for further details
on open-source tools described above.

URL

Developer

Usage

Functionalities

Reference

 
cellprofiler.org   icy.bioimagea

nalysis.our  
knime.com imagej.net 

National Institutes of 
Health and Laboratory for 

Optical and 
Computational 

Instrumentation

Institut Pasteur and 
France-Bioimaging

GUI

Image Processing for 
digital pathology and 

whole slide image

McQuin et 
al.,2018

Schneider et 
al.,2012

Schindelin 
et al.,2012

Chaumont 
et al.,2012

Image 
Analysis

Broad Institute 
of 

Massachusetts, 
Institute of 
Technology

Basic Image 
processing 

functionalities 
and image 

measurements

Image and video 
processing 

functionalities

Manual Semi-automatic

Visualization, 
annotation and 

quantification of 
bioimaging data

Semi-automatic Semi-automatic

Northern Ireland 
Molecular Pathology 
Laboratory, Centre for 

Cancer Research and Cell 
Biology

University of Konstanz, 
Zurich, Switzerland

Modular environment, 
which enables easy 
visual assembly and 
interactive execution 

of a data pipeline

Semi-automatic

qupath.github.
io  

fiji.sc

Bankhead 
et al.,2017

Berthold et 
al.,2009

GUI GUI GUI GUI

Table 3.7 Table listing open source and licensed software tools for bioimage analysis.

3.3.5 Deep Learning Open-source Tools for BioImage Analysis

The bioimage analysis community develops user-friendly OSS as described in Section.3.3.4 .
ML-based software such as Weka [133] or Ilastik [237] offer user-friendly solutions. Recently,
these platforms have integrated DL-based approaches, and new tools have emerged to make it
accessible to non-programmers (detailed in Table.3.8). Using pre-trained DL models involves
making predictions on new data without training or parameter tuning. CellProfiler and Ilastik
offer pre-trained U-net models for various image analysis tasks along with model training
(existing GT or from scratch), well-documented and support. ImageJ, Fiji, and Napari
have plugins for pre-trained models such as U-net [77], StarDist [138], and Cellpose [141].
DeepImageJ [238] enables the user-friendly integration of DL models within ImageJ. The
Bioimage Model Zoo [239] is a community-driven repository centralizing and promoting the
reuse of published DL models in bioimage analysis, expected to become a reference model’s
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resource in this field. On the other hand, manually producing high-quality ground-truth
annotations for training can be tedious, especially for 3D+time datasets. Tools such as
CellPose or AnnotatorJ [240] have eased the annotation process for 2D and 3D datasets.
ImJoy is a web-based platform providing interactive GUI for ground-truth annotation on
multi-dimensional images, pre-trained models, and model training. ZeroCostDL4Mic [188]
is a Google Colab Python toolbox for DL model training or prediction with no programming
knowledge. CSBDeep toolbox is a well-maintained resource, operable from Python or
Fiji, providing extensive documentation and facilitating the reuse of DL models (denoising,
restoration, and segmentation).

URL

Type

Use-Case

Requirements

Reference

GUI-based            GUI-based

 
cellprofiler.org     deepimagej

.github.io

github.com/Hen
riquesLab/Zero

CostDL4Mic     
  napari.org cellpose.orgbioimage.io 

csbdeep.
bioimagec 

omputing.co
m

 imjoy.io     ilastik.org     

ImageJ/Fiji 
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Online 
computing 

platform for 
DL bioimage 

analysis 
pipelines

Google Colab 
Python notebooks 
implementing DL 

algorithms
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driven online 
repository for 

DL models
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for DL training 
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ImageJ/Fiji 
and Python 
DL toolbox 
for general 
bioimage 
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Python DL 
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pre-trained 
models 

and model 
training 

Inference 
with 

pre-trained 
models 

and model 
training 

Retrieve 
models 

architecture, 
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for image 
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models 
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pre-trained 
models 
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None None 
Experience 

with 
ImageJ/Fiji 

None None
Dependent on 
the pretrained 

model
None None

Experience 
with 

Fiji/ImageJ or 
Python

Ouyang W et 
al.,2021McQuin et 

al.,2018
Berg et al.,2019

Gómez-de-
Mariscal et 

al.,2019

Ouyang et 
al.,2019

von Chamier 
al.,2021

Chiu C et al., 
2022

Stringer C et 
al., 2021

Not 
Applicable

Table 3.8 Table listing open source and licensed software tools for bioimage analysis based
on deep learning.



Chapter 4

Methodology, Contributions and
Applications per Paper

Biological processes are influenced by numerous factors which are often only observable
under specific conditions, requiring various imaging techniques to capture them. Integrating
this information through image analysis pipelines necessitates the development of advanced
image processing tools. Thus the development of these tools for bioimage analysis has
revolutionized the field of biological research, enabling quantitative analysis and extraction
of valuable information from complex microscopy acquisitions. This thesis presents a diverse
range of approaches which bridge the gap among computer science and biology, facilitat-
ing knowledge exchange between both disciplines. The primary accomplishments of this
multidisciplinary thesis center around the development of user-friendly image processing
tools, achieved through the implementation of advanced techniques for microscopy images.
These cutting-edge methods focus on enhancing the accuracy and efficiency of bioimage
analysis tasks, by the implementation of automation, batch analysis and streaming processing.
These methods encompass tasks such as image enhancement, segmentation, feature extrac-
tion, cell-type classification, single particle tracking, image registration and visualization.
Therefore, leveraging the power of computer vision algorithms, these developed methods
enable automated analysis, yielding more reliable and reproducible analyses than manual
approaches.

The tools presented in this thesis make significant contributions to the field by proposing
easy-going tools tailored for daily bioimage analysis tasks. These contributions aim to address
the challenges of processing data from large-scale, low-resolution and multidimensional
microscopy datasets. These tools find applications in diverse areas of biological research such
as cellular structure analysis, dynamic process tracking, molecular interaction quantification,
subcellular localization studies and the characterization of complex biological systems. In this
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regard, their potential usability might be extended to additional fields such as neuroscience,
developmental biology, pathology, and drug discovery, supporting various imaging modalities,
including fluorescence microscopy, electron microscopy, correlative microscopy or super-
resolution microscopy. Additionally, through the following listed papers, we demonstrate
the application of them in real-world bioimage datasets, yielding results which prove their
effectiveness in analyzing and extracting relevant information from complex biological
images. The evaluation metrics, performance comparisons, and case studies showcase
advantages and capabilities of the purposed tools, underscoring their potential impact on
advancing biological research.

This chapter serves as a comprehensive compilation of the contributions, methods,
applications and results achieved in this thesis. The presented scientific papers exemplify
the field advancements, providing effective solutions for daily image processing routines in
various microscopy facilities. First, we discuss our contribution to semi-automated cell-type
classification by presenting Cell-TypeAnalyzer plugin (Paper I). Then we discuss our
contribution to semi-automated single-particle tracking, diffusion/intensity analysis and
subsequent track motion classification by introducing TrackAnalyzer plugin (Paper II).
Finally, we present our contribution to real-time correction of geometrical distortions using a
B-spline based elastic registration technique by proposing OFM-Corrector protocol (Paper
III).

4.1 Paper I: Cell-TypeAnalyzer: A flexible Fiji/ImageJ plu-
gin to classify cells according to user-defined criteria

Currently, fluorescent imaging and labeling techniques are commonly used to identify
important biological processes by extracting quantitative data from labeled molecules of
interest. Advances in open-source software and scientific computing, as well as automation
and analysis algorithms, have improved reproducibility and objectivity in cell counting
and single-particle analysis, reducing the need for manual analysis. However, classify-
ing specific cell types based on morphology or phenotype remains a labor-intensive and
subjective task. Designing a versatile algorithm to automatically identify different cell
types on multiple fluorescent markers is challenging, especially considering low signal-to-
noise ratios and limited resolution in fluorescence microscopy. To address these challenges,
Cell-TypeAnalyzer is an open-source plugin which enables the classification of cells based
on morphological, intensity, or spatial features (detailed in Fig.4.1 (A-B)). Although the
concept of Cell-TypeAnalyzer for cell-type classification is not new, the contribution of
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this paper is to offer a semi-automated cell-type analysis, instead of fully automated mode,
potentially compromising accuracy and user interpretation. Cell-TypeAnalyzer allows
researchers to describe a cell population through a set of extracted features, identifying
biologically relevant similarities or variations. The tool is highly configurable and can be
adapted to various imaging conditions by manually adjusting internal parameters. Reaching
an accurate segmentation is crucial within Cell-TypeAnalyzer workflow, particularly when
dealing with heterogeneous background or touching cells since the analysis is carried out for
each cell. For such, Cell-TypeAnalyzer integrates from MorpholibJ library, auto-threshold
global methods to automatically segment images [126], without assuming binary shapes or
circularity, as well as algorithms for watershed segmentation and morphologial operators.
After segmentation, each cell is individually measured and described using physical, geo-
metrical, morphological, statistical, and intensity-based features for further user-customized
cell-type classification.

Cell-Type Classification
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Fig. 4.1 Different aspects of Cell-TypeAnalyzer plugin. (A) Illustration of the work-
flow to identify specific cell-types in a cell population: (B) Schematic description of
Cell-TypeAnalyzer main functionalities

Cell-TypeAnalyzer was developed within the ImageJ ecosystem, benefiting from the
platform’s image processing capabilities. It offers a wizard-like GUI which guides researchers
through each step of the analysis, providing instant visualization of outputs for each marker
and allowing manual, visual and quantitative verification. The plugin can process large sets
of images, supporting multiple image formats (Bio-Formats library) and allowing users to
define specific regions of interest to be analyzed. While other tools widely used for cell-type
analysis operate in fully automated or unsupervised mode, Cell-TypeAnalyzer functions
in semiautomatic mode, require user input and interaction for accurate feature extraction.
It addresses the need for universal tools for semiautomated cell-type analysis within the
ImageJ or Fiji ecosystem, offering a solution which relies less on full automation and thus
is more reliable given the current limitations of fully automated methods. It also provides
options for customizing cell-type analysis on multi-fluorescent microscopy images and can be
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applied to various microscopy samples. Compared to similar software for cell-type analysis,
Cell-TypeAnalyzer allows users to tune classification parameters and provides a simple
GUI for visualizing and verifying outputs. It leverages existing ImageJ plugins and libraries,
offering a wide range of tools for image preprocessing and analysis. Cell-TypeAnalyzer
does not remove noise or enhance image quality but provides scriptable (ImageJ’s Macro
Language) functionality and by default pre-processing tools (denoising, filtering and contrast
enhancer) to improve cell detection and characterization. Best practices for image acquisition
are recommended before using the tool.
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Fig. 4.2 Experimental Validation by different applications using different datasets. (A)
Quantification count of cells of a given type using Confocal or Widefield microscopy,
showing that imaging with both modalities does not make any significant difference for this
experiment (at a confidence level of 95 %); (B) Semi-automated analysis for classifying
cellular phenotypes in HeLa cells into Actin Fiber (AF), Big cells (BC), Condensed (C),
Metaphase (M), Normal (N), and Protruded (P) ;(C) Semi-automated analysis for classifying
Spirochaeta bacteria in the blood into Blood Cells(BC), Round(R), Elongated(E), Small(S)
and Normal(N).

Furthermore, Cell-TypeAnalyzer supports batch processing, making it suitable for
analyzing large microcopy datasets. It provides data visualization options, including dynamic
scatter plots, to explore and drill down into cell-type classification results. The tool is
designed to be user-friendly and does not require programming proficiency. It is open-
source and freely available, with documentation and video tutorials provided on its GitHub
page https://github.com/acayuelalopez/CellTypeAnalyzer. On the other hand, we

https://github.com/acayuelalopez/CellTypeAnalyzer
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showed in our experimental validation (shown in Fig.4.2) that our tool successfully compares
the count of cells of a specific type using both Confocal and Widefield microscopy techniques.
The results indicate that there is no statistically significant difference among the two imaging
mode for this experiment, with a confidence level of 95% (Fig.4.2 (A)). Moreover, we
achieved successful classification of cellular phenotypes in HeLa cells (Fig.4.2 (C)) based
on morphological changes, with the proportions of cells in each type being similar to those
originally reported in [241]. Additionally, we conducted morphological phenotyping of
Spirochaeta bacteria in blood (Fig.4.2 (B)).

In summary, Cell-TypeAnalyzer combines semiautomatic, scriptable and manual tools
to achieve accurate cell-type analysis, even in images with overlapping objects. It offers
efficient batch processing and allows the identification of hundreds of cell types per minute.
Despite some limitations, Cell-TypeAnalyzer is accessible to researchers at different levels
of expertise, facilitating cell-type classification under user-defined conditions.

4.1.1 Publication Summary

Further details about the proposed solutions toward cell-type classification using Cell-
TypeAnalyzer can be found in the following relevant authored publication:

Cayuela López, A., Gómez-Pedrero, J., Blanco, A., & Sorzano, C. (2022). Cell-
TypeAnalyzer: A flexible Fiji/ImageJ plugin to classify cells according to user-defined
criteria. Biological Imaging, 2, E5. doi:10.1017/S2633903X22000058 [242]

The complete publication is enclosed as Appendix A.

4.2 Paper II: TrackAnalyzer: A Fiji/ImageJ Toolbox for a
holistic Analysis of Tracks

The advancement of innovative imaging techniques, particularly Total Internal Reflection
Microscopy (TIRF), has become vital for studying dynamic processes within cells at the
sub-cellular level. These techniques enable quantitative analysis of intracellular dynamics
with high spatial resolution (tens of nanometers) and long-term observation capabilities.
Single-particle tracking analysis has emerged as a standard tool in life sciences, facilitated by
fluorescent protein labeling and software advancements. SPT allows real-time measurement
of motion, diffusion properties and spatial distribution changes of single particles with high
temporal resolution and signal-to-noise ratio.
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Fig. 4.3 Illustration of the workflow to perform single particle tracking together with sub-
sequent analysis of diffusion using TrackAnalyzer software which consists of several
processes.

SPT algorithms address various challenges inherent to cellular dynamics, such as gap-
closing, merging and splitting events, to achieve accurate tracking of fluorescent particles.
These algorithms aim to reconstruct the motion of particles over consecutive time points by
bridging missing detections and tracking their movements. To ensure reliable tracking, high
signal-to-noise ratios are crucial, as noise from background fluctuations, autofluorescence,
blinking, photobleaching, phototoxicity, poor contrast, high particle density, and motion
heterogeneity can affect the accuracy and reproducibility of the analysis. In this regard, SPT
analysis involves both spatial (particle detection) and temporal (particle linking) methods.
Spatial methods segment and locate each spot or cell, establishing frame-by-frame correspon-
dences in X-Y-T coordinates. Conversely, temporal methods assign detected single particles
to individual tracks over time.

While manual tracking is feasible for low particle densities, automation is preferred due to
its objectivity, reproducibility, and efficiency, specially ofr high particle densities. However,
fully automated SPT approaches may encounter challenges with changes in experimental
conditions, making a combination of automation and user control desirable for temporal
quantitative analysis. Existing software tools for SPT analysis lack user-friendliness and
comprehensive functionality to handle diverse time-lapse microscopy acquisitions. To address
this gap, TrackAnalyzer software was developed. TrackAnalyzer allows users to set up
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customized SPT analyses based on their own experimental conditions and apply them in
batch-mode to multiple time-lapse acquisitions. The software, available as an open-source
plugin for Fiji or ImageJ, offers functionalities for spot detection, track reconstruction,
diffusion analysis, trajectory analysis, cluster size analysis, single-step photobleaching
analysis, and integration with the Chemotaxis and Migration Tool for quantifying chemotaxis
and migration experiments. TrackAnalyzer introduces three key contributions to enhance
SPT analysis. Firstly, it offers an user-friendly wizard-like GUI, that enables batch-mode
analysis, allowing users to automatically analyze multiple datasets by configuring the analysis
for one dataset and replicating it across others within the same experiment. This addresses
the limitation of main existing tools which only allow analysis of a single time-lapse dataset.
Secondly, TrackAnalyze leverages TrackMate, an open-source software, to provide flexible
and adaptable algorithms for spot detection and track reconstruction over time; TraJClassifier
integration to locally and globally both characterize and classify trajectory motion into normal
diffusion, subdiffusion, confined diffusion and directed/active motion by a random forest
approach. Chemotaxis and Migration Tool integration which allows advanced analysis of
chemotaxis experiments. Therefore, TrackAnalyzer implements additional features such as
cluster size, intesity analysis, motion analysis and track classification. Third, it benefits from
the extensive ImageJ ecosystem, integrating various plugins for scientific image processing.
By combining these functionalities with existing powerful tools, TrackAnalyzer offers
comprehensive suite of tools which facilitate analysis of particle behavior under diverse
experimental conditions, allowing for quantitative comparisons of particle parameters. On
the other hand, we showed in our experimental validation (shown in the Fig.4.4) that our tool
successfully does the analysis of the dynamic of CXCR4 at the plasma membrane of Jurkat
CXCR4−/− cells electroporated with CXCR4-AcGFPm (detailed in Fig.4.4(A)), according
to the results originally reported in [243]. Additionally, we conducted the analysis of the
directed cell migration capacity of Jurkat cells to illustrate TrackMate features to evaluate
directional cell migration by using Chemotaxis and Migration Tool (detailed in Fig.4.4(B)).

In conclusion, TrackAnalyzer significantly enhances the capabilities of SPT analysis
by providing a wizard-like GUI, batch-mode analysis, extended analysis functionalities
and integration with existing software tools. It empowers researchers in the quantitative
analysis of particle behavior under various experimental conditions, contributing to a deeper
understanding of dynamic processes within cells at the sub-cellular level.
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4.2.1 Publication Summary

Further details about the proposed solutions toward single particle tracking analysis and
subsequent track analysis using TrackAnalyzer can be found in the following relevant
authored publication:

Cayuela López, A., García-Cuesta, E., Gardeta, S., Rodríguez-Frade, J., Mel-
lado, M., Gómez-Pedrero, J., & S. Sorzano, C. (2023). TrackAnalyzer: A Fi-
ji/ImageJ Toolbox for a holistic Analysis of Tracks. Biological Imaging, 1-14.
doi:10.1017/S2633903X23000181 [244]

The complete publication is enclosed as Appendix B.
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4.3 Paper III: Real-Time Correction of Chromatic Aberra-
tion in Optical Fluorescence Microscopy

In recent years, significant advancements have been made in single molecule-based super-
resolution microscopy techniques. Multi-color fluorescence imaging stands out among these
techniques, enabling the differentiation of proteins and structures of interest in both living
and fixed cells. However, challenges such as mechanical drift and chromatic aberrations still
remain decreasing the image resolution. While chromatic aberration is a common problem
in multi-color imaging, other factors such as imperfect optical elements, refractive index
mismatches, and dispersion in biological samples can lead to geometric distortions.
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Fig. 4.5 Graphical representation of the workflow to reach real-time correction of geometric
misalignment among channels in multi-dimensional images acquired with fluorescence
microscopy using multi-spectral fluorescent beads through Scipion software.

Total Internal Reflection Fluorescence (TIRF) microscopy emerges as a potent technique
for selectively imaging molecules in an aqueous environment with a high refractive index.
Its thin axial optical sectioning and high signal-to-noise ratio make it suitable for imaging
membrane-associated events in living cells and molecules at the medium interface. Never-
theless, TIRF microscopy is susceptible to lateral chromatic aberration, which introduces
shifts, rotations and scaling differences among color channels. To address chromatic aber-
ration in TIRF microscopy, elastic (non-rigid) image registration techniques are employed,
involving the alignment of corresponding features in multiple images through a geomet-
ric transformation. B-spline-based elastic image registration is implemented to handle a
wide range of deformations, including non-linear ones. This method ensures high-quality
interpolation and localized control over the deformation field, providing a practical solution
which surpasses merely improving the physical construction of the microscope’s dichroic
mirror. This B-spline-based elastic image registration method is integrated into the OFM
Corrector protocol, freely available within the Scipion framework. The Scipion framework
allows for real-time or stream processing for image registration, enabling almost instant
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aberration-corrected images on-the-fly while microscope is imaging. The protocol offers
a unified graphical user interface, package interoperability and workflow monitoring for
streaming elastic image registration. The software-based approach compares favorably to
expensive optical solutions and is more versatile, addressing not only chromatic aberration
but also other sources of geometric distortions.
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Fig. 4.6 (A) The deformation field is corrected by using OFM-Corrector for all the input
videos corresponding to biological samples; (B) Mean and standard deviation of the defor-
mation field over time at two different regions of the FOV. The size of the acquired region is
1024x2050 pixels (66.56x133.12 µm); (C) For some representative coordinates, we show the
trajectory over time of the deformation field. Displacements are expressed in pixels (the pixel
size is 0.065 µm; (D) Schematic visualization of the shift measurement procedure. x,y are
the pixel coordinates (undeformed state) and x’,y’ (deformed state) are the pixel coordinates
after elastic transformation, and ∆X , ∆Y are the displacement among them.

In this pipeline (detailed in Fig.4.5), multispectral fluorescent beads are used as a reference
for elastic image registration and drift correction. These beads emit differently in the same
wavelength range as the applied dyes, allowing for the registration of chromatic shifts. This
approach can be easily applied to daily microscopy routines in facilities by capturing a
reference calibration image for each specific imaging setup, considering factors such as
excitation laser lines, objective lens, temperature stability, and exposure time. It is essential
to select suitable multi-spectral fluorescent beads based on their signal and size to ensure
they exceed the microscope’s resolution, providing a sufficient signal-to-noise ratio. The
software solution is not limited to correct geometrical distortions among two channels but
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can simultaneously correct any number of channels. One channel is chosen as the reference,
and the others (target channels) are corrected to match the reference. In addition, we
experimentally compute the mean and standard deviation of the deformation field over time
at two different regions of the FOV (shown in Fig.4.5(B)). We also evaluate the stability of
the deformation field over the time for some representative coordinates (shown in Fig.4.5(C)).

In conclusion, this OFM-Corrector contributes as an efficient and cost-effective approach
to correct chromatic aberration deformations and other sources of geometric distortions. It
can be seamlessly integrated into standard procedures in microscopy facilities and is not
limited to specific imaging setups. Future work could focus on expanding the protocol
capabilities to address additional optical distortions commonly encountered in light imaging.

4.3.1 Publication Summary

Further details about the proposed solutions toward real-time correction of chromatic aber-
ration by B-spline-based elastic image registration analysis using OFM-Corrector can be
found in the following relevant authored publication:

López AC, Conesa P, Oña Blanco AM, Gómez-Pedrero JA, Sorzano COS. Real-
time correction of chromatic aberration in optical fluorescence microscopy. Meth-
ods Appl Fluoresc. 2023 Jul 3;11(4). doi: 10.1088/2050− 6120/ace153. PMID:
37352866.[245]

The complete publication is enclosed as Appendix C.





Chapter 5

List of Publications

5.1 Publications used for the compendium of articles

Below are listed (co-)authored publications used for this dissertation, structured as a com-
pendium of articles, in chronological order.

Cayuela López, A., Gómez-Pedrero, J., Blanco, A., & Sorzano, C. (2022). Cell-
TypeAnalyzer: A flexible Fiji/ImageJ plugin to classify cells according to user-defined
criteria. Biological Imaging, 2, E5. doi:10.1017/S2633903X22000058 [242]

• In this paper, we present our semiautomated, wizard-like GUI and versatile tool, which
aims to eliminate the time-consuming and biased manual cell-type classification. This
powerful tool functions as an open-source plugin for Fiji or ImageJ, enabling us to
detect and classify cells in 2D images effectively. Our workflow comprises several
essential steps, including: (a) Image preprocessing actions, data spatial calibration,
and ROI definition; (b) Segmentation; (c) Extraction of cell features; (d) Filters to
select relevant cells; (e) Definition of specific criteria to categorize cells into distinct
cell types.; (f) Cell-type classification; (g) Flexible analysis of the results to gain
meaningful insights. Moreover, Cell-TypeAnalyzer supports batch processing. We
experimentally show that our tool is able to compare the count of cells of a given
type using Confocal or Widefield microscopy, showing that imaging with confocal
or widefield microscopy does not make any statisti-cally significant difference for
this experiment (at a confidence level of 95%). In addition, we classified cellular
phenotypes in HeLa cells based on morphological changes, being the proportions of
cells in each one of the types similar to the one originally reported in [241]. Finally,
morphological phenotyping of Spirochaeta bacteria in blood.
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• I have designed the program, implemented the algorithms and wrote the software code
and performed all validation experiments. I am also the main author of the manuscript.

Cayuela López, A., García-Cuesta, E., Gardeta, S., Rodríguez-Frade, J., Mel-
lado, M., Gómez-Pedrero, J., & S. Sorzano, C. (2023). TrackAnalyzer: A Fi-
ji/ImageJ Toolbox for a holistic Analysis of Tracks. Biological Imaging, 1-14.
doi:10.1017/S2633903X23000181 [244]

• In this paper, we introduce our newly developed tool, TrackAnalyzer, accessible from
Fiji and ImageJ. This versatile tool facilitates the execution of semi-automated Single-
Particle Tracking (SPT) and subsequent motion classification. Additionally, it enables
quantitative analysis of diffusion and intensity for selected tracks by handling large sets
of time-lapse images. It supports feature extraction and user-defined classification for
further analysis. Our analysis workflow is designed to automate the following key steps:
(a) Spot detection and filtering; (b) Construction of tracks; (c) Track classification
and analysis, including diffusion and chemotaxis assessments. (d) Detailed analysis
and visualization of outputs. Our pipeline is semi-automated and it enables batch
processing. By providing an accessible solution for live-cell imaging analysis, it
contributes to advancing our understanding of biological processes with enhanced
accuracy and efficiency. Its user-friendly GUI and versatile functionalities make it
a valuable tool for the scientific community. We experimentally show that our tool
is able to do the the analysis of the dynamic of CXCR4 at the plasma membrane of
Jurkat CXCR4/ cells electroporated with CXCR4-AcGFPm, according to the results
originally reported in [243]. Additionally, we conducted the analysis of the directed
cell migration capacity of Jurkat cells to illustrate TrackMate features to evaluate
directional cell migration by using Chemotaxis and Migration Tool.

• I have designed the program, implemented the algorithms and wrote the software code
and performed all validation experiments. I am also the main author of the manuscript.

López AC, Conesa P, Oña Blanco AM, Gómez-Pedrero JA, Sorzano COS. Real-time
correction of chromatic aberration in optical fluorescence microscopy. Methods Appl
Fluoresc. 2023 Jul 3;11(4). doi: 10.1088/2050− 6120/ace153. PMID: 37352866
[245]

• In this paper, we present an innovative extension of Scipion named OFM- Corrector,
which enables real-time correction of geometrical distortions using a B-spline-based
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elastic continuous registration technique. Our proposal offers a straightforward ap-
proach to compensate chromatic aberration, digitally realigning color channels in
multi-color microscopy images, even when dealing with 3D or temporal data. The
core of our method involves the utilization of fluorescent beads excited by different
wavelengths of light. By registering them, we obtain an elastic warp as a reference
for correcting chromatic shifts. Our software is freely and readily available for those
working in light microscopy facilities. With the integration of OFM-Corrector into
Scipion’s image processing framework, we aim to empower researchers with improved
image resolution and accuracy, fostering deeper insights into the intricate world of
sub-cellular interactions and structures. We experimentally compute the mean and
standard deviation of the deformation field over time, and we evaluate the stability of
the deformation field over the time.

• I have designed the program, implemented the algorithms and wrote the software code
and performed all validation experiments. I am also the main author of the manuscript.

5.2 Other publications

Below are listed other (co-)authored publications in chronological order.

Cuesta-Geijo MÁ, García-Dorival I, Del Puerto A, Urquiza J, Galindo I, Barrado-Gil
L, Lasala F, Cayuela A, Sorzano COS, Gil C, Delgado R, Alonso C. New insights
into the role of endosomal proteins for African swine fever virus infection. PLoS
Pathog. 2022 Jan 26;18(1):e1009784. doi: 10.1371/ journal.ppat.1009784. PMID:
35081156; PMCID: PMC8820605.

• In this paper, authors evaluate the role of African swine fever virus (ASFV) which
infects cells through endocytosis and relies on interactions with endosomal proteins
for successful fusion. NPC1 and Lamp-1/-2 play crucial roles in this process. Under-
standing these interactions could shed light on ASFV infection.

• I have designed the ImageJ plugin, implemented the algorithms and wrote the software
code to quantify the number of viral cores trapped within the enlarged Rab7+vesicles.

Soler Palacios B, Villares R, Lucas P, Rodríguez-Frade JM, Cayuela A, Piccirillo JG,
Lombardía M, Delgado Gestoso D, Fernández-García M, Risco C, Barbas C, Corrales
F, Sorzano COS, Martínez-Martín N, Conesa JJ, Iborra FJ, Mellado M. Growth
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hormone remodels the 3D-structure of the mitochondria of inflammatory macrophages
and promotes metabolic reprogramming. Front Immunol. 2023 Jul 5;14:1200259. doi:
10.3389/ f immu.2023.1200259. PMID: 37475858; PMCID: PMC10354525.

• In this publication, authors demonstrate that GH likely serves a modulatory role in the
metabolism of inflammatory macrophages and suggest that metabolic reprogramming
of macrophages should be considered as a new target to intervene in inflammatory
diseases.

• I have designed the ImageJ workflow, implemented the algorithms and wrote the
software code to evaluate 3D mitochondrial morphology and network connectivity in
fusion-fission events for both fluorescence and cryo-FIBSEM images.



Chapter 6

Open-source Code and Data Availability

Promoting scientific reproducibility relies heavily on the release of open-source code. Fur-
thermore, facilitating the utilization of cutting-edge technologies through user-friendly tools
significantly enhances analytical processes. As a result, promoting a culture which prioritizes
open-source initiatives becomes imperative for advancing scientific research. Consistent with
this principle, the authors aim to provide explicit references to the repositories and online
resources developed throughout this thesis, all of which are freely accessible:

Paper I: Cell-TypeAnalyzer: A flexible Fiji/ImageJ plu- gin
to classify cells according to user-defined criteria

Cell-TypeAnalyzer plugin:

The github repo https://github.com/acayuelalopez/CellTypeAnalyzer is the
entry point for all the open-source material created within Cell-TypeAnalyzer
plugin.

https://github.com/acayuelalopez/CellTypeAnalyzer
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Paper II: TrackAnalyzer: A Fiji/ImageJ Toolbox for a holis-
tic Analysis of Tracks

TrackAnalyzer plugin:

The github repo https://github.com/acayuelalopez/TrackAnalyzer_ is the
entry point for all the open-source material created within TrackAnalyzer plugin.

Paper III: Real-Time Correction of Chromatic Aberra- tion
in Optical Fluorescence Microscopy

OFM Corrector protocol:

The complete source code of the algorithm integrated in Scipion software
is available at https://github.com/acayuelalopez/bUnwarpJ_code. Our
protocol can be used for real-time processing within the Scipion framwork.
You can install it by using the Scipion software following the Scipion’s in-
stallation guide (https://scipion-em.github.io/docs/release-3.0.0/docs/
scipion-modes/how-to-install.html).

https://github.com/acayuelalopez/TrackAnalyzer_
https://github.com/acayuelalopez/bUnwarpJ_code
https://scipion-em.github.io/docs/release-3.0.0/docs/scipion-modes/how-to-install.html
https://scipion-em.github.io/docs/release-3.0.0/docs/scipion-modes/how-to-install.html


Chapter 7

Conclusion and Future Work

This dissertation, structured as a compedium of articles, was focused on the development of
bioimage analysis tools tailored to advanced optical microscopy. The aim was to optimize
the extraction of quantitative information from labeled molecules of interest, enabling the
discernment of biological processes. This thesis delved into the advancements within open-
source software, scientific computation, automation, image analysis algorithms and real-time
processing. These advancements have notably improved reproducibility and objectivity of
analyses, diminishing the reliance on manual intervention for users at ALMF at CNB. The
core aims of this dissertation were to enhance the automation capabilities, shifting from a
qualitative and manual analysis paradigm to a large-scale and quantitative assessment of
optical microscopy images, analogous to the progress witnessed in electron microscopy at
CNB. These goals aimed to improve efficiency and accuracy while transforming the analysis
process into a more objective, data-driven and high-throughput approach. However, this thesis
acknowledged that classifying specific cell types based on morphology or phenotype remains
a labor-intensive and subjective task. To address this challenge, Cell-TypeAnalyzer an
open-source Fiji plugin was designed to empower the user-customized classification of
specific cell-types based on morphological, intensity, or spatial features. This tool offers
a semi-automated approach for cell-type classification, providing more objectivity than
qualitative strategies, while facilitating a more streamlined and systematic analysis procedure.
Cell-TypeAnalyzer allows researchers to describe a cell population by a set of extracted
features, thus identifying biologically relevant similarities. Its user-friendly GUI seamlessly
guides researchers through each step of the analysis, offering instant visualization for each
marker and facilitating manual verification. The plugin supports batch processing, making it
suitable for analyzing large image datasets. With robust batch processing capabilities, the
plugin can handle the cell-type analysis of extensive image datasets.
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This dissertation also recognized the significance of automation for a comprehensive
analysis of particle behaviour, while emphasized the user control and interpretation. To
address the lack of user-friendliness in existing tools for SPT and subsequent motion analysis,
we introduced TrackAnalyzer plugin. This open-source software allows users to tailor
SPT analyses according to their experimental conditions, enabling their application in batch
mode across multiple data acquisitions. It offers spot detection, trajectory reconstruction over
time, diffusion analysis, trajectory analysis, cluster size analysis, single-step photobleaching
analysis, and seamless integration with both TraJClassifier the Chemotaxis and Migration
Tool. By providing a user-friendly interface, facilitating batch-mode analysis and extending
SPT analysis from TrackMate, TrackAnalyzer substantially elevates the landscape of
current SPT analysis. This tool empowers researchers to customize and apply SPT analyses
based on their experimental contexts, thereby facilitating quantitative comparisons of particle
parameters with enhanced ease. Last but not least, this thesis aimed the integration of real-
time image processing within the ALMF at CNB. This involved applying real-time elastic
(non-rigid) image registration techniques to compensate for geometric deformations induced
by chromatic aberration present in the TIRF microscope at ALMF, which decreases the image
resolution. To overcome challenges arising from chromatic aberration, this thesis proposed
the adoption of an elastic image registration technique based on B-splines. This method was
integrated into the OFM-Corrector protocol within the Scipion framework, thereby enabling
real-time and continuous correction of geometric distortions on-the-fly while the microscope
is imaging. By firstly, using multispectral fluorescent beads as a reference, this software
provided an efficient and cost-effective solution to compensate chromatic aberration and
other geometric distortions. As a result, this protocol can be seamlessly used in conventional
microscopy facility practices, enhancing the accuracy and reliability of standard procedures.

By accomplishing these goals, this dissertation wanted to streamline and automate routine
image analysis tasks at microscopy facilities, hence ushering in a new era of efficiency at
ALMF. We have proposed diverse tools which specifically tackled the challenges of cell-type
classification, SPT analysis and real-time correction of geometric distortions, providing user-
friendly GUI, fortified with batch processing capabilities and extended analysis functionalities.
These tools enhance the accuracy, reproducibility, and efficiency of bioimage analysis,
facilitating quantitative comparisons and advancing our understanding of biological processes
at the cellular level. Furthermore, this dissertation played a crucial role in the CNB to become
a leading center in quantitative biology and bioimaging by establishing a the Quantitative
Image Analysis Unit as the central focus. The strategic shift towards massive and quantitative
analysis equips the center to proficiently manage large-scale datasets and extract valuable
insights from them. In summary, through the achievement of these objectives, this thesis
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seeks to usher in a new era of heightened efficiency, precision, and objectivity in optical
microscopy analysis, thereby contributing to the mission of the CNB to emerge as a leader
center in quantitative biology and bioimaging.

7.1 Future Work

The information from these conclusions can be a starting point for future work.
Deep learning shows promise for addressing challenges in optical microscopy, such as low

signal-to-noise ratio and variable imaging conditions. In this regard, the future of bioimage
analysis involves leveraging cloud computing, developing tailored deep learning architectures,
and utilizing machine learning for feature extraction and classification. Integrating these
approaches into unified platforms by providing user-friendly GUIs and scalable computing
power is encouraging. Notwithstanding these advancements, challenges remain, ranging
from ground truth dataset availability and computational resources to efficiently handling
large image sizes and voluminous data to model interoperability. Future work should focus
on collaborative efforts to create benchmarking datasets, standardized metrics, and best
practices for deploying these solutions in optical microscopy analysis.

Regarding the contributions outlined in this thesis, while Cell-TypeAnalyzer is pre-
sented as a valuable solution for cell-type classification, there is room for improvement.
Future work could focus on expanding the algorithm capabilities to handle more complex and
diverse cell types, as well as improving its performance in images with low signal-to-noise
ratios and limited resolution. The incorporation of multichannel and multi-dimensional
image hyperstacks, hence expanding its applicability beyond RGB images, would facili-
tate the comprehensive analysis of cellular phenomena across different molecular markers
and dyes. Additionally, incorporating machine or deep learning techniques could enable
the algorithm to learn and adapt to new cell types, further enhancing its classification ac-
curacy. Cell-TypeAnalyzer might facilitate compatibility with widely used pre-trained
deep learning models for segmentation, such as Stardist or Cellpose. This synergy holds
immense promise in further refining cell-type classification accuracy, effectively bridging
the gap between traditional analysis and cutting-edge segmentation techniques. Related to
the automation in SPT, although TrackAnalyzer offers batch-mode analysis and extended
functionalities for SPT analysis, further automation could be explored to minimize user inter-
vention/input and enhance accuracy. Developing algorithms which can adapt to changes in
experimental conditions, such as variations in imaging parameters or sample characteristics,
would improve the robustness and reproducibility of SPT analysis. Integrating pre-trained
deep learning models to automate spot detection and track construction could also be a
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promising direction for future work. Moreover, it is crucial to consider interoperability with
other software tools such as Icy for a comprehensive solution

The B-spline-based elastic image registration method implemented in the OFM-Corrector
protocol provides an effective solution for correcting geometric distortions caused by chro-
matic aberration in TIRF microscopy. However, future work could focus on developing
more comprehensive protocols which can handle multiple types of geometrical distortions
simultaneously would further improve image quality and resolution. Moreover, an exciting
avenue for exploration involves the integration in the TIRF microscope of real-time single
particle tracking analysis approach (main applicability of this microscopy technique) follow-
ing geometric aberration compensation within the OFM-Corrector protocol. In this way,
the synergy among real-time dual-channel alignment and subsequent single particle tracking
has the potential to enhance time efficiency for users at the ALMF, particularly during the
frequent analysis employing the TIRF microscope.

In the middle-term, it would be beneficial to enhance the integration and user-friendliness
of bioimage analysis tools. Seamless integration with other existing microscopy platforms,
can streamline the analysis workflow and facilitate data exchange between different software
tools. Additionally, improving the user interface and providing intuitive visualization options
would enhance the usability of these tools, making them accessible to a broader range of
researchers with varying levels of technical expertise. As technology advances, new imaging
techniques and algorithms will continue to emerge. Future work should focus on keeping up
with these advancements and incorporating them into bioimage analysis tools. Exploring
cutting-edge algorithms and methodologies, can help maximize the extraction of quantitative
information from optical microscopy images, further enhancing the accuracy, resolution, and
interpretation of the acquired data.
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Abstract

Fluorescence microscopy techniques have experienced a substantial increase in the visualization and analysis of
many biological processes in life science. We describe a semiautomated and versatile tool called Cell-TypeAnalyzer
to avoid the time-consuming and biased manual classification of cells according to cell types. It consists of an open-
source plugin for Fiji or ImageJ to detect and classify cells in 2D images. Our workflow consists of (a) image
preprocessing actions, data spatial calibration, and region of interest for analysis; (b) segmentation to isolate cells
from background (optionally including user-defined preprocessing steps helping the identification of cells);
(c) extraction of features from each cell; (d) filters to select relevant cells; (e) definition of specific criteria to be
included in the different cell types; (f) cell classification; and (g) flexible analysis of the results. Our software provides
a modular and flexible strategy to perform cell classification through a wizard-like graphical user interface in which
the user is intuitively guided through each step of the analysis. This procedure may be applied in batch mode to
multiple microscopy files. Once the analysis is set up, it can be automatically and efficiently performed on many
images. The plugin does not require any programming skill and can analyze cells inmany different acquisition setups.

Impact Statement
Cell-type classification is an absolute requirement for quantitative analysis of microscopy imaging. Because
different cell types normally differ in function and appearance, this tool allows researchers to correctly identify
specific cells sharing common shape, life cycle, and phenotypical features. Here, we present Cell-TypeAnalyzer, a
new plugin freely available under ImageJ or Fiji distribution for automated cell detection, identification, charac-
terization, counting, and further cell-type classification based on user-defined criteria. Our tool aims at reducing the
amount of subjectivity and human labor required to quantitatively assess the outcome of an imaging experiment.

1. Introduction

Nowadays, both multi-fluorescence imaging and labeling techniques are commonly used to identify
biologically relevant processes through quantitative data extraction from fluorescently labeled molecules
of interest(1–3). Parallel to this unprecedented progress, advances in open-source bio-image software and
scientific computing(4), cell counting automation, and single-particle analysis algorithms ensure repro-
ducibility and objectivity compared to the more subjective manual analyses(5,6). In cell biology, distin-
guishing specific cell types has traditionally been a labor-intensive and subjective task since it tries to
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classify cells according to morphological or phenotype forms(7) using tedious laboratory procedures as
visual inspection. It is quite challenging to design a versatile algorithm to automatically identify different
cell types on multiple fluorescent markers located on the same field(8,9) at the single-cell level. Addition-
ally, in fluorescence microscopy, the signal-to-noise ratio is often low and the resolution quite limited(10),
making automation of cell-type classification even more challenging(11). In this context, single-cell
features extraction arises helping researchers to properly overcome these drawbacks defining cell types
which will be then cataloged into groups revealing different cell states or behaviors.

Cell-TypeAnalyzer allows the user to classify cells of interest (see Figure 1), identifying a set of cells
sharing common morphological, intensity, or spatial features according to a given biologically defined
class. Cell-TypeAnalyzer is an open-source plugin under the GNU public license that works equally well
under Fiji(12) or ImageJ(13), offering a semiautomated cell-type classification using separated RGB
channels for multiple microscopy image formats in an objective manner considerably more accurate
than qualitative strategies. Therefore, Cell-TypeAnalyzer enables users describing a cell population
through a set of extracted features to identify biologically relevant similarities or variations on a sample.

Our tool is highly configurable and may be adapted to many density or low-resolution situations by
tuning theworkflow internal parameters.We do notmake any special assumptions about cell morphology,
image formation process, optical microscope settings, or specimen features. In quantitative immunohis-
tochemistry analysis, holding an accurate segmentation method to exactly isolate each cell from its
possible fluctuating background is crucial to reach a robust detection(14,15). In particular, in cases dealing
with heterogeneous staining or overlapping cells, global auto-threshold methods may be a generic option
to find the global optimal segmentation(16) grouping image pixels automatically depending on pixel
valueswith no presumption about binary shapes or circularity, and hence leading to a less-biased detection
non-exclusively limited to spot-like or roughly spherical objects(11). Once the segmentation of each cell is

Figure 1. Illustration of the workflow to identify specific cell types in a cell population. (a) Cell culture in
which classification will be done to identify specific cell types. (b) Cell images are acquired and then
processed for single-cell segmentation, feature extraction, and cell-type classification. (c) A collection of
diverse features are extracted to both characterize and identify by ID number each cell. (d) Cell types are
defined by a set of constraints in any of the detected features. The user may define as many cell types as

needed, and each cell type is defined by as many constraints on the features as desired.
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done, each one is measured as well as described individually by a vector of physical, morphological,
statistical, and intensity features and then used for further cell-type classification.

Apart from that, this plugin was implemented under the ImageJ ecosystem to benefit from this bio-
image platformmainly preferred and used bymany life scientists. In recent years, researchers may choose
from awide range of open-source bio-image packages(17) to customize their own image analysis protocols
through scripts, workflows, or plugin development. Nevertheless, many researchers may not have this
computational proficiency. For such cases, Cell-TypeAnalyzer allows semi-automation based on a
broadly applicable strategy for customized cell classification(18). Furthermore, Cell-TypeAnalyzer is
easily scriptable to customize the cell-type approach even in batchmode and obtain user-defined cell-type
classifications across RGB channels dealing with multiple image formats currently supported by Bio-
Formats(19). Additionally, the user may choose a specific region of interest rather than considering the
whole image. The researcher is guided through a user-friendly wizard-like graphical user interface (GUI)
to perform each step. This GUI allows navigating forward or backward across panels to recalibrate
settings in case of inadequate outputs.

2. Results

2.1. Overview of the procedure

Cell-TypeAnalyzer can work with images with up to three color channels. One of the channels, called
Marker I, defines what a cell is and what is not. This channel can be a marker of cytoplasm, nuclei, or any
other cellular structure of interest. Once we have identified cells with Marker I, cell types will be defined
with Markers II and III.

A high-level overview of the Cell-TypeAnalyzer procedure involved is shown (see Figure 2). The
processing actions consist of six major stages:

• Step I: After loading the raw RGB images, we need to establish the correspondence between the
RGB channels and the marker names and roles. At this point, we may perform a spatial calibration
(give the pixel size in physical units) to get measurements in real length units or pixels otherwise.We
may also restrict the analysis to a region of interest whichmust be a closed shape. The plugin shows a
histogram of the pixel values in each one of the RGB channels as visual feedback.

• Step II: The next step is the identification of the cells based on Marker I. To isolate cells from their
background, we offer multiple possibilities. All of them respond to an auto-thresholding with
different methods(20) to binarize the image, then a watershed transformation(21) may be applied to
separate connected cells. Next, single-cell contours are detected and boundaries traced. Once done,
features are extracted from each cell, and each cell obtains a unique ID number. The plugin shows at
this point a summary of the detected features through some descriptive statistics (mean, median,
variance, standard deviation, minimum, maximum, quantiles, inter-quantile range, etc.). The user
may now apply filters based on these features to keep only the relevant cells for their study.

• Step III: Morphological operators(22) (erosion or dilation) may be applied to the cell contours to alter
their original size. These operations allow the measurements on Marker II to be performed in a
region that coincides with the area detected byMarker I (no operation), a smaller region (erosion), or
a larger region (dilation).Wemay also perform a “Foci per nucleus”(23) analysis to count small bright
dots within each cell. Then, we will compute different features of each cell from Marker II in the
selected regions. These types of features are shape descriptors (to describe cell boundaries), shape
metrics, and intensity-based statistics (calculated from intensity values in each channel on each cell).
Finally, we may create cell types and, to each one, add as many constraints based on the Marker II
features as needed.

• Step IV: We repeat the same actions as in Step III, but now on Marker III. Then, we can add the
constraints onMarker III to the definition of each cell type. Cells are assigned to each one of the types
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if they meet all the conditions on Markers II and III. Note that cell types can also involve conditions
solely on Marker II or Marker III.

• Step V: The last interactive step allows us to configure a dynamic scatter plot to display any cell
feature as a function of any other. Data points will represent relevant cells (those passing the criteria
of a valid cell according to Marker I) being colored depending on their cell type or in gray if they do

Figure 2. Schematic overview of the Cell-TypeAnalyzer procedure to classify cells. (I) Marker-Channel
Matching, data spatial calibration to havemeasurements on physical units, drawing a region of interest to
restrict cell classification to a specific area. (II) Image preprocessing actions, cell segmentation (auto-
thresholding and watershed transformation) to isolate cells from their background, identification by ID
number, and feature extraction onMarker I. (III) Cell features are extracted onMarker II and declaration
of the conditions of each cell type. (IV) Cell features are extracted on Marker III and modification of the

cell-type conditions. (V) The user configures the output analysis. (VI) Cell-TypeAnalyzer is run in
batchmode to large image sets.
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not fulfill the criteria of any defined cell type. Finally, we may save an XML configuration file that
will allow us to run this analysis in batch mode for many images (Step VI).

• Step VI: In this step, we apply the image analysis steps defined above (cell segmentation, region
operations, etc.) and classify the detected cells into the user-defined cell types to a large number of
images that have been acquired with similar characteristics as the one that served to set up the
analysis. This execution is performed in batch mode and produces text or Excel files with the results
for each image and a summary for the whole set.

In the following paragraphs, we go over each step in more detail.

2.2. Step I: Marker-channel matching, spatial calibration, and sub-ROI trace

Color images can be loaded, and a z-stack is automatically generated with each separated channel and the
non-split RGB image. Thanks to the instant visualization, the user has efficient control over each
operation performed. Through the “Channel Settings” panel, the user can establish the marker-channel
matching defining those channels used for cell segmentation (Marker I) and further cell classification
(Markers II and III). The “Calibration Settings” panel enables the user to have each feature spatially
calibrated on physical units rather than pixels. The user must access the pixel size usually accessible
within the imagemetadata to properly fill these spatial calibration fields. The “Crop Settings” panel allows
defining a region of interest to be analyzed. Alternatively, the user maymanually draw a closed area using
any shape available on ImageJ’s region-of-interest (ROI) tools(24). If the crop option is employed, the X–Y
coordinates of the detected cells are internally updated to reflect the current boundaries(25). Finally, the last
panel provides an overview of each marker’s intensity pixel value distribution with a dynamic histogram.
This workflow is schematically illustrated in Figure 3.

2.3. Step II: Image preprocessing, cell segmentation, identification, and feature extraction on Marker I

In this step, the user tunes the segmentation procedure to identify cells in the Marker I channel. In cases
where the cell density is quite low or requires coping with a very noisy background, the user may apply
some extra preprocessing actions to reduce noise using the preprocessing operations (image enhance-
ment, correction, filtering, and de-noising) integrated by default in Cell-TypeAnalyzer. The summary of
preprocessing methods is provided in Table 1. The user may apply as many preprocessing actions as
needed by clicking on the Script button. A dialog window will pop up in which the user will be prompted
by a script editor to write their own code in any of ImageJ’s Macro supported language without saving or
even, likewise, copying it to the clipboard and pasting it on the script editor area, then run it (Figure 4).
Irrespective of using those preprocessing operations integrated by default or by scripting, these are applied
to the image of Marker I, prior to cell segmentation.

The next step is the identification of the cells of interest in the Marker I channel. More than 10 global
auto-thresholding algorithms (Default, Huang, Intermodes, IsoData, Li, MaxEntropy, Mean, MinError
(I), Minimum, Moments, Otsu, Percentile, RenyiEntropy, Shanbhag, Triangle, and Yen) are available to
binarize the image. The user should choose the one that best suits the specificities of the images being
analyzed. It is common to find cells in close contact with other cells. Binarization algorithms cannot
separate them into distinct entities. For this task, we provide a watershed segmentation(21) that works
considering the output of the previous binarization. Finally, the cell contours are calculated, their
boundaries traced, and features extracted (shape descriptors and intensity-based statistics) for each one
of the cells are computed. To extract features from each cell, cell descriptors measure cell contours in the
resulting binary image. These more than 20 different cell features computed are summarized in Tables 2
and 3.

To keep the relevant cells solely, the user may filter out irrelevant cells by defining thresholds in any
calculated feature. These thresholds may be chosen with the help of scrolling sliders to define the
minimum andmaximum values of any feature to be considered a relevant cell. The cell-type classification
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of the subsequent steps is only applied to those cells that have been flagged as relevant in this cell
identification step based on Marker I.

2.4. Step III: Features extraction and customization of cell types on Marker II

Once cells have been successfully segmented on Marker I, the features extraction of relevant cells on
Marker II is performed. This stage may involve morphological operations(22) such as erosion or dilation
(see Figure 5a) or, conversely, none to maintain the original cell area. If required, the user can perform a
“Foci per nucleus” analysis(23) to count all small bright dots (local maxima of pixel intensity)(20) within
each cell (see Figure 5b). This analysis has some tunable parameters like the “Tolerance” (by default 30),
which acts as a local threshold (a maximum is removed from the list if it is close to another one within a
distance smaller than “Tolerance”).

Features of Marker II are finally calculated for the relevant cells. This information is attached to the
information already known for each cell after the analysis ofMarker I. As forMarker I, this information is
displayed in a data table, and a statistical summary is shown. At this point, the user may define cell types
creating asmany constraints as needed for the features computed onMarker II (e.g., a cell is of Type 1 if its
area is between this and this value, its circularity between this and this, etc.).

2.5. Step IV: Features extraction and customization of cell types on Marker III

This step is totally analogous to the previous one on Marker II. The definition of cell types can include
conditions on any feature of both Markers II and III. A cell is classified in these types if it fulfills all the

Figure 3. Details of Step I. Marker-channel matching, spatial calibration, and sub-ROI trace workflow.
(a) Images to be processedmust be in 2D single-plane RGB form: 24-bit RGB or Color Composite. (b) Via
“Marker-Channel Matching,” the user must determine the matching between the RGB channels and the

Markers I–III. (c) Through the “Data Spatial Calibration” panel, the user obtains all cell metrics
calibrated on physical units (not in pixels) by typing the image pixel size. (d) The “Crop Settings” panel
enables to draw a region of interest to be considered for analysis. All coordinates calculated throughout
the plugin are updated according to the location of the closed shape. In addition, the user may inspect, by

clicking on a dynamic histogram, the distribution of pixel intensities on each marker.
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conditions of that cell type. Cells that do not fulfill any defined cell types are classified as unknown (see
Figure 6).

2.6. Step V: Configurable outputs, dynamic marker-feature scatter plot, and cell-type metrics

At this stage, the user can dynamically configure a 2D analysis (see Figure 7) to plot any cell feature
extracted from the selected marker (Marker I, II, or III) as a function of any other. This functionality may
be beneficial to observe relationships among features from markers. Users may choose to apply different
curve-fitting models (Linear, Polynomial, Power, Logarithmic, or Exponential) to find the one that best
fits data (see Figure 7c). The 2D analysis may be restricted to specific z-slices. This is useful to identify
possible dependencies on the cell’s height within the tissue in confocal microscopy (e.g., apical
vs. luminal cells). Each point represents a relevant cell. Its label determines its color on the plot. This
helps to recognize cell types’ distribution patterns according to their location in specific feature planes
(see Figure 7a). Cells not belonging to any cell type are colored in gray. As an additional way to explore
the set of cells, the user may define thresholds for each plotted feature (see Figure 7a). These thresholds
divide the feature space into four quadrants, and the number of cells in each quadrant is counted and
displayed as a table.

If the user is satisfied with the analysis performed on several input images, the whole analysis
description can be saved as an XML file used by the plugin in batch mode (see the next section).

2.7. Step VI: Running Cell-TypeAnalyzer in batch mode

To achieve themost accurate batch-mode analysis (see Figure 8), it is advised to perform prior tests to find
the most suitable parameters on a subset of images before applying it to a large batch. The batch-mode

Table 1. Table listing the preprocessing operations which may be applied by default using
Cell-TypeAnalyzer previous to image thresholding.

Summary of preprocessing actions

Action Type of action Description

Smooth Filter Blurs the image replacing each pixel with the average of its 3 � 3
neighborhood.

Sharpen Filter Increases contrast and accentuates detail in the image replacing each
pixel with a weighted average of the 3 � 3 neighborhood.

Enhance
contrast

Contrast
adjuster

Enhances image contrast by using either histogram stretching or
histogram equalization.

Gaussian
blur

Filter Uses convolution with a Gaussian function for smoothing.

Median Filter Reduces image noise by replacing each pixel with the median of the
neighboring pixel values.

Mean Filter Smooths image by replacing each pixel with the neighborhood mean.
Unsharp
mask

Filter Subtracts a blurred image copy and rescales the image to obtain the same
contrast of large structures as in the input image.

Minimum Filter Grayscale erosion replacing each pixel in the image with the smallest
pixel value in that pixel’s neighborhood.

Maximum Filter Grayscale dilation replacing each pixel in the imagewith the largest pixel
value in that pixel’s neighborhood.

Variance Filter Highlights image edges by replacing each pixel with the neighborhood
variance.
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GUI will ask the user to load the XML configuration file containing the whole list of user-defined
processing actions. This file is saved in Step V. Using XML is advantageous because it is editable. Thus,
the user can easily change the analysis without reopening theGUI and designing the analysis from scratch.
Then, the user must supply the directory with the input images and the directory for the outputs.

3. Experimental Validation

To validate Cell-TypeAnalyzer and demonstrate how versatile it is in solving specific biological problems
in several image sets, we propose different applications in which this tool may be customized.

3.1. Comparing cell-quantification using confocal and widefield microscopy

In the first application, we compared the count of cells of a given type using Confocal or Widefield
microscopy(26). We did not expect a significant difference between the two kinds of microscopy
despite their different appearances in this experiment. We had two different cell preparations: control
and treated cells (see Figure 9). A larger growth rate characterized the control group, and microscopy
fields showed a higher cell density, while the treated group had a lower cell density(27). Images in each
well were acquired containing channels for 4',6-Diamidino-2-Phenylindole (double stranded DNA
staining) (DAPI) as Marker I; this marker is a dye for targeting the cell nuclei(28). As Marker II, we
used Rabbit antihuman p21 (at 1:500 dilution), and antibody labeled cells were visualized with Goat
anti-rabbit secondary antibody directly conjugated to fluorochrome Alexa 647 (at 1:500 dilution). As
Marker III, we used Mouse antihuman phospho-histone H2AX (at 1:500 dilution), a biomarker to

Figure 4.Details of Step II. Image preprocessing, cell segmentation, identification, and feature extraction
onMarker I. (a) The channel corresponding toMarker I is separated from the rest of the images. (b) Now,
the parameters for cell segmentation on Marker I are tuned. The user may choose from different global
auto-threshold algorithms to binarize the image and isolate cells from their background. In the event of
having some connected cells, watershed filtering may be applied to split touching objects. (d) Features

extraction from each cell. (c) Optionally, the user may provide an image preprocessing script that
facilitates the identification of the cells of interest. This is done by clicking on the “Script” button and
selecting a script file or writing their own code in any of ImageJ’s supported languages. (e) Filtering to

keep only relevant cells through scrolling sliders.
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recognize DNA damage(29), being visualized with Goat anti-mouse secondary antibody directly
conjugated to fluorochrome Alexa 488. Both Confocal multispectral system Leica STELLARIS
5 system and Leica DMi8 SWidefield epifluorescence were employed for the image acquisition. Each
field of view was operated at a map resolution format of 1,024� 1,024 pixels with each channel at 16-
bit intensity resolution. The confocal images were acquired with an HC PL APOCS2 20� /0.75 DRY
objective and have a pixel size of 0.758� 0.758 microns. The widefield images were acquired with an
HC PL FLUOTAR L 20� /0.40 DRYobjective and have a pixel size of 0.65� 0.65 microns. Images
were acquired with a step size of 2.5 microns and intervals of approximately 9 s per image (44 sites per
well), resulting in barely 10 min per well. A total of 128 wells were imaged using three channels,
which resulted in 384 grayscale images. A dataset of 32 images per group (confocal-control, confocal-
treated, widefield-control, and widefield-treated) was collected.

For the image analysis, we used Otsu’s binarization to identify cell nuclei inMarker I. We did not need
to use watershed segmentation to separate nearby cells. We removed all cells whose nucleus had aMarker
I area below 5 pixels. We performed a “Foci per nucleus” analysis on Marker II. We defined a single cell
type by requiring cells to have an average intensity in Markers II and III above the average intensity in
Marker I and with at least eight foci. The analysis time per image was 6 s in a laptop Alienware M15 8th
Gen Intel Core i7-8750H (4.1 GHz). The results of Cell-TypeAnalyzer in batch mode are shown in
Figure 9. In Table 4, we compare the mean (two-sample t-test) between the confocal and widefield
imaging. None of the tests could be rejected at a confidence level of 95%. This comparison shows that
imaging with confocal or widefield microscopy does not make any statistically significant difference for
this experiment. Cell-TypeAnalyzer was instrumental in automating this comparison, which would have
been much more tedious if manual counting was required.

Table 2. Table reporting the types of features (shape descriptors and intensity-based statistics)
computed for each cell along with description using Cell-TypeAnalyzer.

Cell features summary

Feature Type of feature Description

ID ID number Identification number of each cell contour
Area Shape metric Area of cell contour in squared pixels or physical units

(if calibration is done)
Mean gray value (Mean) Intensity-based

statistics
Average gray value of all pixels within the cell contour

Standard deviation
(StdDev)

Intensity-based
statistics

Standard deviation of the gray values used to generate
the mean gray value

Modal gray value (Mode) Intensity-based
statistics

Most frequent gray value within each cell contour

Min and max gray levels
(Min & Max)

Intensity-based
statistics

Minimum and maximum gray values within cell
contour

X–Y centroid (X & Y) Shape metric Mean of the x and y coordinates of all pixels within each
cell contour

X–Y Center of mass (XM
& YM)

Shape metric Brightness-weighted mean of the x and y coordinates of
all pixels within cell contour

Perimeter (Perim.) Shape metric Length of each cell-contour boundary
Bounding rectangle (BX
& BY, Width & Height)

Shape metric Smallest rectangle enclosing each cell contour defined
by “BX” and “BY” (the coordinates of upper left
corner), and “Width” and “Height”
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3.2. Evaluating morphology of known phenotypes in HeLa cells

This second application proposes a general approach to identify and get subsequent phenotype classifi-
cation of single cells within cell populations based on morphological changes.

This study used the Cell-TypeAnalyzer plugin in batch mode to efficiently extract shape descriptors
and features from cells to analyze their morphology and obtain fluorescence statistics from nuclear and
cytoskeletal markers. Each cell was described by a vector of more than 30 descriptors measured for each
fluorescent marker (DNA, Tubulin, and Actin).

Using this tool, we established a semiautomated method for identifying distinct phenotypes from
subsequent classification, according to classes that are user-defined for each cell type. These classes
consist of parameters based on morphology and cell area to describe their protrusion or elongation.
HeLa cells in this application were first detected, identified by an ID number, and finally, classified into
different cell types: Actin fiber (AF), Big cells (BC), Condensed cells (C), Metaphase cells (M), Normal
cells (N), and Protruded cells (P). The full dataset of HeLa cells was downloaded from the image data
resource (IDR)(30), a public repository of high-quality bio-image datasets from published scientific
studies. Specifically, images were selected from the “idr0012-fuchs-cellmorph” dataset(31). This dataset
consists of 22,839 siRNA-mediated knockdowns onHeLa cells in which geneswere clustered, and their
function predicted on a genome-wide scale. The workflow for cell-type classification (see Figure 10)
starts with the “Splitting multi-channel images” command, which is called automatically by Cell-
TypeAnalyzer. This command is used for color image processing since it splits the RGB images into

Table 3. Continuation of table reporting the types of features (shape descriptors and intensity-based
statistics) computed for each cell along with description using Cell-TypeAnalyzer.

Cell features summary (continued)

Feature Type of feature Description

Fit ellipse (Major, Minor,
Angle)

Shape metric Fit an ellipse to the cell contour being
“Major”, “Minor” the primary and
secondary axis, and “Angle” the angle
among primary axis and line parallel to the
x-axis of cell contour

Circularity (Circ.) Shape descriptor Being a value of 1.0 a perfect circle and a
value of 0.0 an elongated shape

Aspect ratio (AR) Shape descriptor “Major” divided by “Minor” axis
Roundness (Round) Shape descriptor Inverse of “Aspect ratio”
Solidity Shape descriptor “Area” divided by convex Area
Feret’s diameter (Feret,
FeretAngle, MinFeret,
FeretX, and FeretY)

Shape metric “FerretAngle” angle among Ferret’s
diameter and parallel line to the cell
contour’s x-axis; “MinFerret” is the
minimum caliper diameter; “FerretX” and
“FerretY” the starting coordinates of
Ferret’s diameter

Integrated density (IntDen,
RawIntDen)

Intensity-based statistics Product of “Area” and “Mean Gray Value”

Median Intensity-based statistics Median value of pixels within each cell
contour

Skewness (Skew) Shape metric Third-order moment about the mean
Kurtosis (Kurt) Shape metric Fourth-order moment about the mean
Area fraction (%Area) Intensity-based statistics Percentage of nonzero pixels
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their respective nuclear (DNA) and cytoskeletal (Actin and Tubulin) components. Nuclei and cyto-
plasm boundaries were isolated through segmentation using the “Auto-Threshold”Otsu’s and Huang’s
methods, respectively. The watershed segmentation was applied to separate touching nuclear or
cytoskeletal structures. Once these regions were isolated, features were measured from both cytoskel-
etal fluorescent markers (Tubulin and Actin) for each cell. An initial filtering was applied to remove
those regions having an area in pixels smaller than 20. The remaining cells were classified depending on
their quantified fluorescent intensity on the Actin marker and their respective circularity values. Those
cells having more intensity in the Tubulin marker than the Actin marker and a circularity value located
in the Q4 quartile of the distribution for circularity were classified as Metaphase (M) cells. Otherwise,
cells were classified as Actin fibers (AF) class. Cells were classified into the Big cells (BC) class if their
area belonged to the Q4 quartile. The remaining cells were considered as candidates to belong to the
Normal (N), Condensed (C), or Protruded (P) cell type. This classification was performed as a function
of the circularity: Protruded (if the circularity was in the Q1 quartile), Normal (Q2 or Q3), and
Condensed (Q4). The proportions of cells in each one of the types are similar to the one originally
reported in Reference (31).

3.3. Classifying morphology in Spirochaete bacteria on dark-field microscopy

This third application proposes a widely applicable analysis workflow to detect, identify by ID, quantify,
and get subsequent morphological phenotyping of Spirochaete bacteria in blood. We applied our tool on
all dataset images in Reference (32), a total of 366 dark-field microscopy images. It must be noted that
these images are monochromatic, showing that our tool is not restricted to the analysis of multichannel
images. The phenotype classification was done using the Cell-TypeAnalyzer plugin in batch mode. Cell

Figure 5. Details of Step III. Features extraction and customization of cell types on Marker
II. (a) Considering as reference the relevant cells, the user may apply morphological operations (erosion
and dilation) on cell contours to resize them. (b) A “Foci per nucleus” analysis(23) may be performed
whose goal is to quantify the small bright dots within each cell contour. Finally, the features extraction of
relevant cells is done on Marker II, attaching this vector to the description of each relevant cell. (c) The

user defines cell types based on values of the features calculated on Marker II.
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features (shape descriptors and intensity-based statistics) were automatically extracted from every cell as a
vector used to classify them into different morphological classes.

The evaluation of bacterial single-cell contours may be instrumental in getting new insights into
the morphological changes due to a wide range of processes that external perturbations may induce
and thus reflected in the cell shape. Although Spirochaete organisms normally show stable, well-
defined shapes, these single-cell microbes may change their morphology in response to certain
environmental signals or even, depending on their life-cycle stage. The following morphological
cell types were defined: Blood Cells (BC), Normal (N), Small (S), Elongated (E), and Round (R). In
this analysis, around 53,000 cells were automatically segmented, identified, and classified into each
cell-type class.

The workflow for phenotype classification (see Figure 11) on bacterial cells starts with the “Splitting
multi-channel images” command to separate the RGB images to their respective color components. Blood
cells and Spirochaete bacteria boundaries were isolated through segmentation using the “Auto-
Threshold” Otsu’s method to binarize the image. Then, the watershed segmentation was applied. The
“Fill Holes” command was called obtaining more homogeneous regions. Once these regions of interest
were isolated, cell features described in Section 5 were calculated for every cell. Candidate cells were first
classified as blood cells or bacteria cells depending on their area in pixels. Subsequently, bacteria cells
with circularity values located in the Q4 quartile were classified as Round (R) cells. The remaining
cells were classified as Elongated (E), Small (S), or Normal (N) according to their area. Hence, bacteria
cells showing an area in pixels located in the Q4 quartile were labeled as Elongated €, then those having
area values belonging to Q1 were identified as Small (S), and finally, those located both at inter-quartile
range were classified as Normal (N).

Figure 6. Details of Step IV. Features extraction and customization of cell types on Marker III. (a) User
may either erode or dilate cell-contour lines. Then, features are extracted from relevant cells on Marker
III, generating, once more, a vector for each cell. (b) Once done, the user may define conditions on any of
the Marker III features to refine the definition of cell types further. (c) Cell-type labeling and coloring can
be defined by the user. (d) Cell-type conditions can be iteratively defined between Steps III and IVuntil the
desired labeling is achieved. (e) For each detected cell, a label is attached depending on which conditions

it fulfills. This operation helps to refine the definition of the cell types.
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Figure 7. Details of Step V. Configure outputs (dynamic marker-feature scatter plot and cell-type
metrics). (a) The user can dynamically plot any cell feature from either marker (Marker I, II, or III) as a
function of any other. Different curve models (linear, power, polynomial, and logarithmic) can fit the data.
A point represents each cell. If the cell is classified under a specific cell type, the corresponding cell-type
color is used. Otherwise, cells that do not belong to any cell type are colored in gray. (b) Contours from
cells belonging to a specific cell type may be visualized as outlines. (c,d) There are multiple ways of

exporting the analysis, including CSV, Excel files, and PDF prints.

Figure 8. Details of Step VI. Execution of Cell-TypeAnalyzer in batch mode. (a) The user may save an
XML configuration file that summarizes all the steps required, and it will be used to run Cell-Type-

Analyzer for large sets of images. (b) Examples of output files generated. (c) Graphical user interface for
batch mode.
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4. Discussion

Cell-TypeAnalyzer was developed to facilitate researchers the single-cell identification and subsequent
cell-type classification under user-defined conditions. Furthermore, Cell-TypeAnalyzer may measure
large sets of images with many cell types of interest previously defined by the user in a large variety of
biological samples, an aspect which is increasingly recognized as crucial to improve our understanding of
how genetic and environmental factors give rise to changes in organisms or even in their behavior(33).

Two of the most popular image analysis software for identifying and quantifying cell phenotype are
CellProfiler(34) and CellProfiler Analyst (CPA)(35). CellProfiler is a flexible and open-source image
analysis software package which allows users to mix and match modules to create their own customized
image analysis pipelines without extensive programming skills. CPAwas released in 2008 and marked a
great progress in fully automated phenotypic analysis including modern statistical learning methods to
identify specific cell phenotypes. This software (directly interfaced to CellProfiler) enabled biologists to
define a bunch of phenotypes as well as create annotations for single cells to train supervised machine
learning algorithm to further predict phenotypes on unseen data. Notwithstanding the first release of
CellProfiler exhibited several constraints in terms of the definition of classes (only supported two classes:
positive and negative), and on its behalf, CPA provided a small number of machine learning algorithm
available for classification (only GentleBoost), both tools were extensively used worldwide. Nowadays,
those limitations have been amply overcome since recent releases have incorporated the definition of
multiple phenotype classes as well as different machine learning algorithms are currently supported.

Having shown that trends in phenotypic analysis go through using platforms in fully automated mode,
we would like to make a comparison with our tool for cell-type classification functioning in

Figure 9. Box-whisker plots summarizing the distribution of both control and treatment groups from
confocal and widefield microscopes values. Each point will be representing the total number of cells
quantified for each analyzed well. (a) Data points calculated by quantifying relevant detections for
control and treatment samples on Marker I (DAPI). The distribution charts reveal nonsignificant

differences between microscopes. (b,c) Data points calculated by quantifying cells identified within a
specific cell type on Markers II and II, respectively. The distribution reveals nonsignificant differences
among microscope tested. (d) Data points calculated by quantifying cells that are identified simultan-

eously as a specific cell type for both markers.
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semiautomatic mode. All of these widely used tools which perform phenotypic analysis on images of cell-
based assays are designed to operate fully automatically. This aspect is absolutely great in terms of
processing speed and objectiveness, but sometimes might compromise accuracy regarding the user
interpretation of extracted features which are prone to unexpected errors in case of users not having
extensive experience. Moreover, this lack of interpretation may be more obvious as regards the complex
structure of deep learning neural networks as well as the sophisticated of machine learning models that
regularly require a prior knowledge of the field to be applied. On the other hand, semiautomated tools
always require user input and interaction along with expert validation to extract the required information
accurately and these methods, normally, are quite dependent on the quality of raw image data. Thereby
suchmanual interventionmight be certainly time-consuming, and it may introduce subjective bias leading
to hind the implementation of these approaches to large sets of images.

In this context, there is a general growing need of universal tools for varying image conditions to
accomplish semiautomated phenotypic analysis that enable cell-type classification within ImageJ or Fiji
ecosystem. The development of Cell-TypeAnalyzer within ImageJ might help to remove this bottleneck
in experimental pipelines which often involve complex workflows for a non-experienced community,
offering a user-friendly solution relying less on fully automation. Moreover, Cell-TypeAnalyzer may be a
worthy contribution with many options to customize cell-type analysis on multi-fluorescent microscopy
images containing hundreds of objects, but it might be broadly applicable to other heterogeneous
microscopy samples.

Consequently, an important difference between the more advanced software described above and our
approach is that the advanced tools do not allow the user to fine-tune the parameters used for the
classification in an understandable way, making outputs challenging to verify by user. For that reason, we

Table 4. Table showing descriptive statistics for both cell populations (Confocal and Widefield)
depending on Control or Treatment conditions. Panel A: Control—means and distributions are

nonsignificantly different between Widefield and Confocal microscopes at the 0.05 level in t-test. Panel
B: Treatment—means and distributions are nonsignificantly different between Widefield and Confocal
microscopes at the 95% confidence level in t-test. Since p-value > .05, the average of WF’s population

cannot be rejected from being equal to the average of the CF’s population.

Marker I Marker II Marker III Cell types

WFa CFb WF CF WF CF WF CF

Panel A: Control
Mean 285.59 309.63 134.25 149.56 123.41 132.16 67.84 74.72
SD 54.17 51.9 32.99 31.95 21.88 22.62 18.64 19.88
p-value 0.075 0.064 0.121 0.159
Effect size 0.45 0.47 0.39 0.36
rc 0.978 0.983 0.973 0.987

Panel B: Treatment
Mean 23.47 27.91 9.03 11 10.06 11.41 4.69 5.53
SD 8.97 9.06 4.26 4.24 3.76 4.02 2.05 1.67
p-value 0.053 0.069 0.172 0.076
Effect size 0.49 0.46 0.35 0.45
rc 0.989 0.933 0.885 0.814

Notes: Statistical significance depending on p-value at the p < .05 level. p-values were determined by using two-sample t-test for expected difference
between two populations’ mean (n = 32).
aWidefield microscope technique.
bConfocal microscope technique.
cPearson correlation coefficient.
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have designed Cell-TypeAnalyzer, that is modularly designed through a simple wizard-like GUI to
visually guide user to each step of the analysis offering an instant visualization of the outputs for each
marker, hence enablingmanual verification across the navigation back and forward throughwizards. As is
already the case of CPA, which has an interactive GUI to view images, Cell-TypeAnalyzer allows user to
manually scroll through a gallery view of image thumbnails corresponding to the input folder in which
samples are located to directly being chosen by user for being analyzed avoiding the tedious of browsing
directories. Additionally, Cell-TypeAnalyzer benefits from ImageJ ecosystem,which is probably the best-
known, flexible, and longest-lived software for biomedical sciences and beyond. In consequence, Cell-
TypeAnalyzer leverages from a lot of plugins for scientific image processing included within its
distribution, such as Bio-Formats library, which deals with more than 150 different file formats. Even
though CellProfiler offers quite powerful tools for detecting, quantifying, and describing cell morph-
ology, Cell-TypeAnalyzer benefits from a large library of tools within Fiji distribution such as Morpho-
LibJ(22) for morphological filtering as well as reconstruction and global ImageJ thresholding for
binarization/segmentation. Additionally, more experienced users may develop their ownmacro programs
to automate image preprocessing actions such as brightness correction, pixel and geometric transform-
ations, or even image filtering and restoration using ImageJ macros action integrated within Cell-
TypeAnalyzer plugin. At this point, it must be noted that Cell-TypeAnalyzer was not developed to
remove noise or enhance quality from images, although it provides preprocessing tools to improve cell
detection and cell-type characterization. Best practices for acquisition are, whenever possible, recom-
mended before using this tool. As is generally known, ImageJ was traditionally designed for single-image
processing. On the contrary, CellProfiler was originally devised for building large-scale and modular

Figure 10. Scheme of semiautomated analysis of raw images for classifying cellular phenotypes in HeLa
cells. (a) The full dataset of HeLa cells images to be analyzed was downloaded from the image data

resource repository. (b) Image preprocessing actions to get the separated nuclear (DNA) and cytoskeletal
(Actin and Tubulin) components were applied. (c) Image processing actions for Cell–Nucleus segmen-
tation and subsequent identification. A vector describes each cell based on shape descriptors, geometry,
and fluorescence statistics. (d) Cells were classified into Actin Fiber (AF), Big cells (BC), Condensed (C),
Metaphase (M), Normal (N), and Protruded (P) cell-type classes depending on user-defined feature

conditions set for each case. (e) Quantification results of classifyingHeLa cells belonging to each cellular
phenotype.
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analysis pipelines(36). In this sense, Cell-TypeAnalyzer introduces the batch processing to implement the
cell-type analysis based on user-defined conditions on large image datasets (once the user is satisfied with
single-image results), avoiding both the individual and tedious processing of each image. Regarding data
visualization, such as with CPA software which offers heatmaps, boxplots, and histograms, Cell-Type-
Analyzer allows users for data visualization and exploration to easily drill down the cell-type classifi-
cation results using dynamic scatter plots.

Regarding usability, the semiautomated analysis provided by Cell-TypeAnalyzer does not require
any programming proficiency thanks to its user-friendly wizard-like GUI and its quite intuitive
visualization settings. Nonetheless, some instructions and video tutorials are supplied in our
documentation (https://github.com/QuantitativeImageAnalysisUnitCNB/CellTypeAnalyzer). As
already happens with CPA software, Cell-TypeAnalyzer code is entirely open-source, and it does
not require any commercial license. In terms of functionality, as in the case of CPA software, time-
lapse data are not supported for analysis being solely possible to be used with static images; instead,
Cell-TypeAnalyzer is able to process each slice from time-lapse image independently. CPA relies on
CellProfiler to extract a huge amount of features to describe each cell presuming that user has prior
knowledge of cell types present on images thus whether there is a large set of images, it is impossible
to identify all the significant cell types by visual inspection. For these reasons, Cell-TypeAnalyzer
computes features of each cell readily understandable for average users such us shape descriptors
(perimeter, area, and roundness) or intensity-based statistics in each channel within each segmented
cell compartment.

On the other hand, these days, biologists are increasingly becoming more qualified users, which is
leading to a deeper understanding of the data. As opposed to machine learning approaches in which the
user is requested to costly label many input cells to train the underlying classifier, Cell-TypeAnalyzer
suggests cell-type classification based on simple rules on the calculated features. A further consideration

Figure 11. Scheme of semiautomated analysis of raw images for classifying Spirochaete bacteria in the
blood. (a) The full dataset of images to be analyzed was downloaded from Kaggle. (b) Image pre-

processing actions to get the separated channel components were applied. (c) Image Processing actions
for Blood Cells–Bacteria segmentation and subsequent identification. A vector describes each cell based
on shape descriptors, geometry, and fluorescence statistics. (d) Cells were classified into Blood Cells
(BC), Round (R), Elongated (E), Small (S), and Normal (N) cell-type classes. (e) Quantification results of

classifying cells belonging to each morphological class.
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of Cell-TypeAnalyzer related to CPA is the potential limitation of being restricted to maximum of three
input image channels for cell-type analysis.

Overall, by leveraging a blend of semiautomatic andmanual tools, Cell-TypeAnalyzer may achieve an
accurate and efficient single-cell detection in images of not well-separated objects as well as high speed in
batch processing, allowing identification of hundreds of cell types per minute. By contrast, in cases of
images where objects are touching, segmentation may be a tough task; therefore, manual verification
along with the adjustment of preprocessing actions is required. Finally, the batch processing will generate
a folder for each processed image along with a summary folder per directory processed, which makes it
possible to researchers easily examine outputs to determine how different are the identified cell types. The
data tables will be saved using the common CSV file format, enabling its use in any spreadsheet
application for further complex analyses, which makes the data accessible to researchers without
programming experience. All together, these features make Cell-TypeAnalyzer, despite some limitations,
an accessible plugin for researchers at different levels of domain which facilitates cell-type classification
under user-defined conditions at different phases of the cell cycle (Figure 12).

5. Methods and Materials

5.1. Confocal and widefield microscopy

Images were acquired with a Confocal multispectral system Leica STELLARIS 5, using three laser lines:
405, 488, and 638 nm for DAPI, Alexa 488, and Alexa 647 excitation, respectively, and three Power HyD
S spectral detectors for the fluorochromes’ emission detection and integrated software module for real-
time multidimensional super-resolution multidimensional image detection and processing (Lightning)
and Leica DMi8 S widefield epifluorescence microscope with led lines: 405, 490, and 635 nm for DAPI,

Figure 12. Schematic description of Cell-TypeAnalyzer main functionalities. It is an open-source Fiji or
ImageJ plugin for the semiautomated classification of cells according to specific cell types defined by the
user. It offers a flexible andmodular solution for users through an intuitive graphical user interface. It can
deal with multiple image formats supported by the Bio-Formats library. It is also easily scriptable to
perform preprocessing actions before cell segmentation and feature extraction. Cell-TypeAnalyzer allows
the user to calibrate metrics on physical units, not in pixels, together with having instant visualization of

each step of the analysis.
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Alexa 488, andAlexa 647 excitation with the appropriate filter cubes to detect the specific emission of the
fluorochromes, and a Hamamatsu Flash 4 sCMOS digital camera for image detection.

5.2. Development and implementation

Cell-TypeAnalyzer was developed in Eclipse integrated development environment(37) for Java Devel-
opers version 2019-12 (4.14.0), an open-source platform mainly written in Java and used in computer
programming for computer programming developing user-friendly Java applications. Cell-TypeAnalyzer
is a Java application that inherits from ImageJ’s plugin class, thus extending ImageJ’s ecosystem. The core
software and GUI were built using Java 8. Plots and histograms were implemented using the JFreeChart
library. For reading the input images, we used the Bio-Formats library(19). For handling XML files, we
used JDom, and for handling Microsoft Office Formats (.xls and .xlsx), we used Apache POI libraries.

5.3. Installing in Fiji or ImageJ

Cell-TypeAnalyzer runs as a plugin of Fiji or ImageJ (https://imagej.nih.gov/ij/download.html) and
consequently can be executed in Windows, Mac OS, or Linux systems. Cell-TypeAnalyzer plugin does
not have an updated site yet. To install it, the file CellTypeAnalyzer_jar must be downloaded from https://
github.com/QuantitativeImageAnalysisUnitCNB/CellTypeAnalyzer and moved into the ImageJ/Fiji
plugins subfolder. Alternatively, it can be dragged and dropped into the ImageJ/Fiji main window or,
optionally, installed through ImageJ/Fiji menu bar Plugins! Install! Path to File. After installing the
plugin, ImageJ or Fiji must be restarted.

5.4. Supported image file formats

Cell-TypeAnalyzer deals with a wide range of file formats using Bio-Formats(19), an open-source library
from life sciences supporting or reading almost any image format or multidimensional data as z-stacks,
time series, or multiplexed images, keeping metadata easily accessible. In case of loading a Leica Image
File(38) whose extension is .lif, which is a file format allowing storing several image series in the same file,
our software is capable of extracting each image automatically as a single TIFF file, keeping the original
pixel values and spatial calibration. On top of that, the user has access to a list of images that are available
during the whole procedure for updating analysis as many times as needed. Regarding the limitation of
usage, Cell-TypeAnalyzer is restricted to images in 2D single-plane RGB form: 24-bit RGB or Color
Composite.

5.5. Code availability

Source code and documentation for the plugin are available at https://github.com/QuantitativeImageA
nalysisUnitCNB/CellTypeAnalyzer.

6. Conclusions

This paper presents Cell-TypeAnalyzer, a plugin for automatically detecting and semiautomatically
classifying cells according to very flexible cell-type definitions in multiple microscope image files. This
tool was developed as a plugin working under both ImageJ and Fiji platforms. The implemented
procedure consists of image preprocessing actions, cell segmentation, cell characterization through the
extraction of features in RGB channels, and cell classification. This tool was designed to interactively
guide users through various modules, allowing navigating back and forth to tune parameters or review
processing actions while performing cell classification. Therefore, Cell-TypeAnalyzer offers a user-
friendly, generic, and flexible strategy that can be applied to a wide range of biological challenges to
examine relationships among cells that might reveal worthy new biological insights.
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Abstract
Current live-cell imaging techniques make possible the observation of live events and the acquisition of large
datasets to characterise the different parameters of the visualized events. They provide new insights into the
dynamics of biological processes with unprecedented spatial and temporal resolutions. Here we describe the imple-
mentation and application of a new tool called TrackAnalyzer, accessible from Fiji and ImageJ. Our tool allows
running semi-automated Single-Particle Tracking (SPT) and subsequent motion classification, as well as quanti-
tative analysis of diffusion and intensity for selected tracks relying on the GUI for large sets of temporal images
(X-Y-T or X-Y-C-T dimensions). TrackAnalyzer also allows 3D visualization of the results as overlays of either
spots, cells or end-tracks over time, along with corresponding feature extraction and further classification accord-
ing to user criteria. Our analysis workflow automates the following steps: 1) spot or cell detection and filtering, 2)
construction of tracks, 3) track classification and analysis (diffusion and chemotaxis), and 4) detailed analysis and
visualization of all the outputs along the pipeline. All these analyses are automated and can be run in batch mode
for a set of similar acquisitions.

Impact Statement
In recent decades, single-particle tracking analysis has become a powerful method to evaluate biomolecules’
diffusion dynamics and interactions in living cellular ecosystems. Because changes in biomolecule dynamics
can lead us to understand either functional states or signalling pathways, this tool allows characterizing the
mechanisms of one molecule at a time within single trajectories by extracting mobility-related properties
together with performing mean-squared displacement approaches to quantitatively analyze diffusion, thus
getting further track classification. Here, we present TrackAnalyzer, a new open-source plugin which extends
from TrackMate’s single-particle tracking analysis broadly applicable under ImageJ or Fiji, which prevents
users from using complex instruments and provides intuitive data analysis schemes hence leading users to a
proper interpretation of information extracted from trajectories.

1. Introduction
With the development of breakthrough live-cell imaging techniques in optical microscopy, such as Con-
focal and Total Internal Reflection Microscopy (TIRF) over the last 40 years, quantitative analysis of
dynamic processes at the sub-cellular level has become crucial to acquire valuable information related
to dynamics intracellular processes over long periods of time with a spatial resolution of a few tens
of nanometers (1). In this context, due to advances in fluorescent protein labelling and software, single-
particle tracking analysis (SPT) as a time-lapse imaging tool has become standard in life sciences to
measure motion, diffusion properties, and the changing spatial distribution of single-particles in real-
time with high-temporal resolution and high signal-to-noise ratio (2). Since particles are fluorescently

© The Authors(s) 2021. Published by Cambridge University Press. This is an Open Access article, distributed under the terms of the Creative
Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in
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2 Cayuela et al.

labelled, SPT analysis must seek to roughly reconstruct the motion of single particles of interest over
consecutive time points. Its combination with markers allows monitoring vital cellular processes such
as cell differentiation (3). The estimation of frame-to-frame correspondence among particles at the cel-
lular and molecular levels (with high accuracy and high reproducibility) requires a high signal-to-noise
ratio. However, this is not always achieved due to severe noise from a fluctuating background, autoflu-
orescence, blinking, photobleaching, phtototoxicity (4), poor contrast, extremely high particle density,
or motion heterogeneity. To address these challenging events, inherent to the dynamic organization of
cellular components (and essential for many biological processes) such as cell division, differentiation,
cell adhesion, or migration (5), SPT algorithms explicitly take some countermeasures to guarantee the
correct tracking of these fluorescent particles. Specifically: (I) gap-closing events when a single particle
temporarily disappears from focus and reappears later; this type of event is closely related to fluorophore
blinking and stochastic fluctuations of spot or cell intensity so the tracker algorithm may bridge missing
detections in a predefined number of subsequent frames (6); (II) merging events when two single parti-
cles approach each other and fuse into a unique object; (III) splitting events when a single-particle splits
into two new single-particles (7). To correctly compute trajectories, single-particle candidates consid-
ered as relevant must be accurately detected and isolated from each other and from a background with
nanometer spatial and millisecond temporal resolution (8). Thus, enhancing the signal-to-noise ratio is
mandatory; the higher the background noise, the more distorted the tracking. SPT analysis involves spa-
tial methods for (I) single-particle detection in which each spot or cell is segmented, identified, located
and isolated from the background establishing X-Y-Z-T coordinate correspondences frame-by-frame,
and temporal methods for (II) single-particle linking in which each single-particle detected is assigned
over time into a single track.

While manual single-particle tracking of biological processes may be straightforward when the parti-
cle density is low, tracking large datasets of sparse living cells is often a subjective, barely reproducible,
and tedious task. Consequently, its automation is very much appreciated. Due to experimental con-
straints, fully automated SPT approaches frequently perform poorly when the experimental conditions
change. For this reason, the possibility of combining automation with user control (9) may facilitate
the quantification of live cell events. At present, there is still a lack of user-friendly and comprehensive
software for single-particle tracking to cope with the enormous amount of time-lapse microscopy acqui-
sitions arising from quite different experimental conditions. Given the current situation, we decided
to construct TrackAnalyzer to allow the user to set up sophisticated SPT analyses tailored to his/her
experimental conditions, apply this analysis in batch mode to a large collection of similar acquisitions,
and finally analyze the results. Our software is available through an open-source plugin for Fiji (10) or
ImageJ (11). TrackAnalyzer performs the detection of the spots or cells to follow, the construction of the
tracks, quantitative diffusion analysis, trajectory analysis, cluster size analysis, and single-step photo-
bleaching analysis (see Fig. 1). Our viewer allows 2D visualization of the spots (or cells) and tracks,
spot/track filtering and classification into user-defined specific spot/track types.

For detecting and constructing the tracks, our software takes advantage of the previously published
open-source software TrackMate (12), which is an extensible platform running for either Fiji or ImageJ,
openly available and very well-documented. TrackMate provides algorithms for spot or cell detection,
track construction (automated, semi-automated, and manual tracking), visualization, and subsequent
feature extraction. In this way, TrackMate addresses both usability and flexibility to provide users with
a user-friendly tool to tackle the complexity of this type of analysis.

For the classification of the different types of trajectories, we use TraJClassifer (13). This software
classifies trajectories into their respective motion types: normal diffusion (ND), anomalous diffusion
(AD), confined diffusion (CD), and directed motion (DM). An interesting feature of TraJClassifier is
that trajectories can be divided into segments, and the motion type of each segment can be analyzed.

TrackAnalyzer implements an algorithm to calculate the diffusion coefficients of each trajectory. The
algorithm is based on the mean-square-displacement (MSD) curve as a function of the time lag of each
trajectory (see Sec. 5 in Materials and Methods). The short-time lag diffusion coefficient (𝐷1−4) is also
calculated by fitting the first used-defined points of the MSD curve (5). MSD-based methods are reliable
for short trajectories, but they may be error-prone in longer trajectories due to their non-linearity and
lack of distinction between modes of motion (14). To overcome this non-linearity and describe non-linear
diffusion, the anomalous exponent or alpha value (𝛼) is calculated by the power-law form of the MSD,
indicating the nonlinear relationship of the MSD with time (15). The exponent of this power function
determines whether the motion is confined (0<𝛼<0.6), anomalous (0.6<𝛼<0.9), free (0.9<𝛼<1.1), or
directed (𝛼>1.1) (5). For long trajectories, the moment scaling spectrum (MSS) together with its slope
(𝑆𝑀𝑆𝑆) is introduced as a method to categorize the various modes of motion (5). While MSD-based
analysis uses only the second moment, which can mislead in judging the type of motion, MSS uses
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Figure 1. Illustration of the workflow to perform single particle tracking together with subsequent
analysis of diffusion using TrackAnalyzer software which consists of several processes. (1) Extended

Trajectory Analysis. a. After Acquisition time series of multi-movie data sets. b. Localization,
detection and subsequent identification of single particles framebyframe. A wide range of features is

extracted based on the location, radius and image data. c. Single particles are linked to building
trajectories over time (single particle tracking). (2) Motion Type Analysis. The resulting trajectories
and links are analyzed after the tracking step to characterize them and evaluate the type of motion by
applying quantitative analysis of diffusion, mean square displacement (MSD), and moment scaling
spectrum (MSS) slope. (3) Cluster Size Analysis. The number of receptors per spot is calculated by
applying Gaussian Mixture Model fitting and Single-step Photobleaching Analyses. (4) Chemotaxis

and Migration Analysis. Several quantitative and statistical features (centre of mass, forward migration
indices, velocity, ...) are calculated to characterize trajectories. (5) Spot and Trajectory Filtering, (6)

Manual Spot and Track Classification, and (7) Basic Statistical Analysis. Features extracted from
spots and tracks will be used to either filter or classify them depending on user-defined conditions..

higher-order moments of the displacements. In this way, an 𝑆𝑀𝑆𝑆 value of 0.5 defines Brownian or free
motion, and 𝑆𝑀𝑆𝑆 values below and above 0.5 determine confined and directed motion, respectively.
Finally, a 𝑆𝑀𝑆𝑆 of 0 determines immobility (14).

TrackAnalyzer also analyzes the spot or cell intensities along the whole trajectory. At this point, we
provide the user with different algorithms to estimate the background fluorescence intensity described
in Sec. 5.2 and use this estimated value to correct the raw measurement observed in the acquired images.
This approach allows the identification of photobleaching. In combination with this approach, this tool
provides an alternative strategy to evaluate the cluster size by fitting a Gaussian Mixture Model to the
histogram of the logarithm of the background-subtracted integrated spot intensities.

Finally, we have also integrated the Chemotaxis and Migration Tool (16) to quantify both chemotaxis
and migration experiments.

2. Results
2.1. Overview of the analysis procedure
The analysis workflow starts with the user calling TrackMate and setting up an analysis in this tool that
correctly identifies the spots or cells and tracks in the specific experimental conditions of the dataset.
TrackMate offers state-of-the-art segmentation and trajectory construction algorithms. After setting up
the analysis, TrackMate will produce an XML file with the analysis parameters (this file also contains
the results of the video analyzed, although these specific results are not of interest in our context of
automated analysis of a collection of videos). The input to our software is the XML file produced by
TrackMate, with the analysis parameters and the directory with the videos to be analyzed in batch
mode. For each video in the input directory, we will create an output directory with the results of all



4 Cayuela et al.

Time

a

b

c

SPT Initial GUI

.XML TrackMate File

Time-Lapse Dataset

 25 %

Figure 2. Illustration of getting started with the TrackAnalyzer plugin. (a) GUI structure of
TrackAnalyzer. (b) TrackAnalyzer is started by selecting the .XML TrackMate configuration file and

the time-lapse data sets to be analyzed in (c)..

the different analyses on that video. Before launching the analysis in batch mode, the user must choose
the parameters for all the different kinds of analyses performed on the tracks detected by TrackMate.
Specifically:

1. Extended trajectory analysis. We provide a number of tools that help to extend the spot and
trajectory analysis offered by TrackMate. In particular, the user may choose a specific frame
range so that all spots detected out of this range are excluded. The user may also exclude all spots
detected outside of a cell. We also offer different output options such as generating a summary
file for each video, exporting the results in XML, text file or as a RoiSet that can be handled by
ImageJ’s RoiManager. Finally, the user may choose any XY scatter plot with information coming
from the detected spots or cells, links or tracks-related features.

2. Motion-type analysis. TrackAnalyzer offers several ways of analyzing the motion type of the
different trajectories. As a result, we classify trajectories into immobile or mobile depending on
the threshold set by the user, and within these into confined, anomalous, free or Brownian, or
directed trajectories. We calculate the short-time lag diffusion coefficient (𝐷1−4), Mean Squared
Displacement (MSD) and diffusion coefficient for all trajectories (the formal definition of all
these quantities are given in Sec. 5.1). These measurements are especially well-suited to short
trajectories and characterise the movement’s onset. Additionally, trajectories are classified into
short and long trajectories, depending on a threshold given by the user. Long trajectories are
further analyzed using the Moment Scaling Spectrum (MSS), better suited to account for their
non-linearities. Finally, we have also integrated TraJClassifier that allows the local classification
of the trajectory motion type, i.e., a spot may behave in one way during the first half of the
trajectory and in another way in the second half. TraJClassifier’s classification is based on a
random forest trained on simulated data with different kinds of motion.

3. Cluster size analysis. This analysis tries to estimate the number of fluorophores at each spot.
This information is very useful for identifying the presence of monomers, dimers, trimers, etc.,
within a cluster. An unbiased estimate should account for the background fluorescence, which
must be subtracted before further analysis. TrackAnalyzer offers several methods to estimate the
background, described in Sec. 5.2. In particular, we use the following two methods to estimate
the number of fluorophores:

(a) a Gaussian Mixture Model fit of the histogram of the logarithm of the
background-subtracted integrated spot intensities.
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Figure 3. Schematic overview of the SPTBatch procedure for single-particle tracking along with
subsequent motion trajectory analysis, cluster size and single-step photobleaching analysis together
with chemotaxis analysis in batch mode. (1) Extended Trayectory Analysis. Single-particle tracking

analysis extending from TrackMate running in batch mode using multiple sets of files. (2) Motion Type
Analysis. Trajectory analysis is executed to calculate short-time lag diffusion coefficient, diffusion

coefficient, mean squared displacement curve, motion type classification, ... (3) Cluster Size Analysis
and Single-step Photobleaching analysis is run. (4) Chemotaxis and Migration Analysis to quantify

chemotactic cell migration..

(b) a single-step photobleaching analysis. This technique analyzes the time evolution of the
fluorescence of an individual spot along its trajectory. The number of photobleaching
steps over time is a lower bound of the number of fluorophores in the spot.

4. Chemotaxis and migration analysis. The identified trajectories can be subjected to a chemo-
tactic and migration analysis (as implemented by the Chemotaxis and Migration tool of
ImageJ (16,17)). This tool allows the quantitative and statistical analysis of the migration of the
spot centre of mass (CM) and the calculation of the forward migration indices (FMI), velocity
(V), and directness (D) (described in 7, 6 and 8 in Sec. 5.1).

5. Spot and trajectory filtering. The user may explore the results once the batch analysis has been
performed on all videos. This is done through a visualization tool that allows navigating the spots
and tracks, showing information about their location in space and time and quality measures (as
reported by TrackMate). This information is displayed as an interactive table. Clicking on any of
its rows automatically brings us to the selected spot and track within the video.

At this point, the user may further filter the results by applying specific criteria:

• Spots and tracks can be manually selected/deselected for further statistical analysis.
• The user can manually draw a region in the video and select/deselect spots and trajectories

inside or outside that region.

6. Manual trajectory classification. Additionally, spots and tracks can be categorized by visually
setting thresholds on the histogram of any of the features displayed in the table. Categories or
classes can be defined by an arbitrary number of features (see Fig. 4) to determine specific spot
and track types for further classification.

The table of selected spots and tracks, along with their characterization in terms of spatial and
time location and different descriptors, can be exported as a CSV file for further analysis outside
our tool.
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7. Basic statistical analysis. The final step of our tool offers basic exploratory statistical opera-
tions. For instance, the user may construct XY plots with any features calculated for the spots
and tracks. These plots can be done only for one specific trajectory category (see the previous
point in the workflow) or for all of them with their category used as a colour. Histograms of the
different features can also be calculated, and basic statistical descriptors (mean, standard devia-
tion, minimum, maximum, quantiles, ...) are given.
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Figure 4. Schematic overview of the manual analysis for spot and trajectory filtering.(a) The double
tabbed wizard-like GUI of our viewer in which the user can configure the settings for either spot or

trajectory filtering along with user-definition of classes to identify specific spot or track types
retaining. (b) SPTViewer last wizard enables to configure dynamic scatter plots to display any

spot/track feature as a function of any other.

2.2. Validation of the Method
2.2.1. Experimental dataset 1: Analysis of spot tracks
Analysis of the dynamic of CXCR4 at the plasma membrane of Jurkat CXCR4−/− cells electro-
porated with CXCR4-AcGFPm. In this example, we will illustrate the features that TrackAnalyzer
offers for the different kinds of analysis of the tracks of spots. In particular, Steps 1, 2 and 3 (see Sec.
2.1 in Overview of the analysis procedure). Two datasets with Jurkat CXCR4−/− cells electroporated
with CXCR4-AcGFPm were used. This cell line, derived from human T lymphocytes, was generated
using the CRISPR/Cas9 system to eliminate the endogenous expression of CXCR4 (18). Therefore, these
cells only express CXCR4 labelled with AcGFPm. Cell sorting allowed us to obtain cells expressing
8,500 to 22,000 receptors per cell to work in single-particle conditions. It has been reported that ligand
CXCL12 stimulation promotes CXCR4 nanoclustering at the cell membrane, which is necessary for a
correct cell function (19). In a previous work (19), particles in TIRF images were automatically detected,
tracked and analyzed using described algorithms for diffusion analysis (20) implemented in MATLAB.
We now compare the results obtained in our previous work with TrackAnalyzer’s results.

The image sets studied in this case consist of time-lapse images acquired by a TIRF microscope
(Leica AM TIRF inverted; 100x oil-immersion objective HCX PL APO 100x/1.46 NA) equipped with
an EM-CCD camera (Andor DU 885-CS0-10-VP), at 37 ◦C with 5% 𝐶𝑂2. Image sequences of indi-
vidual particles (500 frames) were then acquired at 49% laser (488-nm diode laser) power with a frame
rate of 10 Hz (100 ms per frame). The penetration depth of the evanescent field used was 90 nm. The
first dataset contains image sequences from 18 different cells on fibronectin (basal) conditions (Fig.
5a), while the second dataset contains image sequences from 14 different cells on fibronectin+CXCL12
(stimulated) conditions (Fig. 5b).

Before entering into TrackAnalyzer, we generated an XML parameter file with TrackMate. Spots
were identified through subpixel localization applying LoG (Laplacian of Gaussian) detector (12)
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Figure 5. Application of TrackAnalyzer to track CXCR4-AcGFPm in JK CXCR4−/− cells
electroporated with CXCR4-AcGFPm. (a-b) Images of Jurkat CXCR4−/− cells electroporated with

CXCR4-AcGFPm on fibronectin (FN)- (a) and FN+CXCL12-coated coverslips (b). Scale bar, 5 𝜇m.
(c-f) Tracking results from TrackAnalyzer (741 particles in 18 cells on FN and 1,209 particles in 14

cells on FN+CXCL12). (c) Mean Spot Intensity (MSI, arbitrary units, a.u.) from individual
CXCR4-AcGFPm trajectories. The mean is indicated (red). Short-time lag diffusion coefficients

(𝐷1−4) of all (d) and mobile (e) single trajectories. The median is indicated (red). (*** p≤0.001, ****
p≤0.0001, Welch’s t-test).(f) Percentage of confined, free and directed CXCR4-AcGFPm particles at
the cell membrane using the slope of MSS. (g)Percentage of mobile and immobile CXCR4-AcGFPm

particles at the cell membrane. (h) Percentage of long trajectories of CXCR4-AcGFPm particles at the
cell membrane. (i) Frequency of CXCR4-AcGFP particles containing the same number of receptors

[monomers plus dimers (≤2) or nanoclusters (≥3) in cells, calculated from MSI values of each
particle as compared with the MSI value of monomeric CD86-AcGFP. (j) Diffusion coefficients (D) of
single trajectories. The median is indicated (red). (k) Mean Squared Displacement (MSD) of single
trajectories using the first-time lag. The median is indicated (red). (l) Mean Squared Displacement

(MSD) of single trajectories using the second time lag. The median is indicated (red). (m) Mean
Squared Displacement (MSD) of single trajectories using third time-lag. The median is indicated

(red). (n) Mean Squared Displacement (MSD) of single trajectories using more than three time-lags.
The median is indicated (red)..

(estimated object diameter=0.5 𝜇m, quality threshold=500, Sub-pixel localization=true, Median fil-
tering=true). Frame-to-frame spot linking was performed using TrackMate’s LAP (Linear Assignment
Problem) by closing gaps (linking max distance=0.5 𝜇m; track segment gap closing=0.1 𝜇m and 6
frames; track filtering of those trajectories of at least 20 frames).

We then launched TrackAnalyzer in batch mode to analyze all videos in the datasets with the same
parameters. The following paragraphs provide the parameters and describe the results of the different
kinds of analyses.

1. Extended trajectory analysis. We did not discard any of the identified tracks. As can be seen
in Fig. 5c, stimulation with CXCL12 promotes an increase in the mean spot intensities (MSI)
mean value of CXCR4 particles (2,970 arbitrary units for fibronectin vs. 3,781 arbitrary units for
fibronectin+CXCL12) reflecting an increase of larger CXCR4 nanoclusters.

2. Motion-type analysis. A diffusion coefficient of 0.0015 was set as the threshold to discriminate
among mobile and immobile particles, which is the percentile 95 of the diffusion coefficients of
purified AcGFPm protein particles immobilized on glass coverslips (19). Figs. 5d, e, g, j, k, l, m
and n show the 𝐷1−4, D, MSD, and percentage of the immobile particles. There is an increase in
the percentage of immobile particles in CXCL12-stimulated conditions (6,12% for fibronectin
vs 10,40% for fibronectin+CXCL12). Mobile particles also showed a reduction in the MSD
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and 𝐷1−4 demonstrating a significant reduction in overall receptor diffusivity (0,012 𝜇𝑚2/𝑠 for
fibronectin vs 0,007 𝜇𝑚2/𝑠 for fibronectin+CXCL12). These results are consistent with those
previously obtained using Matlab (18,19), in which CXCL12 stimulation promoted the formation
of larger nanoclusters of CXCR4 that also showed a different dynamic behaviour as compared
with the receptor in basal conditions.

We classified the trajectories whose length is larger than 50 frames into confined, anomalous,
Brownian (free) or directed (Fig. 5f )using the moment scaling spectrum (MSS) described in Sec.
5.1 along with the percentage of long trajectories per condition.

3. Cluster size analysis. We used the background subtraction method 4 (described in Sec. 5.2). The
total number of receptors per particle was assessed by dividing the mean particle intensity by
the particle arising from monomeric protein, i.e. CD86-AcGFP, estimated through the analysis of
spots with just one photobleaching step. Therefore, this value was used as the monomer reference
to estimate the number of receptors or molecules per particle, as shown in Fig. 5i.

2.2.2. Experimental dataset 2: Analysis of cell tracks
Analysis of the directed cell migration capacity of Jurkat cells. In this section, we illustrate the
chemotaxis and migration analysis module. To do so, we only use Steps 1 and 4 (see Sec. 2.1 in
Overview of the analysis procedure). Note that some of the steps only apply to spots and not cells,
for instance, Steps 2 and 3.
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Figure 6. Migration of JK cells in response to a CXCL12 gradient. (a-b) Representative spider plots
showing the trajectories of tracked cells migrating along the gradient (black) or moving in the

opposite direction (red). Black and red dots in the plots represent the final position of each
single-tracked cell. The grey triangle indicates CXCL12 gradient. Quantification of the velocity (c),

center of mass (d), forward migration index (e) and directionality (f) of experiments performed.

4. Chemotaxis and migration analysis. In this analysis, we will illustrate other features of Track-
Analyzer to evaluate directional cell migration. Two datasets with Jurkat cells were used. To
assess the ability of these cells, which express CXCR4 endogenously, to migrate toward CXCL12
gradients, we used fibronectin-coated chemotaxis chambers (Ibidi 𝜇 Slide Chemotaxis System;
80326). As CXCL12 is the ligand of CXCR4, we expected that cells migrate toward the gradient.
The image sets studied in this case consist of time-lapse images acquired by Microfluor inverted
microscope (Leica) every 2 minutes for 6 h at 37°C with 5% CO2. Single-cell tracking anal-
ysis was performed using TrackMate to generate an XML parameter file. Cells were identified
through subpixel localization applying LoG (Laplacian of Gaussian) detector (estimated object
diameter=0.5 𝜇𝑚, quality threshold=15.0, Sub-pixel localization=true, Median filtering=true).
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Frame-to-frame cell linking was performed using TrackMate’s LAP (Linear Assignment Prob-
lem) by closing gaps (linking max distance=60 𝜇𝑚 ; track segment gap closing=60 𝜇𝑚 and 2
frames). Then we launched TrackAnalyzer to analyze all videos in the datasets with these param-
eters. Therefore, directional cell migration was assessed (Fig. 6) by evaluating the corresponding
spider plots (representing the trajectories of the tracked cells) (Fig. 6 a,b), forward migration
index (FMI) (Fig. 6 e), directionality (D) (Fig. 6 f), the centre of mass (CM) (Fig. 6 d) and veloc-
ity (V) (Fig. 6 c) provided by chemotaxis and migration plugin integration. Quantitation of the
results showed that JK cells sensed the CXCL12 gradient to increase the forward migration index,
directionality, centre of mass and velocity.

Note that the steps 5, 6 and 7 are not presented in this section because its applicability does not
address the biological questions arising from this context. Rather, they are deeply described in detail in
Sec. 2.1 in Overview of the analysis procedure.

3. Discussion
TrackAnalyzer extends the existing tools for Single Particle Tracking analysis in two ways:

1. Batch-mode analysis. Most existing tools in ImageJ and Fiji allow the analysis of a single
time-lapse dataset. However, many users and facilities do not have a single dataset but many
datasets to analyze. Our tool allows the automatic analysis of all of them by configuring the
analysis in one of them and replicating the same analysis to all other videos within the same
experiment relying on the GUI.

2. Extended analysis. Most existing tools in ImageJ and Fiji specialize in a particular aspect of the
tracks, for instance: TrackMate in identifying the spots and linking them into tracks;
TraJClassifier in identifying their motion; Chemotaxis and Migration Tool in analyzing their
motion from a different perspective. However, the user is also interested in other features like
cluster size, measuring the motion in multiple ways, classifying the tracks into different
categories and comparing their different features as a function of their categories, and removing
from the analysis those tracks that have been incorrectly identified or focusing the analysis in a
particular region of the cell. Our tool builds upon existing powerful tools and adds newly
implemented measures to allow a more thorough analysis of all the tracks recorded in an
experiment. In this way, we allow a very rich analysis of the particles’ behaviour under various
experimental conditions and allow a quantitative comparison of the different parameters that
characterize the particles.

A track analysis’s strength is correctly identifying the spots and their linkage to tracks. This is a
rather challenging task that, if performed incorrectly, totally ruins the automatic analysis. TrackMate
is extremely flexible in this aspect. It provides many different algorithms for spot identification, all of
them fully configurable through a myriad of parameters (although the default values of most of them
already give good results). TrackMate is also very strong and flexible in constructing the tracks from
the set of spots. It also offers several highly configurable algorithms. In this regard, we consider that
a semiautomated approach in which the user makes sure to configure the spot and track detection for
his/her experimental conditions is crucial. This step is the key to the success of all the subsequent
analyses. We have decided to rely on TrackMate for this identification step, as it is one of the most
successful and adaptable programs available.

Icy (21) could have been an alternative to TrackMate. Icy is a free and open-source software for image
analysis mainly oriented toward analysing biological images with a modular design composed of a ker-
nel and plugins. Icy software integrates the Spot Tracking plugin (22), which ships automated methods
for extracting tracks (particle tracking) from multiple objects (particle detection) as well as Track Man-
ager plugin which provides relevant information from them (track analysis) in a sequence of 2D or
3D images. Track Manager allows the use of DSP-like trackProcessors enabling the display of tracks,
time-based or ROI-based selection, and the generation of various views such as overlaid and animated
local flow and polar graphs. These tools afford track filtering, classification (split tracks into tracklets to
further statistically classify as Brownian/confined or directed), characterization by extracting features
(confinement ratio, displacement distance, life time, intensity profile, instant speed, MSD, interaction
analysis among tracked objets...) together with post-processing (export tracks into CSV files). This is
a powerful tool to accurately perform common single-particle tracking analyses but compared with the
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integration of TraJClassifier, Icy may lack advanced track analysis capabilities. TraJClassifer provides
diffusion characterization thought TraJ library and subsequent track classification by using simulated
tracks of normal diffusion, subdiffusion, confined diffusion and directed motion. Then a group of
features is estimated for each track, which together with the corresponding class, are used to train a
random forest approach by means of Renjin. This extended track analysis also supports local analysis
by splitting track into single segments with different motion types.

TrackAnalyzer benefits from the ImageJ ecosystem, probably the most known, flexible and longest-
lived software for biomedical sciences. Consequently, TrackAnalyzer leverages from a lot of plugins for
scientific image processing (as we have already done by integrating TrackMate with TraJClassifier and
the Chemotaxis and Migration tool). To the best of our knowledge, TrackAnalyzer is the first tracking
program within ImageJ that enables users to characterize and classify trajectories by a large number of
descriptors, including the intensity and length of the tracks, multiple characterizations of their motion,
cluster size by various methods, and their chemotactic features. Some protocols to quantitatively assess
the tracks’ motion, cluster size and intensity analysis were already designed in our previous work (20).
However, TrackAnalyzer now largely supersedes our analysis capacity.

4. Conclusions
In this paper, we have introduced TrackAnalyzer, a new Java-based plugin, an open-source and user-
friendly toolkit to perform SPT analysis of multidimensional data in batch mode. This plugin operates
equally well under ImageJ or Fiji ecosystems extending from TrackMate algorithms for (I) spot detec-
tion and spot analysis in which each spot receives a wide range of features based on its location,
radius and metadata information; (II) linking spots together to build trajectories and get the subsequent
trajectory analysis; (III) post-processing actions after SPT analysis such as 2D visualization and user-
defined filtering of spots and trajectories. Our approach is semiautomatic as the user needs to define the
TrackMate workflow to identify the spots. This strategy makes us capable of dealing with challenging
experimental scenarios such as low signal-to-noise ratios or strong fluorescence backgrounds. In addi-
tion to the standard track analysis offered by TrackMate, we have included multiple ways of filtering
the detected spots and tracks and various characterizations of their motion type, cluster size, chemotaxis
and migration properties.

5. Materials and Methods
5.1. Motion analysis
Calculation of Mean Squared Displacement (MSD)
The MSD is the most common approach for analysing single-particle tracks (5). Let us call Δ𝑡 to the
time difference between one frame in the time-lapse video and the next. The MSD of the particle 𝑗 with
time lag 𝑛Δ𝑡 is defined as (13):

𝑀𝑆𝐷 𝑗 (𝑛Δ𝑡) = 1
𝑁 𝑗 − 𝑛

𝑁 𝑗−𝑛∑︁
𝑛′=1

∥r 𝑗 ((𝑛′ + 𝑛)Δ𝑡) − r 𝑗 (𝑛′Δ𝑡)∥2 (1)

where r 𝑗 (𝑛′Δ𝑡) is the 2D location of the 𝑗-th particle at time 𝑛′Δ𝑡, and 𝑁 𝑗 is the length of the 𝑗-th
trajectory in frames.

Calculation of Diffusion Coefficient (𝐷)
The diffusion coefficient (𝐷) is defined as the slope of the linear fitting of the first time lag of the MSD
curve:

𝑀𝑆𝐷 (𝑛Δ𝑡) = Δ0 + 4𝐷𝑛 𝑛 = 1 (2)

Calculation of the Short-Time Lag Diffusion Coefficient (𝐷1−𝑁 )
The short-time lag diffusion coefficients (𝐷1−𝑁 ) are defined as the slope of the linear fitting of the first
N time lags (defined by the user) of the MSD curve:

𝑀𝑆𝐷 (𝑛Δ𝑡) = Δ0 + 4𝐷1−𝑁𝑛 𝑛 = 1, 2, ...𝑁 − 1 (3)
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Calculation of the Anomalous Exponent (𝛼)
The mean-square displacement plots must be fitted according to the anomalous diffusion model by
power law fitting (5) according to:

𝑀𝑆𝐷 (𝑛Δ𝑡) = Δ0 + 4𝐷𝑛𝛼 (4)

being 𝛼 the anomalous exponent. The particle motion-type is classified as confined (0 < 𝛼 < 0.6),
Brownian or free (0.9 < 𝛼 < 1.1) or directed (𝛼 > 1.1) (5).

5.1.1. Calculation of Moment Scaling Spectrum (MSS) and its slope, (𝑆𝑀𝑆𝑆)
In the case of long trajectories, the moment scaling spectrum (MSS) (15,23,24) and its slope (𝑆𝑀𝑆𝑆) was
proposed as an approach to improve the calculation of MSD for non-linear diffusion. For each trajectory
𝑗 the moments of displacement (𝜇 𝑗 ,𝜈) were calculated for 𝜈 = 1, ..., 6 as a function of time according
to:

𝜇 𝑗 ,𝜈 (𝑛Δ𝑡) = 1
𝑁 𝑗 − 𝑛

𝑁 𝑗−𝑛−1∑︁
𝑛′=0

∥r 𝑗 ((𝑛′ + 𝑛)Δ𝑡) − r 𝑗 (𝑛′Δ𝑡)∥𝜈 (5)

where 𝑟 𝑗 designates the position vector of track 𝑗 at the time 𝑛Δ𝑡 being Δ𝑡 the time interval and 𝑛 the
frame number 𝑛 = 0, 1, ...𝑁 𝑗 −1 being 𝑁 𝑗 the trajectory length. The MSD is just a special case with 𝜈 =
2. In our implementation, we calculate all moments from 𝜈 = 1 to 𝜈 = 6 for each trajectory by plotting
(𝜇 𝑗 ,𝜈) against 𝑛Δ𝑡 in a double logarithmic plot, getting the scaling moments 𝛾 𝑗 ,𝜈 from assuming each
moment 𝜇 depends on the time shift according to 𝜇𝜈 (𝑛Δ) ∼ 𝑛Δ𝑡𝛾𝜇 (14,15). Therefore plotting 𝛾𝜈 against
𝜈 gives the moment scaling spectrum (MSS) and its slope (𝑆𝑀𝑆𝑆) from linear regression characterizes
the type of motion (25): free (𝑆𝑀𝑆𝑆 = 0.5), directed (𝑆𝑀𝑆𝑆>0.5), immobile (𝑆𝑀𝑆𝑆 < 0.5).

5.1.2. Calculation of Forward Migration Index (𝐹𝑀𝐼 ∥ , 𝐹𝑀𝐼⊥)
The Forward Migration Index (FMI) is an important measure for directed, chemotactic cell migration.
It represents the efficiency of the forward migration of cells in the direction of a chemical gradient,
u. We assume that u has unit length, and we also consider a direction perpendicular to u that will be
referred to as u⊥. For a given particle, 𝑗 , let r 𝑗 (0) and r 𝑗 (𝑁 𝑗Δ𝑡) be the first and last locations of its
trajectory. The efficiency of the displacement in both directions are

𝐹𝑀𝐼 ∥𝑗 = ⟨r 𝑗 (𝑁 𝑗Δ𝑡 )−r 𝑗 (0) ,u⟩
𝑑 𝑗

𝐹𝑀𝐼⊥𝑗 = ⟨r 𝑗 (𝑁 𝑗Δ𝑡 )−r 𝑗 (0) ,u⊥⟩
𝑑 𝑗

(6)

where ⟨·, ·⟩ denotes the inner product, and 𝑑 𝑗 is the total length of the 𝑗-th trajectory. The FMIs must
be between -1 and 1. The larger the FMI in absolute value, the stronger the chemotactic effect is on
the direction being studied. Finally, for a whole video, the FMI in a particular direction, parallel or
perpendicular, is defined as the average of the corresponding particle FMIs.

5.1.3. End Center of Mass (r𝑒𝑛𝑑)
The centre of mass represents the average of all single-cell endpoints. Its 𝑥 and 𝑦 values indicate the
direction in which the group of cells primarily travelled.

r𝑒𝑛𝑑 =
1
𝐽

𝐽∑︁
𝑗=1

r 𝑗 (𝑁 𝑗Δ𝑡) (7)

where 𝐽 is the total number of cells and r 𝑗 (𝑁 𝑗Δ𝑡) are the coordinates of the endpoint of each cell.

5.1.4. Directness (𝐷)
The directness or directionality measures the straightness of the cell trajectories. For each cell, it is
calculated by comparing the Euclidean distance and the accumulated distance between the starting
point and the endpoint of a migrating cell:

𝐷 𝑗 =
∥r 𝑗 (𝑁 𝑗Δ𝑡) − r 𝑗 (0)∥

𝑑 𝑗
(8)

The directness values are always positive. A directness of 𝐷 = 1 equals a straight-line migration from
the start to the endpoint. The directness of a video is the average of the directness of all its cells.



12 Cayuela et al.

5.2. Estimation of the background fluorescence
We now describe the different methods that we propose to estimate the background fluorescence.

• Subtract Bg 1 (Manual). Manual identification for each frame. This method enables user to
manually select an indefinite number of positions over the Z-Projection image to ensure that the
mean intensity measured belongs exclusively to areas within cell outside spots. This approach
measures the mean background intensity for each frame for all selected locations along the video.

• Subtract Bg 2 (Spot Ring). This approach estimates the mean background intensity of each spot.
It measures the intensity in a ring ranging from its radius to twice its radius.

• Subtract Bg 3 (Inside the cell, not excluding spots). This approach measures the mean back-
ground intensity for each frame by identifying the cell in each frame based. Then, the background
mean intensity value is computed as the average within these masks (not excluding spots).

• Subtract Bg 4 (Inside the cell excluding spots). This approach measures the mean background
intensity for each frame by identifying the cell in each frame based. The background is estimated
as the average intensity within the cell, excluding the spot positions.

• Subtract Bg 5 (Rolling ball). This method estimates a locally varying background as the average
within a rolling ball (26). It is important to note that the ball radius must be larger than the radius
of the largest spot in the image.

5.3. Development and Implementation
TrackAnalyzer was developed in the Eclipse Integrated Development Environment (IDE) (27) for Java
Developers version 2019-12 (4.14.0), an open-source platform mainly written in Java and used in com-
puter programming for computer programming developing user-friendly Java applications. Each plugin
is a Java application that inherits from ImageJ’s plugin class extending from the TrackMate ecosystem.
The core software and graphical user interface were built using Java 8. Plots and histograms were imple-
mented using the JFreeChart library. For reading the input images, we used the Bio-formats library (28).
For handling XML files, we used JDom, and for taking Microsoft Office Formats (.xls,.xlsx), we used
Apache POI libraries. In the case of classifying trajectories, we called the TraJ Java library for diffusion
trajectory (2D) analysis.

The source code and documentation are available at https://github.com/
QuantitativeImageAnalysisUnitCNB/TrackAnalyzer_.

5.4. Installation in Fiji or ImageJ.
TrackAnalyzer must be installed as a plugin of Fiji or ImageJ (https://imagej.nih.gov/ij/
download.html) and consequently can be executed in Windows, Mac OS, or Linux systems.
The next step is to install TrackAnalyzer, which can be done by download the plugin from
http://sites.imagej.net/TrackAnalyzer/plugins/ and moved into the ImageJ/Fiji plugins subfolder.
Alternatively, it can be dragged and dropped into the ImageJ/Fiji main window or installed through
ImageJ/Fiji menu bar Plugins → Install → Path to File. After installing the plugin,
ImageJ or Fiji must be restarted. Note that to visualize the wizard-like GUI that guides the user through
the set of predefined steps in this plugin, the user must navigate to TrackAnalyzer_Additional_Files,
download from plugins folder the JWizardComponent_.jar and located it into the ImageJ/Fiji
plugins subfolder. Moreover, to avoid any bugs while running the TraJClassifier motion classi-
fication routine, the user must download the .jar files from jars folder the .jar files and move
them into the ImageJ/Fiji jars subfolder. For those users using Fiji, all steps described above can
be skipped, the TrackAnalyzer update site can be followed according to the instructions at https:
//imagej.net/Following_an_update_site.

5.5. Supported Image File Formats
Our plugin deals with a wide range of file formats using Bio-Formats (28), an open-source library from
life sciences supporting or reading almost any image format or multidimensional data as z-stacks, time
series, or multiplexed images keeping metadata easily accessible. On top of that, the user can access a
list of time-lapse images available during the whole procedure to update the analysis as often as needed.
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Abstract
Multi-colorfluorescence imaging is a powerful tool for studying the spatial relationships and
interactions among sub-cellular structures in biological specimens.However, if improperly corrected,
geometrical distortions caused bymechanical drift, refractive indexmismatch, or chromatic aberration
can lead to lower image resolution. In this paper,we present an extension of the image processing
framework of Scipion by integrating a protocol calledOFMCorrector, which corrects geometrical
distortions in real-timeusing a B-spline-based elastic continuous registration technique.Our proposal
provides a simple strategy to overcome chromatic aberration by digitally re-aligning color channels in
multi-colorfluorescencemicroscopy images, even in 3Dor time.Ourmethod relies on a geometrical
calibration,whichwedowithfluorescent beads excited bydifferentwavelengths of light and
subsequently registered to get the elasticwarp as a reference to correct chromatic shift.Our software is
freely availablewith a user-friendlyGUI and can be broadly used for various biological imaging
problems. The paper presents a valuable tool for researchersworking in lightmicroscopy facilities.

Abbreviations

The following abbreviations are used in this
manuscript:

CA Chromatic Aberration

ACA Axial Chromatic
Aberration

LCA Lateral Chromatic
Aberration

TIRF Total Internal Reflection
Microscopy

GUI Graphical User Interface

IQR Interquartile Range

FOV Field of View

RBF Radial Basis Functions

1. Introduction

Over the past few years, many technological advance-
ments have been made in single molecule-based

super-resolution microscopy techniques [1]. One of
the imaging modalities in fluorescence microscopy is
multi-color fluorescence imaging, which enables the
differentiation of proteins and structures of interest in
both living and fixed cells [2]. This technique also
helps to determine the intracellular relationships or
interactions between sub-cellular structures [1]. How-
ever, mechanical drift, chromatic aberrations caused
by optical elements, refractive index mismatching
between the objective and immersion medium, and
dispersion in biological samples can lead to decreased
image resolution [3]. In all optical systems, chromatic
aberration (CA) occurs due to differences in the
refractive index among optical components, causing
the light wavelengths to focus at slightly different
angles. The phenomenon is noticeable in the acquired
images because the color channels are misaligned,
causing colored fringes at the edges and high-contrast
regions [4]. This can significantly decrease the image
quality [5, 6]. In the case of biological applications, CA
may negatively affect multi-channel studies of
dynamic processes in cells, such as colocalization
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research and object-based analysis. Therefore, it is
essential to quantify and correct these aberrations
properly. In this sense, we can find two types of CA:
lateral, which occurs along the x-y axis, and axial,
along the z-axis. Axial chromatic aberration (ACA)
comes when lenses through the optics have a refractive
index that varies with the wavelengths, focal distance,
and image magnification. This directly affects the
image focus and resolution, giving rise to image blur
[7, 8]. By contrast, lateral chromatic aberration (LCA)
occurs when there is variation in the magnification of
different light colors. This prompts protruding image
edges and deviations when two color images are
superimposed.

Total Internal Reflection Fluorescence (TIRF)
microscopy is a powerful optical technique to selec-
tively acquire images of molecules in an aqueous
environment with a high refractive index [9]. This
approach provides extremely thin axial optical sec-
tioning with a high signal-to-noise ratio allowing
microscopists to image fluorescent membrane-asso-
ciated events in living cells (cell adhesion, hormone
binding, molecule transport, exocytotic and endocy-
totic processes, ...) as well as molecules located at the
medium interface with a higher refractive index and a
lower at an incidence angle bigger than critical angle
[10]. The optical system may be either prism-based or
objective-based to reach total internal reflection to
optimize each color uniquely and independently,
enabling the imaging of multiple colors simulta-
neously. In the first approach, a prism is attached to
the coverslip’s surface, which directs a focused light
beam or laser toward the medium interface at the cri-
tical angle. The objective-based approach, instead, is
the systemmainly used, and the light is directed to the
specimen through the objective, which simultaneously
collects the emitted fluorescence light. In this context,
dealing with multi-color and multi-angle TIRF may
result challenging, and unfortunately, LCA is essen-
tially inherent. This LCA induces shifts, rotations, and
scaling differences among channels.

The AdvancedMicroscopy Facility of our institute
has a TIRF microscope with a W-VIEW Gemini sys-
tem from Hamamatsu [11], an image-splitting optics
device. It was adjusted to split the signal on the camera
chip by wavelength in two channels (two pairs of ima-
ges) with a dichroic mirror. This optical component
allows high-speed acquisition with a vast variety of
fluorescence applications and permits simultaneous
two-wavelength (dual) imaging by one camera due to
its optical design. Additionally, this system integrates a
mechanism to compensate ACA and LCA. This mech-
anism is based on a correction lens unit in the long
wavelength path, and it can improve themagnification
difference of two wavelength images caused by LCA.
Furthermore, this system was designed to be easily
adjusted with a camera due to integrating a fast and
straightforward alignment mechanism to realign the
optics. Besides that, the Gemini system has a feature to

control temperature and time stability, hence ensuring
the alignment consistency of two channels over time
for dual-wavelength imaging. Despite these ideal spe-
cifications, this optical component could not properly
overcome the effect of LCA in our TIRF infrastructure.
Interestingly, this instability is explicitly mentioned in
themicroscope documentation [11].

The commercial company proposed several com-
mercial solutions (hardware- and software-based) to
solve this undesirable misalignment effect. Still, most
of these approaches were expensive, not intuitive at
the user level, non-effective in covering the full FOV,
and time-consuming. CA correction has also been
addressed in the scientific literature [12]. The correc-
tionmethods can be grouped into hardware- and soft-
ware-based [7]. Within hardware-based methods,
apochromatic lenses are developed to set into focus in
the same plane, red, green, and bluewavelengths. Also,
active lens control systems are designed [13] to correct
CA by adjusting the distance between the image plane
and lens. Nevertheless, apochromatic lenses are affec-
ted by residual errors too big to be ignored, and the
lens control system requires prior knowledge of the
magnification and image shift degree. On the other
hand, most software-based methods to compensate
CA are based on image registration [14], false color
techniques [15], and post-demosaicking correction
based on pixel re-sampling and high-pass replication
[16]. However, none of these methods are readily
available and easily integrated within the standard
procedures of amicroscopy facility.

In this paper, we use image registration to com-
pensate the geometrical distortions induced by LCA.
This technique works by spatially registering images
such that corresponding features are consistent in geo-
metry. It involves identifying corresponding features
or pixels in two or more images and then applying a
geometric transformation to align them. The transfor-
mation can be rigid, affine, or non-rigid, depending on
the type and degree of misalignment. This paper uses
B-spline-based elastic image registration [17] formod-
eling deformations in biological imaging problems
[18]. This technique has several advantages, such as
coping with a wide range of deformations, including
non-linear [17]. The registration process is based on
image similarity, deformation consistency, and cubic
B-spline regularization [19]. This technique ensures
high-quality interpolation of the images and allows an
arbitrarily fine representation of the deformation field
by reducing the spacing among splines. B-spline-
based elastic image registration is advantageous in
many biological imaging problems, such as tracking
themovement of cells or analyzing the shape of tissues.
Accordingly, B-spline based methods have gained
popularity in image registration due to their flexibility
and ability to accurately capture complex deforma-
tions. Among its advantages, this approach allows for
localized control over the deformation field by divid-
ing the image into smaller regions (control points)
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thus, representing localized deformations more effec-
tively. This can be advantageous when dealing with
complex and non-uniform deformations, which can
vary spatially across the image. Moreover, B-spline
method provides smooth and continuous deforma-
tions, something particularly relevant in microscopy,
where smooth deformations are desirable to preserve
anatomical structures or avoid introducing artifacts.
B-spline methods are computationally attractive,
which is especially worthy when dealing with large
image datasets or real-time approaches. On the other
hand, alternative methods such as radial basis func-
tions (RBF) with compact support, also provide accu-
rate deformations, particularly for small and localized
deformations with high precision. While RBF meth-
ods are widely used for their interpolation properties
which can capture fine details exactly, they are still
challenging handling large deformations or global
registration tasks due to the compact support limita-
tion. Therefore, the choice of the most suitable regis-
tration method over alternative approaches depends
on the specific requirements of the application, the
study context, the nature of the deformations and the
available computational resources. For such, the
B-spline-based method was selected for this study
based on its ability to handle complex deformations,
provide smooth results as well as efficient
computation.

Our method utilizes multispectral fluorescent
beads as a reference for image registration and drift
correction [20]. These fluorescent beads are excited by
different wavelengths of light and emit differently in
the same wavelength range as the applied dyes. The
shift between image channels is recorded and regis-
tered for the warp transformation to correct further
chromatic shifts in images acquired under the same
imaging setup. This elastic registration process
involves finding the image transformation that can
best map one image into the other. The integrated
algorithm extends the elastic (non-linear) registration
approach [17] by providing an almost invertible defor-
mation field, allowing bidirectional registration. This
ensures that source image A can be mapped onto tar-
get image B and vice versa in a single computation,
thereby reducing the optimizer likelihood of being
trapped in a local minimum and enabling simulta-
neous registration of any number of images.

A requirement for facilities is that the solution
must work in real-time while the TIRF videos are
acquired. This way, the user can bring home the CA-
corrected data after finishing the microscopy session.
To this end, we have developed a protocol called ofm-
correction - OFM Corrector based on the bUnwarpJ
[19, 21] plugin (available under ImageJ [22] or Fiji [23]
distribution) and integrated into the Scipion’s image
processing framework [24]. Before acquiring the TIRF
videos, the microscope operator must calibrate the
deformation field for that particular acquisition
(because the deformation field depends on the

ambient temperature, the specific magnification
setup, and the Field of View (FOV) region being
imaged). Once calibrated, the deformation field is
used to correct all the videos acquired with the same
conditions. Our protocol offers a unified graphical
user interface (GUI), package interoperability, a sim-
ple and cost-effective strategy to overcome geome-
trical distortions, and workflow monitoring for the
streaming registration process (see figure 1). Our soft-
ware is freely available within Scipion framework and
can be used in any microscopy setup with geometric
distortions affecting the acquired videos.

2. Real-time correction of geometric
distortions

This section describes the algorithmic approach to
solving geometric distortions. We first introduce the
procedure to measure the geometric distortions at the
microscope experimentally. Then, we describe our
algorithm to construct a mathematical description of
the deformationfield and correct it. Finally, we present
the framework that allows real-time correction with
images in streaming.

2.1. Experimentalmeasure of the deformationfield
A possible way to experimentally measure the defor-
mation field is by recording images of known objects.
Multi-spectral fluorescent beads are suitable for this
purpose because they fluoresce at various wavelengths,
and any image misalignment can be easily detected
[25]. Figure 2 shows the conceptual setup from one of
our experiments. The various wavelengths are pro-
jected differently by the dichroic mirror, so the image
of the same bead is projected at two different locations.
From a pair of these images, we can estimate the
relative deformation field (g12(s) in the equation (1)
below).

As shown in figure 2(D), we can see that the LCA
shift depends on the region of the FOV being imaged
and the lateral distance to the center of the image.

2.2. Elastic image registration
Let us consider a pair of images acquired in Channels 1
and 2, I1(s) and I2(s), where s= (x, y) is a 2D vector
with the pixel coordinate. Elastic image registration
assumes that there is a deformation field, g12, that
transforms coordinates from one channel onto the
coordinates of the other:

I Is s g s 11 2 12= +( ) ( ( )) ( )
In case there is no geometrical distortion, then
g12(s)= 0 for all s, and the two channels should
superpose exactly. However, if they do not, we look for
the deformation field that minimizes the error
between these two images. To estimate the deforma-
tion field, it is important to use objects whose emission
in both channels is the same (see the previous section).
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We use a B-splines parametrization of the defor-
mation field as explained in [17]. This way, the defor-
mationfield is calculated as

B
x ih

h
B

y jh

h
g s c 2

ij
ij

12 12å=
- -⎛⎝ ⎞⎠ ⎛⎝ ⎞⎠( ) ( )

where i and j are indexes over a regular lattice of
B-spline functions, B, whose separation between grid
points is h is both directions. The coefficients cij

12 2Î 
are the ones that control the amount of deformation in
x and y.

The transformation g12(s)may not be invertible. It
has been observed that this deformation field is better

Figure 1.Graphical representation of theworkflow to reach real-time correction of geometricmisalignment among channels in
multi-dimensional images acquiredwithfluorescencemicroscopy usingmulti-spectral fluorescent beads through Scipion software.

Figure 2.Measuring LCA shifts among channels with fluorescence beads images by identification of the x-y center ofmass. (A)
Schematic illustration of lateral chromatic aberration (LCA). (B) Illustration of the different geometric locations of the same bead
imaged at two different wavelengths. (C)Measurement of LCA. Centroid positions for each channel are shown by black crosses. (D)
LCA (at 561 nm) shifts relative to 488 nm for a hundred beads at two different regions of the FOV. For all cases, the shifts along the x-y
axes for all beads are small (less than 1 μm). Dot size increases according to LCA shift. (E)Probability density function (via Kernel
density estimation) of LCAShifts alongX-Y axes (μm) at two different regions of the FOV.
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estimated if the deformation is computed bidir-
ectionally:

I I

I I

s s g s

s s g s 3

1 2 12

2 1 21

= +
= +

( ) ( ( ))
( ) ( ( )) ( )

and g12 and g21 are supposed to be approximate
inverses of each other:

g g s s 421 12 »( ( )) ( )
This approximate inverse condition is called a consis-
tency constraint.

The cij
12 and cij

21 coefficients are determined by
minimizing the following error function
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where wc, wd, and wr are weights that control the
relative weight of the different terms The minimiza-
tion of the error term with respect to the B-spline
coefficients was explained in [19, 21], and it is publicly
available through the BUnwarpJ plugin of ImageJ. We
have not reimplemented this algorithm, but we call it
through Fiji.

We estimate the deformation field, which is enco-
ded through the cij

12 and cij
21 coefficients, during the

calibration step. These coefficients are saved after cali-
bration and reused to produce aligned images. For
instance, to correct the image fromChannel 2 so that it
is registered with Channel 1, we construct the image
I 2 ¢( ) as

I Is s g s 6t t
2 2 12¢ = -( ) ( ) ( ( )) ( )

The subindex t has been introduced to represent the
different time frames within a video. The distortion
correction above is applied to all the video frames
acquired by the TIRFmicroscope.

2.3. Geometric corrections in real-time
Microscopy facilities continuously receive users
acquiring their images on the samples of their interest.
In this scenario, it is essential for facilities to keep up to
the highest quality standard. Having a microscope
with severe geometrical distortions, such as the one
presented in this paper, is a drawback for the facility.
Therefore, we have integrated the elastic registration
algorithm described above into an image-processing
workflow engine called Scipion [24]. This workflow
engine is also developed by our laboratory. This engine
allows image processing in streaming [26]: the newly
acquired images are geometrically corrected as soon as
they are written in their folder (see figure 3). In this
way, the user can bring home the already corrected
images. The plugin is called ofmcorrection and the
protocol OFM Corrector. The beads images are one of
the inputs of the protocol. The protocol first estimates
the deformation field to correct. Then it applies it to all
videos in the input folder (it must be noted that this

Figure 3. Schematic overview of using Scipion to compensate LCA shifts in volumetric biological images. (A) ScipionGraphical User
Interface. (B)Once the protocol is launched, the deformation field is estimated as described in section 2.2. (C)The deformation field is
corrected for all the input videos corresponding to biological samples.
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correction is applied on-the-fly, so new videos can
arrive once the protocol has started). The geometrical
distortion corrected is the same for all videos and is
measured at the beginning of the acquisition as
described in section 2.1. This calibration image is only
valid for experimental images acquired under the same
exposure time, camera gain, region of the field of view,
brightness, photo-stability, temperature, and ambient
light in the facility.

3.Materials andmethods

3.1. Code availability
OFM Corrector protocol was written in Groovy and
integrated into Scipion framework by using Python.
The complete source code of the algorithm integrated
in Scipion software is available at https://github.com/

acayuelalopez/bUnwarpJ_code. Our protocol can be
used for real-time processing within the Scipion fram-
work. You can install it by using the Scipion software
following the Scipion’s installation guide (https://
scipion-em.github.io/docs/release-3.0.0/docs/
scipion-modes/how-to-install.html).

3.2. Experimentalmethods
3.2.1. Calibration sample preparation
Multispectral fluorescent beads suspension (Tetra-
SpeckTM Microspheres, 0.2 μm, fluorescent blue/
green/orange/dark red, TermoFisher Scientific) were
used as a reference for calibration of the image
alignment. Five microlitres of the beads suspension
were pipetted and spread on a clean 13 mm Ø#1.5H
coverslip (Menzel Gläser) for 1 hour for adhesion to
the glass. The coverslip was placed on a slide and sealed
with enamel. Once the sample beads were prepared,
they were placed on the immersion oil objective
(LeicaTM Immersion Oil) of the TIRF microscope to
acquire several images. The fluorescent beads were
simultaneously excited by two different wavelengths
of light: 488, and 561 nm lasers. In our acquisition, we
used a 100x oil-immersion objective (HC PL APO
100x/1.47 OIL) with a Leica DMi8 S with TIRF
module microscope equipped with Hamamatsu Flash
4 digital sCMOS camera.

3.2.2. Biological sample preparation
Jurkat cells (AmericanTypeCultureCollection, ATCC
TIB-152) or HeLa cells (ATCC CCL-2) were main-
tained in culture using a complete growth medium
(RP 1640 or DMEM, Gibco, plus 10% fetal calf serum)
at 37 °C and 5%CO2.

Jurkat cells were transiently transfected with plas-
mids to express cell membrane receptors fused to
EGFP or mCherry reporters using a BioRad electro-
porator (2× 104 cells in RP 1640 with 10% fetal calf
serum. 280V, 975mF) and imaging 24 hours later.

DNA Hela cells were stained 10 minutes with
Hoechst 33342 (ThermoFisher Scientific) at 0.5 mg/mL

prepared in cell culture medium. The staining solution
was gently removed and the cells were washed with cul-
turemedium to remove unbound dye. To proceed with
image acquisition, the cells were left inDMEMmedium
plus 10% fetal calf serum. For the imaging experiments,
the cells were seeded in aμ -Dish 35mm, high glass bot-
tom dish (Ibidi) at a density of 20,000 to 50,000 cells
perwell.

3.2.3. Dual TIRF imaging
Dual TIRF experiments were performed using a Leica
DMi8 S with a TIRF module microscope equipped
with a Hamamatsu Flash 4 digital sCMOS camera
(Hamamatsu), a 100x oil-immersion objective (HCPL
APO 100x/1.47 OIL), and the 405, 488 and 561 nm
laser lines for the illumination of the samples. Two
types of W-View Gemini splitter (Hamamatsu) were
used for simultaneous image acquisition. This image-
splitting optic provides a pair of dual-wavelength or
polarization images separated by a dichroicmirror in a
single camera. The beam divider allowed us to obtain
two separate sample images of the same field of view
(FOV) on the same camera chip. When the W-View
optics were in place, the HamamatsuW-View Gemini
option was activated in the software interface, and the
images of the simultaneously imaged beads were
manually aligned to correct the focus, zoom, and x and
y shift between the two channels using EPI laser
position (without laser penetration depth). Once
manually aligned, the reference images were acquired
with an EPI laser position. Then, the images were
acquired with the biological sample under the acquisi-
tion conditions required by the experimental design.
The microscope was equipped with an incubator and
temperature control units; experiments were per-
formed at 37 °C with 5% CO2. Z-stabilization was
ensured by the adaptive focus control (AFC) on the
microscope.

Image sequences (500 frames for Jurkat cells and
11 frames for HeLa cells) were acquired with a 90 ms/
frame rate for Jurkat cells and 60 ms/frame for HeLa
cells. The penetration depth of the evanescent wave
was 90 nm for Jurkat cells and EPI laser position for
HeLa cells. The images have 512 × 1024 (0.13 × 0.13
μm pixel size) for Jurkat cells or 1024 × 2048 (0.065
× 0.065 μm pixel size) pixels for HeLa cells and were
acquired at 16-bit.

For EGFP/mCherry imaging, the 488 and 561 nm
excitation lasers lines were used simultaneously, and
the fluorescence Dual cube (GFP/Ch-T) employed
has excitation filters between 483-493 and 550-
568 nm, an emission filters between 507-553 and
LP575 nm and dichromatic beamsplitters at 500 and
575 nm. The bandpass filters used were for GFP/
DsRED dual-band imaging set (FF01-512/25-25,
FF01-630/92-25, and dichroic mirror FF560-FDi01-
25 × 36).

For Hoechst 33342 imaging, the 405 excitation
laser was used with the fluorescence Qua-T cube. The
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Qua-T cube has an excitation filter between
397–413 nm, an emission filter between 420–480 and
500–550 nm, and dichromatic beamsplitters at 415
and 495 nm, respectively, among others.

4. Results

We started by estimating and characterizing the
deformation field and its stability over time. Then, we
applied ourmethod to two biological data sets consist-
ing of dual-wavelength images acquired with two
different z-axis depths (described in detail in
section 3.2.2).

4.1. Stability of the deformationfield over time
We acquired images of the beads exited with two laser
channels, 488 and 561 nm., every hour during the day
(12 measures in total). We focused the microscope on
two different regions of the FOV. We estimated the
deformation field and evaluated its stability in every
location. Figure 4 shows the trajectories over time of
the x and y components of g12(s) (figure 4(A)) for 9
points uniformly distributed over the region being
imaged (figure 4(B)).

Depending on the FOV region and the location
within this region, the deformation field can be as high
as 6.6 pixels (about 0.4 μm., figure 4(A)), or even
higher for pixels closer to the image border. In the cen-
ter of the region, figure 4(E), the deformation is rela-
tively small. For this reason, that was the only area that
themicroscope users used to analyze before the facility
incorporated our real-time correction. To facilitate
the visualization over the whole region, in figure 5, we

show the mean and standard deviation of the defor-
mation field over time at every location for two differ-
ent regions. Interestingly, the vertical and horizontal
distortions behave differently. This is due to the polar-
ization of the light being used and the possible aniso-
tropic nature of the crystals of which the different
optical devices along the path aremade.

4.1.1. Dataset 1: jurkat cells
This dataset consists of four series containing 1000
planes with a voxel size of 0.13 × 0.13 × 1 μm3 saved
as Leica File Format (figure 3(C), top). Jurkat cells were
transiently transfected, expressing cell membrane
receptors fused to EGFP (green, 488 nm.) or mCherry
(red, 561 nm.) reporters. Two simultaneously
acquired image sequences (500 frames) GFP/DsRED
dual-band imaging filters were used. The sample was
illuminated with 488 and 561 nm. laser lines and
fluorescence dual cube was used. The images were
acquired with a frame rate of 90 ms/frame, and the
penetration depth of the evanescent wave was 90 nm.
The images were acquired with a pixel map of 512 ×
1024 pixels (66.56 × 133.12 μm) and a bit-depth of
16 bits. As shown in figure 3(C), the raw images are
heavily affected by LCA. After applying the bead-based
warping transformation, LCA misalignment was
always fully corrected (500 frames).

4.1.2. Dataset 2: HeLa cells
This dataset consists of 6 series containing 22 planes
with a voxel size of 0.13 × 0.13 × 1 μm3 saved as
Leica File Format (figure 3(C), bottom). The nuclei of
HeLa cells were stained with Hoechst 33342. Two

Figure 4. Stability of the deformation field over time. (A) For some representative coordinates, we show the trajectory over time of the
deformation field. Displacements are expressed in pixels (the pixel size is 0.065 μm. (B) Schematic visualization of the shift
measurement procedure. x, y are the pixel coordinates (undeformed state) and x’, y’ (deformed state) are the pixel coordinates after
elastic transformation, andΔX,ΔXare the displacement among them.
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simultaneously acquired image sequences (11 frames)
light polarization filters set were used. The sample was
illuminated with a 405 nm. laser line and a fluores-
cence Quad cube was used. The images were acquired
with a 60 ms/frame rate and EPI laser position. The
pixel size and bit-depth of the acquired images were
the same as in the previous dataset. As seen in figure
3(C), the misalignment caused by LCA was also
corrected following the same procedure as in the
previous dataset.

5.Discussion and conclusions

Chromatic aberration is a prevalent issue in multi-
color imaging. However, geometric distortions may
appear for other experimental reasons, such as imper-
fections of the optical elements, themismatch between
the refractive index of the objective and immersion
medium, or differential dispersion inside the biologi-
cal samples. We have developed an inexpensive and
very efficient solution to a problem that the company
commercializing the microscope could not solve with
a more accurate physical construction of the dichroic
mirror. This problem severely limited the region the
microscope users could analyze in their biological
experiments. Our software solution is integrated into a
protocol called the OFM Corrector, freely accessible
within the Scipion framework. Scipion offers the
possibility of applying the geometrical correction in
streaming and real-time, providing almost instant
aberration-corrected images. This way, our solution
favorably compares to expensive optical solutions.
Additionally, it is much more general as it does not
only address chromatic aberration but any other
source of geometrical distortions. This method can be
applied easily to all future acquisitions in the light

microscopy facility by capturing a reference calibra-
tion image for each condition. This calibration step
depends on the specific imaging set-up, including
excitation laser lines, objective lens, temperature
stability, and exposure time. Also, selecting the most
suitable multi-spectral fluorescent beads based on
their signal and size is vital to ensure that the bead
diameter is reasonably above the microscope’s resolu-
tion, providing a sufficient signal-to-noise ratio. Our
solution is not limited to correcting geometrical
distortions between two channels. Any number of
channels can be simultaneously corrected. One of the
channels must act as the reference channel, while all
the others are corrected tomatch the reference.

Overall, this protocol has the potential to bewidely
adopted in light microscopy facilities and carries sig-
nificant implications for the field of biological ima-
ging. Future efforts may concentrate on expanding the
protocol’s capabilities to address additional optical
distortions found in biological imaging.
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Over the decades, biological image analysis, where microscopy innovation meets com-
puter vision, has witnessed remarkable transformations, reshaping our understanding of
life sciences. From the shift from traditional photography to digital imaging, laying the
foundation for noise reduction, contrast enhancement, and object counting, to the estab-
lishment of fundamental algorithms in the 1970s for segmentation, object recognition, and
feature extraction, the journey expands. A crucial moment emerged with artificial intelli-
gence, enabling high-throughput analysis of vast microscopy datasets, ushering in a new era
of discovery. The fusion of computer vision and biology gave birth to bioimage analysis,
extracting quantitative insights from biological sample images. As data volumes surged,
interdisciplinary collaborations led to specialized tools and platforms. This thesis focuses
on advancing customization and automation in quantitative fluorescence microscopy image
analysis at the Quantitative Image Analysis Unit (QIAU) belonging to the National Centre for
Biotechnology (CNB-CSIC). This work contributes to the evolution of automated and quan-
titative optical microscopy analysis, offering potential for further integration with existing
microscopy platforms, enhancing efficiency and user-friendliness in bioimage analysis.
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