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SUMMARY

Classification of subtomograms obtained by cryoe-
lectron tomography (cryo-ET) is a powerful approach
to study the conformational landscapes of macro-
molecular complexes in situ.Major challenges in sub-
tomogram classification are the low signal-to-noise
ratio (SNR) of cryo-tomograms, their incomplete
angular sampling, the unknown number of classes
and the typically unbalanced abundances of structur-
ally distinct complexes.Here,weproposeaclustering
algorithm named AC3D that is based on a similarity
measure, which automatically focuses on the areas
of major structural discrepancy between respec-
tive subtomogram class averages. Furthermore, we
incorporate a spherical-harmonics-based fast subto-
mogram alignment algorithm, which provides a sig-
nificant speedup. Assessment of our approach on
simulated data sets indicates substantially increased
classification accuracy of the presented method
compared to two state-of-the-art approaches.
Application to experimental subtomogramsdepicting
endoplasmic-reticulum-associated ribosomal parti-
cles shows that AC3D is well suited to deconvolute
the compositional heterogeneity of macromolecular
complexes in situ.

INTRODUCTION

Cryoelectron tomography (cryo-ET) is a 3D imaging technique to

visualize macromolecular complexes in their physiological envi-

ronment (Luci�c et al., 2005). In cryo-ET, the 3D density map

(tomogram) of a frozen-hydrated sample is reconstructed from

2Dprojections, which are acquired fromdifferent tilt angles using

a transmission electron microscope (TEM). The applicable elec-

tron dose limits the spatial resolution of the tomograms typically

to approximately 5–10 nm (Grünewald et al., 2003). If multiple

copies of the macromolecule of interest are present, aligning

them to a common coordinate system and averaging them

enhance the signal and, hence, increase the resolution (subto-

mogram averaging) (Bartesaghi and Subramaniam, 2009; För-

ster and Hegerl, 2007). Resolutions in the subnanometer regime

have been obtained from more than 100,000 subtomograms
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(Schur et al., 2013). More commonly, the number of subtomo-

grams is in the range of few thousands, yielding resolutions of

up to 15–20 Å (Briggs et al., 2009; Chen et al., 2013; Eibauer

et al., 2012). Due to the advance of data acquisition and image

processing, cryo-ET is becoming an increasingly important tool

for structural studies of macromolecules in situ, e.g., complexes

associated with their native membranes (Bartesaghi and Subra-

maniam, 2009; Briggs, 2013; Förster and Hegerl, 2007; Pfeffer

et al., 2012, 2014).

Subtomogram averaging normally comprises the following

steps. (1) Localize the different copies of the macromolecule of

interest. This can, for example, be accomplished by a six-dimen-

sional exhaustive cross-correlation search with a structural tem-

plate of the molecule under scrutiny, commonly referred to as

template matching (Förster et al., 2010; Frangakis et al., 2002).

(2) Classify the obtained candidates/subtomograms to ensure

the homogeneity of the data set. Heterogeneity can be due

to false-positives but also to conformational differences of the

particles depicted by the subtomograms. (3) Align and average

the subtomograms to obtain higher resolution structures.

Several software packages have been developed for this pur-

pose, including AV3 (Förster and Hegerl, 2007), Protomo (Win-

kler, 2007), EMAN2 (Tang et al., 2007), PEET (Heumann et al.,

2011), Dynamo (Castaño-Dı́ez et al., 2012), and PyTom (Chen

et al., 2013; Hrabe et al., 2012).

In this paper, we focus on the second step, subtomogram

classification, which is particularly challenging for several rea-

sons. (1) The signal-to-noise ratio (SNR) of cryoelectron tomo-

grams is poor (typically in the range of 0.1–0.01). (2) The tilt

range for data acquisition is limited, typically from �60� to

60�, which results in an incomplete sampling in Fourier space

(missing wedge problem). (3) The number of classes is typi-

cally unknown beforehand. (4) The classes of subtomograms

can be unbalanced (strongly differing populations). (5) The

structural differences between the class averages can be

subtle.

Several approaches have been introduced for classification

of cryoelectron subtomograms. We and others have previously

introduced the constrained principal-component analysis

(CPCA); the constrained correlation coefficient (CCC), in which

two volumes are correlated only in their overlapping regions in

Fourier space, is used as the similarity score of the correlation

matrix, which is then analyzed by principal-component anal-

ysis (PCA) and k-means clustering (Bartesaghi et al., 2008;

Förster et al., 2008). Alternative PCA-based classification ap-

proaches are probabilistic PCA with expectation maximization
ll rights reserved
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Box 1. Algorithm 1: AC3D

Input:

SS: A set of input subtomograms

k: Number of classes.

Output:

CS: Class-labeled subtomograms

Begin

01 Prealign SS

02 Initialize k class centers SV = {V1,/,Vk}

03 while #class changes > 0.5% do

04 Align SS to SV and obtain the corresponding scores

SCS

05 Determine the noise class so that SS = SS
0
WSSnoise

06 Calculate the focused scores (FSS) of SS
0
with

respect to SV

07 Determine the class labels according to FSS, which

results in CS

08 Update the alignment of CS according to the class

assignment

09Averageclasses inCS to get thenewclasscentersSV

10 end while

end
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(Yu et al., 2010) and wedge-masked differences-corrected

PCA (Heumann et al., 2011). Scheres et al. (2009), as

well as Stölken et al. (2011), formulated the classification

problem statistically and developed a maximum likelihood

(ML) approach for simultaneous alignment and classification.

There are also other approaches that conduct simultaneous

subtomogram alignment and classification: Winkler (2007)

and Hrabe et al. (2012) extended real space subtomogram

averaging protocols to multireference procedures. Xu et al.

(2012) proposed a fast rotational matching (FRM) method for

subtomogram alignment and a local feature enhancement

strategy for classification. Kuybeda et al. (2013) used a nuclear

norm-based, collaborative similarity measure for subtomo-

gram alignment. Despite their successes when applied to

respective data sets, the performances of all these methods

tend to be limited, in particular for unbalanced classes and

subtle structural differences.

Here, we propose an unsupervised learning approach named

AC3D that automatically focuses the classification on the most

variable parts of 3D structures. This similarity metric can capture

subtle differences and does not involve any human intervention,

thus alleviating bias. Based on this metric, we introduce an iter-

ative multireference clustering scheme that makes use of a fast

subtomogram alignment algorithm to achieve a substantial

speedup. Moreover, we adapt k-means++ as the initialization

strategy for the clustering procedure to avoid being trapped in

local optima and to accelerate the convergence. Comparisons

of AC3D against the CPCA approach (Förster et al., 2008) and

the ML approach MLTOMO (Scheres et al., 2009) on a simulated

data set show significant improvements of classification accu-

racy. Application of AC3D on experimental cryo-tomograms of

ER-associated ribosomes yields clearly distinct conformations,

including established ribosome states without any human inter-

vention or prior knowledge.
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Overall Classification Workflow
The overall workflow is first briefly described in Algorithm 1,

and some important components are explained in the following

sections (Box 1).

The iterative optimization procedure of AC3D is a multirefer-

ence scheme, which is closely related to k-means clustering.

However, we use a more efficient initialization (see ’’Initialization

of Class Assignment’’).

The basic workflow goes as follows: First, the subtomograms

are prealigned using our single-reference fast alignment algo-

rithm described by Chen et al. (2013). After initialization, the

class centers (the subtomogram averages) are computed. Dur-

ing each iteration, subtomograms are aligned and assigned to

the ‘‘closest’’ class center. All the class centers get updated sub-

sequently, using the assigned class members and their respec-

tive alignments. The whole procedure iterates until it converges

or the maximal number of iterations is reached.

There are a few challenges when implementing this algorithm

for cryo-ET. First, an appropriate similarity metric is required

to measure the ‘‘distance’’ of each subtomogram to the class

average. We make use of the CCC, which constrains the corre-

lation to the commonly sampled region in Fourier space (Förster

et al., 2005). However, computing the CCCs is time consuming

because each subtomogram has to be optimally aligned to the

class centers prior to computing the CCC. The alignment is a

problem of 6 degrees of freedom (DoF): 3 for translation and 3

for rotation. We tackle this problem by a fast 6 DoF alignment

algorithm we introduced earlier (Chen et al., 2013), which is

briefly explained later. Second, the SNR of cryoelectron tomo-

grams is relatively low, making it difficult to identify outliers/noise

that may deteriorate the clustering performance. This problem is

explicitly handled here using the score distribution functions.

Third, it is difficult to classify subtle structural differences in

cryo-ET data. TheCCC quantifies the similarity between two vol-

umes globally or within a subjectively chosen real-spacemask of

interest (Förster et al., 2008). An objective and robust way has

to be found to define the mask where significant differences

are located, because the noise may otherwise deteriorate the

classification performance. Here, we present an algorithm to

automatically focus the clustering on the variable parts of the

macromolecule of interest and calculate the so-called focused

score as the similarity measure. These three features are dis-

cussed in detail in the following sections.

Initialization of Class Assignment
k-means clustering normally starts with a random initialization of

the class assignment. Nevertheless, it is known that the perfor-

mance of k-means strongly depends on the starting condition.

There is no guarantee that the global optimum can be achieved.

Moreover, a bad initialization decelerates the convergence of k-

means. A common strategy is to run k-means multiple times with

different seeds and then to choose the result with the best score

as the final output. However, this strategy is effectively not appli-

cable here, because each iteration is computationally intensive.

Arthur and Vassilvitskii (2007) proposed an algorithm named

k-means++ to improve the initialization step. The basic idea is

to choose k cluster centers successively, each of which is
1537, October 7, 2014 ª2014 Elsevier Ltd All rights reserved 1529



Figure 1. Main Methodological Features of AC3D

(A) Calculation of the focus masks FM1 and FM2 of two class centers V1 and V2.

(B) A voting strategy is used for multiclass label determination. The subtomogram under investigation with unknown class label (top left) will be assigned to the

class with the most votes from pairwise comparisons, i.e., class 2 in this case.

(C) k-means++ is adapted as the initialization strategy. In the 2D simplification, each square represents a subtomogram. Assuming a subset of subtomograms

(upper left, outlined with a solid line) is already chosen yielding the first class center (#1), the next class center (#2) is then the subtomogram average of a new

subset (e.g., bottom right, outlined with a dashed line), in which each subtomogram is randomly picked with a probability proportional to the squared distance

function (indicated by the colors of the squares and the scale bar).
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randomly picked with a probability proportional to its squared

distance from the closest existing center. It is shown that k-

means++ converges faster than k-means with random initializa-

tion and guarantees that it isO(log k) competitive with the optimal

clustering. In contrast, the performance of k-means with random

initialization can be arbitrarily worse than the optimum (Kanungo

et al., 2004).

Here, we implement k-means++ with a few important modifi-

cations for application to cryo-ET (Figure 1C): (1) the class center

is not a single subtomogram but rather an average of a certain

portion of the whole data set containing N subtomograms. The

reason is that one single subtomogram has low SNR and is

affected by the missing wedge. (2) The first class center is the

average of the aligned subtomograms with top PN/kR scores,

which are obtained by the CCCs from the prealignment. This

class is, hence, similar to the average of the whole data set. (3)

The subsequent class centers are the averages of PN/kR subto-
1530 Structure 22, 1528–1537, October 7, 2014 ª2014 Elsevier Ltd A
mograms from the whole data set. These subtomograms are

chosen at random, with probabilities proportional to the squared

distance functions. (4) The distance function, D, used here is

the normalized Euclidean distance, which can be derived from

the CCC. Mathematically, given a set of class centers SV =

{V1,/,Vk} and a subtomogram S, D can be calculated as:

DðS;SVÞ=minV˛SV
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 2,CCCðV ;SÞ

p
: (Equation 1)

The final initialization algorithm is presented in Algorithm 2. We

emphasize that the computational cost of this step is marginal

compared to the others in Algorithm 1, and the whole clustering

procedure normally converges faster with this strategy (Box 2).
Fast Alignment of Subtomograms
The most time-consuming task in AC3D is the alignment of each

subtomogram against the class centers. The computational time
ll rights reserved



Box 2. Algorithm 2: Initialization of AC3D

Input:

SS: A set of input aligned subtomograms

k: Number of desired classes

Output:

SV: A set of initial class centers

Begin

01 n = PN/kR
02 Sort SS according to the scores and average the top

n subtomograms to get V1

03 SV = {V1}

04 for i = 2:k do

05 SS
0
= {}

06 for j = 1:n do

07 cS ˛ SS, calculate P f D2(S,SV)

08 Pick Sj ˛ SS without replacement at random with

probability Pj

09 SS
0
) SS

0
W{Sj}

10 end for

11 Average SS
0
to get Vi and SV ) SVW{Vi}

12 end for

end
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grows linearly with the number of subtomograms times the

number of classes. The speed of subtomogram alignment is

the bottleneck of the entire procedure and thus limits its practical

use. Recently, we proposed a fast alignment algorithm based on

spherical harmonics (Chen et al., 2013), which can be applied

here to address this issue. Here, we briefly recapitulate this

algorithm.

The fast subtomogram alignment consists of two major com-

ponents: fast translational matching (FTM) and FRM, which are

then combined into an integrated framework using expectation

maximization, i.e., the original 6 DoF problem is divided into

two 3 DoF problems (translation and rotation) and solved by

FTM and FRM iteratively. FTM is well known: the two volumes

to be aligned are first constrained to common areas in Fourier

space (Frangakis et al., 2002), and their cross-correlation func-

tion can be efficiently computed using fast Fourier transform

(Roseman, 2003).

However, FRM for cryo-ET is not trivial, and we proposed

to solve it using spherical harmonics analysis in Fourier space

(Chen et al., 2013). Mathematically, FRM evaluates the CCC as

a function of rotation R of two 3D volumes, V1 and V2, efficiently.

We define cV1 and cV2 as the Fourier transforms of V1 and V2,

and two spherical mask functions m1 and m2, indicating their

respective missing wedges in Fourier space. We first convert

the Fourier transforms of volumes to spherical coordinates:bV ðkx; ky; kzÞ= bV ðk; q; fÞ. Then, CCC can be calculated as fol-

lows (Chen et al., 2013):

CCCðRÞ=
Pkmax

k = 1SCC12ðR; kÞ,k2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPkmax

k = 1SCC11ðR; kÞ,k2
q

,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPkmax

k = 1SCC22ðR; kÞ,k2
q ;

SCC12ðR; kÞ=cV1ðk; q; fÞm1+cV2ðk; q; fÞm2;
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�� ��2

SCC11ðR; kÞ= ��cV1ðk; q; fÞ�� m1+m2; and

SCC22ðR; kÞ=m1+

����cV2ðk; q; fÞ
����2m2: (Equation 2)

Here, kmax is the maximal frequency band involved, and + is

the spherical correlation operator, which can be efficiently

computed by the SO(3) Fourier transform (SOFT) (Kostelec,

2008) and spherical Fourier transform (SFT) (Healy et al., 2003).

The calculation of SOFT and SFT involves spherical harmonics

functions. This is the generalized convolution theorem of spher-

ical functions. The peak of CCC then indicates the best scoring

rotation.
Noise Class Handling
The subtomograms under investigation often include outliers,

typically false positives from the automated or manual detection

or subtomograms that are too noisy to be aligned accurately.

These outliers tend to degrade the clustering performance. To

ensure the robustness of the classification with respect to such

outliers, we assign a certain percentage of all the subtomograms

to a ‘‘noise class’’ during each iteration. This step is conducted

before the class label determination step. If a subtomogram is

assigned to the noise class, it will be excluded from the remain-

ing steps of that iteration. Importantly, the subtomogram will be

included again in the subsequent iterations andmay be assigned

to a different class.

To decide which subtomogram belongs to the noise class, we

calculate the probabilities using the score distributions. Given a

set of subtomograms SS = {S1,/,SN} and a set of class centers

SV = {V1,/,Vk}, we first align SS to SV using the fast subtomo-

gram alignment algorithm. For each Vj ˛ SV, we will have a set

of similarity scores SCSj = {SC1,/,SCN}. Assuming that

the noise class has a low score and it is statistically independent

of all class centers SV, the probability of a subtomogram Si ˛ SS

not being class Vj is then Pi,j{SCi < SC},cSC ˛ SCSj. Finally, the

overall probability of Si being noise can be calculated by

Pi =
Qk

j = 1Pi;j. Sorting the probabilities and setting a threshold of

the list will then yield the noise class.
Focus Mask and Focused Score
Another critical step is the automatic calculation of the focus

mask, FM, and the corresponding focused score, FS. Given

two volumes (class centers) V1 and V2, we calculate FM as fol-

lows (Figure 1A). (1) Low-pass filter V1 and V2 (according to the

corresponding resolution) to reduce noise influence and

normalize them (mean = 0, standard deviation [SD] = 1) so

that they have approximately the same intensity scale. (2) Align

V1 and V2 to make sure they have the highest correlation. (3)

Multiply the aligned V1 and V2 with a mask M, if provided, to

enforce FM to be computed inside M. Note that this step is

optional and that M is only used for explicitly constraining

the classification, e.g., filtering out hypervariable areas. (4)

Calculate the SD map STD of the aligned V1 and V2. In this

case, the STD of two volumes is essentially the same as their

absolute difference map. (5) Threshold STD (e.g., top 10% of

the intensity values) and binarize it by setting the areas above
1537, October 7, 2014 ª2014 Elsevier Ltd All rights reserved 1531



Figure 2. Classification Result on Simulated Data Set of 80S Ribosomes

(A) Densities simulated from atomic models of three ribosome states. From left to right: S. cerevisiae 80S ribosome (model #1), 80S ribosome bound to the Sec61

translocon (model #2), and 80S ribosome bound to the SRP (model #3).

(B) Classification result. From left to right: subtomogram average of class #1, subtomogram average of class #2 colored by the STD against #1, and subtomogram

average of class #3 colored by the STD against #1.
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the threshold to 1 and those below it to 0, resulting in FM. (6)

Transform FM back to the respective orientations and posi-

tions of V1 and V2, which results in a pair FM1 and FM2.

Note that, for each pair (V1, V2), their focus masks are also a

pair (FM1, FM2).

Finally, FSj,i of a subtomogram Si and Vj can be obtained by

first aligning Si to Vj and then calculating the local CCC (Förster

et al., 2008):

FSj;i =
X
x;y;z

S0
iðx; y; zÞ,V 0

j ðx; y; zÞ;

S0
i =

FMjðx; y; zÞ,
�
FT�1

� bSi,u

�
� S0

i

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

x;y;z

�
FMjðx; y; zÞ,

�
FT�1

� bSi,u

�
� S0

i

��2
s ;

S0
i =

1P
x;y;zFMjðx; y; zÞ

X
x;y;z

FT�1

� bSi,u

�
: (Equation 3)

Herein, bSi is the Fourier transform of Si, FT
�1 is the inverse Four-

ier transform, and u is the corresponding sampling region in

Fourier space. V 0
j can be computed analogously. Note that if

FMj is a unit volume, FSj,i is identical to CCCj,i.

Multiclass Label Determination
Binary class label determination is straightforward. Given a sub-

tomogram Si and two class centers (V1, V2), we first calculate

FM1,i and FM2,i and their corresponding FS1,i and FS2,i. The class
1532 Structure 22, 1528–1537, October 7, 2014 ª2014 Elsevier Ltd A
label of Si will then correspond to the class average, with the

larger value between FS1,i and FS2,i.

Multiclass label determination, i.e., class assignment with

more than two classes, is not trivial because FM is defined pair-

wise. Focus masks that incorporate the structural discrepancies

of more than two volumes are less discriminative than those

pinpointing pairwise differences, because the focus mask of

multiple volumes will involve more voxels than any pairwise

FM. In order to use the pairwise FM for classification, we use a

voting strategy for the multiclass label assignment (Figure 1B).

FS is defined with respect to a pair of class centers for each sub-

tomogram. FS can be considered as a binary classifier, which

generates a vote to one of the classes from the pair analyzed.

For each comparison of a subtomogram Si with a pair of class

centers (Vk,Vl), the binary class label is determined according

to the vote. The final class label of Si is determined by a voting

of all the pairwise comparisons.

Classification of Simulated Ribosome Subtomograms
We first assessed our algorithm on a simulated data set of

Saccharomyces cerevisiae 80S ribosomes bound to different co-

factors involved in signal-recognition-particle (SRP)-mediated

protein translocation into the endoplasmic reticulum (ER) (Fig-

ure 2A): the 80S ribosome alone, the 80S ribosome bound to

the Sec61 translocon, and the 80S ribosome bound to the SRP.

For convenience, we name the 80S ribosome as class #1, the

80S ribosome bound to the Sec61 channel as class #2, the 80S

ribosome bound to the SRP as class #3, and noise particles as

class #0. For comparison, this data set was also classified into

four classes using CPCA in combination with k-means clustering
ll rights reserved



Table 1. Results of Compared Classification Approaches for Simulated Ribosome Data Set

CPCA MLTOMO AC3D

Predicted Predicted Predicted

A
c
tu
a
l

#0 #1 #2 #3

A
c
tu
a
l

#0 #1 #2 #3

A
c
tu
a
l

#0 #1 #2 #3

#0 100 0 0 0 #0 100 0 0 0 #0 93 7 0 0

#1 15 76 59 0 #1 2 106 42 0 #1 4 125 21 0

#2 8 56 36 0 #2 1 68 31 0 #2 2 0 98 0

#3 7 0 0 43 #3 0 28 15 7 #3 1 0 0 49

% TPR % FPR % TPR % FPR % TPR % FPR

#0 100 10 #0 100 1 #0 93 2.3

#1 50.7 22.4 #1 70.7 38.4 #1 83.3 2.8

#2 36 19.7 #2 31 19 #2 98 7

#3 86 0 #3 14 0 #3 98 0

Classes #1–#3 are shown in Figure 2, and class #0 corresponds to the noise class. From the class assignments, the TPR and FPR were computed.
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(Förster et al., 2008) and the ML approach MLTOMO imple-

mented in Xmipp (Scheres et al., 2009). For CPCA, five eigenvec-

tors were retained for k-means; and for MLTOMO, 20 iterations

were executed with reg0 = 5, regF = 0, and reg_steps = 5.

The confusion matrices are shown in Table 1, in which also the

true positive rates (TPR) and false positive rates (FPR) are listed.

Table 1 indicates a significantly better performance of AC3D

compared to CPCA and MLTOMO in terms of both TPR and

FPR. Moreover, the classification results of AC3D (class centers)

are shown in Figure 2B, in which the 3D densities are colored by

the STDmap (prior to threshold) to illustrate the autofocus ability

of AC3D.

To demonstrate the benefits of two key components of our

approach, i.e., the advanced initialization (k-means++) and the

focused score, we evaluated the classification results of AC3D

with each of these two features turned off (Table 2). When the

random class assignment was used in the initialization step,

the obtained accuracies were essentially identical in this case,

but the convergence was slower (two more iterations) compared

to AC3D with k-means++. Thus, k-means++ increases the clas-

sification speed. When the conventional CCC was used as the

similarity metric in AC3D, the classification accuracy degraded

dramatically. Thus, the superior classification performance of

AC3D compared to CPCA and MLTOMO can be almost exclu-

sively attributed to the focused score.

Classification of ER-Associated Ribosomes
We further tested AC3D on an experimental data set of mamma-

lian ribosomes bound to the ER protein translocon. In previous

studies of the same sample, we could resolve the membrane-

bound 80S ribosome and two complexes with prominent

lumenal domains: the translocon-associated protein complex

(TRAP) and the oligosaccharyl-transferase complex (OST)

(Pfeffer et al., 2012, 2014). The acquired subtomograms depict

ribosomes bound to ER-derived microsomes. Because of the

highly variable diameters of the microsomes, the curvature of

the membrane would dominate the classification; to prevent

classification according to membrane curvature, we constrained

the classification on the ribosome and the ER lumenal region.

Thewhole data setwas first classified into four classes, and the

resulting four classes are depicted in Figure 3A: class #1 clearly
Structure 22, 1528–
captures 80S ribosomes bound to a translocon population with

only TRAP; class #2 80S ribosomes bound to a translocon popu-

lation with TRAP andOST; class #3 60S large ribosomal subunits

with only TRAP; and class #4 60S ribosomal subunits associated

with TRAP- and OST-containing translocons. The populations of

the four classes are 564 (21.8%), 970 (37.5%), 737 (28.5%), and

313 (12.1%) particles, respectively.

We compared the obtained subtomogram assignments with

our results in (Pfeffer et al., 2014), where the foci for classification

were chosen based on biological prior knowledge. In detail, we

conducted CPCA classification on the same data set, first with

a sphere mask focusing on the entire ribosome and then

with another sphere mask covering the ER-lumenal region. The

resulting class averages of the knowledge-based approach are

essentially the same as those derived by AC3D (Figure 3A).

The confusion matrix of the classification results from CPCA

and AC3D is shown in Table 3. Both measures indicate good

agreement between knowledge-based CPCA and AC3D.

Moreover, we conducted a further classification round of the

particles included in classes #1 and #2, focusing on the 80S ribo-

some part only. The number of classes was set to three, and we

obtained the class averages shown in Figure 3B. Consistent with

previous studies using cryoelectron microscopy single-particle

analysis (Frank and Gonzalez, 2010; Melnikov et al., 2012; Wil-

son and Doudna Cate, 2012), we observe a highly flexible ribo-

somal L1 stalk (Figure 3B, right panel). Furthermore, we find a

nonribosomal density of approximately 100 kDa bound to the ri-

bosomal stalk base in classes C1 and C2, but not C3 (Figure 3B),

which likely corresponds to canonical translation elongation or

termination factors. The number of subtomograms assigned to

class C1 was 637 (41.5%); class C2, 507 (33%); and class C3,

390 (25.4%). The classification result is furthermore quantita-

tively assessed by the Fourier shell correlation (FSC) curves.

Three types of FSC curves were calculated for each class: intra-

class FSC, interclass FSC, and FSC of a random, same-sized

portion of subtomograms (Figure 3C), from which we can see

that the intraclass FSCs are generally better or similar than the

random FSCs. Since the FSC measures the global similarity,

which is dominated by the structurally invariant core ribosome,

the superiority of intraclass FSCs is more obvious when

compared to interclass FSCs, which indicate the level of
1537, October 7, 2014 ª2014 Elsevier Ltd All rights reserved 1533



Table 2. Influence of AC3D’s Initialization and Focused Score on Classification Accuracy

AC3D with Random Initialization AC3D without Focused Score AC3D

A
c
tu
a
l

Predicted

A
c
tu
a
l

Predicted

A
c
tu
a
l

Predicted

#0 #1 #2 #3 #0 #1 #2 #3 #0 #1 #2 #3

#0 91 6 2 1 #0 93 1 0 6 #0 93 7 0 0

#1 6 123 21 0 #1 2 74 54 20 #1 4 125 21 0

#2 3 0 97 0 #2 3 49 37 11 #2 2 0 98 0

#3 0 0 0 50 #3 2 8 33 7 #3 1 0 0 49

% TPR % FPR % TPR % FPR % TPR % FPR

#0 91 3 #0 93 2.3 #0 93 2.3

#1 82 2.4 #1 49.3 23.2 #1 83.3 2.8

#2 97 7.7 #2 37 29 #2 98 7

#3 100 0.3 #3 14 10.6 #3 98 0

Convergence: eight iterations Convergence: seven iterations Convergence: six iterations

Classification of the simulated ribosome data set was performed by AC3D with random initialization and with a uniform FM for comparison with the

AC3D enabling all the features.
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similarity between the different classes. Taken together, these

classification results suggest that AC3D is capable of separating

different conformations of ER-associated ribosomes, which all

agree with previous studies relying on much larger data sets.

DISCUSSION

Here, we presented amultireference clustering algorithm (AC3D)

for subtomogram classification and simultaneous alignment.

For large data sets, AC3D, like other multireference approach,

is computationally more efficient than clustering approaches

requiring pairwise correlations of all subtomograms, such as

PCA-based approaches (Bartesaghi et al., 2008; Förster et al.,

2008). The main distinguishing feature of AC3D among multire-

ference approaches is the ability to automatically focus the

similarity measurement to regions of significant structural dis-

crepancies. This autofocus ability does not require any prior

knowledge or human intervention, which avoids hypothesis-

driven bias of classification results. Moreover, we adapted

k-means++ for the initialization of the iterative clustering algo-

rithm, which improves the convergence speed and makes the

procedure less vulnerable to local optima. Last, but not least,

the integration of a fast, spherical harmonics-based subtomo-

gram alignment algorithm makes AC3D computationally highly

efficient compared to other state-of-the-art approaches without

compromising on accuracy.

A problem that AC3D shares with essentially all multireference

classification approaches is that the user must specify the num-

ber of classes, k, which is not straightforward. A common guide-

line is to oversample k properly, because it is safer for the small

classes to be discovered and the clustering result will become

more stable. In a subsequent step, the classes can be either

manually examined and aggregated or automatically merged

using hierarchical clustering of the class averages (Hrabe et al.,

2012).

AC3D is open-source software and is available to the whole

community at http://www.biochem.mpg.de/foerster. Some fea-

tures of AC3D can also be incorporated into other approaches.

For example, the efficient subtomogram alignment algorithm
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can be integrated into theML approach, which will make the pro-

cessing of large cryo-ET data sets feasible. Whereas AC3D per-

forms excellently for figuring out whether cofactors are present

or absent in complexes as shown here, further studies need to

be conducted to find out which approach is a better choice

when structural variations are not confined to relatively small

areas of subtomograms.

When evaluated on a realistic simulated data set of 80S ribo-

somes bound to different cofactors, AC3D achieved a nearly

perfect classification of the different states, while two other

tested state-of-the-art classification approaches, CPCA and

MLTOMO, yielded significantly less accurate class assignments.

The data set was designed so that it encapsulated three chal-

lenges of subtomogram classification. (1) Particularly between

two classes, the bare 80S ribosome and the 80S ribosome

bound to the Sec61 channel, the structural difference arose

from only an �60 kDa density, indicating that AC3D can identify

highly subtle structural heterogeneity in low SNR data. (2) The

populations of different classes were unbalanced by a factor of

up to three. (3) A considerable amount of outliers was present.

It is highly encouraging that AC3D yielded a near-perfect classi-

fication result under these challenging conditions, which often

occur in experimental data from physiological samples.

We then applied AC3D to an experimental data set of ER-

associated ribosomes. For the ER-lumenal part of the complex,

we retrieved essentially the same classes that we previously ob-

tained using biological knowledge-based classifications (Pfeffer

et al., 2014): the OST complex was present in the translocon hol-

ocomplex in substoichiometric amounts. The most prominent

classes for the cytosolic ribosomal density were assembled

80S ribosomes and 60S ribosomal subunits. Thus, the smallest

structural difference detected in the initial classification was

the presence or absence of the �250 kDa lumenal OST density.

The significant enrichment of OST in translocon complexes

bound to fully assembled 80S ribosomes (62.8% occupancy)

compared to 60S ribosomal subunits (29.8% occupancy) sug-

gests that OST have a higher affinity to translocon complexes

engaged in cotranslational translocation of a nascent peptide

across the ER membrane. This affinity variation would imply
ll rights reserved
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Figure 3. Classification Result for Mammalian Ribosomes Bound to the Native ER Protein Translocon

(A) The whole data set was first classified into 4 classes that apparently corresponded to the following assemblies: 80S ribosomes bound to a translocon

population with only TRAP (class #1), 80S ribosomes bound to a translocon population with TRAP and OST (class #2), 60S ribosomes with only TRAP (class #3),

and 60S ribosomes with TRAP and OST (class #4).

(B) Classes #1 and #2 were merged and further classified into three classes (C1, C2, and C3) with the focus on the ribosome density. The dotted circles mark the

presence/absence of a nonribosomal density bound to the ribosomal stalk base, which likely corresponds to canonical translation elongation or termination

factors. The three class averages are overlaid on the rightmost side to show the high flexibility of the ribosomal L1 stalk (outlined with a dotted rectangle).

(C) The FSC curves of the class averages in (B). For each class, three types of FSC curves are plotted: the intraclass FSC, the interclass FSC, and the FSC of a

random portion with the same number of subtomograms.
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that the ER protein translocon is not a temporally invariant com-

plex but rather undergoes compositional dynamics according to

the translational state of the associated ribosome.

More subtle structural differences were detected when we

classified 80S ribosomal densities, revealing well-established

flexibility of the L1 stalk and cofactor binding to the ribosomal

stalk base. The approximate mass of 100 kDa of the cofactor

would be consistent for example with the 95 kDa eukaryotic

elongation factor 2. Previously, different conformational states

of the ribosome during translation could only be observed in

cryo-electron microscopy single-particle data of purified ribo-

some particles. The classification results presented here for

ribosomes in their native membrane suggest that cryo-ET in

conjunction with subtomogram classification by AC3D will
Structure 22, 1528–
become a powerful method to study the mechanics of large

macromolecular machines in their physiological environment.
EXPERIMENTAL PROCEDURES

Simulation of Ribosome Subtomograms

Three different states of ribosomes were simulated using atomic models from

the Protein Data Bank (PDB) (Figure 2A): the Saccharomyces cerevisiae 80S

ribosome (IDs: 3IZB, 3IZE, 3IZF, and 3IZS), the S. cerevisiae 80S ribosome

bound to the Sec61 translocon (ID: 2WWB), and the S. cerevisiae 80S ribo-

some bound to the SRP (ID: 1RY1). The simulations were conducted as

described by Chen et al. (2013) for SNR = 0.01. For testing the performance

on an unbalanced data set, the number of particles for each class was 150,

100, and 50, respectively. Furthermore, 100 noise particles were added into

the data set to test the robustness. They were spheres with diameters ranging
1537, October 7, 2014 ª2014 Elsevier Ltd All rights reserved 1535



Table 3. Confusion Matrix of Classification Results from

Knowledge-Based CPCA and Unbiased AC3D on ER-Associated

Ribosomes

CPCA

AC3D

#1 #2 #3 #4

#1 299 381 250 68

#2 253 575 21 14

#3 9 8 327 49

#4 3 6 139 182
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from 15 to 30 nm. They had similar mean values as the 80S ribosome and the

same SNR. In total, 400 subtomograms of 1003 voxels were simulated with a

defocus of 4 mm and a voxel size of 0.47 nm. The tilt angles ranged from �60�

to 60�, with 3� as the angular increment. The tomograms were randomly trans-

lated with respect to the center within the range of 10 voxels and randomly

rotated.

Experimental Data Set of ER-Associated Ribosomes

Rough microsomes were prepared from dog pancreas and vitrified on lacey

carbon molybdenum electron microscopy grids (Ted Pella) as described by

Pfeffer et al. (2012). Tilt series were acquired using an FEI Titan Krios TEM

equipped with a Gatan K2 Summit direct electron detector, operated in frame

mode with five to seven frames per projection image. The TEM was operated

at an acceleration voltage of 300 kV. Single-axis tilt series were recorded

from �60� to 60�, with an angular increment of 2� at a nominal defocus of

4 mmand an object pixel size of 2.62 Å using the Serial EM acquisition software

(Mastronarde, 2005). The cumulative electron dose did not exceed 60 elec-

trons per square angstrom.

Frames from the Gatan K2 Summit direct electron detector were aligned

using quasi-expectation maximization implemented in the MATLAB toolbox

AV3 (Förster et al., 2005). Phase correction of single projections was per-

formed using the MATLAB scripts described by Eibauer et al. (2012) rather

than the slightly more accurate but computationally more demanding Wiener

filtering (Chen et al., 2013). Tomogram reconstruction (object pixel: 2.1 nm)

and template matching were accomplished using PyTom (Hrabe et al., 2012)

as described by Pfeffer et al. (2012), followed by extraction of ribosome

candidates. A preliminary classification (Förster et al., 2008) was carried out

to remove most of the false-positives, e.g., gold markers, ER membranes,

or carbon edges. Finally, 2,584 subtomograms (2003 voxels, object pixel:

0.262 nm) were retained and reconstructed for further processing.
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