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In the past few years, 3D electron microscopy (3DEM) has undergone a revolution in instrumentation and
methodology. One of the central players in this wide-reaching change is the continuous development of
image processing software. Here we present Scipion, a software framework for integrating several 3DEM
software packages through a workflow-based approach. Scipion allows the execution of reusable, stan-
dardized, traceable and reproducible image-processing protocols. These protocols incorporate tools from
different programs while providing full interoperability among them. Scipion is an open-source project
that can be downloaded from http://scipion.cnb.csic.es.

� 2016 Elsevier Inc. All rights reserved.
1. Introduction

In the last few years, we have witnessed a revolution in the
3DEM field due mainly to extraordinary improvements in equip-
ment, computing power and software tools (Kuhlbrandt, 2014).
The introduction of direct detection devices (DDD) has made a fun-
damental difference in image acquisition quality, as they enhance
the resolution achieved by earlier image-recording media such as
photographic film or charge-coupled devices. Moreover, computer
power has increased notably through the use of multi-core machi-
nes, clusters, graphics cards and even cloud computing
(Schmeisser et al., 2009; Cianfrocco and Leschziner, 2015). These
combined developments have allowed more computationally
intensive methods and larger datasets, which permit more
challenging biological questions to be posed.
A variety of software tools are available to the 3DEM commu-
nity, ranging from command line programs to complete software
suites. A non-exhaustive list of these general packages includes
Appion (Lander et al., 2009), Bsoft (Heymann and Belnap, 2007),
CTFFIND (Mindell and Grigorieff, 2003; Rohou and Grigorieff,
2015), EMAN (Ludtke et al., 1999; Tang et al., 2007), FREALIGN
(Grigorieff, 2007), IMAGIC (van Heel et al., 1996), 2dx (Gipson
et al., 2007), RELION (Scheres, 2012), SIMPLE (Elmlund and
Elmlund, 2012), SPARX (Hohn et al., 2007), SPIDER (Frank et al.,
1996), and Xmipp (de la Rosa-Trevín et al., 2013; Sorzano et al.,
2004) (for an exhaustive list, see https://en.wikibooks.org/wiki/
Software_Tools_For_Molecular_Microscopy). Each of these pack-
ages has its strengths and weaknesses, and no single package pro-
vides the best solution in all situations. In many projects,
researchers combine tools from various software packages to cre-
ate a processing pipeline. Differences in file formats, conventions
for Euler angles, contrast transfer function (CTF), and other meta-
data nonetheless make movement between packages time-
consuming, error-prone and difficult to document.
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Previous approaches to package integration in the field include:

� IPLT is a software framework that provides an open-source com-
prehensive library for the EM community. It was implemented
using the programming languages C++ and Python. In principle,
the IPLT Python layer would allow it to call external programs,
although to the best of our knowledge, this possibility has not
been exploited fully (Philippsen et al., 2007).

� 2dx is a software package that wraps the MRC software for elec-
tron crystallography. It has a friendly graphical user interface
(GUI) in which final and intermediate outcomes can be
reviewed using incorporated visualization tools (Gipson et al.,
2007).

� SPIRE is a framework that provides a GUI to process SPIDER
modules. It also has a database with some level of traceability
to the processing workflow. SPIRE has a configuration file that,
in principle, enables the user to execute any external program
within its environment, although it has not been used exten-
sively for this task (Baxter et al., 2007).

� SPARX is a Python framework and a core library of fundamental
C++ image processing functions that includes a user interface
built around EMAN2. It also introduces a distinct data/
process-flow support infrastructure (Hohn et al., 2007).

� Appion is the only platform in the 3DEM field that allows real
integration of different software packages (Lander et al.,
2009). It is Python-based and tightly integrated with a rela-
tional SQL database and with Leginon (Suloway et al., 2005), a
system designed for automated collection of images from trans-
mission electron microscopes. Appion is a web-based pipeline
with registered input and output data that provides user guid-
ance throughout the reconstruction process.

In addition to the integration approaches enumerated above,
there is a trend in most suites to incorporate tools from others,
mainly through conversion scripts that translate from one format/
convention to another. This approach, which is difficult to maintain
and extend, places considerable responsibility on the final user.

Another important problem that affects the cryo-EM commu-
nity (and the scientific community in general) is the difficulty in
reproducing published research studies. Most of the time, the pre-
cise reproducibility of the final reconstruction cannot be guaran-
teed because the traceability of the process relies entirely on
laboratory notebooks and good practices. Although the image pro-
cessing is described to some extent in Materials and Methods sec-
tions, important steps or details can be missing, so that it might not
be a trivial matter to reproduce a given result, even if access to the
original raw data is provided.

It is in this scientific context that Scipion has been developed, to
address the issues of integration and interoperability in 3DEM
while providing full tracking of the entire image-processing work-
flow. Scipion also provides an intuitive GUI for both desktop and
web, to launch jobs and to analyze results. Scipion was also
designed to be extended easily, with rapid incorporation of new
algorithms and a reduced learning curve for potential contributors.
Indeed, the growth of the cryo-EM field is attracting new users
from many other disciplines, which generates the need for intu-
itive, integrative and traceable frameworks for image processing.
2. Processing with Scipion

2.1. Integration and interoperability

The workflows proposed by different EM image processing
packages are conceptually similar, and at first glance it would
therefore seem an easy task to mix algorithms from the various
software packages in new ways. Relatively small differences
between format and the conventions followed by each package
nonetheless heavily penalize software interoperability. Scipion
aims to integrate algorithms from the main 3DEM software pack-
ages and to provide full interoperability among them.

An example can clarify Scipion integration capabilities. Scipion
currently offers four methods for DDD movie alignment:
motioncorr (Li et al., 2013), correlation (an unpublished CPU version
of the motioncorr method developed in Xmipp), unblur (Grant and
Grigorieff, 2015) and optical flow (Abrishami et al., 2015). The first
three approaches perform global alignment, while the fourth is
local. Within Scipion, movie frames can be aligned using any one
of these approaches or any combination.

Following the standard processing workflow, the resulting
micrographs are screened to eliminate those with excessive astig-
matism or drift. Scipion provides three CTF estimation methods:
CTFFIND (both versions 3 and 4) (Mindell and Grigorieff, 2003;
Rohou and Grigorieff, 2015), gCTF (Zhang, 2016) and Xmipp CTF
estimation (Sorzano et al., 2007; Vargas et al., 2013). The user can
compute the CTFs using several algorithms and compare them
with the protocol ctf discrepancy, which analyzes for agreement
among distinct CTF estimations for the same micrograph. The pro-
tocol assumes that two CTFs are consistent if their phase values
(wave aberration function (Frank, 1996)) are closer than 90
degrees. This algorithm reports an expected resolution, i.e., the
resolution at which the CTF phases differ by 90 degrees.

Another important step is to select (pick) particle coordinates
from the micrographs produced by any of the above-mentioned
movie alignment algorithms. Scipion has eight options for this
task: EMAN2 boxer and sparx gaussian picker, Xmipp picker
(Abrishami et al., 2015), Relion autopicker (Scheres, 2015), Bsoft
particle picker, gEMpicker (Hoang et al., 2013), Gautomatch(unpub-
lished) and Appion dogpicker (Voss et al., 2009). Users can select
any of these methods or several of them, followed by the consensus
picking protocol, which estimates the agreement between different
particle-picking algorithms. The consensus picking protocol takes
several sets of coordinates calculated by different programs and/
or parameter settings. A coordinate is considered to be correct if
M pickers have selected the same particle within a radius of N
pixels (both M and N are user-defined parameters).

The possibility of choosing among several algorithms as exem-
plified above is provided by Scipion at all levels of the workflow, in
many cases adding the possibility of comparing the results of these
methods to identify some form of self consistency. Fig. 1 shows a
non-exhaustive summary of the algorithms offered by Scipion for
the processing steps. A complete list with the current integrated
Packages and Protocols (more than 100) is available at https://
github.com/I2PC/scipion/wiki/Integrated-Protocols.

To achieve this level of interoperability, we developed a model
for representing data and algorithms used in single particle image
processing. Instead of dealing with files (and their formats) across
the entire framework, we store data (and their relationships) as an
abstract representation. Examples of data objects are Particle,
Volume, Mask, SetOfParticles, SetOfCTFs, among others. We similarly
model algorithms as protocol objects that perform a specific task
and have well-defined inputs and outputs (to be chosen from
Scipion data objects). Protocols serve as wrapper scripts that inter-
nally call one or more programs. The Scipion data model sets up
the basic building blocks for the whole framework and handles
all data and metadata exchange between algorithms.

2.2. Tracking and reproducibility

Traceability and reproducibility are an important part of scien-
tific data analysis. Whereas a high-level summary of experimental
results is typically recorded and published, a detailed description is

http://https://github.com/I2PC/scipion/wiki/Integrated-Protocols
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Fig. 1. General image processing workflow for single particle analysis. For each step
in the workflow (left), we show some of the available protocols implemented in
Scipion (right).
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seldom available, which may make it difficult or impossible to
reproduce the reported results.

One of Scipion’s main goals is to provide the entire track of the
processing pipeline. Each new protocol execution is stored,
together with the parameters selected. All output logs are also
stored, allowing the expert user to inspect more deeply the under-
lying commands and their results.

For a given project, Scipion displays each protocol execution
(called run in Scipion terminology) as a list or as a tree in the
top-right panel of the project window (Fig. 2). When using the tree
view, two runs will be interconnected if the output of one is used
as the input of the other. It is straightforward to ‘‘copy” a run and
re-execute it with a different input or set of parameters. It is even
possible to copy several runs and repeat a whole branch of the pro-
cessing tree.

All runs (or only those selected by the user) can be exported as a
workflow template. This template is simply a text file (in.json for-
mat) that contains all the necessary information (i.e., run parame-
ters, execution order and user annotations) to reproduce the
processing steps. Nevertheless, due the stochastic nature of some
algorithms, the exact results are not guaranteed even if the pro-
gram is executed with the same input data and parameters in
the same machine. In addition, some steps of the workflow that
require user interaction (such as manual particle picking) cannot
be repeated automatically. When workflow templates are
imported into another project, all the run boxes are recreated with
the same parameters and the same workflow tree. This capability is
very useful for reproducing steps, for re-using the pipeline with a
similar dataset, or for testing slightly different parameters.

Since the workflow templates are simply text files, they can
easily be shared (e.g., via email) with others, such as collaborators
or colleagues, and can even be integrated into online data reposito-
ries. One can imagine a future in which the specific workflow that
leads to a given structure is deposited together with the resulting
structure. This workflow could be visualized over the web and
downloaded by other researchers who wish to apply it to a new
dataset or to repeat the processing from the original raw data. A
Scipion workflow repository is currently being developed that will
allow users to submit their own workflows or download existing
ones. Such a repository could be a resource that allows the entire
EM community to share best practices for image processing and
3D reconstruction.
2.3. User graphical interfaces

Users interact with Scipion through a collection of GUIs that
provides a uniform interface for a plethora of heterogeneous EM
programs. The main GUI is a workflow editor (Fig. 2). The left panel
contains a protocol menu that can be customized. The top-right
panel shows the project workflow, and the bottom-right panel
offers information about the selected run such as input, output,
summary and program log.

By default, flowcharts are used to represent workflows. In this
representation, protocols are shown as boxes connected by lines
when the output of one protocol is the input of another (Fig. 2).
By clicking on these protocol boxes, a form is displayed (Fig. 3A)
that allows users to provide parameters to the underlying pro-
grams, as well as to consult bibliographic references (Fig. 3B). Sci-
pion registers all the objects created, including their associated
type. The forms take advantage of this information and whenever
possible suggest an appropriate subset of stored objects as input
(Fig. 3C). This approach avoids direct manipulation and selection
of files and reduces the possibility of choosing incorrect input.
Finally, the protocol developer can specify validation rules for
some parameters that could prevent common mistakes even
before launching the job.

Associated with the action of choosing some of the key param-
eters for a specific method, Scipion has ‘‘wizards”, special inter-
faces that allow the selection of parameter values while showing
their effects in real time. Fig. 3D shows a wizard for a SPIDER pro-
tocol, in which the user can observe the filtered image obtained
with the parameters selected before applying it to the whole set
of images.
3. Architecture

As the size of software systems increases, the organization of
the overall system -the software architecture- constitutes a major
design challenge. In this section, we describe some of the funda-
mental design choices for Scipion.

Scipion uses Python as its main language, with which it glues
together different software components. For performance-critical
parts, Scipion relies on underlying C++ functions. Scipion is divided
into modular components that interact with one another (Fig. 4).
One of the lower level modules is the Mapper, which transparently
stores objects and retrieves them from databases. The current
implementation of the Mapper uses SQLite (http://www.sqlite.
org), a self-contained, serverless SQL database engine. SQLite
allows use of all the power of SQL with no need to configure and
maintain a dedicated server.

The desktop interface for the project window, the forms and the
wizards were developed with Tkinter, which is the Python binding

http://www.sqlite.org
http://www.sqlite.org


Fig. 2. Scipion main GUI. The left panel shows a customizable menu with the available protocols; top-right, the sequence of protocols executed and their status (running,
finished, aborted). The bottom-right panel includes information for the selected run, such as inputs and outputs, execution logs or bibliography, and also provides the
‘‘Analyze Results’ button for visualizing the run outputs.
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to the cross-platform widget library Tcl/Tk (http://tkinter.
unpythonic.net/wiki/). In parallel, a web interface was imple-
mented using the Python Django framework (https://djangopro-
ject.com). For desktop and web interfaces, the parameters form is
generated automatically from the protocol definition; if a new pro-
tocol is added, there is thus no need to develop a new form for it.

Although some of the current Scipion features are derived from
our experience developing Xmipp, Scipion was designed from the
outset with interoperability and extensibility in mind, to serve as
the front-end of any underlying EM software package. Xmipp has
now been modified to contain only the basic core C++ libraries,
algorithms and command line programs, whereas Scipion takes
care of all project management and GUIs. All Xmipp 3.X protocols
have been ported into Scipion, which allows combination with
programs from other packages.
3.1. Data management and conventions

In Scipion, the basic management unit is the project. All data
related to a given project are contained in a single folder. Projects
can thus be moved easily from one computer to another simply by
copying this folder. The execution of other jobs can continue in the
new computer and, when done, the results can be copied back to
the original location. In the current version, if two ‘‘copies” of a
project have diverged with different runs, there is not yet a means
to merge them; this feature will be added in a future release.
Another improvement under study is automatic handling of data
transfer between different execution hosts, with the advantage of
transferring only those files needed for a given job, rather than
the whole project.

Each project has a main database that stores all related informa-
tion except the binary files. Scipion protocols tend to produce only
metadata files, which are negligible in size compared to binary
data. Due to format restrictions, the binary data must sometimes
be converted for a given program; in these cases, the converted
files are placed in a temporary directory that will be removed at
the end of protocol execution.

One of Scipion’s main goals is to provide a framework that
allows simple, unambiguous information interchange among
3DEM image processing packages. To transfer metadata between
two packages, the information from the first package is converted
to Scipion internal representation and then converted again to the
format of the second package. Scipion internal representation fol-
lows the standard proposed by the Electron Microscopy Exchange
(EMX, (Marabini et al., 2016)). The only difference between Scipion
and the EMX standard is the transformation matrix used to define
projection directions; the Scipion matrix is the inverse of that used
by EMX.
3.2. Distributed computing

Parallel processing is ubiquitous in 3DEM image processing, as
it allows faster execution. At the protocol level, Scipion has a sim-
ple mechanism to achieve parallelism by running independent

http://tkinter.unpythonic.net/wiki/
http://tkinter.unpythonic.net/wiki/
https://djangoproject.com
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Fig. 3. Different GUIs related to the protocol spider - filter particles. (A) Form used to provide parameters to the underlying programs executed by the protocol. (B) Reference
window with bibliography related to the protocol (pop-up window activated by clicking the cite icon). (C) Available sets of particles that can be used as input by the protocol
(pop-up window activated by clicking the magnifying glass icon). (D) Wizard showing the filtering result for a given image, which helps to tune the appropriate values for low
and high frequencies before executing the entire job.

Fig. 4. Design diagram showing the main components of Scipion. Users interact
with the system through a high level module that contains the graphical interfaces.
Each request is handled by the Management layer, which organizes all protocol
runs into projects. Data objects are automatically stored/retrieved by the Mapper
layer, while protocols provide the mechanisms for task execution. General data and
protocol objects provide the basis for modeling the EM domain and develop
wrappers around the different software packages.

J.M. de la Rosa-Trevín et al. / Journal of Structural Biology 195 (2016) 93–99 97
steps simultaneously. Scipion uses this parallelization strategy in
protocols such as movie alignment or CTF estimation, where sev-
eral movies/micrographs can be processed concurrently.
For those algorithms that provide their own parallel implemen-
tation, the configuration of the computing host (libraries, Message
Passing Interface (MPI) flavor, queue system, etc.) has been isolated
in a centralized location that can be accessed by all protocols. The
GUI uses this configuration file, which is set up once at installation,
to generate the appropriate script to launch the jobs.

Scipion is currently being extended for remote computing, to
transparently run processes remotely on one systemwhile the exe-
cution is displayed and controlled on a separate client device.
4. Getting started

Scipion is provided freely as open source software. Online doc-
umentation describing Scipion download and installation is avail-
able at http://scipion.cnb.csic.es/m/download_form/ and https://
github.com/I2PC/scipion/wiki/How-to-Install, respectively.

Documentation pages for users can be found at https://github.
com/I2PC/scipion/wiki/User-Documentation, including a descrip-
tion of most Scipion GUIs and a set of tutorials. Good starting
points are the Introduction to Scipion and Mix-and-match in Scip-
ion tutorials. The first provides a brief introduction to Scipion capa-
bilities, while the second demonstrates the combination of
different EM packages within a single workflow.

Some of the protocols incorporated in Scipion are available on-
line, which allows users to test Scipion without actually installing
it. Three workflows are currently available at http://scipion.cnb.
csic.es/m/services/: (1) Initial volume estimation using EMAN2,
Xmipp-RANSAC (Vargas et al., 2014) and Xmipp-Significant
(Sorzano et al., 2015), (2) Movie alignment using motioncorr (Li
et al., 2013) and Xmipp optical flow (Abrishami et al., 2015) and
(3) Local resolution estimation with ResMap (Kucukelbir et al.,
2014).

Documentation pages for developers are provided at https://
github.com/I2PC/scipion/wiki/Developers-Page. Scipion architec-
ture is described in detail and developers will find information
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on how to extend Scipion as well as on development tools used in
our daily work. The project is hosted at GitHub (https://github.
com/I2PC/scipion), where all code is available. Any GitHub-
registered developer can make a fork of the project, add new fea-
tures and request that they be merged into the Scipion
mainstream.
5. Discussion and conclusions

Scipion allows the transparent integration of various 3DEM
software packages and offers a unified interface for experimental-
ists and developers. One of its key features is the underlying
object-oriented model of 3DEM image processing, facilitating the
writing of conversion routines among a variety of programs. The
logic concepts of the model are separated from the interface,
allowing GUIs to be built automatically for each protocol in both
desktop and web environments.

Scipion also keeps track of all tasks performed by the user dur-
ing the processing workflow, including all parameters selected and
logs that can be reviewed at any time. The ability to export/import
workflow templates is also of great value for teaching and training
new researchers coming to the field. The storage mechanism relies
on the modular Mapper layer, encapsulating the procedures of
storing and retrieving any type of object, which is a crucial feature
to allow extension of Scipion with newmodels and protocols with-
out recurring to database details.

As mentioned before, Appion is the only other platform that
allows real integration among software packages. Both frameworks
are developed in Python and provide a database storage mecha-
nism for all parameters and processing steps. Appion is tightly con-
nected with a previous project by the same group, Leginon. This is
possibly one of the main implementational differences with Scip-
ion, in which data model and storage are less rigidly coupled. As
a result, adding a new algorithm in Scipion does not require any
modification of the underlying database. Both Appion and Scipion
provide a web interface, while Scipion also has a desktop GUI.

In Scipion there is no relationship between two projects, while
Appion maintains a unified database for all projects of a lab. This
approach has pros and cons. In Scipion, it is a straightforward task
to execute part of a project on one computer and then transfer it to
another. On the other hand, Appion allows a more integrated view
of the processing information. We opted for the lesser degree of
integration, since it might be better suited to future developments
in the area of remote and cloud computing.

At the software architectural level, perhaps the greatest differ-
ence is that since Scipion was developed later, special attention
was paid to defining abstraction layers to simplify maintenance
and extensibility. For example, to create a new protocol in Scipion,
only a Python script needs to be developed. From this script, the
system will discover the new protocol and will automatically build
a form and store the protocol-related information in the database.
In Appion, however, the developer must develop the script, the cor-
responding form, and an extra table in the database; Appion devel-
opers might thus need to know the underlying framework in more
detail.

It is difficult to predict how EM software will evolve in the
future. Our view is that software developers will continue to add
algorithms to the different EM packages, but that the burden of
many operations will be shifted from packages to frameworks.
Bookkeeping will require special attention to provide real tracking
and reproducibility. Workflows will have a key role when explor-
ing processing alternatives. Most algorithms will need to use dis-
tributed computing through clusters or the Cloud. Scipion is our
first step in implementing an integrative framework to address
important problems in the field simply and effectively.
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