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RESUMEN 

El microscopio electrónico de transmisión (TEM) es un dispositivo muy útil para 

adquirir información estructural de los complejos macromoleculares en las células 

vivas. TEM presenta aberraciones ópticas que suelen ser modeladas en el espacio de 

Fourier por la función de transferencia de contraste (CTF). La determinación exacta de 

la CTF es crucial para su posterior corrección. Por otra parte, la estimación de la CTF 

debe ser rápida y robusta si se pretenden llevar a cabo estudios de microscopía 

electrónica de alto rendimiento en tres dimensiones (3DEM). 

 

En este proyecto se presentan varias metodologías con el propósito de mejorar el 

algoritmo que realiza la estimación de la CTF ajustando un modelo de la densidad del 

espectro de potencia (PSD) medida en una micrografía específica. Primero nos 

centramos en mejorar el método existente de la estimación de la CTF. Luego 

estudiaremos la detección the estimaciones incorrectas de la CTF y PSDs de baja 

calidad mediante la generación de clasificaciones con varios criterios desarrollados 

teniendo en cuenta distintos parámetros de la PSD. Finalmente, analizamos la 

posibilidad de volver a calcular la CTF de las micrografías cuyas PSD eran de alta 

calidad pero cuyas estimaciones de CTF se calcularon de manera errónea. 

 

La metodología desarrollada está implementada en C++ y Java usando el entorno de 

desarrollo Eclipse en un sistema operativo Linux. Esta nueva metodología se presenta 

como parte del software de código abierto de imagen digital XMIPP (X-windows based 

microscopy image processing package). XMIPP es un programa de continuo desarrollo  

del Centro Nacional de Biotecnología (CSIC), y está orientado a la transformación 

completa de las partículas de EM, desde la adquisición de la imagen hasta la 

reconstrucción 3D. 
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ABSTRACT 

Transmission electron microscope (TEM) is a very useful device to acquire structural 

information about macromolecular complexes within living cells. TEM introduces 

optical aberrations that are usually modeled in Fourier space by the so-called contrast 

transfer function (CTF). Accurate determination of the CTF is crucial for its posterior 

correction. Furthermore, the CTF estimation must be fast and robust if high-throughput 

three-dimensional electron microscopy (3DEM) studies are to be carried out.  

 

In this project we present several methodologies that improve the algorithm that 

estimates the CTF by fitting a model of the power spectrum density (PSD) with its 

measure on a specific micrograph. We first focus on correcting an existing CTF 

estimation. Then we study the detection of wrong CTF estimations and low-quality 

PSDs by generating classifications with several criteria developed taking into account 

different parameters of the PSD. At the end, we explore the recalculation of the CTF 

estimations on images for which high-quality PSD was detected previously. 

 

The developed methodology is implemented in C++ and Java using Eclipse 

development environment on a Linux operating system. This new methodology is 

currently a part of the open-source digital image processing software XMIPP (X-

windows based microscopy image processing package). XMIPP is continiously 

developed by the National Center of Biotechnology (CSIC) and is oriented to the full 

processing of EM single particles images in structural biology, from image acquisition 

to 3D reconstruction. 
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1.   INTRODUCTION 

Biology is now one of the scientific fields that integrate multi-scale knowledge due to 

cellular, molecular and genetic discoveries that are taking place. The analyses of these 

large amounts of data are particularly powerful when they can be interpreted graphically 

by images representing how the different events occur in cellular and molecular levels. 

This leads us to high-resolution (< 1nm) structures from transmission electron 

microscopy (TEM) images. There are various data acquisition techniques, each time 

more powerful, but those images must be processed in order to highlight the most 

relevant part of the information. It is at this point where telecommunication engineers 

play a fundamental role, since image processing is in fact a two-dimensional signal 

processing and signal processing is a common topic in our field. 

 

Structural biology is a key tool to fully understand the function of macromolecular 

complexes within living cells. TEM is a very useful technique to acquire structural 

information about these complexes. However, the electron microscope distorts the 

structural information by changing amplitudes and phases in recorded images. This is 

due to the aberrations that exist in the microscope as in any imaging device, and to the 

particular nature of the propagation of electron waves. These distortions can be modeled 

in Fourier space by a multiplication of the Fourier transform of an ideal two-

dimensional projection of a three-dimensional object with the microscope transfer 

function called in the field Contrast Transfer Function (CTF).  

 

The final step in structural biology by TEM is three-dimensional reconstruction from 

TEM images of macromolecular complexes. The CTF estimation and correction has to 

be carried out as it severely limits the achievable resolution in the three-dimensional 

reconstruction. 
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Automated methods for data collection increase the data quantity that can be collected 

during a single EM. These methods combined with techniques for automated particle 

picking can generate a three-dimensional reconstruction at sub-nanometer resolution 

within 24 hours after inserting the specimen grid into the microscope. However, for a 

high-resolution reconstruction, data quality is as much important as data quantity.  

 

This master thesis is about the CTF estimation from TEM images. The main objective is 

to implement control checks to detect wrongly estimated CTF and design robust 

algorithms for the improvement of CTF estimation. Outstanding overall data quality 

will produce a more precise three-dimensional reconstruction. 
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2.   ELECTRON MICROSCOPY PRINCIPLES 

2.1.   Electron Microscope 

The electron microscope is a device that uses highly accelerated electrons, focused with 

electromagnetic “lenses”, to obtain images of the specimen under study (see Fig. 1).  

The source of illumination is a filament (cathode) that emits the electrons. Since 

electrons are scattered by air molecules, the air must be removed by creating a high 

vacuum. The electrons are accelerated from the cathode to a nearby anode (electric 

potentials in the order of 200 kV or higher are typically used). Magnetic coils act as 

lenses and focus the electron beam crossing the specimen. The outcoming electron 

beam is recorded by a photographic plate or a CCD array. Most of the electrons never 

interact with the specimen and only contribute to form a background noise. A few 

electrons will interact elastically (without changing their energy) with the specimen and, 

finally, a negligible amount will interact strongly (inelastic scattering). 

 

 

Fig. 1 Shematic representation of an electron microscope 
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As any other imaging device, the electron microscope introduces some distortion in the 

acquired images. This distortion is usually modeled in a first order approximation by the 

convolution with a Point Spread Function (PSF). Its representation in the Fourier space 

is called the Contrast Transfer Function (CTF). 

 

The CTF looks like a damped two-dimensional sine function. The effect of the CTF is 

twofold: it introduces zones of alternate contrast (some components are projected as 

white on a black background, while others are projected as black on a white 

background) and it introduces band pass filtration. 

 

 

Fig. 2 Experimental PSD 

 

The CTF severely limits the achievable resolution in the three-dimensional 

reconstruction. In particular, it filters both the high and the low frequencies, introduces 

zones of alternate contrast and eliminates all information at certain frequencies. It is, 

therefore, desirable to replace the reconstruction obtained by a „real‟ microscope by a 

reconstruction that would be obtained from images that would be produced by an ideal, 

aberration-free microscope.  
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The biological sample 

Before taking into account the reconstruction problem itself, we should discuss the kind 

of object to be reconstructed and its behavior during the recording process. Biological 

macromolecules are small. Their size ranges from 100 to 10,000 Angtroms. This small 

size implies that a direct manipulation is extremely difficult, if at all possible, and can 

only be performed under rather restrained conditions, which represents an obstacle for 

their characterization. 

 

The conditions inside the electron microscope, high vacuum and high electron radiation 

level, are very deleterious for the specimens, which should therefore be protected 

somehow (for example by embedding the sample in ice). This protection has as a side 

effect in that it decreases the signal-to-noise ratio (SNR). In addition, the problem of 

beam induced damage is by no means negligible. Electron radiation induces intense 

ionization of the sample with the formation of free radicals and ions that produce 

important alterations of the structure. In order to minimize this damage, very low 

electron doses are used, which in turn produce images with extremely low SNR. 

Typically observed SNRs can be as low as 1/10. 

 

The solution devised for improving the poor SNR in the micrographs has been to 

“average” over many (thousands) of identical copies of the specimen. This can be done 

directly in the case of 2D crystals, where particles are a priori ordered (a crystal is a 

structure made by an object that repeats itself following a regular pattern), or in the case 

of single particles (i.e., identical copies of a molecule that are recorded in random 

orientations inside the electron microscope) only after translational and rotational 

alignment. 
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Fig. 3 A micrograph 

 

Noise 

As already introduced, the SNR in EM image processing is very low. Noise is generated 

by many sources. Among others the low, and possibly varying, electron dose, the 

random nature of the electron emission, the interaction of the electrons with the sample 

holder, the granular composition of the film where the image is recorded, the electronic 

noise of the scanner used to digitize the image, etc. The resulting noise has been shown 

to be additive and normally distributed. This helps simplifying the mathematical 

formulation of many of the optimization problems involved from the image acquisition 

step towards the 3D reconstruction of the macromolecule. 
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3D Reconstruction 

Different approaches have been devised to reconstruct 3D structures from their EM 

projections. These approaches can be classified depending on the kind of data they work 

with, more specifically on the kind of symmetry that the imaged particle exhibits. In the 

case of helical filaments, a single view carries enough information to reconstruct the 

specimen up to certain resolution. Other types of symmetry that are typically 

encountered for biological macromolecules are: 2D-crystals and icosahedral viruses. For 

the general case, however, we cannot count on symmetry. In the rest of this project we 

will focus on the latter case, which is termed single particle reconstruction (Fig. 4). 

 

The process followed to obtain a 3D-reconstruction for single particles can be briefly 

described as follows (only those steps related to the digital image processing will be 

enumerated): 

1. Images containing many identical copies of the specimen are recorded in the 

electron microscope and converted to digital form. 

2. Micrographs may be preprocessed:  

(i) aberrations introduced by the microscope (CTF) are estimated and 

corrected,  

(ii) images are denoised. 

3. Particle projections are identified and extracted from the micrographs. 

4. Projections are normalized, aligned and classified (the particles are classified 

to distinguish possible structural variability, different projection directions or 

contaminating particles). This is an iterative process, the better the particles are 

aligned the better they may be classified, and vice-versa. 

5. Finally, when a structurally homogeneous and aligned set of particles has 

been obtained, it can be combined to obtain a volume. 

 

The whole procedure is iterative, since a first rough reconstruction helps to better 

identify, classify and align the 2D projections. The newly aligned projections are then 

used to build a finer reconstruction which in turn is again used to align the 2D 

projections. This process is iterated until convergence (usually defined as no significant 

change of the projection alignment, or no significant improvement of the resolution 

achieved.) 
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Fig. 4 Schematic work-flow of EM image processing analysis 
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2.2.   Mathematical basis of the determination of the contrast transfer function 

We first present the algorithm that fits a theoretical power spectrum density (PSD) 

based on a CTF model to the PSD measured on a specific micrograph. 

 

The estimation of CTF parameters is usually performed in two steps: 

 

 Estimation of the power spectrum density. The PSD determines the amount of 

energy present at each spectral frequency. Considering the CTF as a transfer 

function of a linear system that takes an input (unknown) image and transforms 

it into an output (experimentally observed) image, and without taking into 

account noise, the PSD of the output image is the PSD of the input image 

multiplied by the square modulus of the CTF. Therefore, the PSD of 

experimental images is directly related to the CTF. 

 

 Estimation of CTF parameters. Once the PSD has been computed, CTF 

parameters corresponding to the experimental PSD are estimated. This is usually 

done by minimizing some measure of dissimilarity between the experimental 

PSD and the theoretical PSD determined by the CTF parameters.  

 

First, we are going to describe the PSD model that is fitted and then we will explain the 

algorithm that has been developed for fitting the PSD parameters. 

 

PSD Model 

We assume that the model of the image formed in the electron microscope is 

 

 

 

Where  is a spatial location,  is the ideal projection of the 3D object 

studied,  is the point spread function (PSF) of the microscope, and  and  

represent noise terms added before and after the convolution with the PSF. 
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Given this image formation model, the corresponding PSD is 

 

 

 

Where  is a spatial frequency,  is the Fourier transform of the PSF (i.e. the 

CTF), and  and  are the power spectrum density of the noise terms. 

 

We assume  , which is not so far from the truth since the noise power 

is much more important than the signal power in a typical electron micrograph. 

Moreover, we will assume that the noise before the CTF is white . 

Under these two hypotheses, the model simplifies to 

 

 

 

The structure of this PSD is formed by two terms. The first one is the PSD of the noise 

colored by the CTF. The second one is the PSD of the noise after CTF and is referred to 

as „„background‟‟ PSD. Models for these two terms are described in the next sections. 

CTF model 

A typical microscope has a frequency response approximated by  

 

 

 

where  is the fraction of electrons being scattered at each frequency (in our model 

it is assumed to be constant, ) and  

 

 

 

 represents the spherical aberration coefficient, and  is the defocus vector given 

by 
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 is the angle of the 2D frequency . The defocus vector describes an ellipse with 

major and minor semi-axes  respectively. The angle of the major semi-axis with 

respect to the horizontal axis is .  is the electron wavelength which is computed as 

 

 

 

where  is the acceleration voltage of the microscope.  

 

A real microscope has a frequency response similar to the ideal one except for a 

damping envelope , which results in a low-pass filtering of the ideally projected 

3D object. Thus, the frequency response of a real microscope is 

 

 

 

We consider three different effects hindering the maximum achievable resolution: the 

beam energy spread, the beam coherence, and the sample drift. The three effects 

combine into a single envelope function as 

 

                                                                 

 

The beam energy spread envelope is computed as 
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where  is the chromatic aberration coefficient,  is the energy spread of the emitted 

electrons represented as a fraction of the nominal acceleration voltage, and  is the lens 

current instability expressed as a fraction of the nominal current. 

 

We compute the beam coherence envelope as 

 

 

 

where  is the semi-angle of aperture. 

 

Finally, assuming the mechanical displacement perpendicular to the focal plane  and 

the displacement in the focal plane (drift) , the envelope due to sample shift is 

modeled as 

 

 

 

The envelope model  can be well approximated by a Gaussian function if  

 and  . However, our model is not simplified in this 

way and keeps all envelope terms modeling the microscope physics. 

 

Summarizing, the parameters required to fully specify the CTF in our model are 

 

                                                         (13) 

 

We assume that  and  are fixed for a given microscope and known by the user. The 

rest of the parameters, 11 in total, will be searched by our algorithm. 
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Background PSD model 

We assume the noise after the CTF to be colored by the film/scanner or CCD frequency 

response. Physically modeling the corresponding PSD as the output of a linear system, 

although possible, is out of the scope of this work. Instead, we will model the 

background PSD as a linear combination of exponential functions. The background 

PSD depends on  mainly as . This term has to be corrected at low resolution 

with a couple of Gaussians, a positive and a negative one. The formal model for the 

background noise PSD used in this work is  

 

                                                          

 

                                                 

 

where 

 

 

 

 

 

 

 

The first term provides a constant baseline; the second term is a decaying exponential 

representing the background PSD behavior; the third and fourth terms of the model are 

intended to provide more flexibility in the PSD modeling process. The second term will 

be referred to as the  - exponential term because of its dependence on the square root 

of the frequency. The third and fourth terms will be referred to as the positive and 

negative Gaussians, respectively. To simplify the writing of the equations we will use 

the following notation for the background PSD 

 

 

 



UNIVERSIDAD SAN PABLO-CEU                                      PROYECTO FINAL DE CARRERA 

ESCUELA POLITÉCNICA SUPERIOR                              INGENIERÍA DE TELECOMUNICACIÓN 

21 

 

 

All terms are assumed to be elliptically symmetric accounting for a possible anisotropy 

of the noise after convolution with the CTF.  

 

Summarizing, there are 17 parameters defining the background PSD, namely 

 

                               (17) 

 

CTF determination algorithm 

The CTF determination algorithm searches automatically for the values of the 28 

unknown parameters (11 for the CTF and 17 for the background noise) determining the 

estimated PSD that best fits the experimental PSD. 

 

The flow diagram below shows the scheme of the CTF determination model. We first 

obtain the experimental PSD from the micrograph. The enhancement of the PSD is a 

filtering method for improving visibility of diffraction rings in the experimental PSD of 

micrographs.  We will use the experimental PSD and the enhanced versión of the PSD 

to determine the CTF parameters based on  a theoretical PSD model. The output will be 

the estimated PSD. 

 

 

Fig. 5 Schematic diagram of CTF determination model 
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This fit is evaluated as a fit of two 2D images. The determined CTF is therefore also a 

2D image. Attempting to look simultaneously for all 28 parameters without any 

guidance is a formidable task for any optimization algorithm. Hence, the optimization 

problem is divided into smaller sub problems that can be easily solved either because 

there is an analytical solution or because they involve the adjustment of a few 

parameters with respect to the values of parameters found in a previous step of the 

algorithm.  

 

Therefore, the parameters of the CTF as well as those of the background PSD are 

determined in the following four steps: 

• Step 1: Determination of the theoretical PSD lower bound. 

• Step 2: Determination of the theoretical PSD upper bound. 

• Step 3: Defocus determination. 

• Step 4: Final model adjustment. 

 

As will be further explained, the fitting is always done by minimizing a given measure 

of error between a 2D experimental PSD and a 2D theoretical PSD computed for the 

values of parameters known at the stage (parameters are progressively estimated; thus, 

in the first substeps only a few of them are known). In our algorithm, the dissimilarity 

between two 2D images is usually computed based on the - norm of the error vector.  

 

This is so since computing the absolute value of a given quantity is much faster than 

performing a multiplication (related to the more popular - norm). The employed 

optimizer is the Powell‟s conjugate gradient algorithm which is known for a fast local 

convergence without the need of explicit derivatives of the goal function. However, 

there are situations in which the problem structure is simple enough so that a solution of 

the weighted - norm optimization problem can be analytically computed. In these 

cases, we first compute the analytical solution of the corresponding weighted - norm 

optimization problem, and then input it to Powell‟s algorithm as the initial solution of 

the - norm related problem. 
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Except in step 4c, all optimizations are performed by considering a coarse regular grid 

of frequencies. That is, we do not compare all possible frequencies since this will result 

in a much slower algorithm. In the last optimization step, the coarse regular grid is made 

finer and finer until all available frequencies are used for the fitting. 

 

To understand better the adjustment of parameters of the CTF, we are going to analyze 

each step with an example of a well estimated PSD of a random micrograph (Fig. 6). In 

the left hand side of the image we can see the left half plane of the enhanced PSD. The 

right hand side shows the estimated PSD. The idea is to observe if both sides match 

correctly to determine whether the estimation has been done correctly or not. 

 

 

Fig. 6 Enhanced PSD vs estimated PSD 

 

The fitting is done in 2 dimensions, over the X axis and the Y axis, because we are 

processing 2D images. However, the CTF parameters are fitted imposing a radial 

symmetric background, so we are going to observe the graphs of the radial average of 

the enhanced PSD and the estimated PSD. 
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Step 1: Determination of the theoretical PSD lower bound. 

The estimation of the theoretical PSD lower bound is performed in four substeps: 

 Steps 1a and 1b: adjustment of initial values of the  - exponential parameters 

and of the baseline. 

 Steps 1c and 1d: adjustment of initial values of the positive Gaussian 

parameters.  

 

Steps 1a and 1b: adjustment of initial values of the  - exponential parameters 

and of the baseline 

In this step, we compute rough estimates of parameters  and . First, an 

initial guess with  and  is found so that the - norm of the error between 

the experimental PSD and the theoretical PSD is minimized. Second, this solution is 

refined now letting  and  so that it optimizes the error in the error in the  

 sense. Finally, the theoretical PSD is further refined by optimization of a penalized 

-error measure. This penalization moves down the estimated  so that it 

becomes a lower bound of the experimental PSD.  

 

Step 1a: parameters  and  are sought with the constraints  and 

 so that the - norm of the error between the experimental PSD and the 

theoretical PSD is minimized. This is achieved by the weighted least-squares solution of 

the equation system 

 

 

                                                       

where we have one equation for each R in a regular grid , the region in the 

frequency space where the two PSDs (experimental and theoretical) are being 

compared. In practice,  is an annular region defined by the inner and outer radii 

specified by the user. It is important to judiciously select this region since at very low 

frequencies the approximation  is not valid. The weight of each one of 

these equations is 
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That is, the goal function to be minimized is 

 

 

 

Below there is an illustration of this first step. From now on, we will only show the 

enhanced PSD to compare it to the estimated PSD. The red line is the enhanced PSD 

and the green line is the estimated PSD. In this step, we first give an upper bound which 

adjusts fairly well to the final part of the curve. 

 

 

Fig. 7 Radial average of enhanced PSD (red) and estimated PSD (green) after step 1a 

 

Step1b: The first guess of the  - exponential term obtained in the previous step is 

refined and pushed down in this step. To this goal, the two constraints  and 

 are removed, the parameter  (whose initial value is 0) is also estimated, and the 

error is penalized at frequencies where the theoretical PSD is above the experimental 

PSD.  
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Thus, the functional to be minimized in this step is  

 

 

                                              

 

 

where  denotes the indicator function (this function is one if x belongs to the set A, 

and is 0 otherwise), W is the penalization weight and follows the sequence 0, 2, 4, 8, 16, 

and 32. For each W, Powell‟s conjugate gradient algorithm is used to minimize the 

penalized functional starting from the solution obtained for the previous value of W.  

 

An illustration of this step is shown  

 

 

Fig. 8 Radial average of enhanced PSD (red) and estimated PSD (green) after step 1b 
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Steps 1c and 1d: adjustment of initial values of the positive Gaussian parameters. 

In this step, we compute rough estimates of parameters  and   and refine 

these newly introduced parameters together with the ones of the baseline and the  - 

exponential term  and . As in Steps 1a and 1b, the positive Gaussian 

term of the background PSD is computed in two steps: first, a constrained  – error 

optimization is performed on a low frequency region of the experimental PSD 

previously radially symmetrized. This produces a radially symmetric Gaussian that 

helps the  - exponential term to reproduce the low frequency spectrum of the 

experimental PSD; second, the condition of radial symmetry of the Gaussian is 

removed, and a penalized  – error optimization is performed.  

 

Step 1c: the experimental PSD is radially symmetrized as well as the penalized the  - 

exponential term and baseline found in Step 1.Starting from the lowest frequency, we 

look for the first frequency at which the two curves are closer. This frequency called 

 determines the end of the low frequency region. Within this region, we look for 

the frequency at which the two curves are more separated, . Parameters  and  

are set to .  is set to 0, and  is constrained to be equal to . 

Therefore, only parameters  and are left. They are chosen so that they minimize 

the weighted  – norm of the error between the experimental PSD and the theoretical 

PSD. This is achieved by the weighted least-squares solution of the equation system, 

 

 

 

We evaluate this equation in the same spectral grid points as the one of the  - 

exponential and we give the same weight as in Eq. . 
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The radial average of the enhanced PSD after this step is shown below. 

 

 

Fig. 9 Radial average of enhanced PSD (red) and estimated PSD (green) after step 1c 

 

 

Step 1d: this curve is also pushed down so that it really is a background support. The 

pushing down is done by minimization of  

 

 

                                                                          

With respect to all parameters estimated estimated so far. The weight  follows the 

sequence 0, 2, 4, 8, 16 and 32. The output of this Step 1d is called the theoretical PSD 

lower bound. It is a fully 2D lower bound although for clarity purposes we only 

represent its radial average. 
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Fig. 10 Radial average of enhanced PSD (red) and estimated PSD (green) after step 1d 

 

Step 2: Determination of the theoretical PSD upper bound.  

In this step, we search for the following parameters of the envelope:  

and . The other two unknown parameters of the envelope  and  are coupled in 

the term . They will be determined in Step 3 when searching for defocus 

parameters  on which this term depends. Therefore, we assume that 

 and  (i.e.,  at this point. We set  to its 

lower bound found in Step 1d and we only look for the envelope parameters. As in Step 

1d, the search for the upper bound of the PSD is performed by minimizing a penalized 

goal function. The goal function used in this step is 
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The initial values of the unknown parameters in this optimization step are 

 

 

                                                           

where  is an initial chromatic aberration coefficient that can be supplied by the user 

(by default, its value is 0). The penalization  follows the sequence 0, 2, 4, 8, 16 and 

32. 

 

The output of this step is referred to as the theoretical PSD lower and upper bounds. 

There is no graphic representation of this step, but the idea is the same as in step 1.  
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Step 3: Defocus determination.  

In this step, we determine the defocus parameters  and the aperture semi-

angle . First, we compute a rough estimate of the defocus values making use of the 

estimated lower and upper bounds. Then, we refine all parameters determined until that 

point. 

 

One of the problems encountered when fitting a PSD model is that the fitting errors 

committed at high frequencies are of little importance because of the PSD amplitude 

damping (the PSD amplitude is very small at these high frequencies). Here is where the 

lower and upper bounds of the PSD come into play to help us define an error measure 

that is less dependent on the frequency. Given the lower bound  and the 

upper bound , each PSD used in this step is normalized as 

follows 

 

 

 

 

 

This normalization guarantees that any PSD within the lower and upper bounds will be 

mapped between 0 and 1, and therefore all frequencies will similarly contribute to the 

PSD fitting error as long as the lower and upper bounds are accurately computed. 

 

The goal function to be minimized at this stage is 
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where  is the number of spectral grid points in the set , and  is the 

correlation coefficient between signals  and  defined as 

 

 

 

where  is the expectation operator.  is a filtered version of the 

experimental PSD.  is computed as follows 

 

                                                           

 

 Again, this step is divided in the following two substeps. 

 

Step 3a: a first estimate of the defocus values is obtained by exhaustive search of the 

three parameters  on a regular grid. Each explored point is used as the 

initial solution of Powell‟s conjugate gradient optimizer. This algorithm computes 

values of the three parameters by minimizing the goal function and it is quite “fast” 

despite the initial exhaustive search. The best fitting parameters computed at this step 

are used as the initial solution for Step 3b.  

 

In the graph below we can appreciate how we model the function with the upper and 

lower bounds estimated before, in order to adjust the zeros and poles of the enhanced 

PSD. 
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Fig. 11 Radial average of enhanced PSD (red) and estimated PSD (green) step 3a 

 

At this point it is interesting to see the adjustment of the estimated PSD to the enhanced 

PSD. 

 

 

Fig. 12 Half plane of enhanced PSD (left) and estimated PSD (right) after step 3a 
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Step 3b: we refine all parameters found so far (23 parameters) by minimizing the goal 

function. The only parameters that have not been found yet are those of the negative 

background Gaussian . They will be determined in Step 4.  

 

Now we can appreciate the first zero in the theoretical PSD, as well as good values of 

the curves at the beginning and at the end. 

 

 

Fig. 13 Radial average of enhanced PSD (red) and estimated PSD (green) 

 

Step 4: Final model adjustment.  

In this step, we estimate first the parameters of  (Step 4a). Then, we refine all 

parameters of the model using a coarse grid (the same grid as in all previous steps) 

(Step 4b). Finally, we refine all parameters using a fine evaluation grid (Step 4c). The 

output of this step is the output of the CTF determination procedure. 

 

Step 4a: we compute a first estimate of the  similarly as in Step 1c. We assume 

the term to be circularly symmetric and therefore ,  and . Thus, 

this first guess can be found as a weighted least-squares solution of the equation system 
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There is one equation for each 2D frequency for which the theoretical PSD estimated in 

Step 3b is larger than the experimental PSD. We do this because at these frequencies 

some negative term is needed in order to compensate the difference between the 

experimental and the theoretical PSD.  

 

 

Fig. 14 Radial average of the enhanced PSD (red) and the estimated PSD (green) after step 4a 
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Step 4b: all model parameters are refined on a coarse frequency grid. By default, the 

coarse grid is defined by taking 1 frequency sample out of 4 consecutive ones in each 

direction. The goal function to be optimized is show in Eq. . 

 

At this point we can actually see how the radial average of the estimated PSD follows 

the curve of the enhanced PSD very well. 

 

 

Fig. 15 Radial average of enhanced PSD (red) and estimated PSD (green) after step 4b 
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Step 4c: the frequency grid is made finer and finer until all available frequencies are 

used. Thus, the grid is made finer by dividing by 2 the grid spacing until this value is 1. 

For each grid spacing, the model parameters are refined again using the same function 

and optimization algorithm as in Step 4b. 

 

 

Fig. 16 Radial average of enhanced PSD (red) and estimated PSD (green) after step 4c 

 

We cannot forget that these graphs represent the radial average of the enhanced PSD 

and the estimated PSD. Radial plots along two perpendicular axes show that the two 

backgrounds are different (see Fig. 17 and Fig. 18), that is, the background noise level 

effectively depends on the direction. This experiment shows that assuming radial 

symmetric backgrounds may result in inaccurate estimates of the defocus. 
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Fig. 17 Fit along x-axis of the enhanced PSD (red) and the estimated PSD (green) 

 

 

Fig. 18 Fit along y-axis of the enhanced PSD (red) and the estimated PSD (green) 
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The final estimation of the PSD is shown in Fig. 19. The estimated PSD clearly 

improves the visibility of the rings of the enhanced PSD and facilitate the quality 

assessment of micrograph.  

 

 

Fig. 19 Final result of the model 
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3.   IMPROVED CTF ESTIMATION AND PSD/CTF CLASSIFICATION 

The main objective of this project is to detect and correct wrongly estimated CTF. To 

this goal, we worked with a set of micrographs to analyze the calculated CTFs and 

develop several methods to improve results. The new methodology was implemented in 

C++ and Java ona a Linux operating system, and integrated into the open-source digital 

image processing software XMIPP (X-windows based microscopy image processing 

package) developed by the National Center of Biotechnology (CSIC). 

  

We first classified the micrographs into 3 categories: 

 Micrographs with good-quality enhanced experimental PSDs and correctly estimated 

PSDs. 

 Micrographs with good-quality enhanced experimental PSDs and incorrectly estimated 

PSDs. 

 Micrographs with bad-quality enhanced experimental PSDs. 

 

The formula used to assess the correctness of the CTF estimation program is the 

following 

 

 

                                                                                                                     

where  refers to the number of good enhanced PSDs giving correctly estimated 

theoretical PSDs and  refers to the number of good enhanced PSDs producing badly 

estimated theoretical PSDs. Although it is not necessary in the formula for the 

correctness , we will also introduce the term  which will correspond to micrographs 

with a bad-quality enhanced PSDs. 
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The formula represents the percentage of good experimental PSD which resulted in a 

good estimation of the theoretical PSD out of the total number of good experimental 

PSDs. This way, we do not take into account the bad-quality experimental PSDs as with 

that data we cannot make a good CTF estimation. 

 

We will apply this formula before and after we introduce any modifications to the 

program to see in which grade they improve the CTF estimation.  
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4.   METHODOLOGY AND RESULTS 

4.1.   Introduction 

To assess the actual correctness of the calculation of the CTF we will work with a set of 

753 micrographs. This set of micrographs is subdivided into several subsets which 

correspond to samples taken by different electron microscopes and will therefore have 

different parameter values. 

 

We can distinguish a bad estimation of a PSD from a good estimation by observing the 

enhanced version of the experimental PSD half plane versus the estimated PSD half 

plane (Fig. 19).  Now we need to specify what we refer to when we talk about a good-

quality experimental PSD and a bad-quality experimental PSD in order to determine 

which micrographs should be discarded.  

 

The good-quality PSD comes from a good-quality micrograph, which typically present 

multiple concentric rings, extending from the image center toward its edges. Bad 

micrographs may lack any rings or only have very few rings that hardly extend from the 

image center. Other reasons to discard micrographs may be the presence of strongly 

asymmetric rings (astigmatism) or rings that fade in a particular direction (drift). Some 

examples that illustrate the micrograph selection based on their PSDs are shown in Fig. 

20. 

 

 

Fig. 20 (a) A suitable PSD has several rotationally symmetric rings. PSDs should be discarded if they present 
astigmatism, that is, (b) rotationally asymmetric, or drift, that is, (c) fading in a particular direction.
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The CTF calculation for 753 micrographs produced the following results: 

 Micrographs  – 486 micrographs 

 Micrographs  – 194 micrographs 

 Micrographs  – 73 micrographs 

 

The computed correctness of CTF estimation is  . It is a fairly good number of 

correct estimations to start with. In the next section we will develop methods to rise this 

percentage. 
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4.2.   Improvement of the goal function 

4.2.1.   Methodology 

The estimation of the CTF parameters is done between the minimum digital frequency 

(which should be a little lower than the digital frequency of the first CTF zero) and the 

maximum digital frequency (which should be higher than the last zero of the CTF). At 

higher frequencies there is more correlation with noise, so if we focus on calculating the 

parameters only between the first and the third zero, where noise affects less, we will 

probably make a better estimation of the parameters.  

 

In the mathematical basis of the determination of the CTF we presented the defocus 

determination in Step 3. The goal function to be minimized at this stage is shown in Eq.  

( . In this equation  is defined as the number of spectral grid points in the set . 

This set is defined as the region in the frequency space where the two PSDs 

(experimental and theoretical) are being compared. Set  is an annular region defined 

by the inner and outer radii specified by the user which corresponds to the minimum 

digital frequency and the maximum digital frequency. We will modify this by denoting 

that set  at this point will be a region defined by the first and the third zero of the PSD.  

 

Therefore, we define a mask for this region and we will work over it instead of working 

over the whole range of frequencies of the PSD.  
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The mask is the light red region traced in the figure below. 

 

 

Fig. 21 Mask over the PSD of the micrograph 

 

4.2.2.   Results 

After implementing this method we could see that many good experimental PSDs that 

had badly estimated PSDs result new in correctly estimated PSDs. For example, see the 

following figure. 

 

 

Fig. 22 (a) Initial calculation of estimated PSD, (b) calculation with new methodology 
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This improvement was introduced in the class adjust_ctf.cpp where we calculate the 

parameters of the CTF.  

 

The correctness  will show evaluate the improvement quantitatively. The CTF 

calculation on 753 micrographs resulted in: 

 Micrographs  – 574 micrographs 

 Micrographs  – 106 micrographs 

 Micrographs  – 73 micrographs 

If we compare these results with the initial ones, we can see that 88 micrographs that 

belonged to Micrographs  now belong to Micrographs . 

 

The correctness consequently improved form  to . 
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4.3.   Semi automatic classification  

In this section we are going to develop several criteria to sort the set of micrographs. 

The aim of this methodology is not to correct badly estimated PSDs but to detect them. 

If we manage to find a method which sorts the micrographs from better estimations to 

worst estimations, badly estimated PSDs could be removed from the set of data or even 

be recalculated. Moreover, bad experimental PSDs could also be removed from our set 

of images.  

 

4.3.1.   Individual criterion 

The goal was to implement in XMIPP several different criteria to classify our set of 

micrographs depending on different properties of its experimental PSD and its estimated 

PSD. Different criteria give the user the possibility to choose among different 

classifications. In the following sub-sections we will present the criteria we tested.  

 

To understand how each criterion classifies, the best thing is to select one image that 

represents a good estimation of the PSD and another one that represents a bad 

estimation of the PSD. We will not assess these sorting methods with the correctness  

because we are not correcting bad estimations; we are detecting bad estimations and bad 

experimental PSDs. In the annex (A.1) we show a partial view of the classification for 

each criterion.  
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4.3.1.1.   Damping 

4.3.1.1.1.    Methodology 

The damping is the envelope value at the border of the PSD. Micrographs with a high 

envelope value at border are either wrongly estimated strongly or under sampled.  

 

 

Fig. 23 (1) Radial average of a PSD with a low envelope value, and (2) radial average of a PSD with a high 
envelope value 

 

The damping envelope is called  and it is shown in Eq. . The formula of this 

criterion is shown below 

 

                                                                                               

 

where  is the spatial frequency corresponding to the border of the PSD and it is 

defined as  , where  is the size of the image in pixels.  
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4.3.1.1.2.   Results 

As we said before, this method evaluates the envelope value at the border of the PSD. In 

the image below we can appreciate how the envelope of Fig. 24 (b) extends more to the 

border than the envelope of Fig. 24 (a). Image (a) will appear somewhere at the 

beginning of the classification and image (b) somewhere near the end.  

 

 

Fig. 24 (a) A PSD with a low envelope value, (b) a PSD with a high envelope value 

 

It is obvious that PSD (b) is badly estimated. In fact, we can demonstrate that the 

bad estimation of this PSD is due to an error when introducing the value of the 

sampling rate of the micrograph. 

 

 

Fig. 25 (a) PSD (Fig. 24 (b)) evaluated with sampling rate of 0.84 Angstroms, (b) PSD (Fig. 24 (b)) evaluated 
with sampling rate of 2.52 Angstroms 
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We solved the problem by multiplying the sampling rate by three (Fig. 25). This 

problem is caused by an error of the user when introducing the sampling rate, so there is 

no way we can correct this, but we can detect this kind of mistakes with this criterion. 
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4.3.1.2.   First zero average 

4.3.1.2.1.   Methodology 

In practice, the frequency of the first zero of the PSD is between 0.1 and 0.25 in 

normalized units (normalized frequency is between 0 and 0.5), which corresponds to the 

values between 10x and 4x the sampling rate in Angstroms. PSDs with the first zero out 

of this range will be penalized. The diagram of Fig. 26 shows the range of values in 

which the first zero should be according to experimental results.  

 

 

Fig. 26 Radial average of a PSD with the normalized frequency margins marked 

 

In the first place, we calculate the radial integral around the first zero 

 

 

 

where  is the radial angle ,  is the spatial frequency corresponding to 

the first zero, and  is defined below 

 

 

 

The formula of this criterion (Eq. ) will give a numerical result which corresponds 

to the normalized frequency of the first zero of the corresponding PSD. If this result is 

not between 0.1 and 0.25, the resulting value of the criterion will be a high value. 



UNIVERSIDAD SAN PABLO-CEU                                      PROYECTO FINAL DE CARRERA 

ESCUELA POLITÉCNICA SUPERIOR                              INGENIERÍA DE TELECOMUNICACIÓN 

52 

 

 

4.3.1.2.2.   Results 

When we saw the classification results, we discovered that this method is very useful to 

identify CTFs which were not estimated at all because they are highly penalized.  

 

 

Fig. 27 (a) PSD at the beginning of the list, and (b) PSD at the end of the list 

 

The enhanced PSD of Fig. 27 (a) was not calculated, therefore the radial integral of the 

first zero will not satisfy the premises of this criterion. This means that this PSD will be 

highly penalized and will be situated at the beginning of the list. Enhanced PSDs with 

the first zero of the radial integral that are between the defined experimental range will 

have a small value for this criterion and will be situated near the end of the list (Fig. 27 

(b). 
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4.3.1.3.   First zero ratio 

4.3.1.3.1.   Methodology 

This measures the astigmatism of the PSD by computing the ratio between the largest 

and smallest axes of the first zero ellipse. Ratios close to 1 indicate no astigmatism.  

 

 

Fig. 28 Major and minor axis of the first zero ellipse 

 

The formula of this criterion is defined as  

 

 

 

where  and  are unitary vectors corresponding to the directions of axis U and axis V 

respectively, and  is the spatial frequency corresponding to the first zero.  
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4.3.1.3.2.   Results 

At the beginning of the list we will have CTFs with no astigmatism and at the end of the 

list we will have the more astigmatic CTFs.  

 

 

Fig. 29 (a) PSD at the beginning of the list, and (b) PSD near the end of the list 

 

In Fig. 29 (a) we see that the eccentricity of the ellipse (the ratio of the distance between 

the two foci to the length of the major axis) is small. For this reason, this PSD will be 

located in the beginning of the list. The PSD of Fig. 29 (b) has a large eccentricity so it 

will be placed near the end of the list.  
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4.3.1.4.   Fitting score 

4.3.1.4.1.   Methodology 

The CTF is computed by fitting a theoretical model to the experimentally observed 

PSD. This criterion is the fitting score. Smaller scores correspond to better fits.  

 

 

              Fig. 30 Zeros of experimental PSD vs theoretical PSD 

 

The formula corresponding to this criterion is 

 

 

 

where  is the maximum value of the spatial frequency.  
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4.3.1.4.2.   Results 

In the figure below we can clearly observe that the PSD at the beginning of the list has a 

better fitting of its theoretical model with its enhanced experimental PSD than the PSD 

at the end of the list. 

  

 

Fig. 31 (a) PSD at the beginning of the list, and (b) PSD at the end of the list 

 

Fig. 31 (b) will have very high values for this criterion because we can clearly see that 

the theoretical PSD and the experimental PSD do not fit properly. This PSD will appear 

near the end of the list. The PSD in Fig. 31 (a) has a very good fitting so it will be 

placed at the beginning of the list. 
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4.3.1.5.   Fitting correlation between zeros 1 and 3 

4.3.1.5.1.   Methodology 

The region between the first and third zeroes is particularly important since it is where 

the Thon rings are most visible. This criterion reports the correlation between the 

experimental and theoretical estimation of PSDs within this region. High correlations 

indicate good fits.  

 

 

Fig. 32 Mask between zeros 1 and 3 

 

The formula for this criterion will be the same formula as the fitting score criterion 

shown in Eq.36, but the range of the spatial frequency will be different. 

 

 

 

where  and  are the spatial frequencies of the first and the third zero respectively. 
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4.3.1.5.2.   Results 

This criterion is a modified version of the fitting score criterion that gives very good 

results. At the beginning of the list will be the worst estimated CTFs.  

 

 

Fig. 33 (a) PSD at the beginning of the list, and (b) PSD at the end of the list 

 

In Fig 33 (a), the theoretical PSD does not model well the rings 1 to 3. The theoretical 

PSD of Fig. 33 (b) does it correctly.  
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4.3.1.6.   PSD correlation at 90 degrees 

4.3.1.6.1.   Methodology 

The PSD of non-astigmatic micrographs correlate well with its rotated version by 90 

degrees. This is so because non-astigmatic PSDs are circularly symmetrical, while 

astigmatic micrographs are elliptically symmetrical. High correlation when rotating 90 

degrees is an indicator of non-astigmatism. This criterion is computed on the enhanced 

PSD.  

 

 

Fig. 34 The first ring of PSD vs the first ring of the same PSD rotated 90º 

 

To perform this pair-wise comparison, we computed the normalized cross correlation 

(NCC) between these two images, which is a simple and fast computation. The NCC is 

defined as 

 

 

 

where  and  are the samples of two images at the pixel coordinate   , and  and  

are the mean values of the corresponding images. The denominator in the equation  
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serves to normalize correlation coefficients such that  ,  

indicating maximum correlation (here, ideally circular diffraction rings),  no 

correlation,  meaning that one image is the inverse of the other, and 

 meaning that one image has small values in the same part where the other 

image has large values. In the ideal case of perfectly circular rings whithout noise, the 

NCC depends neither on the number of rings nor on the contrast in the spectrum 

(  for any number of rings and for any contrast). In reality, however, noise in 

the spectra and imperfect circularity of the rings lead to different   values below 1.  
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4.3.1.6.2.   Results 

The PSD at the beginning of the list (Fig. 35 (a)) is visibly astigmatic whilst the PSD at 

the end of the list (Fig. 35 (b)) is circularly symmetrical. 

 

 

Fig. 35 (a) PSD at the beginning of the list, and (b) PSD at the end of the list 
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4.3.1.7.   PSD radial integral 

4.3.1.7.1.   Methodology 

This criterion reports the integral of the radially symmetrized PSD. This criterion can 

highlight differences among the background noises of PSD. This criterion is computed 

on the enhanced PSD.  

 

 

Fig. 36 PSD with no noise vs PSD with noise 

 

In the diagram of Fig. 36 there is a graphical sketch (first two diagrams in blue) of the 

calculation of this criterion. The PSD with no noise (this is obviously an approximation 

as the PSD will always have some noise), will have a higher envelope than the PSD 

with noise. This is because at higher frequencies there is more correlation with noise, 

and if there is a lot of noise the values of the envelope at those frequencies won‟t be as 

visible as if there is no noise. If we sum the values of the absolute values of the 

envelope for each case we will obtain the area below the curve (named A for the PSD 

with no noise and B for the PSD with noise). We can observe that A > B, so this 

criterion will penalize noisy PSD as it is probable that they won‟t have as good 

estimation as a less noisy PSD.  
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This criterion is calculated the following way 

 

 

 

Where  is the radial angle  ,  is the total number of pixels in the image, 

and  is defined below 

 

 

 

To compute the radial integral for all spatial frequencies, we need to define the 

maximum frequency value of axis U and axis V. 
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4.3.1.7.2.   Results 

The bad visibility of the rings at high frequencies in Fig 37 (a) is due to background 

noise. This means that this PSD will be at the beginning of the list. The rings have a 

better definition in Fig. 37 (b). In this case, this criterion suggests that this PSD will be 

better adjusted to the theoretical model, therefore it will be placed near the end of the 

list. 

 

 

Fig. 37 (a) PSD at the beginning of the list, and (b) PSD near the end of the list 
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4.3.1.8.   PSD variance 

4.3.1.8.1.   Methodology 

The PSD is estimated by averaging different PSD local estimates in small regions of the 

micrograph. This criterion measures the variance of the different PSD local estimates. 

Untilted micrographs have equal defocus all over the micrograph, and therefore, the 

variance is due only to noise. However, tilted micrographs have an increased PSD 

variance since different regions of the micrograph have different defocus. Low variance 

of the PSD is indicative of non-tilted micrographs.  

 

The formula of this criterion is similar to the formula of the variance. 

 

 

 

where  iterates through all the small regions of the PSD.   is therefore the 

number of  regions in which we divide the PSD.  

 

 is the mean of the small regions of the PSD and is defined as 
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4.3.1.8.2.   Results 

The PSD at the beginning of the list (Fig. 38 (a)) would correspond to a tilted 

micrograph and the PSD at the end of the list (Fig. 38 (b)) would correspond to a non-

tilted micrograph. 

 

 

Fig. 38 (a) PSD at the beginning of the list, and (b) PSD at the end of the list 
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4.3.1.9.   PSD PCA Runs test 

4.3.1.9.1.   Methodology 

When computing the projections onto the first principal component, as discussed in the 

previous criterion, one might expect that the sign of the projection is random for untilted 

micrographs. Micrographs with a marked non-random pattern of projections are 

indicative of tilted micrographs. The larger the value of this criterion, the less random 

the pattern is.  

 

For this criterion we will use the Principal component analysis (PCA) which is a 

mathematical procedure that uses an orthogonal transformation to convert a set of 

observations of possibly correlated variables into a set of values of uncorrelated 

variables called principal components. PCA is useful when you have obtained data on a 

number of variables (possibly a large number of variables), and believe that there is 

some redundancy in those variables. In this case, redundancy means that some of the 

variables are correlated with one another, possibly because they are measuring the same 

construct. Because of this redundancy, you believe that it should be possible to reduce 

the observed variables into a smaller number of principal components (artificial 

variables) that will account for most of the variance in the observed variables. 

 

To characterize the trends exhibited by the set of data, PCA extracts directions where 

the cloud is more extended. For instance, if the cloud is shaped like an ellipse, the main 

direction of the data would be a midline or axis along the length of the ellipse. This is 

called the first component, or the principal component. PCA will then look for the next 

direction, orthogonal to the first one, reducing the multidimensional cloud into a two-

dimensional space. The second component would be the axis along the ellipse width. 

 

This transformation is defined in such a way that the first principal component has as 

high a variance as possible (that is, accounts for as much of the variability in the data as 

possible), and each succeeding component in turn has the highest variance possible. 

Principal components are guaranteed to be independent only if the data set is jointly 

normally distributed. 

 

 

http://en.wikipedia.org/wiki/Orthogonal_transformation
http://en.wikipedia.org/wiki/Variance
http://en.wikipedia.org/wiki/Multivariate_normal_distribution
http://en.wikipedia.org/wiki/Multivariate_normal_distribution
http://en.wikipedia.org/wiki/Multivariate_normal_distribution
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Fig. 39 Example of data set with two main components 

 

This criterion is computed using the formula of the covariance to measure how much 

the first and the second components (PC1 and PC2 respectively, shown in Fig. 39) 

change together.  

 

 

 

where  is the maximum value of the spatial frequency along axis U (which is the 

large axis).  is the mean of the small regions of the PSD and is defined in Eq. 

.  and  are unitary vectors corresponding to the directions of axis U and axis V 

respectively. 

 

The covariance will provide a measure of the strength of the correlation between the 

two sets of random variables. For uncorrelated variables, the covariance is zero. 

However, if the variables are correlated, their covariance will be non-zero. The larger 

the value of this formula, traduces to a less random pattern in the micrograph and 

therefore there is a bigger possibility that the micrograph is tilted. 
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4.3.1.9.2.   Results 

The PSD at the beginning of the list (Fig. 40 (a)) would correspond to a tilted 

micrograph (micrographs with a marked non-random pattern) and the PSD at the end of 

the list (Fig. 40 (b)) would correspond to a non-tilted micrograph. 

 

 

Fig. 40 (a) PSD at the beginning of the list, and (b) PSD at the end of the list 
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4.3.1.10.   Normality 

4.3.1.10.1.   Methodology 

There are some micrographs which present areas with a lot of very dark or very light 

tones due to ice imperfections, dust or simply because they are badly scanned. This fact 

can be used to design a new classification criterion. This criterion is going to be the 

normality test. Normality tests are used to determine whether a data set is well-modeled 

by a normal distribution or not. An informal approach to testing normality is to compare 

a histogram (gray-level quantization) of the sample data to a Gaussian function. The 

empirical distribution of the data (the histogram) should be bell-shaped and resemble 

the normal distribution. 

 

 

Fig. 41 Micrograph with darker tones outlined in red 
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In the case of the micrograph with a lot of very dark or very light tones, the histogram is 

non-Gaussian-like because it shows many gray levels concentrated near zero or many 

gray levels concentrated near the maximum value (255 for images scanned with 8 bits 

per pixel). This may typically result in 0.25% gray levels that are very dark or very light 

(Fig. 41).  

 

 

Fig. 42 A micrograph and its corresponding histogram 

 

In the case of easily detectable very bright or dark regions in the micrograph, we may 

remove the regions because the particles are very low contrasted in such regions, which 

mean that around 0.25% of darkest gray values and 0.25% of brightest values in the 

histrogram would be replaced by the black value and the white value respectively. An 

equivalent approach would be to replace the values of the pixels in the micrograph 

without cutting it: the pixels with 0.25% of darkest gray values in the histogram would 

be replaced by the black pixel and the pixels with 0.25% of brightest values in the 

histogram would be replaced by the white value. This second method was implemented 

in the work here. 
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If we observe the two micrographs inf Fig. 43, we see how the one on the left hand side 

is more homogeneous in terms of its scale of grays, whilst the micrograph on the right 

hand side presents lighter tones in the image making it less homogeneous. This contrast 

will produce that the histogram of the micrograph will be less normal than the one of 

the other micrograph and therefore the PSD estimation will be worse.  

 

 

Fig. 43 (a) A homogeneous micrograph, (b) a micrograph with a less homogeneous aspect 

 

The comparison of the histogram to the normal, Gaussian curve was used here for the 

classification of the PSDs. We will use the Kullback-Leibler divergence theory to define 

the normality test. 
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Kullback-Leibler divergence 

For probability distributions P and Q of a discrete random variable their K–L 

divergence is defined to be 

 

 

 

In words, it is the average of the logarithmic difference between the probabilities  and 

, where the average is taken using the probabilities . The K-L divergence is only 

defined if  and  both sum to 1 and if  for any  such that . If the 

quantity  appears in the formula, it is interpreted as zero. 

 

One might be tempted to call it a "distance metric" on the space of probability 

distributions, but this would not be correct as the K-L divergence is not symmetric nor 

does it satisfy the triangle inequality. Still, being a premetric, it generates a topology on 

the space of generalized probability distributions, of which probability distributions 

proper are a special case. 

 

To obtain a measure of the Kullback-Leibler divergence  

 

 

 

In our specific problem,  is the histogram of the micrograph and  is the probability 

density function of a Gaussian distribution of the same mean and variance as the 

micrograph. 

 

As the K-L divergence is not symmetric, we can calculate the average between 

 and . If the K-L divergence is symmetric the average will be the 

same and this will mean that the micrograph has a Gaussian distribution. In the case in 

which the micrograph presents imperfections (such as dark regions) the divergence will 

not be symmetric and therefore the distance (i.e. our criterion) will be a large value. 
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4.3.1.10.2.   Results 

To show the results we will compare the two micrographs in Fig. 43. The histograms of 

the micrographs have different normality. 

 

 

Fig. 44 (a) Histogram of micrograph in Fig. 43 (a), (b) histogram of micrograph in Fig. 43 (b) 

 

The histogram of the more homogeneous micrograph (Fig. 43 (a)), which is shown in 

Fig. 44 (a), presents a more normal distribution than the other one. This means that 

when comparing the histogram to the normal in the normality test, the micrograph of 

Fig. 43 (a) will give better results.  
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The PSD of Fig. 45 (a) corresponds to the more homogeneous micrograph. We can 

observe that this PSD has been better fitting. We can also see that its enhanced PSD has 

better quality than the enhanced PSD of Fig. 45 (b), which corresponds to the less 

homogeneous micrograph. The high quality of the experimental PSD contributes to 

make better estimation of the PSD.  

 

 

Fig. 45 (a) PSD of micrograph Fig. 44 (a), (b) PSD of micrograph Fig. 44 (b) 

 

The PSD of Fig. 45 (b) is drifted (its  rings fade in a particular direction Fig. 20 (c)). 

This is due to a default when producing the micrograph. Drifted micrographs are non-

stationary signals. A signal can be considered stationary in the wide sense, if the two 

following criteria are met: 

1.  The mean values or expectations of the signal are constant for any shift in time. 

2.  The autocorrelation function is also constant over an arbitrary time shift. 

This means that when calculating the histogram, there will be different histograms over 

time shift.  

 

In the same PSD we can also see that the damping is not properly estimated (we observe 

that the fluctuation of zeros continue more than it should). This is because when we 

calculate the damping it is supposed that micrograph is a stationary signal, and this one, 

as we said before, is not.   
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In the annex (A.14) there is a partial representation of some PSDs sorted with this 

criterion. We concluded that the classification was good and the criterion was therefore 

implemented. This new criterion was added to the class ctf_sort_psds.cpp.  
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4.3.1.11.   Conclusions 

Analyzing the classifications of all criteria, we take as the best sorting criteria:  

 First zero average: it produces a fairly good sorting. 

 Fitting correlation between zeros 1 and 3: also generates a good sorting. 

 PSD correlation at 90 degrees: this criterion is the best one. The sorting actually 

makes it possible for the user to select the PSD estimates from the point where 

he/she considers that the estimations are beginning to be acceptable. Of course, this 

is done visually and it is an approximation, but it is definitely a very useful tool. 

 

Finally, we conclude that although there are better sorting methods than others, all 

criteria are valid and can be useful to process micrographs, therefore all criteria will be 

introduced in the class ctf_sort_psds.cpp.  
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4.3.2.   Combined criterion 

4.3.2.1.   Methodology 

We will now make another classification based on the three criteria that had the best 

sorting. We are going to work only with the good micrographs sorted with PSD 

correlation at 90 degrees. We remove the badly estimated PSDs (we determine visually 

at which point the PSDs start to be badly estimated). We will work with 243 

micrographs out of our set of 753. A representative extract of our set of data is show in 

the annex (A.10).   

 

Our first attempt was to sort these micrographs according to first zero average and 

fitting correlation between zeros 1 and 3 criteria to see if we can improve our 

classification but there were no decisive results. 

 

PSD correlation at 90 degrees is a good start, but the problem with this criterion is that 

it only takes into account the experimental part of the micrographs (it rotates de 

experimental PSD 90 degrees and compares de image result with the original 

version).This is actually measuring the astigmatism, which is definitely a good measure 

to select a threshold to identify good images, but we somehow also need to take into 

account a test for the actual achievement of the theoretical part of the micrograph. 

 

We classified the whole set of 753 micrographs (that is including the bad ones also) the 

following way: 

 

 Descending order of the average of the scores obtained by sorting using PSD 

correlation at 90 degrees, first zero average and fitting correlation between zeros 1 

and 3: first we sort the set of micrographs according to the value obtained by each 

criterion in descending order. We will have three classifications. Then we calculate 

for each micrograph the average position it holds in each list. The resulting number 

can be real or integer. In the end, all micrographs will have a number assigned. The 

set of micrographs will be sorted according to the descending order of those values.  
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 Descending order of the standard deviation of the scores obtained by sorting using 

PSD correlation at 90 degrees, first zero average and fitting correlation between 

zeros 1 and 3: this method follows the same steps as the above, but instead of 

calculating the average it will calculate the standard deviation of the positions the 

micrograph has in each list. 

 

For this task we used GNU Octave, a program for solving numerical problems similar to 

Matlab. In the code, our input data is firstZero, corr13 and psdcorr90 (the three 

classifications), and the outputs are avg_comb (average combination) and std_comb 

(standard deviation). 

 

 

Fig. 46 GNU Octave code for average and standard deviation sorting 
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After comparing the results obtained with two methods, we concluded that the best 

method was the average average between PSD correlation at 90 degrees, first zero 

average and fitting correlation between zeros 1 and 3. The results of only that method 

will be showed. 
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4.3.2.2   Results 

As we said before, the descending order of average between PSD correlation at 90 

degrees, first zero average and fitting correlation between zeros 1 and 3 is the best 

sorting out of all possibilities. In the Fig. 47 we see the best PSD estimations in the top 

row and the worst PSD estimations in the bottom row obtained by this method.  

 

 

Fig. 47 Top row corresponds to first 3 PSDs of the list and bottom row corresponds to last 3 PSDs of the list 

 

An extract of this classification is shown in the annex (A.11). This sorting criterion is 

very good, in fact, we can determine a threshold visually when we see that the CTF 

estimation starts to fail, and there will be very few incorrect CTF estimations above this 

threshold. 

 

After deciding that the average is a good method for classifying, we tried to use it with 

other criteria to see if this way we get better results. We determined a new threshold 

visually and made a new file with only good images. An extract of only the good 

images is shown in the annex (A.12). 
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Our initial criterion is the average between PSD correlation at 90 degrees, first zero 

average and fitting correlation between zeros 1 and 3. The next classifications that we 

did and their results are described below: 

 Average of PSD correlation at 90 degrees and fitting correlation between zeros 1 

and 3: this sorting was almost the same as the initial criterion. 

 Average of fitting correlation between zeros 1 and 3 and first zero ratio: it does not 

provide good sorting. 

 Average of PSD correlation at 90 degrees, fitting correlation between zeros 1 and 3 

and first zero ratio: it seems it works although it can be used only if we want to keep 

astigmatic images because astigmatic and non-astigmatic images are mixed. 

 

We also tried PSD correlation at 90 degrees and fitting correlation between zeros 1 and 

3 with other criteria as follows: 

 Average of PSD correlation at 90 degrees, fitting correlation between zeros 1 and 3 

and damping: it does not provide a good sorting; it gives a mixture of PSD. 

 Average of PSD correlation at 90 degrees, fitting correlation between zeros 1 and 3 

and psdint: it does not provide a good sorting; it gives a mixture of PSD. 

  Average of PSD correlation at 90 degrees, fitting correlation between zeros 1 and 

3 and PSD variance: it does not provide a good sorting; it gives a mixture of PSD. 

  Average of PSD correlation at 90 degrees, fitting correlation between zeros 1 and 

3 and PSD PCA Runs test: it does not provide a good sorting; it gives a mixture of 

PSD. 

 

After this exhaustive search for the best combination of sorting criteria, we decided to 

implement in C++ the combination of PSD correlation at 90 degrees and fitting 

correlation between zeros 1 and 3. To this goal, we translated the Octave code into C++ 

and added it to the class ctf_sort_psds.cpp.  
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4.3.3.   The graphical interface 

A graphical interface was developed using ImageJ (a Java based image processing 

program of public domain) to sort micrographs according to all criteria described in 

section 4.3. The idea is to show the PSD and the CTF estimation of all the set of 

micrographs in a table which will also contain the values of each criterion for the 

micrographs. An extract of the interface is shown in Fig. 48. 

 

 

Fig. 48 Graphical interface 

 

The user can now sort the micrographs according to one of the criteria by clicking on 

the top of the column of that criterion. There is also a possibility to discard or select 

micrographs.  

 

An example of how well this interface works is now described. We start with our set of 

753 micrographs. We sort them by the combination criterion. We determine a threshold 

visually and discard the micrographs below that threshold (badly estimated PSDs). We 

continue working only with 174 good images (only perfect circular symmetric PSDs). 

In the annex (A.12) there is an extract of these good images. Now we sort this set of 

micrographs according to each individual criterion to see its effect: damping, first zero 

average, first zero ratio, PSD radial integral and PSD PCA Runs test. There is no good 

or bad sorting but perhaps we could say that damping and PSD radial integral criteria 

are very similar and give good sorting in the sense that one can visualize the rings of the 

CTF going from more to less concentrated around the center. In the annex (A.13) there 

is an extract of this sorting. 
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Regarding the results, we can conclude that it is very useful to have a flexible interface 

in which the user can decide the criterion to classify the set of micrographs, and also be 

able to discard the ones that he/she does not want to keep.  
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4.4.   Manual initialization 

Once we processed all the micrographs, we observed that when sorting with the first 

zero average criterion, shown in annex (A.2), at the beginning of the list there are 

several PSDs that are not calculated at all, i.e. there is no image at all in the right hand 

side of the half plane. These PSDs should have been calculated because their 

experimental PSDs are good. 

 

As we can see in the image below, the experimental PSD is fairly good but somehow 

the estimated PSD was not calculated at all. 

 

 

Fig. 49 Enhanced PSD vs estimated PSD of micrograph 
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The table shown in Fig. 50 is the parameters of the CTF calculation that failed (Fig. 49). 

 

 

Fig. 50 File of parameters of micrograph 

 

We can see that the defocus_U is around 4000Å but the estimation is incorrect (bad 

correspondence with enhanced PSD), so we are going to re-estimate the PSD giving an 

initial defocus value 5000 Å. We can observe that the results are now good (Fig 51).  
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Fig. 51 Enhanced PSD vs estimated PSD of micrograph with initial defocus value of 5000Å 

 

The conclusion wass to introduce in the CTF classification graphical interface the 

refinement of the CTF parameters strating from some initial defocus value specified by 

the user in order to reduce the number of CTF estimation failures. 

 

4.4.1.   Methodology 

A good initial estimation for the defocus is the first zero of the CTF. The problem is that 

the value of the first zero will be given in pixels and the defocus is measured in 

Angstroms. We will therefore need to make a conversion of units.  

 

For this we need to look at the mathematical formula which contains the defocus. 
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 represents the spherical aberration coefficient,  is a given spatial frequency, 

 is the defocus vector, and  is the electron wavelength which is computed as in 

Eq.  

 

A typical microscope has a frequency response  detailed in Eq.  

We make  and obtain the equation for   (Eq. ). 

 

 

 

 

 

 

 

When we tested the equation we realized we needed to add   to  to get the value 

of the periodic function that matches the solution. The period of trigonometric functions 

is usually  but in the case of the tangent the period is , so we will adjust it now 

 

 

 

We will now obtain the equation of the defocus from the other formula and substitute  

  

 

 

 

 

 

This is the formula for the conversion of units. The method will consist in measuring 

the first zero in pixels and applying the conversion formula to obtain the initial 

estimation value of the defocus. 
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4.4.2. Results 

To validate this method we will use the formula for the conversion of units to calculate 

the defocus of a PSD of a micrograph and check if it is correctly calculated by 

comparing it with the value calculated by the CTF estimation program. 

 

This is the PSD we are going to use to check our equation. The theoretical PSD has to 

be well calculated so that we are able to compare our result with the correct value. 

 

 

Fig. 52 PSD of micrograph with defocus value of 4000Å 
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To obtain the parameters we need for our formula we will check the file of the CTF 

parameters calculated by the program. 

 

 

Fig. 53 File of parameters of micrograph 

 

From this information we obtain the values of the parameters we need. 
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where  is the estimation of the first zero given in pixels,  is the length 

of the window of the PSD given in pixels, and   is the sampling period. 

 

We need to calculate the estimation of the first zero by measuring it in the PSD. 

 

 

Fig. 54 Measure of the first zero of the PSD 

 

We obtain that   and we also measure the window size, which is 

128 x 128, so . 

 

 

 

We also know the parameters to calculate  
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Substituting the values in Eq.  we obtain the following results 

 

 

 

  Angstroms 

 

If we compare the value obtained for the defocus with the defocus_U in the parameter 

file we can check that our calculations are similar so we can conclude that is works 

correctly. 

 

 Angstroms 

defocus_U  Angstroms 

 

The evaluation criterion will show how good our implementation is. When we execute 

the CTF calculation of the 753 micrographs we now have: 

 Micrographs  – 655 micrographs 

 Micrographs  – 25 micrographs 

 Micrographs  – 73 micrographs 

When we apply the formula we obtain the correctness of η = 96%. This is a great 

improvement.  

 

We conclude that manual initialization of the CTF estimation is very useful in order to 

recalculate PSDs that have not been calculated at all. Its implementation is in the class 

EllipseCTF.java. 
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4.4.3.   The graphical interface 

It is not easy to estimate a good initial defocus for the user, so we will let the user watch 

the PSD and trace an ellipse around the first zero. The class EllipseFitter.java will 

generate the best fitting ellipse to our tracing. What constitutes the best fitting ellipse? 

First, it should have the same area as the tracing. In statistics, the measure that attempts 

to characterize some two-dimensional distribution of data points is the 'ellipse of 

concentration' (see Cramer, Mathematical Methods of Statistics, Princeton Univ. Press, 

945, page 283).  This measure equates the second order central moments of the ellipse 

to those of the distribution, and thereby effectively defines both the shape and size of 

the ellipse. This class will return the parameters to define the ellipse: length of major 

axis, length of minor axis, center of ellipse and angle between the x-axis and the major 

axis.    

 

We normally calculate the defocus in two radial directions (although the defocus can be 

calculated in any radial direction). The major semi axis of the ellipse will be used to 

estimate the defocus_V and the minor semi axis of the ellipse will be used to estimate 

the defocus_U (Fig. 55). We chose an ellipse instead of a circle to determine the first 

zero because the rings of the PSD always have its defocus_V and defocus_U slightly 

different (if they have a lot of difference the PSD would be astigmatic). 

 

 

Fig. 55 Diagram of ellipse with defocus_V and defocus_U 
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The program will calculate defocus_V and defocus_U and and use them to recalculate 

the CTF parameters. In Fig. 56 we can see how the ellipse is fitted to give an initial 

value of the defocus to recalculate the CTF parameters of a micrograph which was not 

calculated.  

 

 

Fig. 56 Recalculate CTF of micrograph 
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5.   CONCLUSION 

In this study we analized the methodology of the estimation of CTF parameters in 

micrographs used in XMIPP and explained in article [2]. The aim was to detect and 

correct badly estimated PSDs so that the process is fast and robust.  

 

We worked with a set of 753 micrographs to make a first evaluation of the CTF 

estimation of parameters. To assess the program we used a formula to evaluate for how 

many micrographs with good enhanced experimental PSDs we had correct estimations 

of theoretical PSDs. After obtaining a 71% we developed three types of methodologies 

to rise this percentage. 

 

The first method is focused on improving the CTF estimation and it managed to rise the 

percentage up to 84%. The second method was introduced to detect badly estimated 

PSDs by generating classifications with several criteria and their combinations. The 

third method intends to recalculate badly estimated PSDs and it resulted in the 

correctness evaluation of 96%. The conclusion is that the methodology developed 

produced great results in detecting and correcting CTF estimation parameters. A 

graphical interface was therefore developed for using these tools, which was made 

publicly available as part of the open-source XMIPP software specialized for 3D 

electron microscopy in structural biology. 
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7.   ANNEX 

A.   Classifications 

A.1.   Damping 

 

Fig. 57 Representative extract of sorting with damping criterion 
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A.2.    First zero average 

 

Fig. 58 Representative extract of sorting with first zero criterion 
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A.3.    First zero ratio 

 

Fig. 59 Representative extract of sorting with first zero ratio criterion 
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A.4.    Fitting score 

 

Fig. 60 Representative extract of sorting with fitting criterion 
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A.5.   Fitting correlation between zeros 1 and 3 

 

Fig. 61 Representative extract of sorting with corr13 criterion 
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A.6.   PSD correlation at 90 degrees 

 

Fig. 62 Representative extract of sorting with psdcorr90 criterion 
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A.7.   PSD radial integral 

 

Fig. 63 Representative extract of sorting with psdint criterion 
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A.8.   PSD variance 

 

Fig. 64 Representative extract of sorting with PSDstdQ criterion 
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A.9.   PSD PCA Runs test 

 

Fig. 65 Representative extract of sorting with PSDPCARuns criterion 
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A.10.   Good images sorted with PSD correlation at 90 degrees 

 

Fig. 66 Representative extract of good images sorted with psdcorr90 criterion 
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A.11. Sorting with average between PSD correlation at 90 degrees, fitting correlation 

between zeros 1 and 3 and first zero average. 

 

Fig. 67 Representative extract of sorting with average between psdcorr90, corr13 and first zero 
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A.12.   Sorting only good images with average between PSD correlation at 90 degrees 

and fitting correlation between zeros 1 and 3 and first zero average. 

 

Fig. 68 Representative extract of sorting only good images with average between psdcorr90 and corr13 
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A.13.   Sorting only good images with damping 

 

Fig. 69 Representative extract of sorting only good images with damping 
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A.14.   Normality 

 

Fig. 70 Representative extract of normality criterion 

 

 

 

 

 

 

 

 

 

 


