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ABSTRACT 
 
In  this work we propose an image registration algorithm to 
automatically fit protein atomic domain models into 
medium-resolution three-dimensional electron microscopy 
reconstructions (3D-EM map). The approach employs a 
flexible registration algorithm whose optimizer controls the 
generation of stereo-chemically correct models from a given 
reference domain belonging to a super-family of proteins. 
The proposed algorithm generates models automatically in 
the correct direction until the optimizer converges to the best 
fitted model. A local gradient optimizer is employed for this 
task. Mutual Information is used as an alternative to Cross 
Correlation Coefficient. An additional rigid registration that 
uses a local gradient optimization is applied between each 
generated model and the 3D-EM map.  

 
Index Terms— Proteins, image registration, flexible 

structures, biomedical image processing, electron 
microscopy. 
 

1. INTRODUCTION 
 
The determination of the precise atomic information of a 
protein is essential in the understanding of macromolecular 
functional interactions. Three-dimensional electron 
microscopy (3D-EM) is a technique to obtain information 
about macromolecular structures. In essence, it deals with 
obtaining three dimensional information of the specimen 
under study from a set of its X-ray projection images; typical 
resolutions range between 1/6 and 1/25 Å-1. As this 
resolution range is not high enough to access the atomic 
information, it is of great value to expand the medium-
resolution information with high resolution data coming 
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from other techniques such as X-ray diffraction or Nuclear 
Magnetic Resonance (NMR). These techniques allow to 
obtain high resolution crystallographic data of some protein 
domains. However, not all the domains are suitable to be 
solved by X-ray diffraction or NMR, so that it is common 
that only information of a “similar” structure in a “similar” 
conformation is available. For this reason, two problems are 
typically faced. The first one consists on the flexible 
modification of a similar structure to fit into a 3D-EM map, 
in order to get the convenient modeled protein domain and 
having into account that conformational changes (changes in 
atom positions as independent units within the atomic 
structure) must be biologically realistic. The second problem 
is the fitting of the modeled protein domain into the 3D-EM 
map by exploring all possible rotations and translations. This 
is a rigid registration problem with six degrees of freedom 
(three translations and three rotations) traditionally solved 
by maximizing the correlation of the two volumes [1]. 

In this article, we propose a registration algorithm that 
takes into account both flexible and rigid movements of the 
domain to fit in the 3D-EM map. The algorithm employs a 
biological and evolutionary method proposed by Velázquez-
Muriel et al [2] (S-flexfit method) to obtain different 
modeled protein domains from a reference domain that 
belongs to a super-family. The best fitted model is found 
automatically by using the proposed registration algorithm 
whose optimizer guides the generation of models in the 
proper direction until convergence. This optimization 
method improves the traditional use of a grid of sampled 
models [2], since the model that best fits in the 3D-EM map 
could not be necessarily included in the grid. 

In this work, we study the possibility of using a local 
gradient-based optimizer combined with Mutual Information 
(MI) similarity measure in order to automate the generation 
of models. Furthermore, we study the possibility of making 
an additional rigid registration between each generated 
model and the 3D-EM map before applying the MI 
similarity criteria in order to correct possible local 
misalignments.   
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Fig. 1. Diagram of proposed registration steps. 

 
2. METHODS 

 
2.1. Flexible and rigid registration scheme. 
 
In order to build the deformed source domain at each 
flexible image transformation stage, the proposed 
registration algorithm employs the generation of models 
process of the program S-flexfit [2]. S-flexfit builds stereo-
chemically correct and refined deformed models from a 
reference protein domain belonging to a super-family. It 
works by  studying the evolutionary structural variability 
that exists among the domains of the super-family as 
described in the structural database CATH 
(http://www.cathdb.info)  [3]. The space of conformations of 
the super-family is decomposed by using singular value 
decomposition (SVD). The first three singular values of 
SVD ( 1, 2 and 3) codify at least 50% of the structural 
variability of a super-family [2], so only these three values 
are used to represent the variational space due to 
computational power constraints. Consequently, the flexible 
transformation of the reference domain is defined by 1, 2 
and 3 and these are the parameters that the proposed 
registration algorithm optimizes. These parameters must 
always be in a range that guarantees biologically meaningful 
deformations. That is made by taking ranges from CDV 
(coordinate displacement vectors) provided by S-flexfit [2]. 
Generated atomic models must be converted into a density 
map with the resolution of the 3D-EM map before 
registration.  

In most cases, modeled domains must be additionally 
rotated and translated to fit them exactly into the 3D-EM 
map. For this objective, an additional rigid registration 
algorithm is incorporated inside the flexible image 
transformation process. The algorithm should converge to 
the best fitted model defined by three flexible parameters 1, 
2 and 3. There are six additional rigid parameters (three 

Euler rotations , ,  and three translations X, Y and Z) that 
define the transformation applied over the image of the 
model as a result of the rigid registration algorithm. The 
rotation center is the center of mass of the 3D-EM images. 

 

 
Fig. 2. Normalized Mutual Information calculated from 
2rdvA0 at different ( 1, 2) values for the best 3 value.  

Figure 1 shows the main steps of the proposed registration 
technique. The registration algorithm has been implemented 
in C++ within the framework provided by Insight 
Segmentation and Registration Toolkit (ITK) [4]. 

 
2.2. MI Similarity measure   
 
The similarity measure is employed to establish a level of 
correspondence between images by comparing pixel 
intensities or other image features. Many measures have 
been proposed in the literature [5]. In the context of 
molecular registration, the similarity measure most widely 
used is the Cross Correlation Coefficient (CCC) [6]. 
However, recent studies show that the use of Mutual 
Information (MI) is a good alternative to be employed in 
molecular image registration algorithms [7]. The Mutual 
Information similarity measure does not assume that 
intensities of homologous voxels are the same, as Cross 
Correlation does, and consequently, is more convenient for 
images from different modalities.  

In this work, we propose to use a Normalized Mutual 
Information similarity measure computed within the region 
occupied by the 3D-EM map, in order to establish the 
correspondence between the 3D-EM image and every 
flexible transformed domain. The implementation of the 
Normalized MI is less sensitive to changes in overlap, and is 
defined by 
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where H(A) and H(B) are the Shannon entropies of images A 
and B, and H(A,B) the joint entropy of both images. We 
have actually used an implementation of NMI which 
estimates entropies by employing joint histograms [8].  

The suitability of the NMI similarity measure can be 
observed in Figure 2, where the NMI has been calculated 
between the Protein Data Bank (PDB) entry 2rdvA0 and 
different modeled domains generated from itself with 
different  values. The figure shows that there is a single 
well-pronounced global minimum corresponding to the best 
alignment of the two images, that, in this ideal example, 
corresponds to ( 1, 2, 3)=(0,0,0). 
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Target 
Domain 

(PDB code) 

Reference 
Domain 

(PDB code) 
Super-family 1 range 2 range 3 range cl. 

% 
sim. 

% var. 
Min. 

RMSD 
(Å) 

1cll02 1wdcB2 1.10.238.10 (0.187,0.261) (-0.559, 0.221) (-0.304, 0.469) α 30 76.19 3.318 
1e5dB2 1mqoA0 3.60.15.10 (0.001, 0.261) (-0.150, 0.290) (-0.398, 0.156) αβ 18 40.67 3.098 
1ls9A0 1b7vA0 1.10.760.10 (-0.190, 0.001) (-0.240, 0.140) (-0.230, 0.360) α 31 52.28 2.895 

1nm7A0 1ng2A1 2.30.30.40 (0.009, 0.150) (-0.120, 0.330) (-0.190, 0.420) β 29 35.84 2.840 
1oyjA1 1jlvC1 3.40.30.10 (0.020, 0.160) (-0.400, 0.060) (-0.620, 0.410) αβ 29 76.60 1.492 

Table. 1. Entries of the Protein Data Bank used to simulate data (Target and Reference). Super-families,  value intervals that 
guarantee biologically meaningful deformations of the reference, structural domain class (cl.), percentage of sequence identity 
between the target and reference domains (% sim.), percentage of super-family variability contained in the first three singular 
values of the SVD (% var.) and approximate minimum RMSD values (see text).  
 
2.3. Gradient Optimization  
    
The optimization process has a significant role in the search 
of the correct transformation that produces the best possible 
alignment between images. The flexible transformation of 
the reference domain is defined by 1, 2 and 3, so these 
are the parameters that the registration algorithm optimizes. 
The nature of our problem results in a similarity measure 
function with a global minimum (Figure 2). Finding the 
optimal solution can be solved by using Regular Step 
Gradient Descent Method (RSGD). Gradient based methods 
permit to find local minima with precision, and, although 
they are not accurate with functions with many local minima, 
in this case its behavior is the most convenient.  
 
2.4 Additional rigid registration conformation 
 
The additional rigid registration algorithm uses a Mutual 
Information similarity measure calculated within the region 
occupied by the 3D-EM map and optimized by a Regular 
Step Gradient Descent Method. However, this rigid 
registration process just corrects small misalignments 
between images. Therefore, when working with real data, 
initial biology knowledge would be required to roughly align 
the 3D-EM images with the reference prior to applying the 
proposed registration algorithm.  
 

3. EXPERIMENTS 
 

In order to evaluate the usefulness of the proposed 
registration algorithm, simulated data from the Protein Data 
Bank (PDB, http://www.rcsb.org) have been used. The 
experiment consists on the flexible registration of a given 
super-family reference domain into a simulated 8 Å 
resolution map (called Target) generated by another domain 
of the same super-family (sampling rate 2 Å/voxel).  The 
experiment has been repeated for 5 cases whose properties 
are represented in Table 1. These domains from each CATH 
Class level α, β, αβ [3] are selected as a subset of the 
superfamilies studied in [9]. These domains describe the 
relative spatial layout of the α helices and β sheets, and are 
representative enough to test the algorithm. Targets and 

references are initially aligned by MAMMOTH [10]. This 
test simulates the case that occurs when the actual structure 
at atomic level in a 3D-EM map is not solved, but its super-
family and a structural relative are known. Since it is 
simulated data, the atomic resolution image belonging to the 
target is also available; and this allows calculating the Root 
Mean Squared Distance (RMSD) between the backbones of 
the target domain and the resulting best fitted model in order 
to verify the success of our registration algorithm. The 
RMSD is calculated identifying the common backbone 
atoms by performing a structural alignment with 
MAMMOTH [10], and then computing their RMSD. We 
assume that the best RMSD obtained by calculating 
distances between atomic targets and a set of 125 models 
can be considered as the minimum possible in order to 
evaluate the values of the obtained best fitted models.   
 

4. RESULTS 
 

Conceptually, RMSD is not directly correlated with any 
image medium resolution metric, so RMSD values for 
resulting best fitted models will be always bigger than those 
obtained with MAMMOTH alignments. We consider that a 
registration has been convenient when the difference in 
RMSD with the minimum is less than 2 Å (voxel size) [2]. 
Table 2 shows the described experiment results. In all cases, 
except for 1e5dB2, obtained RMSD values are below the 
minimum value (Table 1) plus 2 Å. For two of the five cases 
(1cll02, 1ls9A0), RMSD values improve those obtained by 
applying a grid of a finite number of models (125 models) 
[2]  and the alternative program Colores [1] (CCC Similarity 
Measure), and for one of the other cases, maintains a similar 
value (1nm7A0). Only for 1e5dB2, that is the case with 
significantly less sequence similarity between reference and 
target, the result worsens.  Figure 3 shows the fitting into the 
target domain 1ls9A0 of two models obtained from the 
reference domain 1b7vA0 without any registration (left) and 
after applying the proposed registration algorithm (right). 
Results have been obtained for the following registration 
options: i minimum and maximum step sizes 0.001/0.05, 
rigid parameters minimum and maximum step sizes 
0.001/0.4 and relaxation factor for Gradient optimizer 0.5. 
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Resulting  model parameters Target Domain 
(PDB code) 

Reference Domain 
(PDB code) 1 (Å) 2 (Å) 3 (Å) 

RMSD (Å) (1) RMSD (Å) (2) 

1cll02 1wdcB2 0.192 -0.112 -0.303 3.601 4.071 
1e5dB2 1mqoA0 0.261 -0.147 0.126 8.351 4.341 
1ls9A0 1b7vA0 0.001 -0.032 -0.227 3.359 3.410 

1nm7A0 1ng2A1 0.150 0.006 0.176 4.083 3.942 
1oyjA1 1jlvC1 0.020 -0.182 -0.057 1.950 1.611 

Table. 2. Best fitted models (  values) for the five simulated cases after the application of the proposed flexible registration 
algorithm with additional rigid registration. Comparative of RMSD values calculated for the best fitted model with the 
proposed algorithm (1) and with Cross Correlation Similarity Measure for a grid of 125 models (Colores [1], [2])(2).  
 

 
Fig.  3. Left: model from reference domain 1b7vA0 (blue) 
and target domain 1ls9A0 (mesh) without registration. 
Right:  resulting best fitted model after registration (red) 
overlaid with target (mesh)(visualized with UCSF Chimera). 
 

5. CONCLUSION 

In this work we propose an image registration algorithm that 
introduces three aspects. Firstly, it permits to automate the 
generation of protein domain models in an optimized 
direction, generating a number of models that depends on 
the convergence of the algorithm for each particular case. 
Secondly, the approach employs Mutual Information as an 
alternative to Cross Correlation Coefficient that is 
traditionally the most widely used in the context of 
molecular image registration. We have seen that MI 
improves results in terms of accuracy in most of the cases. 
Finally, the proposed approach incorporates an additional 
rigid registration algorithm that is able to compensate small 
misalignments between images.   

In our study, the proposed registration algorithm 
behaves properly, leading to convenient results in most of 
the cases. Only in one case (1e5dB2), the proposed 
algorithm results are not satisfactory, indicating the possible 
need of a more global optimization strategy to avoid local 
minima. Further studies are guaranteed in this direction.  

The proposed registration algorithm can be used as an 
alternative to other programs, improving outcomes for some 
of the cases. Results seem promising and should be 
confirmed on experimental data. Experimental data has not 
been used yet due to predicted possible problems. First of 
all, the number of members of the super-family of the atomic 
structure could not be enough to compute a valid super-
family variability. Secondly, calculating RMSD between the 

backbones of the target domain and the resulting best fitted 
model in order to verify the success of the registration 
algorithm would not be possible.  At this point, it is 
necessary also to consider, for future research, extending the 
number of singular values of SVD in order to increase the 
percentage of super-family variability contained in  
parameters. 
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