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J. Garcia Condado a,b,c, A. Muñoz-Barrutia b, C.O.S. Sorzano c,* 

a Biocruces Bizkaia Instituto Investigación Sanitaria, Cruces Plaza, 48903 Barakaldo, Bizkaia, Spain 
b Universidad Carlos III de Madrid, Avda. de la Universidad 30, 28911 Leganés, Madrid, Spain 
c Centro Nacional de Biotecnologia (CNB-CSIC), Darwin, 3, Campus Universidad Autonoma, 28049 Cantoblanco, Madrid, Spain   

A R T I C L E  I N F O   

Keywords: 
Electron microscopy 
Single Particle Analysis 
Validation 

A B S T R A C T   

Single-Particle Analysis by Cryo-Electron Microscopy is a well-established technique to elucidate the three- 
dimensional (3D) structure of biological macromolecules. The orientation of the acquired projection images 
must be initially estimated without any reference to the final structure. In this step, algorithms may find a 
mirrored version of all the orientations resulting in a mirrored 3D map. It is as compatible with the acquired 
images as its unmirrored version from the image processing point of view, only that it is not biologically 
plausible. 

In this article, we introduce HaPi (Handedness Pipeline), the first method to automatically determine the hand 
of electron density maps of macromolecules solved by CryoEM. HaPi is built by training two 3D convolutional 
neural networks. The first determines α-helices in a map, and the second determines whether the α-helix is left- 
handed or right-handed. A consensus strategy defines the overall map hand. The pipeline is trained on simulated 
and experimental data. The handedness can be detected only for maps whose resolution is better than 5 Å. HaPi 
can identify the hand in 89% of new simulated maps correctly. Moreover, we evaluated all the maps deposited at 
the Electron Microscopy Data Bank and 11 structures uploaded with the incorrect hand were identified.   

1. Introduction 

Single-Particle Analysis is an ill-posed problem because the recon-
struction of 3D macromolecular structures from 2D images is not well 
determined. If all particle image orientations are mirrored, a map is 
reconstructed that is equally consistent with the measured data but non- 
superimposable over the map previously reconstructed, see Fig. 1. As 
proteins have a specific handedness (Efimov, 2018) only one of the two 
possible reconstructed maps is the correct reconstruction of the 
structure. 

Currently, a trained biologist is required to look at the α-helices 
rotation to assess the handedness of the map. If incorrect, the recon-
structed map is mirrored. The direction of rotation is easily determined 
at very high resolutions of 1 Å but can be difficult at lower resolutions 
even for experts, see Fig. 2. As the resolution decreases, the α-helix 
slowly transitions from a helix to a cylinder, which no longer has a hand 
(see Fig. 3). Hence, we propose HaPi (Handedness Pipeline) to auto-
matically determine the hand of reconstructed maps using deep learning 
for resolutions of up to 5 Å. 

To the best of our knowledge, there are no algorithms to detect the 
hand of reconstructed CryoEM maps automatically. The proposed model 
identifies Secondary Structure Elements (SSE) of interest in the volume 
and then uses these to detect the hand. There are several previous ap-
proaches to automatically determine SSE in electron density maps based 
on non-machine learning methods (Baker et al., 2012; Baker et al., 2007; 
Si and He, 2013; Zhou et al., 2017), machine learning methods (Rusu 
and Wriggers, 2012; Si et al., 2012) and more recently, deep learning 
techniques (Li et al., 2016; Maddhuri Venkata Subramaniya et al., 2019; 
Wang et al., 2021; He and Huang, 2021). As the latter have shown better 
performance, in this work, 3D Convolutional Neural Networks (CNNs) 
are used to determine SSE of interest and detect the hand of a map from 
small boxes extracted from the map at the location of the SSE. 

The number of reconstructed structures is quickly increasing as 
CryoEM is being widely adopted. HaPi is a valuable tool to guarantee the 
correctness of automatic image processing pipelines and as quality 
control in public databases like Electron Microscopy Data Bank (EMDB). 
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2. Methods 

The HaPi package is freely available to use and documented via 
GitHub (https://github.com/JGarciaCondado/EMapHandedness). All 
the code for the methods described can be found in the same link. HaPi is 
also available in Scipion (Rosa-Trevín et al., 2016) and Xmipp (Sorzano 
et al., 2004). 

2.1. Pipeline 

HaPi determines the hand of electron density maps, Fig. 4 consid-
ering as inputs a Coulomb Potential map (Vf ) and a mask of the non- 
background voxels (Vmask). Maps are first preprocessed by resampling 
to 1 Å/voxel and low-pass filtering to 5 Åto match the training data. This 
procedure reduces noise and homogenizes local resolutions. 

AlphaVolNet determines the location of α-helices in the whole vol-
ume. It takes as input Vf and Vmask and outputs Vα, which is a mask 
containing the location of the α-helices found. It does so by taking at 
each non-background voxel location of Vf a box of dimensions 11 × 11 ×

11 voxels and passed through the trained 3D CNN α-SSE model. Then, if 

the label is above a threshold tα,Vα is set to true at that location. 
HandNet is used to determine the hand of a map from Vα and Vf . At 

each active voxel of Vα, a box of dimension 11 × 11 × 11 voxels is 
extracted at that location from Vf and passed through the trained hand 
model. Then, a hand value is given to the map by consensus of all the 
labels of the boxes. The consensus value is the average of all hand pre-
dictions of each α-box. 

2.2. 3D CNN model 

The same 3D CNN model is used for the SSE and hand determination 
task. A 3D CNN is an extension of 2D CNNs that deals with volumes 
instead of images. The whole architecture of the 3D CNN design can be 
seen in Fig. 5. All 3D convolutional layers and the first connected layer 
are followed by ReLu activation functions. A sigmoid function follows 
the last fully connected layer. The 3D CNN has in total 104,080 
parameters. 

Input boxes are preprocessed by clipping all negative values to 0 and 
rescaling the box to be in the range 0 and 1. 

The training data differs for each task. All proteins structures were 

Fig. 1. Reconstruction of a structure from the same set of images but with mirror orientations assigned to each image which produces a mirrored version of 
the structure. 

Fig. 2. A portion of the same α-helix at 1 Åand 5 Åwith its true structure (right-handed) and mirrored version (left-handed) from different viewing angles.  

Fig. 3. Same α-helix with same viewing angle at different resolutions that shows transition from helical to cylindrical structure.  
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chosen using PDB-Select (Griep and Hobohm, 2009), which has a non- 
redundant set of proteins with low mutual sequence identity to enable 
unbiased statistics. For the SSE determination task, 261 experimental 
maps and their respective fitted atomic models were downloaded from 
EMDB (Tagari et al., 2002). In total, 9,985 boxes of dimension 11 × 11 ×

11 voxels were extracted from the centroids of alpha helices in the 
structures and another 9,985 boxes of the same size from random parts 
of the structure. For the hand determination task, the Xmipp library 
(Sorzano et al., 2004) was used to simulate Coulomb potential maps of 
12,343 atomic models using Electron Atomic Scattering Factors (Sor-
zano et al., 2015). From these, 101,944 boxes of dimension 11 × 11 × 11 
voxels from the center of α-helices were extracted to use for training. 
Half of the boxes were randomly flipped to obtain left-hand helices. 

The training strategy is similar for both tasks. For the task of SSE 
determination, a label of 1 is given if it contains the SSE of interest and 
0 if it does not. For the hand determination task, a label of 1 is given if 
the SSE is left-handed (this is the hand that is seldom found in nature) 
and a label of 0 if it is right-handed. A binary cross-entropy loss function 
is used for training with an Adam optimiser, a learning rate of 0.001 and 
batches of size 2,048. The model is trained for 50 epochs. An early 
stopping strategy is adopted where the model saved at the epoch where 

the validation set loss stagnates is used as the final model. 
Weight initialisation differs for the SSE and hand models. For SSE 

determination, the model has been initialised with the default PyTorch 
settings for weight initialisation. The hand model was first trained on 1 
Ådata and initialised with the default PyTorch settings. Then, a transfer 
learning approach is used to train on 5 Ådata for hand determination by 
using the weights of the model trained on 1 Åon initialization. 

3. Results 

The training and validation curves for each of the models trained can 
be seen in Fig. 6. The network is unable to learn how to identify the hand 
of boxes at 5 Åresolution without transfer learning as seen in the high 
loss value in Fig. 6. When the weights are initialized at 1 Åthe loss value 
significantly decreases during training. The validation set loss stagnates 
for the models trained after only 15 epochs. 

A dataset consisting of 3,119 atomic models was used to simulate 
maps at 5 Å. These were split into validation and test sets of 30% and 
70%, respectively. The validation set was used to set tα, which controls 
the stringency of the model to accept voxels as containing an α-helix. It 
was set to tα = 0.7 to maximize hand accuracy in the validation set. HaPi 

Fig. 4. Diagram of the HaPi pipeline with the 
inputs and outputs at the different stages and the 
models used to generate each. The input to HaPi 
is Vf (a Coulomb potential map) and Vmask (a 
mask of the overall structure). These are first 
passed through AlphaVolNet, which outputs a 
mask Vα of the proposed location of α-helices 
(yellow). Boxes are extracted from Vf at the 
location of voxels in Vα that contain an α-helix. 
They are passed through the hand model to be 
given a hand value. Values are averaged to assign 
a value to the overall map. The pipeline has 
208,163 parameters.   

Fig. 5. 3D CNN model diagram used for both 
Secondary Structure Element (SSE) determina-
tion and hand determination. The input to the 
network is a box containing the electron density 
at each voxel normalised to the range 0 to 1. The 
output of the network is a value between 0 and 1. 
In the SSE determination task, a label of 1 rep-
resents that the SSE of interest is found within the 
box, and 0 means it is not. In the hand determi-
nation task, a label of 1 means the box is left- 
handed, and 0 means it is right-handed.   
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is able to identify the hand in 89% of new simulated maps correctly. The 
resulting hand prediction values for the test set is shown in Fig. 7. In this 
figure we see three peaks. During testing maps with hand values < 0.5 
are predicted to be right-handed and maps with hand values > 0.5 are 
predicted to be left-handed. This decision results in 89% of the maps 
correctly assigned. The peak around 0.15 contains right-handed simu-
lated maps that are correctly labelled and the peak around 0.85 contains 
left-handed simulated maps that are correctly labelled. In the middle 
peak around 0.5 we have a mix of right-handed and left-handed simu-
lated maps that are either correctly or incorrectly labelled depending on 
which side of the peak they land on and their hand. Our network relies 
very much on the detection of alpha helices. For those maps that do not 
have alpha helices or have short alpha helices, the network has diffi-
culties to determine their hand and ends up assigning values around 0.5. 
Therefore, the errors come mostly from the central region. For experi-
mental maps we chose then a threshold of 0.6 that reflects our position 
that, when in doubt, let us be conservative and assume that the map is in 
a correct position. 

All deposited experimental maps in EMDB with resolution below or 
at 5 Åwere downloaded and passed through HaPi. In total, 8,061 maps 
were downloaded. Maps deposited in EMDB should all be right-handed. 
The resulting hand predictions for structures can be seen in Fig. 8. All 
structures with a high chance of being left-handed (those with hand 
value > 0.6, which are 285 structures) were manually checked to assess 
if they were left-handed. Eleven of these structures were indeed present 
in the database despite incorrect handedness (EMD-9890, EMD-10012, 
EMD-22052, EMD-22053, EMD-22056, EMD-22057, EMD-22058, 
EMD-11082, EMD-11083, EMD-20213 and EMD-23584). Assuming that 
all structures with hand value < 0.6 were uploaded to EMDB with cor-
rect handedness (right-hand), then the error rate is only 274

8061× 100 =

3.4%. In Fig. 9, we show one of the examples of incorrectly deposited 
maps in which it can be seen that the atomic alpha helix turns in a 
different direction with respect to the turn of the alpha helix of the 
CryoEM map. 

4. Discussion 

HaPi is able to automatically determine the hand of reconstructed 
macromolecular structures for intermediate resolutions of 5 Åor below. 
Therefore, HaPi is a valuable tool for validation in databases to avoid 
incorrect structures to be uploaded. It will also reduce the time biologists 
dedicate to checking the handedness during image processing and 
facilitate the construction of automatic image processing pipelines. The 
method implemented in Scipion automatically return a flipped volume if 
the hand value is above a threshold set by the user (a value of 0.6 is 
recommended.) As the number of maps with a resolution of 5 Åor below 
is increasing at a fast pace, this tool can become very useful for many. 

HaPi is robust as it has a high accuracy of 96.6% on previously un-
seen experimental data. Although one of the networks was trained on 
synthetic data, it can still generalize to experimental data. Some of the 
downloaded maps contained filaments, electron crystallography data 
and DNA. This type of data was not used for training. Hence, part of the 
error rate could be due to including these data during testing. Also, 
structures that do not contain a considerable number of α-helices are not 
well predicted as α-helices are the basis for determining the hand. 

HaPi is versatile because it does not output a discrete hand label but a 
value between 0 and 1. Closer to 0 means it is right-handed, and 1 means 
it is left-handed. Hence, HaPi estimates how sure it is about its decision. 
Changing the threshold of when to accept a structure as right-handed 
gives control to the user on stringency. The results on simulated data 
structures with values lower than 0.4 are highly likely to be right- 
handed, and those above 0.6 are likely to be left handed. HaPi is un-
sure of the hand for structures whose hand value is between 0.4 and 0.6, 
90% of the structures whose hand was wrongly determined lied between 
these values. 

The structures whose hand values lies between 0.4 and 0.6 and 
which HaPi has difficulty determining belong to two different groups. 
The first group would be structures that do not have clear α-helices or 
have only a few of them. As the algorithm searches for this, its predicting 
power is diminished if it does not find suitable candidates. The second 
group are structures whose resolution is very close to 5 Å. With lower 
resolution, there is less information about the hand encoded in the 

Fig. 6. Training and validation loss for each 
of the 3D CNN models trained. (Top left) 
Training and validation loss for α-helix 
determination at 5 Å. (Top right) Training 
and validation loss for hand determination at 
5 Å. Clearly the network is not able to 
generalize as the loss stagnates at a high 
value and is unable to correctly determine 
the hand. (Bottom left) Training and valida-
tion loss for hand determination at 1 Å. 
(Bottom right) Training and validation loss 
for hand determination at 5 Åwith weights 
initialized at those of the model trained at 1 
Å. With transfer learning strategies the 
model is able to learn how to correctly clas-
sify the hand at lower resolution.   
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structure, and therefore it is more difficult for HaPi to be sure about its 
decision. 

An experiment was also run to determine which type of SSE was 
better suited for hand determination between α-helices and β-sheets. At 
5 Åthe 3D CNN trained on α-helices had an accuracy of 95.5% when 
detecting the hand. On 5 Åβ-sheets it had an accuracy of 61.0% when 
detecting the hand; α-helices are better for determining the hand at box 
level than β-sheets. A biologist can easily distinguish the hand of an 
α-helix at high resolutions. Even at high resolutions, it is difficult to 
determine the hand of a β-sheet as it requires looking at the side-chains 
and their orientation. Hence, the α-helix model was used to build the 
whole pipeline. 

The 3D CNN trained on data at 6 Ågave chance level results. The 
inability of the network to identify the hand at 6 Åis the result of the 
hand information not being available at such resolution. The minimum 
resolution at which the hand of an α-helix can be determined is that of its 
pitch. α-helices have an average pitch of 5.4 Å(Schulz and Schirmer, 
1979). At resolutions above 5.4 Å, the structure is no longer a helix but a 
cylinder. Blurred helices become cylinders as information between 
amino acids below and above a turn merge to form a continuous chain 
resembling a solid structure rather than a spring coil. If a cylinder is 
reflected, its mirror version is superimposable over the non-mirrored 

cylinder. Therefore, a cylinder has no hand. 
Being able to determine the hand of an experimental map at or below 

5 Åis still useful. Structures with resolutions below 5 Åalready represent 
more than 50% of all depositions at the EMDB. However, at resolutions 
below 4 Å, the hand can be easily identified by manual inspection of the 
map as seen in Fig. 3. Still, structures between 4 Åand 5 Åof resolution 
represent 13.1% of all deposited structures, and this is likely to increase 
as the resolution of CyroEM maps improves. Hence, this will be a 
valuable tool to easily and automatically determine the hand at this 
resolution range. 

5. Conclusion 

HaPi has shown that it is possible to automatically determine the 
hand of a map without the necessity of inspection by a trained expert. 
This is even the case for intermediate resolutions where the hand is not 

Fig. 7. Individual predicted hand values for each simulated map (5 Åresolu-
tion) in test set (above) and confusion matrix (below) for tα = 0.7. tα controls 
the stringency of the model to accept voxels as containing an α-helix. Simulated 
maps were left as is to be right-handed or mirrored to be left-handed. Each map 
was then passed through the HaPi pipeline to receive a hand value. Maps with 
values above 0.5 were given a left-hand label and maps with values below 0.5 
were given a right-hand label. 

Fig. 8. Individual predicted hand values by HaPi for each map in the EMDB 
database with 5 Åor less for tα = 0.7. tα controls the stringency of the model to 
accept voxels as containing an α-helix. Values close to 0 indicate the map is 
right-handed and values close to 1 indicate the structure is left-handed. 

Fig. 9. EMD-22056 structure (grey surface) with superimposed apoferritin PDB 
(purple). The α-helix from the PDB (purple) turns right if you use your right 
hand and the experimental map alpha helix (grey surface) rotates left if you use 
your left hand. This showcases that the structure was uploaded with incorrect 
hand (left-hand) to the EMDB database. 
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clear from visual inspection. HaPi offers a valuable tool for validation in 
databases and increases biologists’ efficiency by reducing the need for 
hand inspection during the processing. 

The automatic determination of the map hand is a very useful task in 
the construction of automatic image processing pipelines in CryoEM, 
and reduces the probability of depositing incorrect maps in public da-
tabases such as the EMDB. 
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