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Abstract— The study of the flexibility and the different structural conformations of macromolecules is
of great importance to understand the function and behaviour of this molecules in both, the biological
environments and the industrial applications. Thanks to the development of techniques such as Elec-
tron Microscopy it is possible to visualize these macromolecules, which has to be previously analyzed
through different computational methods to perform the final study of the structure in three-dimensions.
In most of the cases, these computational methods are semiautomatic, so they need the intervention of
an experienced user to achieve the correct results. Consequently, there is a great interest in the devel-
opment of automatic and simple computational algorithms capable of analyzing the structural flexibility
of molecules independently of the user. Following the previous idea, the objective of this master thesis
is to optimize and improve a new method designed to study molecular flexibility in a fully automatic
manner in order to simplify its execution, improve its performance, increment the amount of information
extracted from the data and to open new possible approaches for the application of the software.

Keywords— Electron Microscopy (EM), Spherical Harmonics (SPH), Zernike Polynomials (ZP), Multidimensional Scaling (MS), Root

Mean Square Distance (RMSD).

INTRODUCTION

The study of the three-dimensional structure of
macromolecules is essential to understand prop-
erly how the machinery of life works. The function
of proteins and other complexes does not only de-
pend on the chemistry behind the molecule (which
determines the type molecular interactions that can
be established or the final composition of a mo-
lecule among other properties) but it is also de-
pendant on the final conformation adopted by the
macromolecule (for example, structural changes
are responsible of the specificity of the interactions
with a given target, leading to completely different
responses and outcomes).

In order to extract the information required to
reconstruct the three-dimensional structure of a
macromolecule, several techniques have been de-
veloped including X-Ray crystallography [1] Nuc-

lear Magnetic Resonance [2] and Electron Micro-
scopy [3]. Electron Microscopy relies on the ac-
quisition of several micrographs from a sample
in the form of a movie. Afterwards, each mo-
lecule (commonly referred as particle) in the mi-
crographs will be extracted, isolated and processed
to reconstruct the final three-dimensional structure
of the sample. Since is not possible to control
the position of the macromolecule in the sample,
the isolated images will represent different projec-
tions from different projection angles, which can
be used to determine the three-dimensional shape
of the particle after an angular assignation [4].

However, single particle analysis suffers from
different error sources that decrease the quality of
the structures reconstructed. For example, single
particle analysis assumes that the projections ob-
tained from the micrographs correspond to the
same specimen in a specific conformation. This as-
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sumption is not always satisfied, as the sample may
have contaminants or undesired specimens coming
from an imperfect purification process. Moreover,
molecules do not remain still in the sample, but
they are subjected to a continuous motion due to
thermal fluctuations and conformational changes.

Since biological macromolecules are intrins-
ically flexible structures, new reconstruction al-
gorithms try to classify the particles in order to
recover several conformations of the molecule un-
der study (known as discrete heterogeneity). Nev-
ertheless, it is not possible to guarantee that the
number of images acquired are enough to recon-
struct all the possible conformations with enough
resolution (making impossible to analyze the con-
tinuous heterogeneity of molecules based on the
reconstructed volumes).

In order to overcome the challenges coming
from the flexibility of biological molecules, dif-
ferent computational algorithms have been intro-
duced in order to analyze this continuous hetero-
geneity of molecules. One of the main algorithms
used to perform this modeling is Normal Mode
Analysis (NMA) [5]. Although NMA is a power-
ful tool, it is semiautomatic meaning that it re-
quires the intervention of the user in order to re-
turn the desired result. This will bias the analysis
towards the knowledge of the user, making the
results prone to suffer from errors and decreasing
their repeatability and reproducibility. The limit-
ations present in semiautomatic methods can only
be overcome by developing new algorithms cap-
able of performing continuous heterogeneity ana-
lysis on their own, leading to more reliable results.

During the next sections, a mathematical basis
capable of analyzing the continuous heterogeneity
of molecules automatically will be described and
optimized through the development of different
methods in order to simplify its execution while
improving its performance.

METHODS

This section starts with the mathematical de-
scription of the basis that will be used to study the

continuous heterogeneity of biological molecules1.
After the description, the different methods and al-
gorithms that were developed during the master
thesis to improve this new tool will be introduced.

Spherical Harmonics and Zernike Polynomials

In mathematics, a basis is usually defined as a
set of components (such as vectors or functions) of
a given space that are able to span any component
belonging to that space. One simple example is
the Hilbert space and its basis, that allow to express
the spatial position of any point in a N-dimensional
space.

Another interesting property of a basis (which is
essential for the method proposed along the thesis)
is the possibility of moving from a given basis
to a completely different one. A representative
example of the usefulness of this property is the
Fourier Transform, which is commonly used when
dealing with waves. The Fourier Transform moves
the components of a wave from the so called Real
Space to the Fourier Space or Frequency Space. In
this space, a wave is represented by a series of delta
functions whose height represents the strength of a
sine wave of that specific frequency in the compos-
ition of the initial wave. The possibility of jump-
ing from one basis to another is extremely useful
for the analysis of the data: in many cases, study-
ing a given piece of information may be complex
in the Data Space, but it might be simpler in the
Alternative Space defined by a new basis.

Following the previous idea, it is possible to
define a new basis [6] to move the structural in-
formation of a macromolecular complex resolved
by EM to another "space" where the conforma-
tional changes are more easily studied. This basis
can be defined as a functional space declared over
the sphere composed by two set of functions: the
Spherical Harmonics (1) and the Zernike Polyno-
mials (2).

Y m
l (θ ,ϕ) = NeimϕPm

l (cosθ) (1)

1The description provided is just for the ease of the
reader. For a more exhaustive explanation of the basis, the
interested reader is referred to [6]
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By joining these two components, the basis can
be defined as:

Zn,m
l (xr,yr,zr) = Rn

l (r)Y
m
l (xr,yr,zr) (3)

As explained before, the goal of (3) is to study
the structural changes suffered by a given macro-
molecule. This problem can be understood as find-
ing the deformation that drives one conformation
of a molecule towards a different structure. The
solution of the previous problem can be seen as:

min
cl,m,n
||V1(~r)−V2(~g(~r))||2 (4)

Where V1 and V2 represent two different conform-
ations of a molecule known beforehand and g(r) is
a deformation defined as:

~g(~r) =~r+∑cl,n,mZn,m
l (~r)

Being cl,n,m the deformation coefficients needed to
minimize (4).

Volume normalization

The evaluation of the volume at ~g(~r) proposed
in (4) cannot be directly performed in general. The
volumes reconstructed after processing the micro-
graphs acquired by the EM cannot be formed by
an infinite set of points due to the storing limita-
tions of computers. Instead, the volumes are dis-
cretized into finite units know as voxels. In fact,
the size of this voxels will determine the size of the
smallest detail that can be seen in the reconstructed
volume (i.e. the voxel size determines the resolu-
tion of the volumes). Since the deformation ob-
tained is, in general, a number of arbitrarily large
precision (whose lower and upper bounds are again
restricted by the computer memory), the position
defined by g(~r) might not lie within an exact voxel
but in any position within the voxel volume. In or-
der to approximately evaluate the volume at g(~r),
it is needed to interpolate the value at this point
(in this way, the accuracy of the evaluation will in-
crease). However, interpolation algorithms strictly

depend on the values of the voxels that are used to
performed the calculations.

As stated by (4), the minimization of the cost
function depends on the difference on the voxel
value of V1 at position~r, and the interpolated value
of V2 at position ~g(~r). If the histograms of the
two volumes are not properly normalized, the min-
imization algorithm will not be able to appropri-
ately determine the deformation coefficients that
best define the deformation desired.

To that end, a new normalization procedure is
proposed. The main objective of this normaliza-
tion is to align the histograms of the volumes V1
and V2 in such a way that the middle region of the
histograms is as superimposed as possible.

V̂ =
V −Ṽbg

P99

Where P99 is the percentile 99th percentile of
the voxel values belonging to the foreground (the
volume V ) and Ṽbg is the median value of the
volume background (both, foreground and back-
ground can be extracted after applying a mask to
the whole volume).

For the normalization to be effective, it is needed
to constrain the maximum and minimum values of
the normalized volumes as the quotient may result
in large absolute values for the maxima and min-
ima of the new histograms. In order to avoid this
undesired effect of the normalization, large posit-
ive and negative value are constrained to:

constrain =±z(0.999)
z(0.99)

=±1.3284

Where z(x) represents the inverse of the normal
distribution evaluated at the value x (which repres-
ents the percentile Px).

Multi-resolution analysis

Interpolation introduces another important
source of error coming from the resolution of the
maps. The mathematical basis introduced in equa-
tion (3) is able to compute deformations associated
to low and high frequency movements depending
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on the degree of the polynomials involved: the
higher the degree the basis reaches, the higher the
frequency associated to the movements.

However, deformation is analyzed from lower
to higher frequency movements. This implies that
overlapping of the volumes at the first iterations
is crucial to interpolate appropriately the voxels
when low frequencies are being analyzed. If the
volumes provided to the software show a large
spatial resolution, conformational changes appear-
ing in high frequency regions (e.g. small alpha
helixes and beta sheets present in the structure of
the samples) will prevent the basis from comput-
ing low frequency deformations due to interpola-
tion and overlapping limitations.

In order to prevent errors driven by the resolu-
tion of the volumes, it is possible to work with sev-
eral low-pass filtered versions of the input maps to
perform a multi-resolution analysis. Following the
previous idea, the cost function shown in equation
(4) will become a sum over the different filtered
pairs:

min
cl,m,n

∑
f
||V f

1 (~r)−V f
2 (~g(~r))||

2

Multi-resolution analysis is a powerful tool to
compute the deformation among maps with vary-
ing resolution or with fine details as it will be ex-
plained during the next sections.

Deformation penalization

One of the effects that have been observed when
applying the basis to deform a given volume is the
presence of regions that are moved in an excess-
ive fashion. These errors mainly appear when the
degree of the polynomials involved in the calcula-
tion is large, meaning that the software has more
degrees of freedom to modify the structure of the
volumes under study.

The deformation phenomenon is a combination
of different effects appearing due to the prepos-
sessing steps described before (volume normaliz-
ation and multi-resolution analysis) plus the effect
of the cost function to be minimized during the de-
formation procedure.

The new normalization method introduced relies
on the implementation of percentiles to compute
the new voxel values. However, the presence of
percentiles may be problematic if the number of
zero values present in the foreground is large com-
pared to the number of voxels belonging to the ac-
tual volume. As an example, it can be considered
that the mask used is circular with a radius equal to
half the box size containing the volume. If the box
is large, the number of zero values (background)
associated to the mask will be much larger than
those of the macromolecular complex contained in
the box. When this happens, the percentile will
be progressively shifted towards the zero value.
As a result, most of the voxels belonging to the
macromolecular complex will be clipped leading
to a volume close to a binary mask (the volume
is mostly formed by zeros and clipping values).
Since all the voxels within the volume are clipped,
the software can freely deformed in any direction
within the macromolecular complex (as the correl-
ation with all the surrounding voxels will be high)
leading to excessive deformations.

The discussion involving the multi-resolution
analysis follows the same reasoning as the one de-
scribed before. Due to the application of filters,
the voxel values will become closer to each other
allowing the software to deform in any direction
without introducing a cost difference.

The normalization errors can be solved by ap-
plying masks that are limited to the volume region
where the macromolecular complex is found. For
this software, entropy thresholding was implemen-
ted to generate mask that overcome the issue of
including to many background voxels in the calcu-
lation of the percentiles. In the case of the filter,
narrow Gaussians are preferred to prevent the un-
desired effect of having similar voxel values.

Apart from improving the prepossessing steps,
it is also possible to introduce restrictions to the
cost function to be minimized during the deform-
ation process. An extra term was added that ac-
counts for the deformation and the mass difference
between the deformed and the original volumes.
In this way, the cost function will increase its value
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when excessive deformations are introduced, redu-
cing even further this effect. The importance of
this penalization compared to the deformation cost
is controlled by a regularization parameter. This
allows the user to adjust the behaviour of the soft-
ware to the needs of the experiment.

Multidimensional scaling

Equation (4) shows the procedure to be followed
to determine the deformation that has to be applied
to a given volume to determine how it moves to-
wards a new structure. Nonetheless, the basis pro-
posed in (3) is not only intended to be applied to a
single pair of conformations.

Considering the case where the processing of the
micrographs acquired by the EM rendered an arbit-
rary number of volumes N (which represent differ-
ent conformations of the same specimen). For this
new case, it is possible to apply the basis previ-
ously introduced to all possible pair combinations
of the N volumes. After computing the deforma-
tion coefficients and the deformed maps, a distance
measurement can be established among all the dif-
ferent deformed volumes with respect to their ref-
erence pair. Following the previous procedure, a
distance matrix will be obtained. This distance
matrix shows how close are the structure of two
volumes in terms of the deformation extracted with
the basis. However, a direct representation of the
distance matrix is not possible, as the coordinates
that can be extracted from the distances will lie on
a N-dimensional space.

In order to find a representation of this coordin-
ates in a lower dimensional space, an approxim-
ation has to be used. The challenge is to find a
set of coordinates in one, two or three dimensions
whose distances are as close as possible to the N-
dimensional matrix defined by the basis algorithm.
The solution to this problem requires a tool com-
monly known as Multidimensional Scaling [7]. As
stated before, this tool finds a set of points whose
distance are as close as possible to an input matrix
of arbitrary dimensions. Although there are several
formulations of the algorithm, here it is provided
the classical formulation for the convenience of the

reader [8]. Given a distance matrix D ∈ IRN which
has been centered by a centering matrix J, the set
of points in dimension m that best describe the con-
tents in matrix D are:

P = Em∆
1/2
m (5)

Being Em and ∆m the first m eigenvectors and ei-
genvalues associated to matrix D. The matrix P
containing the coordinates of each point is com-
monly referred as an structure map of the macro-
molecular complex.

The previous classical definition of the Multi-
dimensional Scaling problem is convenient as it
can be implemented easily in a computer. How-
ever, the mathematical formulation of the tool de-
scribed before does not contemplate the possibility
of combining several distance matrices computed
using different metrics. This is an useful applica-
tion, as different distance metrics will provide with
a different result that can be combined to create a
consensus that maximizes the information extrac-
ted from the Multidimensional Scaling.

For the case proposed in this master thesis, the
comparison of the N different volumes using, for
example, deformation distance (the amount of de-
formation in pixels suffered by a given volume
when deformed towards a different structure) and
correlation distance (correlation between the de-
formed volume and it reference conformation con-
verted to distance) matrices may result in two com-
pletely different set of points P when equation (5)
is applied. In fact, since the two matrices will gen-
erally report a different perspective of the problem,
both will provide with valuable information when
analyzing the structural transitions hidden in the
data. Since each metric provides with a different
(but valid) point of view, the goal is to find a con-
sensus among the matrices to have the best pos-
sible solution to the problem.

In order to find the best combination of the res-
ulting matrices obtained by (5), a new method
based on entropy minimization of the point
matrices P is proposed. Starting with a series
of coordinates matrices Pi obtained after applying
classical Multidimensional Scaling to a given dis-
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Fig. 1: Simulated EM map from PDB file. The top image shows the alignment between the simulated map (gray) and the
original PDB file (red).

tance matrix Di, the objective is to find the coeffi-
cients αi such that:

C = ∑
i

αiPi

In the previous linear combination, the coefficients
αi must also verify that:

∑
i

αi = 1

Since all the coefficients add up to one, the final
weights can be regarded as the "importance" of the
information stored in the set of points Pi when in-
cluded in the consensus. The criterion followed to
determine the best combination of weights for each
matrix was to find the combination that minimizes
the entropy of the matrix C. This can be done by
iterating along the different possible values of αi,
convolving the resulting matrix C with a Gaussian
kernel and analyzing the Shannon entropy of the
final images for each of the combinations of αi.

However, it may remain unclear why to choose a
minimum of entropy instead of a maximum. Since
entropy can be considered as a measure of the
amount of information in an image [9] (meaning

that an image with maximum entropy has max-
imum information), then using a minimum of en-
tropy as a criterion will result in a set of points C
with minimum information. Although the previous
statement is true in general, it might not be appro-
priate for the calculation of the structure maps.

Let’s consider a set N volumes (that represent a
series of different conformations defining a trans-
ition between the first and the Nth volume). The
expected result to be obtained after applying clas-
sical Multidimensional Scaling to the output dis-
tance matrix D is a reproduction of the trajectory
that the first volume follows to become the Nth

volume. Having a trajectory of points means that
we have a highly order structure with low entropy
(otherwise, the points would be spread around
space). If instead several distance matrices Di are
used, a similar trajectory should be recovered as
it best describes the structural relations established
among the volumes analyzed. This means that the
criterion will be to search a minimum of entropy to
increase the probability of recovering a trajectory
if present.
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Since the samples imaged in EM are gener-
ally composed by a single specimen, the differ-
ent possible structures that will be recovered after
the 3D reconstruction will represent different con-
formations of the same macromolecule. Thanks
to the previous fact, it is possible to safely apply
a minimum-of-entropy criterion as it is desirable
to determine if the conformations recovered define
a "transitional conformational change" or if they
represent isolated conformations instead.

RESULTS AND DISCUSSION

In this section, the results obtained after apply-
ing the methods described previously to different
data will be described and discussed. The test per-
formed were run with simulated and experimental
data (including both, EM maps and PDB files) in
order to assess the the accuracy of the conform-
ational changes computed by the algorithm under
different conditions that are representative of real
EM studies.

Conformational changes between simulated EM
maps

As explained before, one direct application of
the basis introduced in equation (3) is to compare
two different conformations of a macromolecule.
However, in many cases the data that can be ac-
cessed through databases or simulated data appears
in the form of a PDB file. A PDB file contains
information about the position of the atoms, com-
monly derived from an electron density map. Since
the basis is only intended to be applied to electron
density maps, it will be needed to perform a con-
version of the atomic coordinates to electron dens-
ity. An example is provided in Figure 1.

The simulation of electron density maps from
a PDB file is, however, introducing some com-
plications in the analysis of the data. The main
challenge is to overcome the interpolation er-
rors arising from non-overlapping regions in the
volumes to be compared. As explained in the pre-
vious section, filtering the input maps is necessary
to improve the overlapping, allowing the software

Fig. 2: Deformation structure mapping obtained after
running the software with a simulated trajectory of 30 PDBs.

to compute more accurately the deformation due to
low frequency movements.

The data analyzed was composed by a set of 30
different simulated PDB files that define an open-
close trajectory of a GroEL complex. The res-
ults obtained after computing the structure map-
ping trough spherical harmonics is show in Figure
2, Figure 3 and Figure 4.

Figure 2 shows the structure mapping asso-
ciated to the deformation distance metric. This
metric does not take into account the shapes
of the volumes that were compared, and it
mostly provides information about the low fre-
quency movements that the different volumes have
suffered. As it can be seen from the image, the
right branch is defining a trajectory as expected,
but the left branch shows a disordered cloud of
points. The presence of this cloud is better under-
stood when comparing Figure 2 and Figure 3. In
this region, the differences between the volumes
are small and have mostly a high frequency con-
tribution. Since the degree of the basis used was
not high enough, it was not possible to compute
the deformation due to the high frequency regions,
leading to the unstructured area shown in Figure
2.

However, Figure 3 has a well resolved trajectory
even in the region of high frequency differences.
This change in the result appears due to the applic-
ation of a different metric to compute the structure
mapping: the correlation distance. Thanks to cor-
relation, the information stored in the shape of the
different volumes is taken into account when com-
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puting the dissimilarity measure among the dif-
ferent possible volume pairs. As a result, areas
defined mainly by high frequencies can be differ-
entiated leading to a better structure mapping. For
this specific case, correlation distance provide us
with a well defined trajectory as it takes into ac-
count both the low frequency information (coming
from the basis) and the high frequency information
(mainly coming from the correlation measure).

Figure 4 shows the consensus of minimum en-
tropy found between the two previous structure
maps. As expected, most of the weight is given
to the correlation metric, as it already includes
low and high frequency information. According to
the consensus and to the structure maps, for well
defined trajectories with enough samples/volumes,
correlation distance is preferred as it will provide
with information that is not present when working
with the deformation distance. In addition, correl-
ation metric will also play an essential role when
the spatial resolution of the maps to be analyzed is
large.

Random conformational changes in simulated
EM maps

In may cases, the different experimental EM
maps reconstructed form the images of the sample
do not represent a conformational trajectory. In-
stead, it is possible that the different specimens
found after analysing the data through a 3D clas-
sification correspond to a random set of different

Fig. 3: Correlation structure mapping obtained after running
the software with a simulated trajectory of 30 PDBs.

Fig. 4: Consensus structure mapping obtained after running
the software with a simulated trajectory of 30 PDBs.

states of the sample that cannot be structurally re-
lated. This may happen when the energy landscape
of the sample has several viable conformations that
minimize the energy of the macromolecule and the
structures reconstructed represent random minima
spread along the energy landscape.

The study of a random walk simulated through
molecular dynamics is, according to the previous
idea, of great interest to determine the behaviour of
the software under the aforementioned conditions.
The test performed consisted on the analysis of 23
different PDB files obtained after simulating a ran-
dom walk followed by a GroEL complex through
molecular dynamics. The consensus obtained after
applying the entropy method to the deformation
and correlation metrics is shown in Figure 5.

When simulating a random walk through mo-
lecular dynamics, two cases may appear depending
on the parameters used to create the different ran-
dom conformations during the simulation. If the
sampling of the conformational changes suffered
by the initial macromolecular state is slow, the
resulting structure map should look like a Gaus-
sian around the initial conformation. However,
if the sampling rate is increased, the conforma-
tions obtained will resemble a random trajectory,
as the sampling is able to capture intermediate
states that share structural information with their
predecessors.

According to Figure 5, the random walk sim-
ulated corresponds to the second case. The res-
ulting structure mapping (obtained after applying
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Fig. 5: Consensus structure mapping obtained after running
the software with a simulated random walk of 23 PDBs.

the entropy consensus to the deformation and cor-
relation metrics) shows a trajectory between the
initial and the final conformations of the random
walk, although the intermediate steps are randomly
arrange when compared to Figure 4. The res-
ults shows that the software is able to capture cor-
rectly the information of a trajectory even if it is
disturbed by random noise. This result is a bet-
ter indicator of how the software will behave in
the real and non-ideal world where the movement
suffered by macromolecular is also affected by
thermal noise.

Despite the usefulness of analyzing random tra-
jectories, the study of randomly distributed Gaus-
sian conformation is also of great value, as it shows
the effects appearing on the structure mapping
when the structures to be fed into the software do
not have a close relation. This should be performed
as a future study in order to assess more deeply
the efficiency and performance of the entropy con-
sensus and the optimized basis.

Compatibility of deformation and PDB spaces

Although the software described and improved
along this master thesis is intended to be applied
to EM maps, it is interesting to study the com-
patibility of the space defined by the deformation
coefficients and the space defined by the atomic
positions in a PDB file. If the spaces are com-
patible, the deformation computed with the EM
maps could be directly applied to the PDB files

to obtain a deformed version of the original PDB.
This introduces a new range of possible studies like
energy minimization or docking of the deformed
structures to get new information about the con-
formational changes computed by the mathemat-
ical basis.

The first step is to determine how the deforma-
tion should be applied to the PDB files. The soft-
ware defines the deformation computed from the
original volume as:

VR(~r) =VI(~r+~g(~r))

Being g(r) the deformation computed through the
coefficients and the basis. The previous equality
holds if the degree of the polynomials goes to in-
finity. Otherwise, the result would be just an ap-
proximation of VR up to a high frequency conform-
ational change (i.e. the specific features of VI are
kept untouched during the deformation process).

The previous equation is referred to a coordin-
ate system whose origin is placed on VR. However,
when the deformation is applied to a PDB file, the
reference volume is lost so is the coordinate sys-
tem. It is possible to rewrite the previous equation
in terms of the coordinate system defined by VI by
applying a change of variable of the form:

~r′ =~r+~g(~r)

And the previous equation becomes:

VR(~r′−~g(~r)) =VI(~r′)

This implies that the deformation to be applied to
the PDB files to check if the spaces are compat-
ible is inverted. In fact, this means that, due to the
change in the coordinate system, a compression in
a volume should translate into an expansion in the
PDB if the sign is not taken into account.

Table 1: RMSD (in Å) measured from the original and
deformed PDB

C2 C8 C17 C24

C0 Original 1.202 5.044 7.918 8.536
C0 Deformed 0.853 2.752 5.038 5.468
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Fig. 6: Deformed EM maps (left) and corresponding PDB files (right). The image shows the deformed (black) and reference
(blue) maps and PDB.

Figure 6 shows the deformation applied to a
volume and its correspondent PDB file with Chi-
mera. The procedure followed was identical to the
way volumes are deformed: for each atomic posi-
tion, the mathematical basis value is computed to
find the deformation g(r) through the deformation
coefficients. Then, the value of g(r) is inverted and
use to move the atomic coordinates to the new loc-
ation. This last step involved an interpolation when
working with volumes as a voxel value value was
needed. When working with PDB files, there is
no need to interpolate as we are working with co-
ordinates, so the deformation displacement can be
directly applied.

As it can be seen from the image, the deform-
ation applied to the PDB reproduces the structural
change defined by the maps. Moreover, the RMDS
between the deformed and the reference PDB is
decreased as shown in Table 1. This result im-
plies that the spaces defined by the deformation
coefficients and the atomic coordinates in a PDB
file are compatible, so the deformations computed
thorough the EM maps can be directly applied to
the PDB files.

Comparison of simulated and experimental EM
maps

All the results presented during the previous sec-
tions were obtained after applying the mathemat-
ical basis previously described and studied to dif-
ferent sets of simulated data. Thanks to this data,
it is possible to control the conditions of the tests,
allowing to better refine and understand the mode
of operation of the software. However, it is dif-
ficult to assess how accurately our simulations can
reproduce real EM maps due to the large amount of
factors that can affect the final reconstruction of a
real sample. The lack of a way to validate how well
simulated EM maps reproduce reality makes diffi-
cult to assess quantitatively the performance of the
simulation algorithms. We propose the usage of
the optimized mathematical basis to give a meas-
urement of this validation.

One of the main challenges that appear when
comparing simulated and experimental EM maps
are the differences in the structural information
stored in the volumes. Due to construction, simu-
lated EM maps have intrinsically much larger res-
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olution compared to experimental maps. Due to
the resolution differences, interpolation limitations
will start playing an important role, introducing er-
rors that will prevent the software from comparing
properly the data. As discussed before, this un-
desired effect can be minimize either by applying
a multi-resolution analysis or by prepossessing the
maps to give them approximately the same spatial
resolution. It is important to mention that, even
after this prepossessing step, the structural differ-
ences among the experimental and simulated maps
might be large due to reconstruction errors.

The data used for the test was a set of ten
volumes representing different conformations of
the rabbit ryanodine receptor. Five of the maps
of the set were obtained experimentally while the
other five were simulated from the PDB files ex-
tracted from the five previous experimental maps.
This implies that, by construction, it is expected to
observe five groups of points in the structure map-
ping representing a experimental-simulated map
pair.

The results obtained are presented in Figure
7. For this application, deformation distance was
found to be the best choice. The main reason
are the structural differences present between the
simulated and experimental maps that will drive
the correlation distance to a "class grouping" (i.e.
the structural map will show two well differenti-
ated groups representing the experimental and the
simulated maps, making impossible to analyze the
similarities present between the two classes).

Fig. 7: Deformation structure mapping obtained after
applying the mathematical basis to a set of

experimental-simulated map pairs.

Fig. 8: Structure mapping obtained after performing a
submatrix analysis to a set of experimental-simulated map

pairs.

Since deformation distance is a metric that
does not take into account structural features, it
will provide more reliable and informative results.
Most of the pairs can be properly identified in the
structure mapping obtained, although there is a
pair that was not identified correctly. This effect
appears when the conformational changes between
two different structures are small, reducing also
the value of the deformation distance. Ideally,
the smallest deformation distance should be found
when comparing the experimental-simulated pair.
Nevertheless, this is not true if the distance of two
conformations is small, as there will be other pairs
showing short deformation distances as they are
structurally similar.

In order to overcome this limitation, it is pos-
sible to analyze the distance matrix by parts. In
this way, the first five rows of the 10×10 distance
matrix will represent the comparison of the sim-
ulated EM maps with the experimental maps and
with themselves. By analyzing this two groups
independently, it is possible to asses if the rela-
tionships among the volumes are similar when the
structure mapping of the two groups are compared.
This result is shown in Figure 8. As it can be seen
from the structure mapping, the independent ana-
lysis of the submatrices reveals all the pairs avoid-
ing the errors present in Figure 7.

According to the results obtained, it can be con-
cluded that the basis is a good method to validate
our simulated data. In this way, it is possible to
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measure how well our simulations represent a real
scenario and to correct the maps in case the dis-
similarities are large enough.

CONCLUSIONS

Macromolecular complexes are not static en-
tities that remain in a given conformation when
performing their functions. Instead, their struc-
ture is highly dynamic, as it usually changes
from one conformation to another depending on
the conditions of their environment. Moreover,
the three-dimensional structure of macromolecular
complexes is strictly related to is function, as it ex-
poses different interaction regions that may remain
hidden otherwise.

The analysis of conformational changes is, as
described before, essential to understand properly
the macromolecules under study. There are, how-
ever, several limitations when working with al-
gorithms to described the continuous heterogen-
eity of molecules, being some drawbacks the lack
of full automation of the process and the difficulty
of executing the software properly for a given ex-
periment. During this master thesis, a new soft-
ware to study macromolecular flexibility has been
described and optimized to performed this tasks
more easily, simplifying the process and improv-
ing the results obtained.

The software has shown its performance when
applied to a range of different data simulating a
variety of scenarios that might be found when
studying the flexibility of macromolecular com-
plexes in EM. In all the cases, the expected result is
obtained and a consensus among different metrics
was computed to maximize the amount of informa-
tion that can be extracted from the samples. In this
way, it is possible to determine if the reconstructed
maps coming from the images acquired are struc-
turally related (i.e. they define a conformational
trajectory when the structure map is computed) or
not (the structure map shows a random layout of
points).

In addition, the PDB and deformation spaces has
been shown to be compatible. This has important

implications, as it opens new fronts to study how
the deformation computed affects to the atomic
positions. The deformations computed may lead
to changes in the interactions found in the mac-
romolecule analyzed that can be studied through
energy minimization algorithms and docking.

Lastly, the software were also proven to work
correctly when faced with a dataset containing
simulated and experimental data. Thanks to this
comparison, it is possible to determine how accur-
ately our simulations can reproduce real data re-
constructed from the images acquired with the EM.
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