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ARTICLE INFO ABSTRACT

We present a multiscale reconstruction framework for single-particle analysis (SPA). The representation of three-
dimensional (3D) objects with scaled basis functions permits the reconstruction of volumes at any desired scale
in the real-space. This multiscale approach generates interesting opportunities in SPA for the stabilization of the
initial volume problem or the 3D iterative refinement procedure. In particular, we show that reconstructions
performed at coarse scale are more robust to angular errors and permit gains in computational speed. A key
component of the proposed iterative scheme is its fast implementation. The costly step of reconstruction, which
was previously hindering the use of advanced iterative methods in SPA, is formulated as a discrete convolution
with a cost that does not depend on the number of projection directions. The inclusion of the contrast transfer
function inside the imaging matrix is also done at no extra computational cost. By permitting full 3D regular-
ization, the framework is by itself a robust alternative to direct methods for performing reconstruction in adverse
imaging conditions (e.g., heavy noise, large angular misassignments, low number of projections). We present
reconstructions obtained at different scales from a dataset of the 2015/2016 EMDataBank Map Challenge. The
algorithm has been implemented in the Scipion package.
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1. Introduction

Single-particle electron microscopy aims at characterizing the three-
dimensional (3D) structure of proteins at the atomic level (Dubochet
et al., 1988; Frank, 2006; Orlova and Saibil, 2011; Milne et al., 2013;
Cheng et al., 2015; Fernandez-Leiro and Scheres, 2016). It takes ad-
vantage of cryo-electron microscopy (cryo-EM) to image, with nearly
parallel electron rays and at cryogenic temperatures, the projection of
numerous replicates of a macromolecule, each with its unknown or-
ientation and position. After data acquisition, one produces a high-re-
solution 3D reconstruction by processing the large set of projection
measurements with advanced algorithms, available from a variety of
single-particle analysis (SPA) packages (Frank et al., 1981; Sorzano
et al.,, 2004; Tang et al., 2007; Grigorieff, 2007; Hohn et al., 2007;
Scheres, 2012; de la Rosa-Trevin et al., 2016; Punjani et al., 2017).

The reconstruction necessitates the estimation of the unknown pose
of the particle replicates, which is challenging because the acquired
measurements are typically extremely noisy and blurred by micro-
scopy-related effects. Most packages perform the reconstruction task
through a so-called 3D iterative-refinement procedure during which
information is gradually added to a rough initial volume. In particular,
the projection matching approaches refine an initial volume by
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alternating between reconstruction and estimation of the pose para-
meters (Penczek et al., 1994). The first rough estimate of the 3D
structure is computed from high-SNR class averages—a complicated
task in itself due to the potential conformational heterogeneity of the
sample. Then, from this first reference volume, a collection of equally
distributed projections is produced (reference projections) and used to
estimate the projection direction of clusters of projection measurements
by appropriate angular-assignment methods (Carazo et al., 2015). The
process is then repeated with an increasing number of distinct projec-
tion classes until the optimization fulfills some convergence criterion.
Although multiple improvements have made 3D iterative-refine-
ment procedures more reliable over the years (Scheres and Chen, 2012;
Henderson, 2013), the overall algorithmic process remains non trivial.
The presence of heavy noise on nearly identical projections, their low
contrast, the conformational heterogeneity of molecular complexes, the
unknown projection directions, the finite number of measurements, and
the incomplete knowledge of the imaging process all cause the de-
termination of the 3D structure to be a highly ill-posed inverse problem
that may also suffer from overfitting. Moreover, the convergence of the
global process depends heavily on the quality of the initial re-
construction (Sorzano et al., 2006; Henderson et al., 2012).
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1.1. Reconstruction algorithms

In most instances, the reconstruction at every iteration of the re-
finement pipeline is carried out independently of the angular assign-
ment. The reconstruction is usually performed with direct Fourier-re-
construction (DFR) methods based on the central-slice theorem
(Penczek et al., 2004; Abrishami et al., 2015). Particularly popular are
Fourier regridding methods, which use interpolation kernels in the
Fourier domain to bring irregularly distributed samples onto a regular
grid (Carazo et al., 2015; Abrishami et al., 2015). DFR methods have
provided satisfactory results in a number of applications and their speed
is a key advantage. Yet, their performance can be limited in certain
adverse imaging situations.

A more sophisticated and robuster solution to the reconstruction
task is to formulate it as a regularized inverse problem that is solved
iteratively (Sorzano et al., 2017; Gordon et al., 1970; Marabini et al.,
1998; Sigworth et al., 2010; Li et al., 2011). Some approaches also take
into account the blurring of each projection by the contrast transfer
function (CTF) of the microscope (Zhu et al., 1997; Penczek et al.,
1997). Those iterative methods permit high-quality reconstruction but
require very large computational resources, which strongly limits their
applicability to SPA.

Most SPA reconstruction algorithms, whether direct or iterative,
offer the possibility to adjust the resolution of the reconstructed vo-
lumes. However, to the best of our knowledge, no existing method
permits reconstruction of volumes at different scales. This hinders the
use of multiscale approaches that very effectively solve similar ill-posed
inverse problems (Adelson et al., 1984). For the sake of clarity, we
detail the benefits of multiscale approaches in a dedicated section.

1.2. Contributions

In this work, we propose a multiscale reconstruction framework for
SPA. We represent 3D objects with scaled basis functions to reconstruct
volumes at any desired scale in the real space. The controlled dilation of
the basis functions gives us the possibility to adjust the scale of the
representation to the quality of the measurements.

The reconstruction task itself is formulated as a regularized opti-
mization that is solved iteratively. To make the use of such an iterative
method finally feasible in SPA, we introduce a fast formulation for the
costly step of the reconstruction. The cost of this operation does not
depend on the number of projection directions, which results in a
substantial speed up. Moreover, the inclusion of the CTF inside the
reconstruction is done at no extra computational cost.

This multiscale reconstruction tool generates interesting opportu-
nities for the stabilization of the initial volume problem or the 3D
iterative refinement procedure. In particular, we show that re-
constructions performed at coarse scale are robuster to angular errors
and lead to gains in computational speed. We present reconstructions
obtained at different scales from a dataset of the 2015/2016
EMDataBank Map Challenge.

The paper is structured as follows: The principles behind our mul-
tiscale framework and its relevance in the context of SPA are explained
in Section 2. We detail the iterative reconstruction scheme im-
plementing our fast multiscale framework in Section 3. The results are
presented in Section 4 and discussed in Section 5.

1.3. Notations

Depending on the context, we write a continuous function f, f (-) or
f(x) where x = (x, ...,x;) € R¢. We shall either consider d = 3 (objects
in the spatial domain) or (objects in the projection domain). The
spaceholder (-) allows us to define mappings in a more compact way,
e.g., f(-/s):=x — f(x/s). Sequences are denoted by c or c[k] with
k = (k, ....kg) € Z%. Vectors are denoted by bold lowercase letters (e.g.,
c) and matrices by bold uppercase letters (e.g., H).
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The p-norm of a vector ¢ =(cy, ...cy) €ERNY is defined as

1
cl| = (2:]:1 lcy[PyP. In this work, we shall only consider p = 1 and

P
p = 2. The spaces of finite energy sequences and functions are denoted

by 6(Z9%) and L,(RY), respectively. The continuous convolution is
written as (fxg)(x) = j'le f(z)g(x—1)dr. We make the distinction with
the discrete convolution, denoted by (ckd)[k] = },_, ¢ c[l]d[k—1]. The

Fourier transform of f is f. We denote the reflection of a function as

fY @) = f(=x).
2. Multiscale framework

2.1. Multiscale for solving ill-posed problems

The idea behind multiscale processing is to process signals over a
certain range of scales when executing multi-steps procedures. An ad-
vantage is that operations performed at coarse scale are usually
robuster and permit gains in computational speed (Unser and Aldroubi,
1996). They come useful when (1) only incomplete and degraded in-
formation is available as input, and (2) a low-resolution output is ac-
ceptable for further processing. A benefit is that this robustness of the
coarse initial process can positively impact the convergence of all
subsequent steps in the procedure.

This observation is the motivation behind the so-called pyramid
approaches (Adelson et al., 1984) that solve ill-posed optimizations
iteratively using multiscale representations of volumes. Several works
have successfully used pyramid processing for handling strongly ill-
posed optimization problems with abundant local minima in biome-
dical imaging (Unser and Aldroubi, 1996; Thévenaz et al., 1998;
Dengler, 1989; Desco et al., 2001). This approach has also been fa-
vorably used in alternate minimization frameworks, for example in
blind deconvolution works (Fergus et al., 2006; Ruiz et al., 2015).

Multiscale-based approaches have already been used to improve
angular-assignment procedures (Saad et al., 2000; Sorzano et al., 2004).
In Sorzano et al. (2004) used a coarse-to-fine discrete wavelet transform
to compute the correlation between the measurements and the re-
ference projections. Indeed, it is sufficient to indicate that the projec-
tions come from different orientations when they do not match at
coarse scale. If, however, they do match at coarse scale, then the ana-
lysis is pursued at finer scale. This multiscale wavelet-space matching
algorithm provided a gain both in speed and in robustness for the an-
gular-assignment procedure.

Several conditions specific to SPA further advocate for the use of
pyramid-like approaches for the reconstruction itself. For example, it has
been shown that the alignment of cryo-EM data can be done accurately
with mere low-frequency data (Henderson et al., 2011) and that the
determination of the pose parameters essentially depends on low-re-
solution information (Scheres and Chen, 2012). Thus, a coarse re-
presentation of volumes is more desirable at early stages of the global
iterative reconstruction process. Indeed, its resolution proves sufficient
for further processing while it remains robust to the incomplete in-
formation (i.e., few blurred class averages with unknown projection
directions).

2.2. Proposed multiscale representation for SPA

We now describe how we represent a scaled 3D object within a
generalized sampling framework (Unser, 2000). In this scheme, the
discrete representation of a continuous object f(x), x € R3, can be in-
terpreted as the coefficients of some appropriately shifted basis func-
tions that specify a particular reconstruction space. Simply put, the
generalized sampling framework tells us how to properly characterize a
continuous function with a sequence of discrete coefficients.

The important aspect in our case is to consider the scaled re-
construction space
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Vi(p) = {fs ®=Y [k]qos[x—sk} (NS 62(23)}

kez? (@)
specified by the scaled basis function
@ (x) = p(x/s) € L,(R?), )

where s > 0 denotes the scaling parameter.

The coefficient sequence ¢ corresponds to the discrete s-scaled re-
presentation of the object f, in the space V;(¢). In practice, this se-
quence is restricted to a finite number of coefficients as the object f; is
compactly supported. We write this vector of coefficients as
¢s = (¢s[kDreqy,- Here, the set Q3 corresponds to the support of the
coefficients required to represent the object f,.

These coefficients c; are the ones used in practice for the re-
construction procedure (see Section 3.1). Once the optimization is
performed, the obtained coefficients are then re-expanded in the space
Vi(p) through (1) to obtain the scaled representation of the re-
construction f,. To the best of our knowledge, such a multiscale re-
construction scheme based on generalized sampling theory has not been
proposed in SPA so far.

A suitable choice for the basis function ¢ in (2) is the optimized
Kaiser-Bessel window function (KBWF) (Lewitt, 1990; Nilchian et al.,
2015) defined as

(- (%)z)%zm [Nl_(TH)

)
o if 0 < Il < a,

0 otherwise.

px) =

3)

The KBWF depends on three parameters: (1) the order m of the
modified Bessel function I, (2) the window taper « which determines
the shape of the KBWF, and (3) the support radius a which controls the
smoothness of the KBWF. It was shown in Nilchian et al. (2015) that a
KBWF represents functions very effectively when using specific para-
meter values (e.g, m =2, a = 10.83, a = 2). Moreover, its isotropic
property allows for a significant reduction in computational costs, as we
shall later illustrate in Section 3.

The scaling parameter s in (2) is the central element of our multi-
scale representation. It dilates the basis function ¢, and thus controls the
coarseness of the representation of f. A large value of s enforces a coarse
(“low-resolution”) volume, while a small value imposes a fine (“high-
resolution”) representation. We illustrate this in the Fourier-shell cor-
relation (FSC) curves of Fig. 1, where the reconstructions become
coarser as the scaling parameter increases. For the simulation, nu-
merous (2000) noiseless projections with equi-distributed directions
were produced, as to focus solely on the effect of the scaling parameter
on the coarseness of the representations. Increasing the scale by factors
of two gradually restricts the information by halves into the low-fre-
quency region.

Finally, the scale s also influences the size of the set of coefficients
¢;. More precisely, the number of coefficients decreases as the scale
increases. Therefore, the scaling also strongly impacts the speed of the
reconstruction algorithm as the procedure is then performed on sig-
nificantly less samples.

3. Fast iterative reconstruction

We detail here the iterative reconstruction scheme implementing
our fast multiscale framework.

3.1. Imaging model with multiscale representation

Let Z,,{f}(y) with y € R? denote the X-ray transform of the atomic
density f for the pth 3D particle with orientation &, (Euler angles)
(Natterer, 2001). In cryo-EM, this entity is typically blurred by a point-
spread function (PSF) wP. We model the noiseless 2D cryo-EM
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measurements b’ (y) of the pth particle as

b’ @) = (Ze, {f}xwP) ). 4

We use the generalized sampling framework (1) to discretize this for-
ward model. We thus consider the s-scaled representation f; of the
atomic density of interest f. Using the linearity and pseudo-shift-in-
variant properties of the X-ray transform (Natterer, 2001), we rewrite
(4) as

') = (Ze, {f;}xwP)(¥) (5)
= 2 &lkl(Zs,iplswh)| y—sMgLk |
kEQ%D (6)

There, the hyperplane projection matrix M, € R»3 has rows that
specify the normal basis of the hyperplane perpendicular to the direc-
tion 6, of integration.

The measurements b (y) for the pth particle are assumed to be
acquired at the sampled points y; = jA for j € Qyp. Here, the set Qap
denotes the support of the projection of f,. For the sake of clarity, we
consider A =1 and we note b’ the discrete noiseless measurement
vector for the pth particle. This gives us the entries of the imaging
matrix H? as

[Hf]j’k = (»Wsp{q%} *WP)(j_SMstkJ o
with j € Q,p and k € Qfp,.

In practice, each measurement b’ is corrupted by a substantial ad-
ditive Gaussian noise n? (Sorzano et al., 2004). With this degradation,
we finally obtain the discrete formulation of the complete forward
model with P particles as

b =Hc; + n, (8)
where

b! H; n!
b—lb.zl, H = H§ , and n= ',‘2

b* P;f n ©

3.2. Reconstruction scheme

The task at hand is to reconstruct the scaled 3D volume f; that best
explains the complete vector b of 2D measurements in (8). We assume
here that we have existing estimates (however inaccurate they may be)
of the pose 6, and the PSF w? for every particle p = {1, ...,P}. In our
discrete formulation, the reconstruction consists in finding the coeffi-
cients €, through a regularized optimization scheme (Candés et al.,

2006),
1
—||Hsc,—b
{2] <

where ¥ is the regularization term used to inject prior knowledge into
the reconstruction process, while % is a given convex constraint (e.g,
positivity constraint).

The regularized formulation given by (10) is a classical and suc-
cessful way of solving ill-posed inverse problems. It promotes the so-
lution €; that minimizes a combination of (1) the data-fidelity term
[|Hscs—b|[3 that forces the solution to be consistent with the imaging
model H; and the measurements b, and (2) the regularization term
Y(c,) that requires the solution to fulfill certain priors. The parameter
A > 0 controls the strength of this regularization.

We consider here that ¥(c,) = ||Lcg|l;, where L is some regulariza-
tion matrix. We shall assume henceforth that L is the gradient

2
€, = argmin
€T

+ /I‘P(cs)}, 10

2
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Fig. 1. Impact of the controlled dilatation of the basis function by the scaling parameter s > 0 on the reconstructed volume. The scale is increased from left (s = 1) to
right (s = 8), with intermediate values s = 2 and s = 4. (a-d) Optimized isotropic KBWF ¢, (with a = 2, @ = 10.8, m = 2) are dilated by increasing s. (e-h) Central
orthogonal slices of the (256 X 256 X 256) beta-galactosidase reconstructed with the proposed approach at different scales. Volumes are re-expanded on a fine grid

through Eq. (1) to allow for a comparison. (i-1) Corresponding FSC curves.

transform. This regularization is known as total variation (TV). It is a
popular edge-preserving prior that is well suited to many applications
(Rudin et al., 1992).

To minimize (10), we deploy an optimization routine called the
alternating-direction method of multipliers (ADMM) (Boyd et al., 2010;
Ramani and Fessler, 2012). For the sake of clarity, the detailed math-
ematical formulation of the algorithm is given in Appendix A. A key
advantage of ADMM is that it splits the original problem into simpler
optimization subproblems, which accelerates the convergence of the
algorithm.

In our case, the ADMM sub-solvers of (10) are given by

k+1
Cs

= argmin, & (c;, uf, ak) an
uf*! = argmin .2 (¢t u, ak) a2
aktl = gk + p(LekH—uk+1), 13

where u is an auxiliary variable, « is the vector of Lagrange multipliers,
and the function ¢ corresponds to the augmented Lagrangian of (10)
given by

2
u

Z(c5ua, a) = ! ‘ ‘chs—b Lcs—u

2

2
+1
2

+ af (Lcs—u) + ﬁ‘
1 2 2
as

The solution of (10) is therefore obtained by alternating between the
minimizations (11)-(13) for a given number of iterations.

Eq. (12) admits a fast explicit solution through a soft-thresholding
operation (Combettes et al., 2011):

! = sign(Lekt ! —ak)-max (0, [Lekt'—ak|—(1/w)). (15)
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Likewise, (13) is a simple parameter update. On the other hand, to
compute the coefficient c’§+1 in (11), we have to minimize the aug-

mented Lagrangian % (c,, u, @), whose gradient with respect to ¢, is

k
Vo, 27| cs, 0¥, aF | = (HTH; + pul'L)c— (HSTb + /,cLT(uk—“—)).
Nl B s u
A

d (16)
We do this by solving

Vcsf(cls(Jrl’ uk’ “k) = Acy—d = 0, 17

iteratively using a conjugate-gradient (CG) method since the matrix A
is badly conditioned (Boyd and Vandenberghe, 2004).

From a computational point-of-view, this minimization is the real
bottleneck of the global optimization scheme. Indeed, it imposes the
matrix-multiplication of HIH; with the updated c; vector at every
ADMM iteration. If not carefully engineered, this operation comes at a
heavy computational cost and makes the use of iterative algorithms out
of practical reach for SPA.

3.3. Fast implementation of H! H,c,

In this section, we provide an alternate mathematical formulation of
H!Hjc, that greatly reduces the computational cost of the operation. In
our opinion, this contribution is by itself significant in the context of
SPA, as it makes the use of advanced iterative algorithms conceivable in
the field.

As a preliminary, let us define a condition on basis functions that is
required for further calculations.
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Definition 1 (Radial Nyquist criterion). The function ¢ € L,(R3) satisfies
the radial Nyquist criterion with respect to the grid Z3 if $ (w) = 0 for
all ||w|| > 7.

A function therefore satisfies the radial Nyquist criterion (RNC) if its
Fourier transform is zero outside of a ball of radius 7. Note that, if
@, (x) = p(x/sp) satisfies the RNC, then so does ¢ (x) = p(x/s) for all
s 2 So.

We then have the result of Theorem 1 on the fast computation of
H!'Hjc, for objects that lie in the 3D space.

Theorem 1. Let ¢ (x) = ¢(x/s), with x € R® and s > 0, be such that it
satisfies the radial Nyquist criterion for all s > s,. Moreover, let the imaging
matrix Hy be as defined in (9) and P € N* denote the number of particles.
Then, for all s > s,, the discrete product H  Hyc, can be computed as the
discrete convolution

[HsTHscs]k = (cs *rs)[k] (18)
for k € Qfp, with kernel
5 p
ikl = [s| X (Z5,l9)# 7, 19" xaf))| Mtk |
p=1 19

Here, the function qﬁs(v) = (wPx(wP)V)(sy) with y € R? corresponds to the

scaled auto-correlation function of the PSF wP (y).

The proof of Theorem 1 is given in Appendix B.

The benefit is that the costly step H'Hjc, can now be quickly
computed as a pointwise multiplication in the Fourier domain, with a
cost that does not depend on the number of projection directions.’
Moreover, if the basis function ¢, is isotropic, then the costs are further
reduced as the autocorrelation of ,%p{cp} needs to be computed only
once.

In practice, the discrete convolution (c; %r;) in (18) only needs to be
computed for k € Q3. We do this by convolving a padded ¢, with a
kernel of finite support. This finite kernel r; is obtained by first con-
volving the autocorrelation function of e%p{qp} with the scaled auto-
correlation function of the PSF w?, and then interpolating its value in
the sampling points Me;k.

Note that if no PSF is considered (i.e., wP is the Dirac distribution &
for all particles), the kernel reduces to

4

1 [k]

=|s (Zo, {9} =76, 0"} Mska -

M-

(20)

The case when w? = § and s = 1 (i.e., unscaled reconstruction) was used
in X-ray tomography with fixed rotation axis by McCann et al. (2016).

3.4. Fast implementation of H!'b

Eq. (17) also requires the computation of the discrete product H. b.
Even though it only needs to be computed once during the whole re-
construction process, it can also be costly in its own rights. We present
here its fast formulation.

Theorem 2. Let ¢ (x) = ¢(x/s) with x € R® and s > 0 be such that it
satisfies the radial Nyquist criterion for all s > s,. Moreover, let the imaging
matrix HY be as defined in (7), the measurement vector b be as defined in
(8), and P € N* denote the number of particles. Then, for all s > s, the
matrix-vector product H-b can be computed as

1 Note that although the RNC given in Definition 1 is a necessary condition
for the result obtained in Theorem 1, practical tests have shown that the use of
KWBF—a basis function that approximately verifies the RNC—had negligible
impact on the quality of the computation of the H! H,c, product as a discrete
convolution.
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P
[HIb], = Y] (6775, {0} (w)")| sMg:k

p=1 2D

for k € Qfp,.

The proof of Theorem 2 is given in Appendix C.

The product H'b can thus be obtained by computing the convolu-
tion in (21) on a fine grid, which significantly reduces the cost of the
operation. Another benefit is that the computation of H. b can be easily
parallelized over the set of particles.

3.5. Computational cost

We assume that the task is to reconstruct an image of size N° from a
set of P measurements of size M2. We also consider the support of our
(unscaled) basis function to be W3 and the scale of the basis function
along each dimension to be s. For simplicity, we do not consider the cost
of CTF inclusion here.

The computation of H!b through Theorem 2 requires a discrete
convolution, which we perform via 2D fast Fourier transforms (FFT),
with a cost in the order of ¢(PM?log(M)). We store the result in a
lookup table; then, each object point comes at a cost of @(PN3/s?). The
computation of HH, kernel through Theorem 1 requires the auto-
correlation of the projection of a non-scaled basis function, which is
precomputed and stored in a lookup table. Since we are using basis
functions with isotropic properties, this lookup table is short. We then
interpolate the kernel in the object domain, which implies a cost of
¢@(PW?N). Finally, the convolution of the HT Hy with the current coef-
ficient sequence only requires two FFT. This comes at a cost of
O(N3log(N)/s3) at every ADMM iteration.”

Whether the cost of our approach is comparable to that of DFR
methods depends on the specific experimental conditions, especially on
the scale desired for the reconstruction. In particular, the coarser the
representation of the image, the quicker the reconstruction process. For
example, when the reconstruction is performed at scale s = 4, the cost
of computing H! H,c, is reduced by a factor 64 compared to fine-scale
reconstruction with s = 1. This is a massive computational gain.

3.6. Algorithm

A pseudo-code of the proposed reconstruction algorithm is provided
in the Algorithm 1 box. The algorithm has been implemented in
MATLAB® and is usable in Scipion. The algorithm can handle mirror
projection images and correct for shifts. Symmetry of macromolecules
is also taken into account in our implementation.

As inputs, the algorithm requires the projection measurements and
the scale desired for the reconstruction. Optionally, the CTF informa-
tion of each particle can be given as an input. This inclusion of the CTF
is relevant only for reconstructions at the finest scale (s = 1). Indeed,
reconstructions at coarser scales (s > 1) do not require high-frequency
information correction (see Fig. 1, bottom line). Another (more prac-
tical) reason for this optional inclusion is that some SPA packages pre-
correct the CTF effect on the measurements prior to reconstruction.

Our ADMM-based algorithm depends on three parameters: the
regularization parameter 4, the number of ADMM iterations n, (i.e., the
outer iterations) and the number of CG iterations n¢ (i.e., the inner
iterations).

During our experiments, we have observed that the choice of these
parameters tended to be very robust for coarse scales (s > 1). A wide

2By comparison, standard direct methods based on Fourier regridding re-
quire that one 2D FFT be computed per projection (¢/(PM2log(M))), followed by
some interpolation procedure. Assuming that the support of the interpolating
function is similar to that of our basis function, it imposes a cost of ¢ (PW3M?).
One then needs to apply one 3D inverse Fourier transform to get back to the
space domain, which comes at a cost of @(N3log(N)).
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interval of 4 was thus yielding similar and satisfactory results; From
those, we have selected a default value of 1 = 100. Note that this value
may vary to some degree from a dataset to another. The number of
inner and outer iterations also required little tuning. Throughout our
experiments, we have used ny = 30 and n¢ = 7 for all scales.

Algorithm 1: Fast iterative reconstruction at scale s

Inputs:
b: Stack of 2D projection measurements
s: Scale of the reconstruction
w: Stack of CTFs (optional, used only if s = 1)
Parameters™:
A: Regularization parameter
n4: Number of (outer) ADMM iterations
ne: Number of (inner) CG iterations
Output:
fs(x): 3D reconstruction at scale s
begin
c@ u® o k « Initialize at zeros
s < Initialize the scaled KBWF [42]
rs < Compute kernel based on (19)
Hb « Compute product based on (21)
while k < n4 do
chtl —

argmine, £,,(ck, u*, a*) using (18) and

CG warmly initialized with c* for n¢ iterations
uF*! = prox., (Lef*! — aF) as a pointwise
soft—threshoﬁding operation (15)
ak:+1 — ak‘, +/1(LC§+1 _ uk+1)
k+—k+1
end
fs(x) + Expand coefficients c#*! in the scaled
KBWTF basis ¢, as in (1)
return fy(x).
*See Section 3.6 for indications on parameters tuning.

At finest scale (s = 1), an appropriate value of 1 can be found by
running the thirty ADMM iterations with A spanning a range of powers
of ten (e.g., five values from 4 = 1072 to 4 = 102). To do so, one does not
need to recompute the kernel ry, nor the product H. b, which makes the
cost of this search acceptable. Finally, the penalty parameter u in (14) is
set proportional to 4 and thus need not be tuned.

4. Experiments

We have evaluated the performance of our multiscale algorithm on
both simulated and real datasets. In particular, we have explored how
the scaling was impacting the quality of the reconstruction and influ-
encing its robustness to errors on angular misalignments.

The experiments performed with simulated data are described in
Sections 4.1 and 4.2. We present the results obtained with real data
from the 2015/16 EMDataBank Map Challenge in Section 4.3.

4.1. Simulation conditions

For our simulations, we used as ground-truth a (128 x 128 x 128)
B-galactosidase volume with 2.2 A resolution (Bartesaghi et al., 2014).
We started by computing 20,000 randomly equi-distributed projections
of the ground-truth (Deserno, 2004). We used the imaging matrix given
by (7) with a KBWF as basis function (a =2, a = 10.8, m = 2) to
compute these projections. Multiple experimental sets of data were
generated by adding (1) Gaussian noise on the projection images such
that their SNR is 1 and (2) angular error on their projection angles.

For every dataset, we clustered the projections in N distinct classes.
The class representatives were N uniformly equi-distributed projections
of the ground-truth (Deserno, 2004). Each projection was assigned to
the class with the closest projection angles. Then, for every cluster, the
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projections were aligned to the reference image (by rigid transforma-
tion, using imregister in MATLAB®) and averaged. From these class
averages, we reconstructed the 3D structures at different scales with our
algorithm. Small cluster sizes (from 10 to 100) were considered, which
mimics the processing conditions during the early refinement stages.

For the reconstruction, we used a different KBWF as basis function
(a = 4, a = 19, m = 2) to reduce the risks of inverse crime.’> We applied
TV regularization and performed our optimization with thirty outer
iterations and seven inner iterations. The regularisation parameter was
selected from five powers of 10 by picking the best output in terms of
FSC.

We did not consider CTF correction in those simulations to permit
direct comparison among reconstructions obtained at different scales
(see also Section 3.6). Note that the beneficial impact of CTF inclusion
for producing high-resolution reconstructions has been established in
previous works (Zhu et al., 1997; Penczek et al., 1997).

The accuracy of each reconstruction was evaluated by computing
the FSC metric with respect to the ground-truth, as is the standard in
SPA. When necessary, we considered a common threshold value at 0.5.

4.2. Robustness to angular misassignments

We have analyzed with simulated data how angular misassignments
were influencing the quality of the reconstruction at scale s = 1, 2, 3, 4.
The obtained results are presented in Fig. 2 and Fig. 3.

In Fig. 2, an increasing amount of error was added to the projection
angles prior to clustering in 80 equi-distributed classes and averaging.
Reconstruction was then performed at scale s = 1, 2, 3, 4 and the FSC at
threshold value 0.5 was returned. The results indicate that robustness to
angular misassignments becomes stronger as the scale is coarsened.
Indeed, although reconstructing at fine scale (s = 1) performs effec-
tively when the error level is low, its performance quickly degrades
when the angular error increases. This behavior is much less pro-
nounced at coarser scales (s = 2, 3, 4), which show better stability
against angular errors.

We have also explored how the choice of the scale was influencing
the quality of the reconstruction when only a very limited amount of
data (i.e., 11 projection classes) was available. The results are presented
in Fig. 3. There, a fixed amount of error (with var=15.47 degrees) was
added to the projection angles prior to clustering. The results show that,
when performing reconstruction with very few data, all output volumes
(s =1, 2, 3, 4) have a roughly similar information content. This is not
surprising: At all scales, there is only a limited resolution that can be
achieved with such blurred and incomplete data.

Overall, those results suggest that, when the error on the estimated
angles is significant and the number of projection classes is low, one
would actually benefit from reconstructing volumes at a coarser scales.
Then, the frequency content is preserved and the reconstruction is
robuster to angular misassignements. Moreover, the gain in computa-
tional speed at such scales can be substantial (see Section 3.5).

4.3. Real data from the EMDataBank map challenge

We have used our multiscale algorithm to reconstruct a real target
from the EMDataBank Map Challenge: the T20S Proteasome. A total of
22,884 projection images were extracted from 196 micrographs. The

3In inverse problems, an “inverse crime” occurs when one uses the same
theoretical ingredients to simulate the measurements and to reconstruct the
object of interest (Wirgin, 2004; Chavez et al., 2013). This may yield over-
optimistic results and should be avoided. In our simulations, the use of different
KBWEF basis functions for (1) the computation of the projections and (2) the
reconstruction of the 3D object strongly reduces this risk. Moreover, the eva-
luation of our algorithm on real data guaranties an unbiased evaluation of its
performance from this perspective.
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Fig. 2. Effect of the scale on the robustness to angular misassignment of
B-galactosidase reconstruction. The reported resolution is the FSC resolution
estimate at the threshold value of 0.5.
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Fig. 3. FSC curves of f-galactosidase reconstructed at scale 3 from 20,000
projections that were clustered in a varying number of classes
(n = 11,31,59,99) before averaging. The variance of the error on the projection
angles is 15.47 degrees.
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Fig. 5. FSC curves for the T20S Proteasome reconstructions at different scales
(s=1,2,3,4). For each scale, the curve was obtained by comparing re-
constructions from two distinct halves of the projection set.

experimental details of the acquisition are given in Campbell et al.
(2015). We classified these images into 32 classes using CL2D Sorzano
et al., 2010 and constructed an initial volume assuming a D7 symmetry
with the algorithm described in Sorzano et al. (2015). We then applied
five iterations of the reconstruct_highres protocol in Scipion,
using the default reconstruction method. The parameters used for
running those five iterations are described in a paper in this same issue
(Sorzano et al., 2018).

We then performed a final iteration of the reconstruct_highres
in Scipion using our multiscale reconstruction method with scales
s=1,2,3,4. For each scale, reconstruct_highres automatically
separated the projection set in two halves and performed one iteration
of angular assignment and reconstruction on each half.

The reconstruct_highres algorithm was run with its default
parameters in Scipion, except for the Post-Processing options that
were all disabled. For the ADMM-based reconstructions, we used a
unique set of parameters for all scales: 4 = 100, ny = 30, n, = 7. We
applied TV regularization and imposed a positivity constraint during
reconstruction. We did not apply any post-processing operation (e.g,
denoising) after reconstruction. The results are displayed in Figs. 4-7.

Fig. 4 presents the reconstructions obtained at the different scales.
Several cross sections from these reconstructions are displayed in Fig. 6.
These qualitative results illustrate how the scaling influences the

Fig. 4. Reconstructions at different scales (s = 1, 2, 3, 4) of the T20S Proteasome from the 2015/2016 EMDatabank Challenge.
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(a) Scale 4 (b) Scale 3 (c) Scale 2 (d) Scale 1

Fig. 6. Cross sections of T20S Proteasome reconstructions at different scales
(s =1, 2, 3, 4). Slices number from top row to bottom row: 75, 100, 125, 150,
175, 200. The yellow lines (top row) indicate the position where the intensity
profiles displayed in Fig. 7 are measured.
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Fig. 7. Profile lines taken on a cross-section of the T20S Proteasome re-
constructions at different scales (s = 1, 2, 3, 4). The position of the measured
pixels is indicated by the yellow lines in Fig. 6.

coarseness of the reconstructions while preserving their key structural
features.

FSC curves of the reconstructed volumes are presented in Fig. 5. For
each scale, the curve was obtained by comparing the reconstructions
from the two distinct halves of the total projection set. Those FSC re-
sults testify to the considerable robustness achieved by coarse re-
constructions whose curves are almost constantly equal to one.

Finally, profile lines taken on a cross-section of the T20S
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Proteasome reconstructions at different scales are given in Fig. 7.
5. Discussion

Those results obtained on simulated and real data confirm the in-
crease in robustness brought by reconstructing volumes at coarser
scales. This is consistent with observations made by other multiscale
approaches in various biomedical applications (Unser and Aldroubi,
1996).

For SPA, the benefits of a multiscale tool become clear when con-
sidering the initial volume problem. This problem refers to the com-
putation of the first estimation of the 3D structure required for pro-
gressive refinement. The task is a highly challenging one, as the lack of
angular information for performing reconstruction is then at its peak.
There are thus abundant local minima that algorithms can be trapped
into. Yet the importance of a robust first estimation cannot be over-
stated. Several works have indeed demonstrated that the nature of this
initial structure can considerably affect the final reconstruction
(Henderson et al., 2012; Sorzano et al., 2006).

In that sense, our multiscale reconstruction scheme might provide
novel ways of stabilizing this highly ill-posed optimization task. A ju-
dicious approach could be to start the process with rather coarse re-
constructions, which are more robust to error on projections angles and
yet contain all necessary information for angular estimation
(Henderson et al., 2011; Scheres and Chen, 2012). Then, one could
repeat the process by slowly increasing the scale as the angular as-
signment is refined. Work is currently underway to quantify the in-
crease of robustness brought by multiscale reconstruction to this initial
volume problem.

It is essential to realize that the use of the proposed iterative method
in SPA was made entirely possible by the fast formulation of our al-
gorithm. Without these novel mathematical contributions, the applic-
ability of our framework in single-particle electron microscopy would
have been rather limited, as is currently that of most iterative re-
construction techniques.

In addition to its multiscale aspect, a key feature of our framework
is its ability to inject prior information into the optimization. Through
its regularization term, our scheme can be a reliable alternative for
handling these reconstructions for which direct methods might fail to
yield satisfactory results.

Finally, the proposed scheme opens the door for several other de-
velopments in SPA, such as the inclusion of novel constraints, a dif-
ferent handling of specimens with M-fold symmetries and the use of
promising learning-based approaches (Tosic and Frossard, 2011; Jin
et al., 2017).

6. Conclusion

We have presented a novel multiscale reconstruction framework for
single-particle electron microscopy. By appropriately representing
three-dimensional (3D) objects with scaled basis functions, one can now
reconstruct volumes at any desired scale in the real space. To make the
use of this iterative reconstruction scheme in single-particle analysis
(SPA) feasible, we have introduced a fast formulation for the iterative
refinement step. The costly step of the reconstruction, which was pre-
viously hindering the use of advanced iterative methods in SPA, can
now be computed as a discrete convolution with cost independent upon
the number of projection directions. This multiscale reconstruction tool
was evaluated on both simulated and real data. In both cases, results
have highlighted the increase in robustness brought by reconstructing
volumes at coarser scales.
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Appendix A. ADMM-CG algorithm

We formulate our reconstruction task as

1}’ (A1)

where A controls the strength of the regularization. We define the auxiliary variable u = L, and rewrite the optimization problem as the constrained
optimisation problem (Ramani and Fessler, 2012, 2010),

. }
1 (A.2)

Its scaled augmented Lagrangian functional is given by
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where « is the vector of Lagrange multipliers. ADMM is used to separate the optimization problem into simpler ones (Ramani and Fessler, 2012,
2010),

¢! = argmin J’(cs, uk, ock), (@)

Cs

u

uk*! = argmin J(csk“, u, ock), b)
aktl = ok + p(Lef—uk*), (o). (A.4)

Eq. A.4(a) is a quadratic minimization with respect to ¢, with gradient

k
vxs(cs, uk, atk) = (HSTHS + ,uLTL)cS—(HSTb + MLT(uk—“—)),
u (A.5)

The critical element of the cost functional is the root of the gradient function, which we find by using a conjugate-gradient method.
Eq. A.4(b) admits the fast explicit solution

uktl = proxi(Lc’S‘“—ock),
i (A.6)
where the proximal operator corresponds to a soft-thresholding operation (Combettes et al., 2011). The solution of A.4(b) is thus obtained with
ukt! = sign(Lef ! —ak)-max (0, |Lek—ak—(1/u)). (A7)
Finally, A.4(c) corresponds to a simple update of the Lagrange parameter.
Appendix B. Proof of Theorem 1
As a preliminary, we provide in Proposition 3 a result on functions that satisfy the radial Nyquist criterion. This proposition will be needed in

further proofs.

Proposition 3. For any pair of functions (f, g) that satisfy the radial Nyquist criterion, it holds that

(n)g(n) = [ ,f(x)gx)dx,
nézfngn JCOHE B.1)

where n = (ny, n,) and x = (x;, %).

proof. Since the functions f and g satisfy the radial Nyquist criterion, we can apply Shannon’s theorem and expand them using the sinc functions
to obtain that

fx) = f(k)sinc(x—k}
Zk: (B.2)

gx) =, g(k)sinc[x—k}

k (B.3)

where sinc(x) = sinc(x)sinc(x;). The orthonormality of the sinc function and its shifts yields the desired results.
We now provide the proof of Theorem 1 for objects that lie in a 3D space. We recall that the vector c; is defined as ¢, = (¢;[k])keqy,, where ¢, is
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the sequence of coefficients and the set O}, corresponds to the support of the coefficients required to represent the object f;.
proof We rewrite for k € Q3 the entries of the discrete product H! Hc; as

P
[HsTHscs]k = [Z (H.Iv))TH.[v)cs
p=1

k

(l) Zp 1 Z AL Z (/ep{%}*w")( _SMeLl)

lez3 jez?
X(-Wep {p}=wP) (j—SMepik)

(u) Zp 1 Z [ [z (fep{fps}*wp)[y—sMeik]

lez?
xX(Za, {0} *wp)(y—sMepil)dy

(i) oo O Gl frz (Zalp}w))

lez3

X(Ze, {0} *wp)(ﬁ' —SMG; (l—k))dfz

(w) Zp N Z Cs l](/ep{qos}*wp*(/ep{¢s}*wp)v)[sM9¢[l k)]

1ez3

W) Tieps all S @, qos}*fep{rm*wv*(wv)v{sMe{l k])

p=1 (B.4)
We thus have that the discrete product HY Hyc, can be computed as the discrete convolution
[HZHscs]k = (cs*rs) [k], (B.5)
with kernel
P
kl= Q) (Zo,lp} 7,9 +a")| sMgtk |
o1 (B.6)

where the function gP(y) = (wPx(wP)V)(y) with y € R? corresponds to the autocorrelation function of the PSF wP(y).

Equality (i) derives from the definition of HY given by (7) and from the compact support of ¢; and Z, {¢}. Equality (ii) results from Proposition 3,
which can be invoked here as the function (Zy, {@}+«wP)(n) with n € Z? verifies the radial Nyquist criterion. Indeed, as the basis function ¢, verifies
the radial Nyquist criterion by hypothesis, #5,{g} also satisfies the radial Nyquist criterion through the central-slice theorem, and then so does
Zo,{p}+wP through the convolution theorem. Equality (iii) is obtained through a simple change of variables, while Equalities (iv) and (v) use
properties of the continuous convolution.

We then rewrite the kernel 1 [k] given by (A.6) as:

P
rlkl = ), (:Wsp{fps}*%p{cosv}*qp)[SMe;k)

p=1

2 p
(vi) z («7ep{§0}(‘/s)*'Wep{(Pv}(‘/S)*qp(‘))(SMsék]
= s}
4 p
(V_ii) Z (P, 1@} Zo, 0" D (-/5)xqf (- 5)) sMst
° p
(vul) Z (Ze, @}*yep{ ®VIxqh) (MeLk]
= p=1 (B.7)

where g (¥) = q(sy). Equality (vi) is obtained after applying twice the scale-invariance property of the X-ray transform (s # 0)
Zolf (19}(x) = IsI- Z{f (1)} (x/s). (B.8)

Equalities (vii) and (viii) are both derived by using a well-known result on the convolution of two scaled functions Z{f}, %{g} € R%:

(Zo{f}(-/9)+Z{g}(-19))(x) = IsI(Za{f} = Zo{gh(x/s). (B.9)

Appendix C. Proof of Theorem 2

We provide the proof for objects that lie in a 3D space.
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proof We rewrite for k € Qf, the entries of the product H! b as:

P
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k
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(cn

Equality (i) is obtained by applying the definition of H? given by (7). Equality (ii) results from Proposition 3 (see also Proof of Theorem 1).
Equalities (iii), (v), and (vi) are obtained by using the definition of continuous convolutions. Equality (iv) is a simple rearrangement of both integrals.
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