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New instrumentation for cryo electron microscopy (cryoEM) has significantly increased data collection
rate as well as data quality, creating bottlenecks at the image processing level. Current image processing
model of moving the acquired images from the data source (electron microscope) to desktops or local
clusters for processing is encountering many practical limitations. However, computing may also take
place in distributed and decentralized environments. In this way, cloud is a new form of accessing com-
puting and storage resources on demand. Here, we evaluate on how this new computational paradigm
can be effectively used by extending our current integrative framework for image processing, creating
ScipionCloud. This new development has resulted in a full installation of Scipion both in public and pri-
vate clouds, accessible as public ‘‘images”, with all the required preinstalled cryoEM software, just requir-
ing a Web browser to access all Graphical User Interfaces. We have profiled the performance of different
configurations on Amazon Web Services and the European Federated Cloud, always on architectures
incorporating GPU’s, and compared them with a local facility. We have also analyzed the economical con-
venience of different scenarios, so cryoEM scientists have a clearer picture of the setup that is best suited
for their needs and budgets.
� 2017 The Authors. Published by Elsevier Inc. This is anopenaccess article under theCCBY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

We are witnessing a revolution in the field of 3D Electron
Microscopy under cryogenic conditions (cryoEM), mainly due to
the introduction of direct electron detectors together with contin-
uous improvements in computing hardware and in software tools
(Vinothkumar and Henderson, 2016). A single modern electron
microscope produces around 1 TB of data per day that currently
requires at the very least 1000 CPU-hours of image processing
(Scheres, 2014). As a consequence, scientists are investigating
how different technologies can support the next generation of
image processing software. These technologies include processing
technologies such as graphical processing units (GPUs), and plat-
forms such as clouds. In this work we concentrate on the use of
cloud computing in configurations incorporating GPU’s.
There are two main types of cloud providers: commercial and
academic. In this work we will develop and test our implementa-
tion on Amazon Web services (AWS) (one of the best known com-
mercial providers) and on the European Federated Cloud
(FedCloud) (Fernández-del Castillo et al., 2015) which is, at least
partially, free of charge for academic users (in Europe).

AWS provides a broad set of services, among which we are
mainly interested on ‘‘Infrastructure as a Service” (IaaS) services,
such as computing, storage and networking. They are offered as
an utility: on-demand, available within seconds and with pay-as-
you-go pricing. Very few reports in the cryoEM field deal with
cloud implementations (e.g. Cianfrocco and Leschziner, 2015),
but from these few (including this one), AWS is becoming the plat-
form of choice in Structural Biology for High-performance comput-
ing (HPC) on the cloud.

FedCloud, in turn, is an IaaS cloud provider for research, backed
by the European Grid Initiative (EGI, https://www.egi.eu). This
research e-infrastructure is organized as a set of Virtual Organiza-
tions, which typically represent large scale research projects.
Resources are also available on demand, but the researcher is not
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always billed. EGI acts as a mediator between Virtual Organiza-
tions and resource providers, negotiating billing procedures and
prices of the resources, which can then be offered for free, or with
a pay-as-you-go model. Acknowledgment of these resources is
expected in published research papers.

Although cloud computing and GPU implementations may sat-
isfy the growing needs of processing power of cryoEM, a clear layer
of project and data management is also required, as it is a system
able to bridge and integrate among disparate image processing
packages. Traceability and reproducibility of all image processing
steps to get a final 3D map is also a must. This is the context in
which Scipion has been developed (de la Rosa-Trevín, 2016).

Scipion is an image processing framework aimed at obtaining
3D maps of macromolecular complexes using cryo Electron Micro-
scopy. It has emerged as the solution offered by the Instruct Image
Processing Center (I2PC) to European scientists accessing the Euro-
pean Research Infrastructure for Structural Biology (Instruct). With
Scipion, researchers can obtain 3D maps of macromolecular com-
plexes combining the best from most popular cryoEM software
packages. All low-level details (such as taking care of formats
and conversions, or tracking the parameters of each step) are auto-
matically handled. The Graphical User Interface (GUI) of Scipion
provides homogeneous access to all the underlying packages,
enhanced with rich data viewers, wizards and other practical tools.
Scipion encourages reproducibility since every step in the process-
ing pipeline is logged, creating a workflow that may be stored or
shared with other researchers. Scipion encapsulates distributed
computing details, so running workflows in clusters of computing
nodes is quite straightforward.

In this work we present ‘‘ScipionCloud”, a gateway for running
Scipion on cloud. Some of the benefits of ScipionCloud are:

� End-users only need a web browser on their local computer to
use ScipionCloud. Installation, configuration, resource manage-
ment, etc are all transparently handled.

� Complete traceability of results is provided, from the initial
images to the final 3D map.

� Computational and graphical performance on cloud is similar to
equivalent local infrastructures, overcoming traditional perfor-
mance issues regarding HPC on cloud.

� ScipionCloud adapts to single node and cluster configurations in
the cloud, making the most of the resources available (including
hardware accelerators, like GPUs).

� Projects can easily be migrated across cloud providers and local
resources. Researchers can perform the more interactive steps
on their local computer and then continue processing on the
cloud, or vice versa.

� ScipionCloud easily accommodates to the current trend of con-
centrating computational resources in big facilities (whether
commercial, as AWS, or academic, as FedCloud).

2. Results

2.1. ScipionCloud

Scipion can be installed from precompiled binaries or built from
source code. It offers an automatic mechanism to install the EM
packages that are integrated in the framework. Until now the
approach described above has been the usual way to install Scip-
ion, both in personal computers and in large clusters, but the arri-
val of cloud computing has offered new possibilities for software
distribution, and it is in this context that ScipionCloud has been
developed.

ScipionCloud is available as an Amazon Machine Image (AMI) -
that can be used on AWS platform-, and as a EGI Virtual Appliance.
In both Amazon Machine Image (AMI) and Virtual Appliance cases,
we offer a full Scipion installation plus a number of useful utilities
to facilitate users experience. Supplementary Table 1 shows the list
of packages and libraries included in the first version of
ScipionCloud.

ScipionCloud can be easily deployed following the documenta-
tion at the Scipion project wiki (https://github.com/I2PC/scipion/
wiki/ScipionCloud#how-to-use-scipioncloud). Once a user has
available a set of cloud resources, the procedure to use Scip-
ionCloud is, essentially:

1. Launch a ScipionCloud instance.
(a) For Amazon AWS, we recommend to use the AWS console

accessed through a web interface. The basic steps are: (a)
Choose the ScipionCloud AMI in ‘‘Community AMIs” section,
(b) choose the instance type, according to how much
resources (CPU, RAM, GPU and disk) are needed, (c) add
extra storage (check our recommendations along this
work), (d) configure security (allow inbound connections
via SSH and HTTPS) and, finally, (e) launch the instance. If
the user intends to set up a HPC cluster, this has to be
deployed using Starcluster, as described in the ScipionCloud
documentation.

(b) For EGI FedCloud, we recommend to use the OCCI client to
create the instances (https://wiki.egi.eu/wiki/HOWTO11),
either as a standalone program, or from an OCCI virtual
appliance.

2. Once the instance is running, the steps are the same, indepen-
dently of where ScipionCloud is actually executing: (a) Connect
to the instance with ssh to grab the randomly-generated remote
display password and (b) use this password to authenticate in
the browser.

3. Upload your data through ssh or rsync (more sophisticated data
transfer procedures are also possible, check on our
recommendations).

4. Start Scipion.

2.2. ScipionCloud profiling and cost analysis

We have taken the position of a typical user that wants to know
in detail how efficient (and how expensive) is the use of cloud
computing -ScipionCloud in this case- in common image process-
ing scenarios. To this end we have analyzed the performance and
cost of running a typical Single Particle Image processing workflow
on both public and private clouds as well as on a local computer,
always with the constraint of achieving comparable results in term
of quasi atomic resolution. The comparative of the different Scip-
ionCloud profilings will be presented in detail in the following.

Fig. 1 shows the precise workflow used for this test. Essentially,
966 videos corresponding to samples of mammalian transient
receptor potential ion channel (TRPV1) were subjected to a process
of (a) Frame alignment (correction of Beam Induced Movement in
videos), (b) CTF estimation, (c) Interactive and automatic particle
picking (these interactive steps were tested but existing coordi-
nates were imported to continue with the workflow), (d) Relion
2D classification, (e) Relion 3D classification and (f) Relion 3D
auto-refine to produce a 3D map of 3.4 Å. Videos correspond to
the study performed by Liao et al. (2013), and deposited in EMPIAR
with entry number 10005. We include the complete workflow
actually used in Supplemental Materials as a json file produced
with the ‘Export Workflow’ functionality of Scipion.

We have run that same EM workflow on a commodity server to
provide the user with a clear anchor point to well-known compu-
tational environments, complementing the following Cloud
scenarios:

https://github.com/I2PC/scipion/wiki/ScipionCloud#how-to-use-scipioncloud
https://github.com/I2PC/scipion/wiki/ScipionCloud#how-to-use-scipioncloud
https://wiki.egi.eu/wiki/HOWTO11


Fig. 1. Single Particle Analysis image processing workflow used in this work. The different steps are shown within boxes. Shown in red the steps labelled as Preprocessing (all
performed in streaming) and in blue the most important steps of the Processing. Note that Scipion streaming mode allows the overlapping of communication and
computation, which is specially interesting in enviroments such as Cloud.
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� AWS single instance with GPUs
� EGI FedCloud single instance with GPUs

Table 1 presents the description of the instance types used for
the benchmark. Note that in the case of Amazon AWS, the choice
of instances cover the demands of most potential users. Indeed,
AWS instances range from t2.nano (1 vCPU and 0.5 GB RAM) to
x1.32xlarge (128 vCPU and 1952 GB RAM), and from g2.2xlarge (1
GPU NVIDIA Grid K520 4 GB) to p2.16xlarge (16 GPU NVIDIA Tesla
K80 12 GB). While g2.2xlarge may look huge to the t2.nano user, it
is actually ‘‘small” for many EM processing scenarios.
The particularities of some of the workflow steps have required
the use of different instance types, but it should be noted that the
Amazon AWS EC2 console allows to easily change the type of an
existing virtual machine. On the contrary, the Federated Cloud
does not currently provide a simple mechanism to do so, but the
use of external Block Storage to actually store projects and data
can simplify switching from one instance machine to a new one
if a change of type is beneficial.

Common to all cloud environments is the need to first upload
the initial Electron Microscopy images to be used. We performed
five network tests, which involved CNB-CSIC in Madrid, the



Table 1
Instance types summary. Amazon cost reflects on-demand instance prices at AWS EU Ireland region as May 2017. The cost of titanxp is an estimation that includes the price of the
server, electricity, housing and personnel (see ‘‘Discussion”). vCPU stands for Virtual CPUs.

Environment Instance CPU model vCPU Cores GPU RAM(GB) Cost ($/h)

AWS EC2 Ireland g2.2xlarge E5-2670v2 8 4 K520 4 GB 15 0.702
p2.8xlarge E5-2686v4 32 16 K80 12 GB 488 7.776

FedCloud IISAS gpu1cpu6 E5-2650v2 6 6 K20 4 GB 24 –
gpu2cpu12 E5-2650v2 12 12 K20 4 GB 48 –

Local titanxp ES-2630v3 32 24 Titan XP 12 GB 128 1.4
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European Bioinformatics Institute in Cambridge, the FedCloud dat-
acenter in Czech Republic, and the Amazon datacenter in Ireland.
The bandwith of the CNB-CSIC data connection is 1 Gb/s (or
125 MB/s). We started using a well-known and public domain pro-
tocol combination of rsync over ssh, but the performancewas not as
good as in the case of employing optimized data transfer tools, like
bbcp -public domain- (www.slac.stanford.edu/�abh/bbcp) or
Aspera FASP -commercial- (http://asperasoft.com/technol-
ogy/transport/fasp). The average speed with both optimized tools
was similar, but FASP showed higher peaks (up to 110 MB/s, almost
saturating CNB-CSIC connection). Considering that Aspera FASP is a
relatively expensive software solution, that bbcp is public domain,
and that their performance in our specific case was similar, we rec-
ommend to use bbcp. However, in this work, we have started the
processing transferring the microscope movies from the EMPIAR
repository (http://www.ebi.ac.uk/pdbe/emdb/empiar/), which
allow to use Aspera connect client at no cost. With such speeds, it
takes approximately 80 s to upload a single 6 GB movie, and 21 h
to upload the whole movie set. In terms of cost, the uploading,
per se, was free of charge, but there were some relatively small
computing and storage costs that were charged in AWS.

We present the results obtained regarding data transfer rates on
Table 2. We follow the convention of representing bits with a low-
ercase b and bytes with an uppercase B. Thus, MB/s stands for
Megabytes per second, and Gb/s for Gigabits per second.

Before presenting the results of the computational profiling for
each platform, we note the following general considerations:

� The number of CPUs and GPUs used for each step was chosen
considering several factors, like memory requirements and the
range of configurations offered by each cloud provider, always
with the aim of minimizing economic costs and execution time.

� Some of the steps could have been executed on a less powerful
type (specially regarding the use of a GPU) but, considering the
short processing times, the tiny savings in cost did not compen-
sate the time and effort of switching to another type, even if
facilitated by the AWS console and the use of external storage.
For example, Ctffind4 did not need a GPU and Relion postpro-
cessing could have been run on a smaller type.

� On both cloud scenarios processing started by transferring the
movies, which, even using Aspera, took a long time. In order
not to waste this time, the ‘‘streaming mode” offered by Scipion
was used, which allowed to perform the next two steps (Frame
alignment and Ctf estimation) while the movies were being
transferred.
Table 2
Data transfer rates for image upload.

From To Protocol

CNB (Spain) AWS Ireland rsync+ssh
bbcp

EBI (UK) AWS Ireland Aspera FASP
AWS Ireland AWS Ireland rsync+ssh

CNB (Spain) CESNET FedCloud rsync+ssh
� EM projects demand far more storage than the 30 GB available
in the local disk of the ScipionCloud default instance. Therefore,
we have always attached external volumes to store the raw data
as well as the Scipion project. On AWS A 10 TB volume was
attached only during preprocessing, since the complete videos
had to be transferred and stored, and then project was moved
to a 1 TB disk to reduce costs. On the FedCloud we could not
have a disk bigger than 2 TB, so we removed movies after they
were being processed on Streaming mode, thus liberating some
space. We note that we tested the performance of local disks
compared to attached volumes, and that there was a degrada-
tion of about 20 per cent in those steps of the workflow involv-
ing intense disk access.

� In all cases interactivity was excellent, even in the demanding
task of particle picking, thanks to the use of an intermediate
software layer encapsulating X11 graphics, as it is further pre-
sented under Material and Methods.

Thanks to the Scipion project-oriented features, we could run
exactly the same complete EM worflow on all GPU-based configu-
rations. Naturally, results, measured as finally achieved resolution,
were always the same for all local and Cloud configurations.

First, we used a single node with GPU on AWS. We started with
a g2.2xlarge instance (1 GPU NVIDIA GRID K520) to execute the first
part of the workflow (Acquisition and Preprocessing). Then, we
switched to a more powerful (and expensive) instance, p2.8xlarge
(8 GPU NVIDIA Tesla K80) to process the particles and obtain the
final map.

Second, we used Federated Cloud gpu1cpu6 and gpu2cpu12
machine types.

Finally, we used a titanxp local commodity server (2 GPU NVI-
DIA Titan XP).

Results corresponding to the GPU profiles are presented in
Table 3.

Fig. 2 summarizes the results showing the total elapsed time
(normalized by MPI) of the processing part of the workflow for
each profile as well as the distribution of on-demand costs.
3. Discussion

After having done profiling tests of ScipionCloud on several
cloud architectures as well on local ones, several questions came
to our minds, such as: (1) How does local and cloud computing
compare for similar architectures? (2) How long will it take to
Avg Speed (MB/s) Max Speed (MB/s)

30 30
75 87

75 110
30 30

37 37

http://www.slac.stanford.edu/<ucode type=
http://www.slac.stanford.edu/<ucode type=
http://asperasoft.com/technology/transport/fasp
http://asperasoft.com/technology/transport/fasp
http://www.ebi.ac.uk/pdbe/emdb/empiar/


Table 3
Results for ScipionCloud GPU profiling. Note that for Amazon we report on-demand pricing; consumed partial instance-hours are billed as full hours. Thr. stands for threads, ELT
stands for Elapsed time, and Cost inst. for on-demand Cost instance.

Step Node type GPUs Thr. MPI Disk (TB) ELT (h) Cost ins. ($) Cost disk($)

AWS instance GPU
Movie transfer (Aspera) g2.2xlarge – – – 10 36.7 103 55.53
Movie align (Motioncor2) g2.2xlarge 1 – – 10
Ctf estimation (ctffind4) g2.2xlarge – 1 1 10
Extract particles (relion2.0) g2.2xlarge – 1 1 1 0.6 1.8 0.19
2D classification (relion2.0) p2.8xlarge 8 1 17 1 5.4 41.8 1.6
Initial volume (eman2.12) p2.8xlarge – 1 16 1 0.08 0.66 0.03
3D classification (relion2.0) p2.8xlarge 8 1 17 1 0.6 4.65 0.18
3D autorefine (relion2.0) p2.8xlarge 8 1 17 1 0.7 5.53 0.22
Postprocessing (relion2.0) p2.8xlarge – – – 1 0.03 0.02 0
Total 44.1 157.54 57.78

FedCloud instance GPU
Movie transfer (Aspera) gpu1cpu6 – – – 2 24 – –
Movie align (Motioncor2) gpu1cpu6 1 – – 2
Ctf estimation (ctffind4) gpu1cpu6 – 1 1 2
Extract particles (relion2.0) gpu1cpu6 – 1 1 2 0.43 – –
2D classification (relion2.0) gpu2cpu12 2 1 5 2 25 – –
Initial volume (eman2.12) gpu2cpu12 – 8 1 2 0.16 – –
3D classification (relion2.0) gpu2cpu12 2 1 3 2 2.13 – –
3D autorefine (relion2.0) gpu2cpu12 2 1 3 2 2.57 – –
Postprocessing (relion2.0) gpu2cpu12 – – – 2 0.01 – –
Total 54.31 –

Local instance GPU
Movie align (Motioncor2) titanxp 2 1 1 – 41 57.6 –
Ctf estimation (ctffind4) titanxp – 1 1 –
Extract particles (relion2.0) titanxp – 1 24 – 0.42 0.6 –
2D classification (relion2.0) titanxp 2 1 7 – 7.5 10.5 –
Initial volume (eman2.12) titanxp – 8 1 – 0.21 0.3 –
3D classification (relion2.0) titanxp 2 1 7 – 1.28 1.8 –
3D autorefine (relion2.0) titanxp 2 1 7 – 1.75 2.46 –
Postprocessing (relion2.0) titanxp – – – – 0.003 0 –
Total 52.36 73.3 –
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move the information to the cloud and which is the best way to do
so?.

Regarding cloud configurations with GPU’s, Relion 2.0 auto
refine took 1.8 h when performed on local (two Titan XP) GPUs,
as compared to 0.7 h in the Amazon Cloud (with eight Tesla K80
GPUs). It is certainly impossible to make an accurate comparison
when the actual hardware was different in local and Cloud runs,
but, in general, runs on the Cloud have a performance comparable
to local runs. In short, and answering the first question, the over-
head associated to Cloud computing for typical SPA workflows is
not a limiting factor.

The second question is on easiness and cost of data transfer to
and from the cloud. Naturally, movies represent large data sets,
and the performance transferring them heavily depends on both
network bandwidth and on the software used for this task. Simple
and common solutions, like rsync, are notably outperformed by
specialized software, as we clearly show in the Results section.
Still, even using excellent solutions, over a 1 Gb/s link it takes
approximately one day to transfer close to 1,000 movies of 30
frames of 8000 � 8000 pixels, totalling approximately 6 TB. To
overcome this delay Scipion offers the possibility to run the first
three workflow steps using the so-called ’Streaming mode’, where
movies are processed right after they are written on the disk. On
the other hand, micrographs (more than an order of magnitude
smaller) take just a couple of hours to transfer. Considering the
above, it is clear that micrograph transfer is fast and easy, while
movie transfer is not, suggesting that movie-based operations
may be better handled locally, close to the microscope, starting
the process on the Cloud after movie correction has taken place
and they have been reduced to images/micrographs. Alternatively,
the use of Scipion streaming mode greatly simplify preprocessing
issues, since computation and transfer time are overlapped. It is
also worth to note that moving Scipion projects across file systems
and even different computers is easy, since Scipion projects are
self-contained. Once movies have been corrected, there are no
practical cloud data transfer bottlenecks for subsequent processing
steps.

Completing the Discussion, the following subsections present a
number of practical considerations related to the efficient use of
cloud solutions.

3.1. Resource management

A key factor for an effective use of the Cloud is the analysis of
the type of resources needed in each step, within the availability
and price constraints of the Cloud IaaS provider.

CryoEM is a field that makes use of quite large data sets, espe-
cially at the start of the process, when videos are used. At the same
time, the demands of the different processing steps of cryoEM
workflows are quite heterogeneous. In general, memory (CPU
and GPU memories) is the main limiting factor for many of the
3D operations, so that it defines the instance setup in practical
terms. However, number crunching capabilities are more impor-
tant than RAM for some other steps, a setup that is achieved more
efficiently with a set of instances working cooperatively in a cluster
and/or with GPU-powered instances.

GPU vector architecture allows for high parallel performance,
although only for those programs carefully optimized for such
architecture. The optimization step may have significant costs in
developer man–hours, but processing time savings have led to an
increase in the number of GPU-optimized versions of popular pro-
grams, like RELION-GPU (Kimanius et al., 2016, Motioncor2 (Zheng
et al., 2017), GCTF (Zhang, 2016) and Ge-FREALIGN (Li et al., 2010).
ScipionCloud includes GPU support for AWS and FedCloud.



Fig. 2. Profiling summary and cost distribution. a) Chart of elapsed times normalized by MPI of the processing part for each profile. b) Chart with the distribution of financial
on-demand costs for AWS.
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Regarding other resources, like disk, we found that, in Amazon
cloud, disk is relatively cheap, and it is only a limiting issue when-
ever movies are involved (another factor in favor of processing
movies locally).

3.2. Cost efficiency

All hardware resources in cloud environments imply a cost pro-
portional to its use. For example, memory is a key parameter of
instances, and one that cannot be changed dynamically. Peaks in
use of memory may be short, but the instance must have enough
memory to handle them. The consequence under the pay-as-you-
go model is that the user is paying for a large memory that is only
sporadically used. Therefore, it is important to optimize wisely the
resource allocation: making sure that active instances are produc-
tive, releasing instances no longer used, and dimensioning the
instance resources (RAM, number of CPUs and GPUs, etc) and disk
size according to the actual needs.

One additional question that arises is the convenience of pro-
cessing on cloud (with a pay-per-use model) versus processing
within a local facility (that typically is purchased and amortized).

For ‘‘short” projects, it is obviously cheaper to pay for effectively
used resources than to buy a server. For extensive, all-year-long
processing, the net cost of owning a server is cheaper than the cor-
responding Cloud bill, although Cloud cost is not disproportionate
when all costs are considered. Let consider a concrete example. A
standard server with 16 cores, 128 GB RAM, 2 GPU and 12 TB disk
costs around 3,000$ per year (amortized over 3 years). In addition
to this amortized acquisition cost, an appropriate fraction of a Full
Time Equivalent System Manager (or similar) is required (2500$
per year, asuming a ‘‘standard” 50 K$ salary and a 5% dedication),
plus housing in a datacenter (approx. 3 K$ per year per server)
and electricity cost (approx. 2 k$ per year per server), elevating this
cost to close to 10500 $ per year. Assuming an effective use of such
a server of 80%, the cost per hour would be around 1.4$. Amazon
p2.xlarge instances cost 0.702 $/h, but they are limited for EM pro-
cessing (4 vCPU, 60 GB RAM, 1 GPU). Next model is p2.8xlarge,
which climbs to 7.776 $/h, due to its impressive configuration:
32 vCPU, 488 GB RAM and 8 GPU.

Finally, architecture elasticity is a feature that only Cloud has,
which may be very relevant to handle production peaks.

3.3. Conclusion

Our general conclusion is that with ScipionCloud, Cloud deploy-
ment is very easy and accessible, providing all Scipion advantages
(ease of use, reproducibility, distributed computing) through a
standard web browser. Regarding data transfer rates, typical aca-
demic network setups of 1 Gb/s bandwidth are perfectly adequate
to handle the transfer of micrographs for several projects over-
night; however, the transfer of movies is much slower, suggesting
that they may be more effectively processed locally or using Scip-
ion streaming mode. Note that in all cases the use of specialized
software solutions for data transfer made a substantial difference
in the good use of the available bandwidth. Additionally, the
degree of interactivity in Graphical User Interfaces when changing
from local settings to the cloud has also been brought to a level in
which it is basically the same in the two environments. Finally,
once effective solutions like ScipionCloud exists, the use of Cloud
environments in cryoEM is basically an issue of the cost model a
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given organization prefers to use, whether investing in resources
and personnel or pay-per-use, and of the total money to be yearly
spent depending on the specific use of the required resources.
4. Materials and methods

In this section we address the technical developments behind
ScipionCloud and the profiling tests. First, we discuss the technical
challenges and the solutions provided to them and, subsequently,
we discuss on ScipionCloud availability.
4.1. Challenges porting Scipion to the Cloud

The single most critical challenge faced when developing Scip-
ionCloud was related to the drastic change in the computing envi-
ronment, from a static, local setting, to a dynamic and remote one.
In such an environment, network delays start to be noticed;
resources are inherently distributed, which adds additional con-
cerns regarding data sharing and critical failures.

Network delays become most noticeable in interactive opera-
tions. This is why applications specifically developed from the start
for cloud have an optimized web front-end that works well with
very low network resources. In the case of Scipion and the EM
packages it incorporates, most of their interfaces are based on
X11 (www.x.org), which was developed for local area network
operations. Therefore, under typical cloud environment restric-
tions (lower bandwidth, higher latency), those interfaces feel too
slow for interactive use. We should note that this is not a problem
specific to EM software, it appears in all X11-based programs.

Additionally, some applications display 3D graphics based on
OpenGL (https://www.opengl.org). When such graphics are ren-
dered locally, GPUs can be used to accelerate this rendering, hence
providing real-time performance even with huge and complex vol-
umes (indeed, that was the initial purpose of the GPU in graphic
cards). In the cloud context, however, the rendering is done in
the cloud instance itself, which implies that the acceleration has
to occur at that instance as well. This latter requirement implies
to have a GPU in the cloud instance and appropriate middleware
to handle the particularities of this scenario.

At the same time, GPUs are used for actual computing. This
translates into setting up GPU interface libraries and drivers, and
enabling GPU code in the EM programs. Some programs can run
CPU and GPU code from a single binary, while others require to
manage two different sets of binaries, one for CPU code and
another one for GPU-optimized code. In a local setting, these tasks
are typically the responsibility of the user, but when porting to the
cloud all these considerations have to be explicitly addressed when
creating the cloud image. The same situation applies to many other
details necessary for a positive user experience.

Regarding storage, a local computer typically has direct access
to its disk, whether part of the computer itself or attached to an
external disk subsystem. In cloud environments, however, this is
not the case: the storage subsystem is virtualized and shared
among multiple instances through the cloud internal network. This
implies that the probability of losing access to any of the attached
volumes is relatively high. Additionally, it must be ensured that
only one instance performs the low-level access to such volumes,
since concurrent access is handled at the higher file system level.

In a cluster setup there are three additional challenges: all
nodes must be able to access the same data (while only one can
actually access the underlying disk volume), the computing infras-
tructure has to be managed, and computing processes have to be
distributed across the computing nodes. Again, relying on more
virtualized elements increases the probability of failure.
Cloud infrastructures are very complex internally, a fact that
has led to different evolution paths inside each cloud provider.
There are standardization efforts for operating cloud infrastruc-
tures, but in this work we have found Federated Cloud and Amazon
different enough to require specific images and initial setups (as
explained in the Results section).
4.2. Technical solutions

4.2.1. Resource management
First we summarize howwe proceeded to manage the resources

in the cloud for the profiling tests.
For data storage we used volumes attached to the running

instance: EBS volumes in Amazon, and Block Storage volumes in
FedCloud. In both cases, the file system used was ext4. To simplify
access to data volumes, ScipionCloud mounts them automatically
on boot (provided that the external volume is already formatted).

ScipionCloud supports GPU acceleration, which is, indeed, an
essential element in nowadays SPA software. As of May 2017, Ama-
zon AWS top GPU-powered instances expose a Nvidia Tesla K80
GPU with 12 GB of VRAM, while in the market there are cards like
Tesla P40 that provide 24 GB of VRAM. For Motioncor2, VRAM size
is not an issue, but it may pose map size limits for GPU implemen-
tations of other programs, like Relion 2.0. Same happens with the
cards offered by the Federated Cloud at the ISSAS cloud site, which
currently are Nvidia Tesla K20 with only 4 GB VRAM.

Next, we summarize how we managed the instances to support
all profiling scenarios, and how we supported distributed comput-
ing in the multiple-instance profiling.

For a prolonged use of cloud services, we found that it is bene-
ficial to have some tool for managing the life cycle of the instances
(create, start, stop). For single instances, we used EC2 console and
occi client. For multiple instances (cluster setup), a more special-
ized toolkit is required. We used Starcluster on a desktop com-
puter, but it can also run on a EC2 instance. We added a cluster
template in the Starcluster configuration file in which we specified
the image IDs, instance type and cluster size, the data volume and
the spot bid. As cloud operation interfaces standardize, we expect
that it will be possible to use a single tool to manage both single
instance and cluster setups across all cloud platforms.

Regarding data sharing, we opted for NFS, an open-source file
system that offers a good compromise of simplicity and perfor-
mance and that simulates that the same files are locally available
to all nodes, effectively encapsulating disk details in cluster setups.

In cryoEM, the de facto standard to coordinate the parallel pro-
cessing across multiple nodes is MPI, which effectively encapsu-
lates memory details. ScipionCloud integrates the Open MPI
implementation of the standard.
4.2.2. Cost efficiency
In the case of AWS, a commercial service that offers a flexible

pricing scheme, the researcher is billed for the costs of her process-
ing. The billed cost will not only depend upon howmany resources
were used, but also on how they were requested. In this regard,
Amazon offers three options: on-demand instances, spot instances
and reserved instances. In the first option, the user requests
resources for a specific time period and is billed monthly, accord-
ing to her actual use. Spot instances can also be requested on
demand, but their availability will depend on how much the user
is willing to bid for them. Finally, for reserved instances, the user
reserves them in advance for a minimum time period and is billed
for the whole period, whether the instance was active or not. In the
Results section we reported on-demand prices to provide a reli-
able, comparable reference of the total costs. If the researcher is
willing to use spot instances, she can save 50% or even more. See

http://www.x.org
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Sharma et al. (2016) for more information on spot instances and
bidding.

In the profiling tests run on Amazon AWS, we recurred to on-
demand instances to ensure that the workflow could run without
interruptions. Our experience shows that is possible to use auto-
matic bidding for days without disruptions.

Regarding FedCloud, its cost depends on research policies, and
may involve project review, agreements with Virtual Organizations
and/or, appropriate acknowledgements in scientific publications,
among other factors. In our case, we could access EGI FedCloud
resources at CESNET metacloud site and IISAS GPUCloud site
thanks to the agreement they have with the enmr.eu Virtual Orga-
nization, to which we belong.

4.2.3. Interactive performance
In ScipionCloud we integrated Guacamole, which offers good

performance and only requires a web browser on the user’s com-
puter. However, Guacamole currently handles only 2D accelera-
tion, which means that 3D acceleration must be done on the
server-side (that is, on the instance running on the cloud). For this
release, we recurred to the non-accelerated OpenGL software ren-
dering that MESA provides. Future releases will integrate the
appropriate middleware to allow accelerated 3D OpenGL render-
ing. In the meantime, researchers can benefit from the Scipion
architecture, that allows to perform the resource-demanding steps
and 2D visualization in the cloud, and then use the OpenGL-based
programs on their local computers.

4.2.4. ScipionCloud availability
Scientific computing environments require quite sophisticated

system administration at different levels (operating system,
libraries, applications), specially when using cluster architectures.
We implemented all the required steps for such an environment
in the ScipionCloud Linux-based image.

The image is available as a public AMI in AWS regions EU
Ireland and US East named ScipionCloud-1.1-beta, and as a virtual
appliance in EGI Applications Database (https://appdb.egi.eu/
store/vappliance/scipion.v1.0).

It is possible to find Scipion source code and general
documentation, as well as ScipionCloud-specific documentation,
at Scipion project repository (https://github.com/I2PC/scipion/
wiki/ScipionCloud).
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