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Automatic determination of the handedness of electron
density maps of macromolecules solved by cryoEM

Abstract

HaPi (Handedness Pipeline) is the first method to automatically determine the hand of electron density
maps of macromolecules solved by Cryo-Electron Microscopy. HaPi is built by training two 3D CNN models. The
first determines α-helices in a map and the second determines whether the α-helix is left-handed or right-handed.
A consensus strategy determines the overall map hand. The pipeline is trained on simulated and experimental
data. HaPi is able to correctly identify the hand in 89% of new simulated maps. HaPi correctly identified the hand
of all 10 randomly selected experimental maps whose hand was confirmed by visual inspection.

1 Introduction
During the last decades Single-Particle Analysis with cryo-
electron microscopy (CryoEM) has revolutionised the field
of Structural Biology helping us see macromolecules at
atomic resolution [1]. Single-Particle Analysis applies a se-
ries of image processing methods to combine many projec-
tions of macromolecules to reconstruct their 3-dimensional
(3D) structure, see Fig. 1. Particles are first identified in
micro-graphs. These are used to reconstruct the 3D map
of the Coulomb potential by assigning orientations to each
particle. With these orientations an initial volume is recon-
structed that is then refined. The determined experimental
maps are then used to fit an atomic model of the macro-
molecule, see Fig. 2.

Single-Particle Analysis is an ill-posed problem because
the reconstruction is not well determined. If all particle im-
age orientations are mirrored a map is reconstructed that is
equally consistent with the measured data, but nonsuperim-
posable over the map previously reconstructed, see Fig. 3.
However, only one of the maps is the correct reconstruction.

The polypeptide chain of proteins is made up of L-amino
acids. D-amino acids are never used. This confers a unique
chirality to proteins and their secondary structure [2] result-
ing in the property of protein structures that is commonly
referred to as handedness. As proteins have a specific hand-
edness only one of the two possible reconstructed maps is
the correct reconstruction of the structure. Hence, it is im-
portant to reconstruct with the correct handedness for a cor-
rect fitting of the atomic models.

Currently, a trained biologist is required to look at the
α-helices rotation to asses the handedness of the map. If in-
correct, the reconstructed map is mirrored. The direction of
rotation is easily determined at very high resolutions of 1Å,

but can be difficult at lower resolutions even for experts,
see Fig. 4. As the resolution decreases the α-helix slowly
transitions from a helix to a cylinder, which no longer has
a hand, as seen in Fig. 5. Hence, we propose HaPi (Hand-
edness Pipeline) to automatically determine the hand of re-
constructed maps using deep learning for resolutions of up
to 5Å.

To the best of our knowledge, there are no algorithms
to automatically detect the hand of reconstructed CryoEM
maps. The proposed model is based on first identifying Sec-
ondary Structure Elements (SSE) of interest in the volume
and then, using these to detect the hand. There are sev-
eral previous approaches to automatically determine SSE
in electron density maps based on non-machine learning
methods [3]–[6], machine learning methods [7], [8] and
more recently deep learning techniques [9]–[12]. As the lat-
ter have shown better performance, in this work 3D CNNs
are used to determine SSE of interest and detect the hand
of a map from small boxes extracted from the map at the
location of the SSE.

2 Datasets

Three different datasets were used, two datasets of non-
redundant atomic models selected using PDB-Select [13]
and downloaded from the protein databank (RCSB PDB
[14]) and one dataset of experimental maps from the elec-
tron microscopy databank (EMDB [15]). The first dataset
(Dataset I) of atomic models was used to simulate data to
train, validate and test models on small boxes. The sec-
ond dataset (Dataset II) of atomic models was used to val-
idate and test models on whole simulated volumes. The
EMDB dataset (Dataset III) consisted on experimentally
determined structures.
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Fig. 1. Workflow of Single Particle Analysis. Cryo-Electron Microscopes capture 2D projections of the macromolecules embedded
in amorphous ice. Movie frames taken by the microscope are aligned to obtain micrographs where the macromolecules can
be seen. The contrast transfer function (CTF), which describes the aberrations of the microscope, is then estimated for each
micrograph. From each micrograph particles are picked but these are very noisy 2D projections. Hence, particles which
capture the same projection are combined to reduce noise by carrying out a 2D classification. These projections are used to
reconstruct an initial volume. By carrying out refinement processes a cleaner experimental map is obtained whose resolution is
then estimated. Finally, the map can be sharpened.

Fig. 2. Single Particle Analysis simplified pipeline from microgaphs acquired containing macromolecules of interest to final atomic
fitting of the structure. Cryo-Elctron Microscopes are used to take images of thousands of projections of a macro-molecular
structure. These individual noisy images are then used to reconstruct the structure. Finally an atomic model of the macro-
molecule is fitted to the reconstructed structure.
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Fig. 3. Reconstruction of a structure from the same set of images but with mirror orientations assigned to each image which produces
a mirrored version of the structure.

Fig. 4. A portion of the same α-helix at 1Å and 5Å with its true structure (right-handed) and mirrored version (left-handed) from
different viewing angles.

Fig. 5. Same α-helix with same viewing angle at different resolutions that shows transition from helical to cylindrical structure.
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(a) (b) (c) (d)

Fig. 6. Output of the simulation of the atomic structure 1AGC with α-helices as the Secondary Structure Element (SSE) of interest
using Xmipp [16]: (a) V f : Columb potential map of the structure; (b) Vmask: mask that covers the overall structure; (c) VmaskSSE:
mask containing the SSE of interest; (d) VmaskNoSSE: mask containing the remaining part of the structure that does not have SSE
of interest.

Dataset I was used to simulate electron density maps of
macromolecules from atomic models. Boxes were then ex-
tracted from the simulated volume. Dataset I consisted of
12,343 atomic models. Boxes either contained a specific
SSE such as an α-helix or a β-sheet, or a random part of the
structure that did not contain the specific SSE. The dataset
was simulated at resolutions of 1Å, 3Å, 5Å and 6Å fo-
cusing separately on α-helices and β-sheets at each resolu-
tion. 203,889 boxes were generated for the α-helices case,
evenly split between containing α-helices and not contain-
ing α-helices. 25,776 boxes where generated for the β-
sheets case, evenly split as well. The dataset was split into
training, validation and test splits of 70%, 15% and 15%
respectively.

Dataset II was used to simulate whole electron density
maps of macro-molecules from atomic models. The dataset
consists of 3,119 atomic models simulated at 5Å. These
were split into validation and test sets of 30% and 70%,
respectively.

Dataset III consisted of all deposited experimental maps
in EMDB with resolution below or at 5Å. In total 8,061
maps were downloaded. 19,971 boxes, evenly split be-
tween containing α-helices and not containing α-helices,
were extracted from 262 of these structures. The dataset
was split into training, validation and test splits of 70%,
15% and 15% respectively to train an α-helix determina-
tion model. 78 structures were then used to test the preci-
sion of the model on whole unseen experimental volumes.

Also 10 experimental maps with high resolution of ≤ 3Å
were randomly selected to test the accuracy of the pipeline
on experimental data manually labelled.

3 Methods

The HaPi package is freely available to use and documented
via github. All the code for the methods described can be
found in the same link.

3.1 Simulation

Atomic models are used to simulate Coulomb potential
maps to create a labelled data set for training. For this
the Xmipp library [16] was used. Three sets of volumes
were generated: a volume containing the Columb potential
at each voxel (V f ), a mask of the overall structure (Vmask),
and a mask of the location of the SSE of interest (VmaskSSE).
A mask containing voxels with no SSE of interest is deter-
mined as VmaskNoSSE = Vmask ∩ VmaskSSE. Volumes have a
voxel size of 1Å. An example of the four volumes gener-
ated for each structure can be seen in Fig. 6.

The network is trained from boxes extracted from V f as
seen in Fig. 7. VmaskSSE is first eroded to separate regions in
the mask. Each region contains an α-helix. The centroid of
each region is determined. The number of centroids found
is n. At each of these centroid locations a box of dimen-
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(a) (b) (c)

Fig. 8. The three types of Secondary Structure Elements that are found within simulated structures simulated at 5Å: (a) α-helix; (b)
β-sheet; (c) No clear Secondary Structure Elements.

Fig. 7. Extracted boxes from V f , the Columb potential map of the
structure. In yellow boxes containing Secondary Structure
Elements (SSE) of interest, in this case α-helices. In purple
boxes containing no SSE of interest.

sions 11 pixels× 11 pixels× 11 pixels is extracted from V f .
VmaskNoSSE is first eroded so as to avoid selecting points that
could contain parts of α-helices. Then, n points are selected
at random from the eroded VmaskNoSSE. Boxes are also ex-
tracted from V f at those points.

There are three types of structures that can be found in a
box: an α-helix, a β-sheet, or another part of the structure
with no clearly defined SSE. The three types are visualised
in Fig. 8.

The fitted atomic model of experimental structures is
used to extract boxes containing α-helices from experimen-
tal maps. Xmipp is used to obtain a mask of the location of
the alpha helices (VmaskSSE) and a mask of the overall struc-
ture (Vmask) from the atomic model. These masks are then
aligned with the experimental map by applying the same

transformation required to align the experimental map to
a simulated map of the structure from the atomic model.
The experimental map is resized to 1Å and filtered to 5Å .
The same process as in simulated data is applied to obtain
VmaskNoSSE and extract boxes containing α-helices and no
α-helices from the experimental map.

3.2 Model

The same 3D CNN model is used for the SSE determina-
tion task and the hand determination task. A 3D CNN is
an extension of 2D CNNs that deals with volumes instead
of images. The full architecture of the 3DCNN designed
can be seen in Fig. 9. All 3D convolutional layers and the
first connected layer are followed by ReLu activation func-
tions. The last fully connected layer is followed by a sig-
moid function.

Boxes are preprocessed before being input into the
model. First, any value below 0 is thresholded to 0. Then,
each box is normalised to the range 0 to 1 by:

bnorm =
b −min(b)

max(b) −min(b)

3.3 Training

The training strategy is similar for both tasks. Dataset I
boxes are assigned a label of 0 or 1. For the task of SSE
determination a label of 1 is given if it contains the SSE
of interest and 0 if it does not. For the hand determination
task a label of 1 is given if the SSE is left-handed (this is
the hand that is seldom found in nature) and a label of 0 if
it is right-handed. A binary cross-entropy loss function is
used for training with an Adam optimiser, a learning rate
of 0.001 and batches of size 2,048. The model is trained
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Fig. 9. 3D CNN model diagram used for both Secondary Structure Element (SSE) determination and hand determination. The input to
the network is a box containing the electron density at each voxel normalised to the range 0 to 1. The output of the network is
a value between 0 and 1. In the SSE determination task, a label of 1 represents that the SSE of interest is found within the box
and 0 means it is not. In the hand determination task, a label of 1 means the box is left-handed and 0 means it is right-handed.

for 50 epochs. An early stopping strategy is adopted where
the model saved at the epoch where the validation set loss
stagnates is used as a the final model.

Weight initialisation differs for the SSE and hand models.
For SSE determination, the model is initialised with the de-
fault PyTorch settings for weight initialisation. For the hand
model, the 1Å model is initialised with the default PyTorch
settings. Then, a transfer learning approach is used on the
5Å and 6Å model for hand determination. The weights of
the model trained on 1Å data are used as the initial weights
for training the model at 5Å and 6Å.

3.4 Volumes

The HaPi pipeline is used to process whole volumes rather
than individual boxes, see Fig. 10. HaPi takes as input
a Coulomb Potential map (V f ) and a mask of the non-
background voxels (Vmask). Models used in the pipeline are
those trained at 5Å on experimental data for SSE determi-
nation and on simulated data for hand determination.

Experimental maps have to be preprocessed. First they
are resampled to 1Å voxel size to match the training data
voxel size. Each map has a resolution below 5Å, but models
are trained at 5Å so they are low-pass filtered to 5Å. This
reduces any noise and homogenises local resolutions. Vmask

is obtained by thresholding at the specified contour level for
visualisation set by the researchers that deposited the map.

The model trained to determine α-helices is wrapped
into what we have called AlphaVolNet. AlphaVolNet de-
termines the location of α-helices in the whole volume.
AlphVolNet takes as input V f and Vmask and outputs Vα,
which is a mask containing the location of the α-helices
found. At each voxel location where Vmask is true a box is
extracted at that location from V f and passed through the
trained α-SSE model. Then if the label is above a threshold
tα, at that location Vα is set to true. Dataset II is used to de-
termine tα by choosing tα that maximises accuracy on the
validation set.

HandNet is used to determine the hand of a map from Vα
and V f . At each true voxel of Vα, a box is extracted at that
location of V f and passed through the trained hand model.
Then, a hand value is given to the map by consensus of all
the labels of the passed boxes. The consensus value is the
average of all hand predictions of each α-box.

4 Results

4.1 Simulated boxes

Dataset I was simulated focusing on α-helices at 3 different
resolutions: 1Å, 5Å, and 6Å. Models were then trained to
determine the hand of the simulated data without transfer
learning strategies. The models 5Å_TL and 6Å_TL were
trained on 5Å and 6Å data respectively and starting from
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Fig. 10. Diagram of the HaPi pipeline with the inputs and outputs at the different stages and the models used to generate each. The input
to HaPi is V f : a Columb potential map and Vmask: a mask of the overall structure. These are first passed through AlphaVolNet
which outputs a mask Vα of the proposed location of α-helices. Boxes are extracted from V f at the location of voxels in Vα
that contain an α-helix and passed through the hand model to be given a hand value. Values are averaged to assign a value to
the overall map. The pipeline has 208,163 parameters.

the weights of the 1Å model. The results can be found in
Table 1. The best model is 5Å_TL as it achieves >90%
accuracy on both 1Å and 5Å datasets.

Table 1. Hand accuracy on the models evaluated with
resolutions of 1Å, 5Å, and 6Å.

Dataset
Models 1Å 5Å 6Å
1Å 0.990 0.605 0.503
5Å 0.503 0.500 0.505
5Å_TL* 0.949 0.955 0.520
6Å 0.503 0.500 0.505
6Å_TL* 0.532 0.520 0.522

*Models trained with a transfer learning strategy using the weights of
1Å model for initialisation instead of random weights.

Dataset I was also used to simulate β-sheet boxes. Mod-
els were trained for both α-helices and β-sheets at 1Å, 3Å
and 5Å. The results on the accuracy of determining each in-
dividual SSE at a time can be found in Table 2. The results
on the accuracy of determining the hand from each type of
SSE can be found in Table 3.

4.2 Simulated volumes

Dataset II’s validation set was used to study the effect of
varying the α-threshold (tα) on the networks performance.

Table 2. Determination accuracy for Alpha and Beta
Secondary Structure Elements at different resolutions (1Å,

3Å and 5Å).

1Å 3Å 5Å
α-helix 0.985 0.985 0.981
β-sheet 0.854 0.857 0.847

Table 3. Hand determination accuracy trained on Alpha
and Beta Secondary Structures at different resolutions (1Å,

3Å and 5Å).

1Å 3Å 5Å
α-helix 0.990 0.991 0.955
β-sheet 0.647 0.641 0.610

In whole volumes, precision is used rather than accuracy
as a metric when identifying α-helices, since volumes con-
tain mostly non-alpha-helix voxels. Consequently, we are
mostly interested in the ratio of true positive to false pos-
itives so as to pass on to the hand model as few non-α-
helices as possible. Accuracy is still used as a performance
metric fo the hand determination task.

The effect of tα on the precision of determined α-helices
and the accuracy of the hand prediction can be seen in
Fig. 11. Increasing tα increases precision and slightly in-
creases accuracy. The effect of varying tα on the average
prediction assigned to each map according to its true label
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Fig. 11. Effect of varying α-threshold (tα) on the precision and the
accuracy of the pipeline. The α-threshold controls how
stringent the model is in accepting a box as containing
an α-helix. Precision measures how many boxes labelled
as containing an α-helix actually contain an α-helix. The
accuracy measured is the percentage of simulated maps
whose hand was correctly identified.

can be seen in Fig. 12. Increasing tα increases the aver-
age value given to true positives and decreases the average
value given to true negatives. AlphaVolNet captures the
centroids of the α-helices as seen in Fig. 13. Fig. 14 shows
the histogram of hand predictions for each volume and the
confusion matrix for different tα. Increasing tα decreases
the bias as seen in the confusion matrix and causes the left
and right peaks to get closer to 0 and 1 respectively.

The performance of HaPi on volumes is then compared
to the individual models performance on boxes in Table 4.

Table 4. Performance of models on boxes dataset vs.
volumes dataset with tα = 0.7

SSE Hand
Boxes 0.979 0.955

Volumes 0.692 0.892

The histogram containing the individual prediction labels
of each map in the test set and the confusion matrix can be
found in Fig. 15. It should be noted that out of the 236 in-
correctly assigned hand labels, 133 have a precision of less
than 0.2. The average prediction value for maps incorrectly
labelled is 0.498 ± 0.080.

Fig. 12. Average hand prediction values for True Positives (TP),
False Positives (FP), True Negatives (TN) and False Neg-
atives (FN) with standard deviations. If the predicted
hand is above 0.5, it is assigned a label of 1 (left-handed),
if not it is assigned a label of 0 (right-handed).

Fig. 13. Output of AlphaVolNet on 1AGC simulated structure
with tα = 0.85 in yellow and the atomic model of 1AGC.
AlphaVolNet is a model that predicts the location of α-
helices and tα is the stringency of the model to accept
voxels as containing α-helices. AlphaVolNet is clearly
identifying the location of the center of α-helices.

4.3 Experimental data

AlphaVolNet trained on simulated data in some cases does
not correctly identify α-helices in experimental maps. To
illustrate this the experimental map of 7RH5 is passed
through AlphaVolNet trained on simulated data (Fig. 16a).
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(a)

(b)

(c)

Fig. 14. Effect of changing the threshold tα on the individual predicted hand values for each map in the validation set of Dataset II (left)
and the confusion matrix (right): (a) tα = 0.1, (b) tα = 0.5 and (c) tα = 0.9. tα controls the stringency of the model to accept
voxels as containing an α-helix. Simulated maps were left as is to be right-handed or mirrored to be left-handed. Each map
was then passed through the HaPi pipeline to receive a hand value. Maps with values above 0.5 were given a left-hand label
and maps with values below 0.5 were given a right-hand label.

9



Fig. 15. Individual predicted hand values for each map in Dataset II test set (left) and confusion matrix (right) for tα = 0.7. tα controls
the stringency of the model to accept voxels as containing an α-helix. Simulated maps were left as is to be right-handed or
mirrored to be left-handed. Each map was then passed through the HaPi pipeline to receive a hand value. Maps with values
above 0.5 were given a left-hand label and maps with values below 0.5 were given a right-hand label

However, if the atomic structure of 7RH5 is used to sim-
ulate a map and this map is passed through AlphaVolNet
the α-helices centres are clearly identified (Fig. 16b). This
atomic structure was not used for training. Hence, it is
a problem of generalisation to unseen experimental data
rather than to new simulated data.

The SSE determination model was retrained on exper-
imental data to correctly identify α-helices. When pass-
ing the experimental map of 7RH5 through AlphaVolNet
trained on experimental data α-helices are correctly iden-
tified (Fig. 16c), although the precision of the algorithm is
lower. Table 5 below compares the performance on exper-
imental data of the model trained on simulated data to the
model trained on experimental.

Table 5. Precision of α-determination models trained on
simulated and experimental data and tested on
experimental data with a threshold of tα = 0.7

Dataset
Model Boxes Volumes

Simulated 0.806 0.275
Experimental 0.936 0.467

The precision of the experimental model on experimental
volumes is still lower than the precision of the simulated
model on simulated models. However 7 out of the 78 tested
models had zero precision because the models contained

only α-helices with less than 7 residues which are too small
to detect. If these structures are not included the precision
increases to 0.501.

10 experimental maps with resolution lower than 3Å
were randomly chosen to asses the accuracy of the hand
determination capabilities of HaPi. All experimental
structures were visually inspected and were clearly right-
handed. The structures were passed through HaPi to obtain
values below 0.5, indicating all were correctly identified as
right-handed, see Table 6. All structures were then mirrored
and passed again through HaPi. Values above 0.5 were ob-
tained for all structures showing HaPi correctly identified
them as left-handed. Fig. 17 shows a kernel density estima-
tor fitted to each group of values, clearly separating them
into two distinct groups with a threshold of 0.5.

The time taken on average to run an experimental map
through HaPi including preprocessing is 30s on an NVIDIA
Tesla T4 16GB.

5 Discussion

5.1 Training

Determination of the map hand from any part of the vol-
ume is difficult. Early experiments were unsuccessful when
extracting boxes from random parts of the structure and
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(a) (b) (c)

Fig. 16. α-helices determined by AlphaVolNet (a model that decides the location of α-helices within a map) when feeding an exper-
imental map of 7RH5 to a model trained on simulated data (a) versus a simulated map of 7RH5 from its atomic model to a
model trained on simulated data (b) versus an experimental map of 7RH5 to a model trained on experimental data (c) with the
atomic model for reference.

Table 6. HaPi predicted hand values of 10 randomly
selected experimental maps originally right-handed and

left-handed when mirrored

EMD ID Resolution (Å) Original* Mirrored*
12339 2.3 0.212 0.745
12343 2.8 0.247 0.734
12886 3.0 0.283 0.650
13008 2.7 0.148 0.788
20789 2.7 0.100 0.872
22245 2.7 0.258 0.721
23743 3.0 0.125 0.850
24455 3.0 0.227 0.738
30421 3.0 0.266 0.677
31135 2.7 0.132 0.814

*Prediction values are the probability that the structure is left-handed.
Hence, values closer to 0 mean the map is right-handed and values closer
to 1 mean the map is left-handed.

training on flipped and non-flipped versions of the boxes.
This could be because the data is too heterogeneous and
the model is unable to capture all the correlations. It could
also be because a majority of the regions of a volume might
have no actual information about the hand. Therefore, the
algorithm is trying to look for information that is not there.
Focusing on SSE that contain information about the hand
was found to be a smarter approach to obtain better perfor-
mance.

The only fine-tuned hyperparameter of the 3D CNN was
the number of epochs to train for. Hyperparameter fine-
tunning was not required as high accuracy was obtained
due to the shear size of data used for training. When us-

Fig. 17. Gaussian kernel density estimators of the hand value as-
signed by HaPi to right-handed experimental maps as is
and when mirrored. Values closer to 1 mean the map is
left-handed and closer to 0 mean the map is right-handed.

ing α-helices, 142,722 boxes were used for training. The
algorithm was forced to generalise for it to be able to cor-
rectly identify such a wide range of boxes.

Transfer learning strategies are required to correctly dis-
tinguish the hand at intermediate resolutions of 5Å. As pre-
viously discussed, determining the hand of an α-helix at 5Å
is non-trivial even for trained experts. When starting train-
ing with random weights the model is unable to converge to
a good optimum set of parameters because the optimisation
landscape is vast and has many local minima that the model
might converge to. By starting from the 1Å model, the op-
timisation starts closer in the landscape to a lower minima
as the model has already learnt to distinguish features that
are related to hand determination.
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5.2 Secondary Structure Elements

α-helices are better for determining the hand at box level
compared to β-sheets (Table 3). It is easy to distinguish
the hand of an α-helix at high resolutions. It is difficult to
determine the hand of a β-sheets as it requires looking at the
side-chains and their orientation. Hence, the α-helix model
was used to build the whole pipeline.

The difference in accuracy in SSE determination for α-
helices and β-sheets as seen in Table 2 is notable. This
could be because the dataset of β-sheets is an order of mag-
nitude smaller than α-helices. It could also be because the
box dimensions are too small to capture all the features of
a β-sheet. Boxes of dimension 11Å by 11Å by 11Å were
chosen. This allows for two full turns of the α-helix to be
present no matter the orientation as the pitch of an α-helix
is 5.4Å [17]. The distance between adjacent amino acids
along a β-strand is approximately 3.5 Å, in contrast with
a distance of 1.5 Å along an α-helix [18]. The sideways
distance between adjacent C-α-atoms in hydrogen-bonded
beta-strands is roughly 5 Å [18]. Hence for the chosen box
dimensions barley two chains of the β-sheets are captured
and of each of these chains only 3 residues are captured
compared to 7 for α-helices. As seen in Fig. 8, the α-helix
at this box size can be clearly identified while the β-sheet
looks like two chains rather than a sheet.

The minimum resolution at which the hand of an α-helix
can be determined is that of its pitch. α-helices have an
average pitch of 5.4Å. At resolutions above 5.4Å the struc-
ture is no longer a helix but a cylinder. Blurred helices be-
come cylinders as information between amino acids below
and above a turn merge to form a continuous chain resem-
bling a solid structure rather than a spring coil. If a cylinder
is reflected, its mirror version is superimposable over the
non-mirrored cylinder. Therefore, a cylinder has no hand.
The inability of the network to identify the hand at 6Å is
because the information of the hand is not available at such
resolution.

Being able to determine the hand of an experimental map
at or below 5Å is still useful. Structures with resolutions
below 5Å already represent more than 50% of all deposi-
tions at the EMDB, see Fig. 18. However, at resolutions
below 4Å, the hand can be easily identified by manually in-
specting the map as seen in Fig. 5. Still structures between
4Å and 5Å of resolution represent 13.1% of all deposited
structures and this is likely to increase as the resolution of

Fig. 18. The Electron Microscopy Data Bank (EMDB) entry res-
olution in shells distributions as of 2021. Statistics down-
loaded from EMDB site [15].

cyroEM maps improves. Hence, this will be a useful tool
to easily and automatically determine the hand at this reso-
lution range.

5.3 Volumes

In Fig. 15, three distinct peaks of predicted hand values are
seen in the histogram. The left peak corresponds to right-
handed maps that are correctly identified and are given a
label close to 0. Conversely, the right peak corresponds to
left-handed maps correctly identified and given a label close
to 1. In the center there is a narrow peak that corresponds
to those maps whose hand is not easily determined and are
therefore given labels close to 0.5.

In Fig. 14, the effect of varying the threshold tα on the
predicted hand values is seen. tα is a threshold at which a
voxel is accepted to contain an α-helix. Increasing tα makes
the condition more stringent to accept a voxel as containing
an α-helix. As shown in Fig. 11, increasing tα improves
the precision of the pipeline because the conditions to ac-
cept that a voxel contains an α-helix are more stringent,
resulting in less false positives. Therefore, the left and right
peaks in Fig. 14 move closer to 0 and 1, respectively as tα
increases. The hand model was not trained on non-α-boxes
so, on average, non-α-boxes are given values around 0.5.
When including false positives and averaging, the predicted
hand value is pulled closer to 0.5. By reducing the number
of false positives, the predicted value is less biased towards
0.5. Increasing tα also reduces the bias as the set of false
positives to false negatives becomes more balanced. How-
ever, increasing tα has a minimal effect in improving the
accuracy (Fig. 11). This is most likely because most of the

12



structures that are mistaken are difficult to determine their
hand or the α-helices were not properly identified.

From Fig. 12, the optimal tα is deduced. Increasing tα
increases and reduces respectively the average predicted
value of true positives and true negatives. However if tα
is too big the standard deviation increases because less
boxes are available for consensus. Therefore, a threshold
of tα = 0.7 was chosen because the true positives, false
positives, true negatives and false negatives are clearly sep-
arated into four groups.

Fig. 12 contains valuable information about biases and
the certainty of predictions. The false negative average
value is further away from 0.5 than the false positive values,
hinting that the model is biased towards assigning right-
handed values. The pipeline gives values closer to 1 for left-
handed structures than it gives right handed values closer to
0. Maps given values below 0.4 or above 0.6 are unlikely
to be mislabelled but maps with values between 0.4 and 0.6
should be further tested.

There is a problem when dealing with experimental data
for SSE determination but not for hand determination. The
model works for previously unseen simulated data but not
for experimental data. This suggests that the network has
correctly learned to identify α-helices but has over-fitted the
simulated data. It can clearly distinguish what is different
between an experimental and simulated α-helix. Although
visually experimental and simulate helices are similar more
detail is found in simulated ones (Fig. 19), those details are
what the network is focusing on. The network might be
over parametrized allowing it to focus on small details in
the box. Previous works [9]–[12] are all trained on simu-
lated data and generalise to experimental data. However,
they are trained on the more complex task of distinguishing
several SSE at once, therefore forcing the model to focus
on general features that distinguish each SSE. When trained
on the more difficult task of hand determination, it gener-
alises to properly identify the relevant features that contain
information about the hand. A possible solution is to use a
smaller network with less parameters to determine the SSE,
so as to avoid it fixating on the small features that distin-
guish simulated and experimental data.

Previous works have had generalisation problems when
moving from simulated data to experimental data acquired
by cryoEM [19]. This could be because the simulated data
does not resemble well enough the experimental data. For

(a)

(b)
Fig. 19. Simulated α-helix (a) correctly identified as an α-helix

by the trained model and experimental α-helix (b) incor-
rectly identified despite their visual similarity.

example α-helices are not structurally rigid [20] and the
simulated data does not take this into account. Automatic
SSE labels can be assigned to experimental data from fit-
ted atomic models. Therefore, the SSE model was finally
trained on experimental data. Training the hand model on
experimental data would require manual labelling by an ex-
pert which is time consuming and often yields less data-
points and was not required by the high accuracy already
achieved.

The precision of the experimental model on experimental
data is not as good as the precision of the simulated model
on simulated data. This is most likely because the exper-
imental dataset is more heterogeneous. The experimental
data is inherently noisy. The automatic assignment of la-
bels could have also mislabelled some boxes as the align-
ment of the experimental map with the α-helix mask is not
perfect. To improve precision post processing of the pro-
posed α-helices could be considered.

The hand model trained on simulated data works on ex-
perimental data. HaPi was not only able to identify cor-
rectly that all maps were right-handed but also when the
maps were mirrored it identified all as left-handed. This
makes HaPi the first method to determine automatically the
hand of experimental maps to our knowledge.
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6 Conclusions and future work

HaPi has shown that it is possible to determine the hand
of a map automatically without the necessity of inspection
by a trained expert. This is even the case for intermediate
resolutions were the hand is not clear from visual inspec-
tion. α-helices are the best SSE for identifying the hand
over β-sheets. Deep learning techniques have been proven
useful to complete such a task but using experimental data
for training is a necessity for generalisation.

This was an initial exploration to determine the hand of
CryoEM maps which to our knowledge has never been suc-
cessfully attempted and will require future endeavours to
improve the methods by:

• Testing on all downloaded EMDB maps (Dataset III)
to identify any left-handed maps. This has been esti-
mated to take 1 full week to run on an NVIDIA Tesla
T4 16GB. Left-handed maps can be mirrored to obtain
appropriate right-handed maps and carry out a refitting
of the atomic model to obtain better fits.

• Making the method available to structural biology re-
searchers in Scipion [21]. Scipion is a CryoEM im-
age processing framework used by thousands of re-
searchers world wide to process experimental data to
reconstruct experimental maps.

• Training the model on a range of resolutions between
1Å and 5Å for better generalisation and to avoid hav-
ing to filter maps to 5Å which could reduce informa-
tion about the hand.

• Post-processing of the determined α-voxels by keep-
ing those shaped like long cylinders to eliminate false
positives and improve precision.
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