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Abstract

There is a need to develop a universal vaccine against influenza virus infection to avoid developing new formulations of a
seasonal vaccine each year. Many of the vaccine strategies for a universal vaccine target strain-conserved influenza virus
proteins, such as the matrix, polymerase, and nucleoproteins, rather than the surface hemagglutinin and neuraminidase
proteins. In addition, non-disease-causing viral vectors are a popular choice as a delivery system for the influenza virus
antigens. As a proof-of-concept, we have designed a novel influenza virus immunogen based on the NP backbone
containing human T cell epitopes for M1, NS1, NP, PB1 and PA proteins (referred as NPmix) as well as a construct containing
the conserved regions of influenza virus neuraminidase (N-terminal) and hemagglutinin (C-terminal) (referred as NA-HA).
DNA vectors and vaccinia virus recombinants expressing NPmix (WR-NP) or both NPmix plus NA-HA (WR-flu) in the cytosol
were tested in a heterologous DNA-prime/vaccinia virus-boost vaccine regimen in mice. We observed an increase in the
number of influenza virus-specific IFNc-secreting splenocytes, composed of populations marked by CD4+ and CD8+ T cells
producing IFNc or TNFa. Upon challenge with influenza virus, the vaccinated mice exhibited decreased viral load in the
lungs and a delay in mortality. These findings suggest that DNA prime/poxvirus boost with human multi-epitope
recombinant influenza virus proteins is a valid approach for a general T-cell vaccine to protect against influenza virus
infection.
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Introduction

Millions of people worldwide are infected with influenza virus

every year. Although most yearly outbreaks are characterized by

fewer than 40,000 deaths in the United States, highly virulent

strains can evolve that cause worldwide pandemics, resulting in a

dramatically increased incidence of death. While ribavirin and

oseltamvir can be used to combat infection, there has been recent

emergence of strains resistant to these drugs [1], demonstrating the

need for better therapeutics or vaccine strategies against influenza

virus infection.

The major cause of influenza pandemics involves the combi-

nation of the two major glycoproteins on the virion surface [2].

These two glycoproteins, hemagglutinin (HA) and neuraminidase

(NA), contribute to the considerable antigenic variation of

influenza virus because they have 16 and 9 subtypes, respectively.

When a new glycoprotein subtype appears on the virion surface,

the population is immunogenically naı̈ve to this new strain, raising

the possibility of a pandemic. The worst influenza pandemic to

date occurred in 1918, by the so-called ‘‘Spanish flu,’’ an H1N1

virus, which led to over 40 million deaths worldwide [3]. In 2005,

there were outbreaks of an H5N1 virus in Southeast Asia and

Europe. While this strain caused death in humans, it has been

unable to be transmitted from person to person [4].

Besides increased mortality and morbidity, how else would an

influenza pandemic impact society? Compounded with the fact that

influenza-associated hospitalizations have increased substantially

over the last two decades [5], the economic loss due to another

pandemic would be unimaginable. Based on a model which takes

into account variables such as different types of vaccination

strategies and illness percentages, Thompson et al. proposed that

another pandemic would cause up to 207,000 and 734,000

hospitalizations, and 18 to 42 million outpatient visits in the United

States alone. Based upon these numbers, they estimate that due to

loss of life and medical care, the economic cost of a pandemic to the

United States would be up to $167 billion dollars [6].

The current vaccination strategy against influenza virus consists

of a live-attenuated or killed virus vaccine regimen containing the

three strains of virus (two A subtypes and one B subtype) that are

thought to be most prevalent in the upcoming influenza season.
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Determining which strains the vaccine will contain is based on

bioinformatics analysis of epidemiological data from the previous

season. Since the current vaccine strategy requires changing of the

vaccine formulation every year, there is a push to develop a

universal vaccine [7]. Development of these next generation

influenza vaccines is based on technologies utilizing recombinant

proteins, virus-like particles, viral vectors, and DNA-based

vaccines [8]. Another strategy is prime-boost, using DNA for

priming and virus vectors expressing antigens of interest as a boost

[9]. Attenuated poxvirus vectors, such as MVA and NYVAC, have

been used successfully to induce a greater immune response

towards HIV antigens [10,11,12]. In fact, one of the more

successful HIV vaccine trials in humans to date utilized a poxvirus

vector [13], and there are ongoing phase I/II clinical trials using

the MVA poxvirus vector [12,14,15,16].

Regarding influenza virus, many vaccination strategies have

used the nucleoprotein (NP) as an antigen to induce immune

responses since it is well-conserved across influenza virus subtypes

[17,18,19]. However, in some cases, vaccines developed around

NP have failed to provide protection [20,21]. Recently, MVA

vectors expressing influenza virus antigens have been shown to

provide protection against virus challenge, even in human clinical

trials [22,23,24]. Novel design strategies using viral antigens in

combination with NP may be able to improve immunogenicity to

influenza virus and provide more universal protection.

In this study, we designed recombinant influenza virus antigens

for use in a DNA prime/vaccinia virus boost vaccination strategy,

and studied the ability of these proteins to induce an adaptive

immune response and protective response to heterologous

challenge. One immunogen was designed around influenza virus

NP, which included human epitopes from the M1 (matrix), NS1

(non-structural), PB1 (basic polymerase), and PA (acidic polymer-

ase) viral proteins. The vaccinia virus construct containing NPmix

was referred to as WR-NP. The other immunogen contained

conserved sequences from H5N1 viruses: the N-terminal NA fused

to the C-terminal HA and was combined with the NPmix to

generate the viral vector WR-flu. We also generated plasmid DNA

vectors from pCIneo expressing independently NPmix and HA-

NA. We show that our recombinant vaccinia virus constructs grow

well in cell cultures and produce the recombinant products

(NPmix or both NPmix and NA-HA) in the cytoplasm of infected

cells, similarly as for the DNA vectors. After the DNA prime/

poxvirus boost vaccination protocol in mice we observed increased

IFNc-secreting cells, along with an increased CD4+ and CD8+ T

cell response with regard to IFNc+ and IFNc+TNFa+ cells. Upon

challenge with influenza virus, lung viral titers were decreased in

animals vaccinated with the viral vectors expressing recombinant

influenza virus proteins. Taken together, this study demonstrates

how a T cell vaccine based on a DNA prime/poxvirus boost

strategy containing multiple human influenza virus epitopes can

reduce viral load during heterologous challenge and provides a

rational design for the generation of universal influenza vaccines.

Results

Immunogen design and characterization of vaccinia virus
vectors expressing influenza virus antigens

The goal in developing our T cell vaccine against influenza virus

was first to design an immunogen utilizing the conserved regions of

influenza virus proteins as antigens and then to produce a

recombinant vaccinia virus that can be used as a broad-spectrum

vaccine to induce specific immune response to influenza. For this

aim, we generated two types of immunogens. One was based on

the nucleoprotein (NP) as a backbone, which is well-conserved

among H1N1, H2N3, H5N1, H9N2, and H7N7 strains of

influenza virus (Figure S1). Within the NP backbone, we added

conserved human T cell epitopes for other influenza virus proteins,

specifically M1, NS1, PB1, and PA (Figure 1B; NPmix). Briefly, we

were guided by Epstein, et al., which lists the influenza virus gene

products and peptide sequences that are presented by certain

MHC molecules [25]. We narrowed down this list to four M1, one

NS1, one PA, and two PB1 epitopes that were the most conserved

among the virus strains listed in Figure S1. These, in addition to

the NP epitopes, were included in the NPmix recombinant gene

shown in Figure 1B. In choosing the amino acids to swap, we were

careful in selecting regions without significant secondary structure,

and we avoided swapping hydrophilic for hydrophobic regions.

We also did not remove any known NP T cell epitopes. The

second construct involved fusing the conserved regions of

neuraminidase (NA) and hemagglutinin (HA) from H5N1

influenza viruses (Figure 1B and S2; NA-HA). These HA and

NA subtypes are not homologous those in the H3N2, H9N2, or

H7N7 strains listed in Figure S1; however, the NP protein shown

in Fig. S1 is conserved in the H5N1 strains. The NPmix construct

alone or together with the NA-HA construct was inserted in the

TK locus of the Western Reserve strain of vaccina virus

(Figure 1A). We termed the vaccinia virus recombinants

containing NPmix insertion alone ‘‘WR-NP’’ and the insertion

of NPmix and NA-HA ‘‘WR-flu.’’

We also produced plasmid vectors for their use in the priming

stages of the vaccination protocol. The NPmix and NA-HA

immunogens were inserted into the pCIneo mammalian expres-

sion vector, which could efficiently express the proteins upon

transient transfection in cell culture, either transfected alone or in

tandem (Figure 2A). Lower levels of NP and HA were observed

during double transfections since only 5 mg of each vector was

used, as opposed to 10 mg in single transfections. We also verified

that the influenza insert was maintained in the recombinant

viruses, as shown after staining viral plaques from purified viral

stocks for NP and WR protein and observing that the recombinant

viruses produced the same number of plaques expressing NP and

WR proteins (Figure 2B); the H5 HA antibody did not strongly

stain viral plaques. We further tested how the expression of

influenza virus proteins from the recombinant viruses was

dependent on MOI. We observed that the NA-HA and NPmix

protein is strongly expressed by 24 h p.i. during both WR-NP and

WR-flu infection (Figure 2C). Finally, all viruses replicate to

similar levels (Figure 2D). Together, these results indicate that the

recombinant viruses are correctly expressing the influenza virus

proteins and that the expression of these proteins does not alter the

infection profile as compared to wild-type vaccinia virus.

To further characterize the viruses, we examined the subcellular

localization of the influenza virus proteins. The recombinant

proteins were expressed mainly in the cytoplasm of cells during

either WR-NP or WR-flu infection. HA showed a higher degree of

co-localization with viral factories (Figure 3A), as marked by

staining for the 14K vaccina virus protein (A27 gene), as compared

to colocalization of the NP protein with 14K (Figure 3B). NPmix

also exhibits greater distribution throughout the cell.

Immunogenicity of vaccinia virus recombinants during
DNA prime/poxvirus boost vaccination

We next examined the influenza virus-specific immune

responses induced in mice by the WR-NP and WR-flu

recombinant viral constructs. Four BALB/c mice for each group,

WR, WR-NP, or WR-flu, were vaccinated according to the

schedule in Figure 4A and sacrificed to evaluate the adaptive

immune response elicited. Mice were primed with 100 mg DNA by

Vaccinia Virus-Based Influenza Virus Vaccine
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intramuscular injection. 100 mg of empty DNA (pCIneo-Ø) was

used for the WR group; 100 mg DNA containing the NPmix

vector (pCIneo-NPmix) was used for the WR-NP group; 50 mg of

NPmix DNA and 50 mg of DNA containing the NAHA vector

(pCIneo-NAHA) was used for the WR-flu group. Two weeks post-

prime, the animals were boosted by intraperitoneal infection of 107

PFU of WR, WR-NP, or WR-flu. Eleven days post-boost, the

adaptive immune response was evaluated using a fresh IFNc
ELISPOT assay with splenocyte stimulation using a peptide

corresponding to influenza virus NP (TYQRTRALV) or vaccinia

virus E3 (VGPSNSPTF).

As shown in Figure 4B, animals that were vaccinated with WR-

NP or WR-flu exhibited a significant increase in splenic T cell

responses against the NP peptide. Vaccination with WR-NP lead

to a ,7.6-fold increase in IFNc-secreting cells while vaccination

with WR-flu lead to a ,6.5-fold increase, as compared to

vaccination with WR alone. All vaccination protocols exhibited

similar response levels to the E3 peptide, indicating that all viruses

are replicating similarly in the vaccinated animals. We also

performed experiments to determine the levels of neutralizing

antibodies in the serum of vaccinated mice. However, we did not

observe any significant increase in neutralizing antibodies against

influenza virus nor against NA or HA in mice vaccinated with

WR-NP or WR-flu versus WR alone (data not shown).

Functional profile and polyfunctionality of WR-NP and
WR-flu induced CD4+ and CD8+ T cell responses

To determine the phenotypic characteristics of the T cell

populations activated after immunization with the DNA-prime/

poxvirus-boost protocol, we utilized multiparameter intracellular

flow cytometry staining (ICS) analysis to identify influenza virus-

specific T cell responses. Splenocytes from four mice per group

were cultured overnight and then stimulated with the NP-specific

peptide in the presence of brefeldin for 6 h.

Figure 1. Design and characterization of vaccine constructs. (A) Recombinant influenza virus gene constructs (NPmix or NA-HA) were inserted
at the TK locus of the Western Reserve (WR) of vaccinia virus and are driven by the synthetic early/late promoter (pE/L). The cloning vectors (shown)
were introduced into the wild-type WR virus by homologous recombination and iterative plaque purification. (B) Amino acid sequences of NPmix and
NA-HA recombinant influenza virus protein constructs. The backbone for the NPmix construct is influenza virus NP into which was inserted other
influenza virus protein human T cell epitopes. Human T cell epitopes for influenza virus M1, NS1, NP, PB1, and PA proteins are indicated. The NA-HA
construct consists of the conserved regions of H5N1 influenza virus neuraminidase (N-terminal amino acids 108–231) and hemagglutinin (C-terminal
amino acids 347–511).
doi:10.1371/journal.pone.0025938.g001
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As shown in the pie charts of Figure 5, both the WR-NP and

WR-flu vaccination protocols induced a greater magnitude of T

cell responses as compared to WR alone. WR-NP induced a ,2.9-

fold increase in T cell response as compared to WR, and WR-flu

induced a ,9.1-fold increase. While T cells secreting cytokines

following WR-NP vaccination were mostly CD8+, WR-flu induced

both CD4+ and CD8+ T cells. However, the CD8+ T cells

activated following WR-NP infection secreted both IFNc and

TNFa, while the T cells following WR-flu vaccination secreted

mainly IFNc.

The simultaneous measurements of three secreted cytokines

allows for the assessment of the quality of the vaccine-induced

CD4+ and CD8+ T cell responses. Upon analyzing concurrent

secretion of IFNc, TNFa, and IL2 by T cells, seven distinct

influenza virus-specific CD4+ and CD8+ T cell populations can be

identified. To further characterize the immunogenicity triggered

in each immunized group, we assessed polyfunctional T cell

responses. Regarding CD4+-secreting T cells (Figure 6A), we

observed only a significant response following WR-flu vaccination,

and this profile was not polyfunctional; CD4+ T cells secreted only

IFNc. However, WR-flu vaccination increased the overall

magnitude of the CD4+ T cell response ,19-fold (Figure 6B).

With regard to CD8+ T cells, we did observe polyfunctionality

following vaccination with WR-NP, but not WR-flu (Figure 6C).

While vaccination with WR-flu elicited significantly higher levels

of CD8+ T cells secreting IFNc as compared to WR, vaccination

with WR-NP exhibited significant levels of IFNc/TNFa-secreting

CD8+ T cells. While not statistically significant, WR-NP

vaccination also lead to high levels of triple, IFNc/TNFa/IL2-

secreting, CD8+ T cells. As compared to vaccination with WR, the

magnitude of the CD8+ T cell response was ,3.5-fold higher for

WR-NP and ,5.7-fold higher for WR-flu (Figure 6D).

Overall, these results indicated that immunization with WR-NP

induced a polyfunctional influenza virus-specific T cell response,

while immunization with WR-flu was monofunctional with CD4+

and CD8+ T cells only producing IFNc. Nevertheless, we show

that WR-NP and WR-flu immunization improved the magnitude

and quality of the anti-influenza virus response compared to WR.

However, even though we observed an adaptive immune response

characterized by polyfunctional T cells, we did not observe a

memory response 53 days post- vaccination with the single NP

peptide used as a test system (data not shown). This apparent lack

of a memory response could be associated with the fact that we did

not observe the production of neutralizing antibodies.

Virus load is reduced in the lungs of mice upon challenge
with influenza virus following vaccination

Upon measuring the adaptive immune response induced by

vaccination with the recombinant DNA and vaccinia virus

constructs, next we determined what effect vaccination had on

challenge with influenza virus. Two weeks following the end of the

vaccination protocol, mice from each vaccination group, along

with 9 mice that had received PBS alone, were infected

intranasally with 106LD50 of the A/WSN/33 (WSN), A/PR/8/

Figure 2. Recombinant viruses synthesize NP and HA proteins and replicate to similar levels. (A) 10 mg of pCIneo (neo) vectors
containing the NPmix (NP) or NA-HA (HA) inserts were transfected into BSC40 cells. For double transfections, 5 mg of each vector was used. 48 h post-
transfection, cells were lysed and levels of influenza virus proteins were determined using antibodies for NP and HA. (B–D) BSC40 cells were infected
with WR, WR-NP, or WR-flu at an MOI of 0.01 (B, D), 0.1, 1, or 10 (C) PFU/cell. (B) At 24 h p.i., cells were fixed and plaques were stained with NP
antibody. (C) At 24 h p.i., the levels of NP and HA in the lysates were determined by immunoblot analysis. (D) At 8 or 24 h p.i., infectious virus present
in the cells was measured in triplicate standard plaque assay on BSC40 cells.
doi:10.1371/journal.pone.0025938.g002
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34 (PR8), or A/California/07/09 (CA) strains of influenza virus,

corresponding to 104, 103, or 105 PFU/mouse, respectively. Each

day following challenge, mice were weighed and sacrificed when

body weight reached at least 75% of their starting weight. While

vaccination with WR-NP or WR-flu did not protect mice from

death or weight loss, mortality was generally delayed by 1–2 days

(Figure 7). However, we did observe a significant decrease in lung

viral titers following vaccination with WR-NP and WR-flu as

compared to WR (Figure 8). WR-NP vaccination decreased lung

viral titers by ,5.2-, ,55-, and ,8.6-fold upon challenge with

WSN, PR8, and CA, respectively. Vaccination with WR-flu lead

to a significant decrease in lung viral titer only upon challenge with

PR8 (,33-fold). We hypothesize that vaccination with WR-NP

resulted in viral titers lower than vaccination with WR-flu because

we observed a higher quality, polyfunctional T cell response

during WR-NP vaccination.

Taken together, our study indicates that recombinant vaccinia

viruses containing human T cell epitopes for influenza virus

proteins embedded in NP or the conserved N-terminal of NA

fused with the conserved C-terminal of HA can elicit specific T cell

immune responses following heterologous vaccination utilizing a

DNA-prime/poxvirus-boost protocol. While we observed signifi-

cant levels of T cells secreting cytokines in a polyfucntional

manner, this was not sufficient to protect mice from mortality;

however, we did observe a decrease in lung viral replication upon

vaccination with the recombinant viruses.

Discussion

The vaccination strategy of heterologous prime-boost vaccina-

tion to elicit specific protective T cell responses has been widely

established ever since its ground-breaking conception almost two

decades ago [26], in which an influenza virus prime followed by

vaccinia virus boost provided protection against Plasmodium

infection in mice. Since this first evidence that vaccinia virus

boost was required for strong activation of specific T cells, many

different techniques have arisen, including the use of different viral

vectors, DNA, and protein, in the presence and absence of

adjuvant. In the present study, we constructed two different

vaccinia virus vectors expressing recombinant influenza virus

Figure 3. Recombinant influenza virus proteins are present in the cytosol of infected cells. BSC40 cells were infected with WR, WR-flu (A),
or WR-NP (B) at an MOI of 1 PFU/cell. At 24 h p.i., cells were fixed with 2% paraformaldehyde, permeabilized, and stained with DAPI or antibodies
recognizing influenza virus HA (A), NP (B), or vaccinia virus 14 K (A27 gene). Bar = 25 mm.
doi:10.1371/journal.pone.0025938.g003
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proteins, based on an NP backbone, which is one of the more well-

conserved influenza virus proteins. Also utilized in our vaccine

design were the N-terminal of NA and the C-terminal of HA,

which are the well-conserved regions of H5N1 influenza virus

subtypes. These recombinants were part of a DNA-prime/

poxvirus-boost vaccination strategy in which a mammalian

expression vector expressing the same sequences that were inserted

into the vaccinia virus genome was used for the DNA priming

stage. While our vaccination strategy elicited an immune response

marked by CD4+ T cells expressing IFNc, CD8+ T cells expressing

IFNc and TNFa, and resulted in decreased viral replication in the

lungs of influenza-virus infected mice, these mice were not

protected against mortality.

There has been some disparity regarding the ability of influenza

virus NP in vaccine constructs to protect mice from mortality. A

recent report describes a human vaccine trial using a vaccinia

virus-based vaccine encoding the NP and M1 proteins against

influenza virus [24]. This vaccine protocol elicited increased IFNc-

secreting CD8+ T cells in response to NP and M1. On the other

hand, Lawson, et al., observed no protection following vaccination

with vaccinia virus constructs encoding NP, even though they

observed a reduction in lung viral load [20]. Ohba, et al. described

a DNA-based vaccine based on the N-terminal of NP and

observed protection upon challenge with influenza virus [18].

Saha, et al. also observed an improvement in vaccination using NP

when used in conjunction with the VP22 gene of herpes simplex

virus [17]. Finally, Altstein, et al. developed a vaccine using

recombinant NP that included a proteolysis signal which provided

some protection, especially when challenged with low doses of

influenza virus [19]. Therefore, it was our goal to improve upon

vaccine designs based on NP using a strategy in which we included

human T cell epitopes for other influenza virus proteins within the

NP backbone. A strategy based on multiple epitopes was

successfully used to vaccinate against Japanese encephalitis virus

in mice [27], as well as against hepatitis B virus and SIV [28,29].

While we did not specifically test if every influenza virus epitope

was correctly processed and presented, we know that the NP

peptide used for the ELISPOT and ICS experiments was correctly

presented. Following rationale design principles, we expect that

the other epitopes would be presented [30]. However, future

experiments with overlapping peptides for the entire influenza

proteins to fully characterize T cell epitopes, perhaps using a

transgenic humanized MHC class I mouse, should be performed.

In addition to the multi-epitope NPmix recombinant vaccinia

virus, we also constructed a recombinant virus encoding the

conserved regions from HA and NA of H5N1 viruses to examine if

the inclusion of more T cell epitopes would provide cross-clade

protection when challenged with H1N1 viruses.

Although we observed that T cells were able to be stimulated to

produce cytokines with influenza virus antigens, we did not

observe a protection from lethality of the virus. A number of other

Figure 4. Immunogenicity of WR-NP and WR-flu in mice. (A)
Immunization schedule. BALB/c mice were primed with 100 mg of DNA
(either 100 mg pCIneo-NPmix or empty vector, or 50 mg pCIneo-
NPmix+50 mg pCIneo-HANA) intramuscularly (i.m.) at the start of the
vaccination protocol. Two weeks later, the mice were boosted by
intraperitoneal (i.p.) infection with 107 PFU of WR, WR-NP, or WR-flu.
Eleven days post-boost, four mice were sacrificed to analyze the
adaptive immune response. The remaining mice were challenged with
influenza virus A/WSN/33, A/PR/8/34, or A/California/07/09. (B) Vaccine-
elicited T cell responses of splenocytes 25 d after the start of the
immunization protocol were measured in triplicate for each immuni-
zation group by fresh IFNc ELISPOT assay following stimulation with
influenza virus NP peptide TYQRTRALV, vaccinia virus E3 peptide
VGPSNSPTF, or RPMI media alone. The results represent the mean
number of IFNc-secreting cells per 106 splenocytes from three
biological replicates 6 standard deviations. P values from a two-tailed
t test assuming nonequal variance are indicated (*, P,0.05).
doi:10.1371/journal.pone.0025938.g004

Figure 5. Phenotypic analysis of vaccine-induced CD4+ and
CD8+ T cell responses. The same groups of splenocytes as described
in Figure 4 were stimulated with the influenza virus NP-specific peptide
and analyzed using polychromatic flow cytometry. The results represent
the mean number of CD4+ and CD8+ T cells secreting IFNc, TNFa, or IL2
in each immunization group using three biological replicates 6
standard error. The background from unstimulated controls was
subtracted in all cases. The pie charts represent the magnitude and
percentage of CD4+ and CD8+ T cells secreting cytokines in each
immunization group.
doi:10.1371/journal.pone.0025938.g005
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studies also had difficulties in showing that HA and NP could

provide protection from lethality [31,32,33,34,35,36]. It may have

been that our immunization scheme was sub-optimal, or most

importantly, we used the mouse as a test animal. It should be

highlighted that human T cell epitopes were used in the

immunization regimen, and hence, these epitopes in the mouse

might not be properly presented within MHC class I to stimulate

T cells. This is why we had used only a known NP mouse epitope

for stimulation of splenocytes for ELISPOT and ICS experiments.

Also, it may be that the vaccinia virus boost suppressed the

presentation of NP-generated T cell epitopes, as previously

reported [37]. Since we challenged mice with 106LD50, this

may have been too high of a dose to observe the protective effects

of vaccination. While we did observe a decrease in viral replication

in the lungs of mice vaccinated with WR-NP and WR-flu, the

amount of virus in the lungs was still greater than 104 PFU/ml,

which is high enough to cause lethality in mice [38]. It is likely that

mouse lung pathology would be similar in all vaccination groups,

and this would have contributed to mortality. Additionally, since

our vaccine construct utilized a muti-epitope design, we may have

observed increased immunogenicity upon stimulating splenocytes

or T cells, if instead of the single NP peptide that we used pools of

peptides spanning the influenza virus NP, M1, NS1, PB1, and PA

proteins, similar to previously described studies [10,11].

Many approaches exist to improve the vaccine design presented

in this study, one of them being the use of adjuvants. Rapamycin

has been shown to have immunostimulatory effects by improving

antigen presentation and aiding in cytokine production from

macrophages and dendritic cells. Furthermore, it is able to

improve on the generation of memory CD8+ T cells following

vaccination with a poxvirus vector [39,40]. Recent results have

shown that STING plays an important role in the generation of

IFNc-secreting CD8+ T cells [41]. Upon vaccination with a DNA

vaccine, wild-type mice generated significantly increased amounts

of IFNc as compared to STING2/2 mice in response to peptide

stimulation. These results suggest that the development of an

adjuvant to stimulate STING during vaccination would augment

the immune response to antigen presentation. In addition to the

use of adjuvants, many other future directions exist for the

improvement of our vaccine design to move closer to a universal

influenza virus vaccine. Our constructs that elicit T cell responses

could be combined with a vaccine specifically design to elicit a

humoral B cell-producing neutralizing antibody response. Sec-

ondly, we would have to test the vaccine for its efficacy in

protection after challenge with other influenza virus subtypes, such

as H5N1, H3N2, H9N2, and H7N7, all of which contain

conserved NP genes. It would also be prudent to challenge with

influenza B subtypes, since seasonal influenza virus vaccines

contain an attenuated B subtype virus. Since challenge with wild-

type H5N1 strain of influenza virus requires high biosafety levels,

we could challenge with a recombinant strain of PR8 that

expresses HA and NA from H5N1 viruses.

In summary, our study describes the design and development of

recombinant DNA and vaccinia virus vaccine constructs for use in

a DNA-prime/poxvirus-boost vaccine protocol as proof-of concept

protocol for a universal vaccine candidate against influenza virus.

Since these experiments were performed with the aim to show

proof-of-principle, we used the replication-competent WR strain

Figure 6. Polyfunctionality of influenza virus-specific CD4+ and CD8+ T cells. (A, C) Functional composition of CD4+ (A) or CD8+ (C) T cells
responses against influenza virus NP peptide based on the secretion of IFNc, IL-2, or TNFa. All the possible combinations of the responses are shown
on the x-axis, whereas the percentages of the functionally distinct cell populations are shown on the y-axis. Bars correspond to the fraction of
different functionally distinct T-cell populations within total CD4+ or CD8+ populations. Responses are grouped and color-coded on the basis of the
number functions. (*, P,1025; **, P,10225) (B, D) The pie chart summarizes the data and each slice of the pie correspond to the fraction of CD4+ T
cells with a given number of functions within the total CD4+ (B) or CD8+ (D) T cell populations. The size of the pie chart represents the magnitude of
the specific influenza virus immune response induced.
doi:10.1371/journal.pone.0025938.g006
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of vaccinia virus; any future vaccine trials, especially in humans,

non-replicative and safe, attenuated vaccinia virus strains, such as

MVA or NYVAC [12] must be used. Our construct contains

multiple T cell epitopes against influenza virus antigens, which

were aimed to broaden and increase immune responses upon

influenza virus challenge. While our construct elicited an immune

response marked by increased CD4+ and CD8+ T cells expressing

IFNc or TNFa, and resulted in decreased viral replication in the

lungs of influenza-virus infected mice, these mice were not

protected against mortality. Taken together, our results suggest

that a human mutli-epitope vaccine design in a DNA prime/

poxvirus boost approach can stimulate the breath and quality of

specific T cell immune responses to influenza virus antigens

leading to reduction in viral load in the lungs. This reduction

might play an important role to limit influenza virus replication in

a natural infection and to develop host immune resistance. The

protocol of immunization described here can be further improved

through the use of a recombinant attenuated vaccinia virus strain,

like MVA, and combination with adjuvants and vectors inducing

neutralizing antibodies to influenza virus proteins. Hence, a

vaccine construct that elicits broad T cell responses and limits virus

replication to some extent, as described here, could be combined

with a second vaccine that elicits a neutralizing antibody response

to further restrict the virus load. Together, such a vaccine strategy

could bring us closer to creating a universal vaccine against

influenza virus infection.

Materials and Methods

Cells, viruses, and infections
BSC40 monkey kidney epithelial cells and Madin-Darby canine

kidney (MDCK) cells (ATCC) were grown as monolayers in

supplemented high glucose Dulbecco’s modified Eagle’s medium

(hgDMEM) supplemented to contain 2 mM L-glutamine, 0.1 mM

nonessential amino acids, Fungizone Amphotencin B (0.5 mg/ml),

penicillin G (100 units/ml), streptomycin sulfate (100 mg/ml) and

10% newborn calf serum (NCS) or fetal calf serum (FCS) (Sigma),

respectively. Wild-type vaccinia virus (strain WR) and recombi-

nant WR viruses expressing influenza virus proteins were grown

and plaque-purified on monkey BSC-40 cells, purified by two 45%

(w/v) sucrose cushions, and titrated on BSC40 cells by plaque

assay.

Near-confluent monolayers of cells were mock-infected or

infected with vaccinia virus diluted in supplemented hgDMEM

Figure 7. Vaccination delays mortality in influenza virus-challenged mice. Two weeks following the end of the vaccination protocol, 5–8
mice from each vaccination group and 9 mice from control PBS-inoculated animals were infected with 106LD50 of the A/WSN/33 (A, B), A/PR/8/34 (C,
D), or A/California/07/09 (E, F) strains of influenza virus. Mice were sacrificed when body weight reached 75% of starting weight.
doi:10.1371/journal.pone.0025938.g007
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to the indicated multiplicity of infection (MOI). After 1 h of

adsorption at 37uC, virus and medium was removed. Fresh

supplemented hgDMEM containing 2% NCS was added to the

cells and infections were allowed to proceed at 37uC until the

indicated time post-infection.

Mouse inoculations
At day 1, six- to eight-week old mice BALB/c mice (Harlan)

were anesthetized with isoflurane and injected intramuscularly

with PBS alone or 100 mg of empty pCIneo vector or containing

NPmix, NA-HA, or both (n = 19–27). At day 15, mice were

anesthetized and infected intraperitoneally with 107 PFU of WR,

WR-NP, or WR-flu. At day 26, four animals were sacrificed for

adaptive immune response analysis. At day 29, the remaining mice

were anesthetized and challenged intranasally with 106LD50 of

the A/WSN/33, A/PR/8/34, or A/California/07/09 strains of

influenza virus (n = 5–8 for each group). Animals were weighed

each day for ten days and sacrificed when they lost at least 25% of

their starting body weight. Blood and lung tissue was collected

from each mouse at the time of sacrifice. All experiments were

performed in a specially separated negative-pressure HEPA (high-

efficiency particulate air)-filtered biosafety level 2 laboratory. All

animals were handled in strict accordance with good animal

practice as defined by the relevant national, international, and/or

local animal welfare bodies, and with the Royal Decree (RD

1201/2005). All animal work was approved by the Ethical

Committee of Animal Experimentation (CEEA-CNB) of the

Centro Nacional de Biotecnologı́a (CNB-CSIC). Permit number:

10015.

Generation and verification of recombinant vaccinia
viruses

Genes for expression of the recombinant influenza virus

proteins, NPmix and NA-HA (Figure 1B) were designed by us

and sent to GeneArtH for synthesis and insertion into the

pBlueScript vector. During the optimization process for the

sequences, the following cis-acting sequence motifs were

avoided: internal TATA-boxes, chi-sites and ribosomal entry

sites; AT-rich or GC-rich sequence stretches; ARE, INS, CRS

sequence elements; repeat sequences and RNA secondary

structures; (cryptic) splice donor and acceptor sites, branch

points; and AscI, FseI, NotI, PmlI and SalI sites. The influenza

virus genes were codon optimized and contain either an N-

terminal FLAG tag (NPmix) or a C-terminal His tag (NA-HA).

The genes were individually cloned into pCIneo for mammalian

expression, and also cloned into the TK locus of vaccinia virus

using the transfer vector pCyA. In this vector NPmix was

inserted alone, or in front of NA-HA, both of which were driven

by the vaccinia virus early/late promoter (pE/L). Homologous

recombination in the wild-type vaccinia virus strain WR was

performed as previously described [42]. Recombinant virus

containing NPmix was called ‘‘WR-NP,’’ and virus containing

both NPmix and NA-HA was called ‘‘WR-flu’’. Expression of

the influenza genes was driven by a synthetic early/late virus

promoter (Figure 1A).

Protein analyses and plaque assays
Following vaccinia virus infection or transfection with the

pCIneo expression vectors using Lipofectamine 2000 (Invitrogen)

following the manufacturer’s instructions, cells were lysed at the

indicated times p.i. in disruption buffer (0.5% Triton X-100,

50 mM KCl, 50 mM NaCl, 20 mM Tris-HCl [pH 7.5], 1 mM

EDTA, 10% glycerol, 16 Complete protease inhibitor (Roche),

25 mM b-glycerophosphate, 1 mM Na3VO4). Total protein

content was determined for clarified cell lysates by using the

BCA protein assay kit (Pierce). Lysates were separated by SDS-

PAGE with the same amount of total protein being loaded into

each lane and then transferred onto nitrocellulose membranes.

Immunoblots were blocked for 1 h in PBS containing 0.5%

Tween 20 and 5% nonfat dry milk, washed in PBS containing

0.05% Tween 20, and incubated at 4uC overnight with a mouse

monoclonal actin antibody (MP Biochemicals), a rabbit polyclonal

NP antibody (a kind gift from Adolfo Garcı́a-Sastre), or a sheep

polyclonal HA antibody (provided by the National Institute for

Biological Standards and Control) in PBS containing 0.5% Tween

20 and 1% nonfat dry milk. Subsequently, membranes were

washed and incubated for 2 h with horseradish peroxidase-

conjugated goat anti-mouse, goat anti-rabbit, or donkey anti-

sheep immunoglobulin G (Sigma), and bound antibodies were

detected with Amersham ECL Western blotting detection reagent

(GE Healthcare).

At the indicated times post-infection, vaccinia virus-infected

cells and cell media supernatant were collected and assayed in

triplicate for viral yield by standard plaque assay on BSC40

cells. For influenza virus-infected mice, diaphragmatic lung

lobes from each animal were weighed, homogenized in PBS, and

samples were then assayed in triplicate for viral yield by stan-

dard plaque assay on MDCK cells. Viral yields were calculated

according to the formula: log yieldt = x = [log10(PFU/ml)t = x]/

[log10(PFU/ml)t = 0], where t is time and x is the time post-infection.

For immunostaining of vaccinia virus plaques, infected cells

were fixed 24 h p.i. with 1:1 methanol:acetone, washed in PBS,

then incubated for 2 h with primary antibodies for vaccinia virus

(WR strain) or influenza virus NP diluted in PBS containing 3%

FCS. Cells were then washed and incubated for 1 h with

horseradish peroxidase-conjugated goat anti-rabbit diluted in

PBS containing 3% FCS. The spots were developed in PBS

containing 1 mg/ml of the substrate 3,39-diaminobenzidine

tetrahydrochloride (Sigma) with 0.03% hydrogen peroxide and

0.03% nickel sulfate.

Figure 8. Vaccination reduces the levels of infectious virus in
the lungs of influenza virus-challenged mice. Two weeks
following the end of the vaccination protocol, mice from each
vaccination group were infected with 106LD50 of the A/WSN/33
(WSN), A/PR/8/34 (PR8), or A/California/07/09 (CA) strains of influenza
virus. Mice were sacrificed at 5 d p.i. (except for some mice challenged
with CA that died at 3–4 d p.i), and diaphragmatic lung lobes were
isolated and homogenized. Levels of infectious virus were determined
in triplicate by plaque assay on MDCK cells. The results represent the
mean activity of 5–8 independent samples per group 6 standard
deviation. P values from a two-tailed t test assuming nonequal variance
are indicated (*, P,0.05; **, P,0.01).
doi:10.1371/journal.pone.0025938.g008
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Immunofluorescence
Following influenza virus infection of cells cultured on glass

coverslips, cells were fixed in 2% paraformaldehyde in PBS,

permeabilized in 0.1% Triton X in PBS, washed with 2.5% FCS

and 10 mM glycine in PBS, and then blocked with 10% FCS in

PBS. Cells were then incubated for 2 h with primary antibodies

recognizing influenza virus NP, HA, or vaccinia virus 14 K (A27

gene) diluted in 10% FCS in PBS. Subsequently, cells were washed

and incubated for 1 h with Alexa 488- or 586-conjugated anti-

rabbit immunoglobulin G (IgG) (Invitrogen), or fluorescein

isothiocyanate (FITC)-conjugated donkey anti-sheep IgG (Jackson

Immunoresearch). Cells were washed and incubated for 20 min

with DAPI (49,69-diamidino-2-phenylindole) (Sigma) and mounted

onto glass slides using ProLong Antifade reagent (Invitrogen). Cells

were imaged with the Leica TCS SP5 multispectral confocal

microscope (Leica Microsystems) using photomultipliers for laser

lines 405, 488, and 561 nm. LAS AF v.2.3.6 software was used for

image acquisition.

IFNc ELISPOT assay
The vaccine-specific cellular immune response in mice was

determined using ELISPOT assay measuring the secretion of

IFNc by splenocytes after stimulation with a peptide specific for

influenza virus NP (TYQRTRALV), as previously described

[10,11]. Briefly, eleven days after boosting with vaccinia virus,

mice were sacrificed and splenocytes depleted of red blood cells

were isolated. 106 splenocytes were plated in triplicate in 96-well

nitrocellulose-bottomed plates previously coated with 6 mg/ml of

anti-mouse IFNc mAb R4-6A2 (Pharmingen). Cells were

stimulated with the influenza virus-specific peptide (2 mg/ml), a

positive control peptide against the E3 protein of vaccinia virus

(VGPSNSPTF, 5 mg/ml), or without peptide as a negative control.

48 h after stimulation, cells were washed and those secreting IFNc
were developed using a biotin-streptavidin sandwich system and

counted using a stereomicroscope.

Intracellular Cytokine Staining (ICS) assay
Multiparameter flow cytometry was performed as previously

described [10,11]. Briefly, 106 splenocytes were stimulated with

the peptides described above in the presence of 1 ml/ml Brefeldin

(BD Bioscience) for 6 hours in a 96-well plate. The cells were then

washed, stained with the LIVE/DEAD Kit (Invitrogen), and Fc

receptors were blocked using CD16/CD32 antibodies (BD

Biosciences). The cells were then stained with the surface-specific

mouse antibodies, CD4-Alexa700, CD3-FITC, and CD8-PerCP

(BD Biosciences). Cells were permeabilized using the BD Cytofix/

Cytoperm Kit and were stained for the intracellular cytokines,

IFNc-APC, IL2-PE and TNFa-PECy7. Sample acquisition was

performed with an LSRII Flow Cytometer and FACSDiva

software (BD Biosciences) and was further analyzed with FlowJo

(Tree Star). All statistical analysis was performed as previously

described [10,11].

Supporting Information

Figure S1 Alignment of nucleoprotein (NP) from various
influenza virus subtypes. The NP protein of five influenza

virus strains of different subtypes (H1N1, H2N3, H5N1, H9N2,

and H7N7, from top to bottom) was aligned. The conserved

region, as indicated by red underline, from amino acids 19–498,

was used as the backbone for the NPmix multi-epitope protein.

(TIF)

Figure S2 Alignment of hemagglutinin (HA) and neur-
aminidase (NA) from different strains of the H5N1
influenza virus subtype. The NA protein (A) or HA protein

(B) from seven or eight different H5N1 viruses were aligned. The

conserved N-terminal of NA (amino acids 107–231) and conserved

C-terminal of HA (amino acids 347–511), as indicated by red

underline, were fused and used for the NA-HA construct along

with NPmix in the WR-flu recombinant virus.

(TIF)
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