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The new developments in Cryo-EM Single Particle Analysis are helping us to

understand how the macromolecular structure and function meet to drive
biological processes. By capturing many states at the particle level, it is pos-
sible to address how macromolecules explore different conformations,
information that is classically extracted through 3D classification. However,
the limitations of classical approaches prevent us from fully understanding the
complete conformational landscape due to the reduced number of discrete
states accurately reconstructed. To characterize the whole structural spec-
trum of a macromolecule, we propose an extension of our Zernike3D
approach, able to extract per-image continuous flexibility information directly
from a particle dataset. Also, our method can be seamlessly applied to images,
maps or atomic models, opening integrative possibilities. Furthermore, we
introduce the ZART reconstruction algorithm, which considers the Zernike3D
deformation fields to revert particle conformational changes during the
reconstruction process, thus minimizing the blurring induced by molecular

motions.

Cryo-electron microscopy (Cryo-EM) single particle analysis (SPA)" has
proven to be a powerful technique to understand the structure of
macromolecules. By capturing individual images of the specimen in
different poses, it is not only possible to reconstruct the average
macromolecular conformation of the specimen under study, but it also
brings to light the challenging problem of identifying several con-
formational states from the acquired dataset.

Generally, compositional heterogeneity, as well as flexibility, have
been addressed through 3D classification’. This approach allows
reconstructing a given number of different states from the particle
images based on the assumption that there is a defined number of
discrete conformational states being explored by the specimen. This
methodology has been very successful in the study of many systems,
being recently expanded to increase the number of states being
resolved®.

However, the explicit modeling assumption of the existence of
discrete motions has obvious limitations in most experimental cases,
depending on the actual biological system under study. Clearly,
removing this constraint is methodologically very challenging,
although the pay-offs are clear, both in terms of obtaining richer
conformational landscapes than currently done, and in providing
improved algorithmic stability and objectivity, removing many
assumptions and trial and error tests.

Limitations faced with discrete flexibility can only be solved at the
image processing level by a paradigm change introducing methods
able to handle continuous flexibility: the ability to extract macro-
molecular conformational information at the individual particle level
to get a sufficiently rich and populated landscape of molecular states.
Several approaches have been previously proposed to face continuous
flexibility, each from a different perspective*™.
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In this work, we extend our recent Zernike3D algorithm™ (speci-
fically designed to deal with continuous heterogeneity) to precisely
accomplish the latter task starting from Cryo-EM images with some
unique properties, such as (1) the possibility to work with images,
maps, and atomic models in the same space, (2) a clear mathematical
design that intrinsically helps avoiding over-deformations in projec-
tion directions, and (3) a reconstruction algorithm (that we name
ZART - Zernike3D-based Algebraic Reconstruction Technique) that
takes into account individual particle conformational information,
reverts the structural changes, and obtains a new map in which flexible
regions have intrinsically increased resolution. Note that property (1)
indicates that one can work at the level of structural models, avoiding
multiple fitting steps, property (2) drastically reduces flexibility esti-
mation errors that would be very difficult to consider in other math-
ematical frameworks, and property (3) makes it possible to explore
states with a small number of classes while still reconstructing maps
with large datasets, though at improved resolution since motion
blurring is substantially reduced.

We note that the full derivation of ZART is rather technical, so we
present in this work its main properties in the context of continuous
flexibility, while the derivation of the algorithm in itself is presented as
a separate technical work.

Results

Conformational landscape of EMPIAR-10028 dataset

The following experiment is aimed at assessing the capacity of the
Zernike3D algorithm to identify conformational variability on real
Cryo-EM data. To that end, we analyzed the EMPIAR-10028 dataset"
corresponding to the P. falciparum 80 S ribosome bound to emetine.
This dataset has been extensively studied by other methods®®,
becoming a popular validation dataset for continuous heterogeneity
algorithms.

In this work we have reprocessed that dataset inside Scipion'?,
leading to a total of 50,000 particles. The workflow followed included
several cleaning steps to reduce as much as possible the number of
unwanted particles, followed by some consensus protocols to com-
pare the parameters estimated by different algorithms (angular
assignation, shifts, Contrast Transfer Function...) and keep only the
particles consistently estimated.

The previous particles were subjected to the Zernike3D analysis,
translating them to a set of Zernike3D coefficients. The maximum basis
degrees were set to N=3 and L =2 for the estimation of the deforma-
tion fields. In addition, the particles were downsampled to a box size of
125 voxels to increase the performance of the algorithm. Apart from
the Zernike3D analysis, the particles were not subjected to other het-
erogeneity workflows such as classical 3D classification.

The resulting UMAP (Uniform Manifold Approximation and
Projection)” representation of the Zernike3D coefficient space is
shown in Fig. 1. As it can be seen from the representation, the Zer-
nike3D coefficient space leads to an informative representation of the
heterogeneity present in the dataset. Two clear states are well differ-
entiated, representing the two rotation states of the small subunit of
the ribosome, as well as some other more localized movements. The
colormap used to represent the embedding describes the amount of
deformation associated with each deformation field: purple colors
correspond to small deformations and are usually associated with
conformational changes similar to the reference map, while yellow
colors are associated with bigger changes. The possibility of coloring
the coefficient space adds another dimension of information helping
in the analysis of the heterogeneity of the dataset.

There are two different possibilities to recover conformational
changes from the previous embedding: (1) applying a deformation
field to the reference or (2) exploring, by refinement and reconstruc-
tion, different areas of the conformational space. Option 1 represents
an almost instant and interactive exploration of the conformational

space, in which just by placing the cursor on any point of the repre-
sentation conformation we obtain a Zernike3D synthesis of a map,
while Option 2 goes to the original images and aims at exploring
whether there are residual errors not accounted for by Zernike3D. In all
cases tested so far, the differences between the two options are
minimal, as it is shown in Fig. 2a, b. However, the application of the
deformation field leads to a higher resolution representation of the
conformational change (equal to the resolution of the reference map),
while the refinement resolution is intrinsically limited to the number of
particles selected from the space.

In addition, the Zernike3D coefficients extracted from the con-
formational space can be applied simultaneously to the reference map
and to a structural model traced (or aligned) from the reference. This
allows obtaining a rigid fitting of the atomic positions that match the
conformation of any particle in the dataset. An example of the appli-
cation of the Zernike3D coefficients to the ribosome atomic structure
can be found in Fig. 2c. However, it is worth mentioning that the Zer-
nike3D coefficients are computed exclusively based on geometrical
considerations, so the approximated structural models might need to
be refined to correct for stereochemistry artifacts. Indeed, it should
always be considered that the estimation of the deformation fields
describing a given transition only depends on the rigid alignment of the
reference towards the conformation represented by a given particle.
Therefore, the estimated deformation field does not consider any
stereochemistry constrains, which should be posteriorly imposed to
avoid atomic clashes or improve Ramachandran outliers among others.

An example of the simultaneous exploration of the coefficient
space performed with the reference map and its structural model is
provided in Supplementary Movie 1 (we are aware that this and sub-
sequent videos are only graphical means to make more obvious con-
formational changes, and that they are not to be considered as
suggesting molecular trajectories at all). The different states were
obtained by grouping the coefficients with KMeans into 5 clusters.
Then, the cluster representatives were used to generate the deformed
maps/structures, which were afterward morphed with ChimeraX
software™*.

The next step we followed in the analysis of the dataset is to use
the estimated deformation fields and the particles to reconstruct a
higher-resolution map by correcting the conformational changes of
each image with ZART. The comparison between the map recon-
structed with CryoSparc® and ZART reconstruction algorithm is shown

6.28

Deformation magnitude (A)

4.71

3.14

1.57

0.00

Fig. 1| EMPIAR-10028 Zernike3D conformational landscape. UMAP repre-
sentation of the Zernike3D coefficient space for the P. falciparum 80 S ribosome
(EMPIAR-10028 dataset). The colormap represents the modulus of the deformation
field that has to be applied to the reference map to match the conformational state
of each particle projection image. Purple colors represent lower deformations
(close to the reference state). The representation shows a clear distinction between
two different states marked by the white (reference map) and orange (rotated
Pf80S state) dots.
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Fig. 2 | Example of Pf80S Zernike3D states. a Comparison of the reference con-
formation required by the Zernike3D algorithm (red) and the rotated Pf80S state
recovered from a homogeneous refinement with CryoSparc (blue). b Comparison
of the rotated Pf80S state recovered from the Zernike3D deformation fields (red)
and the rotated Pf80S state recovered from a homogeneous refinement with
CryoSparc (blue). The particles processed by CryoSparc are taken from the coef-
ficient space area defined by the orange dot in Fig. 1, and the deformation field is
computed with the coefficients associated with this dot. The comparison between
the maps displayed in a and b show that the Zernike3D conformation (b - red map)

is consistent with the experimental conformation refined from the particles
selected from that region of the coefficient space (blue). In addition, the application
of the deformation field does not decrease the resolution of the reference map.
¢ Comparison of the atomic structure associated with the Zernike3D reference map
(red) and the structure deformed with the Zernike3D deformation fields (blue).
Since the Zernike3D can work indistinguishably with maps, atomic structures, and
particles, the rotated state can be appropriately reproduced at the atomic level
using the deformation fields estimated from the particles.
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Fig. 3 | Analysis of EMPIAR-10028 ZART reconstruction. a Comparison of P.
falciparum 80 S ribosome map refined with CryoSparc (blue) and the motion-
corrected map recover with our ZART algorithm. The colormap represents the local
resolution estimation for each voxel computed with BlocRes?. The ZART recon-
structed map shows an overall improvement in resolution thanks to the deforma-
tion fields considered during the reconstruction process. b Resolution histogram
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comparison for CryoSparc and ZART reconstructions obtained from the resolution
map computed by BlocRes. The histogram shows a clear displacement of the local
resolutions towards higher resolutions. The value provided in the legend of the
histograms shows the mean value of the local resolution estimations for both
reconstructions.

in Fig. 3a. The comparison of the two maps shows a clear improvement
at both, the level of maps (a) and slices (b), in the moving and still areas
of the molecule. In order to make a more quantitative comparison of
the maps, we computed the local resolution histograms of both
reconstructions, which are compared in Fig. 3b. Similarly to the visual
inspection of the maps, the resolution histograms confirm the
improvement in local resolution, being the average resolution of ZART
pushed 1.01 A compared to the mean resolution of CryoSparc.

Conformational landscape of EMPIAR-10180 dataset
The EMPIAR-10180" dataset has become another standard dataset to
test continuous heterogeneity algorithms due to the large degree of

flexibility information it contains. The dataset corresponds to a pre-
catalytic spliceosome exhibiting an extensive heterogeneity already
observed by classical methods such as 3D classification.

Since the Zernike3D algorithm focuses on the analysis of con-
tinuous heterogeneity rather than compositional heterogeneity, the
dataset was preprocessed inside Scipion' to clean as much as possible
the original deposited particles. The original dataset is composed of
around 320k particles, which were reduced to around 180k after the
cleaning steps.

The cleaned particles were afterward subjected to the Zer-
nike3D analysis to extract the different conformational changes
suffered by the pre-catalytic spliceosome. As we did in the previous

Nature Communications | (2023)14:154
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Fig. 4 | Analysis of the EMPIAR-10180 Zernike3D conformational landscape.

a UMAP representation of the Zernike3D coefficient space obtained from the
estimation of the per-particle conformational changes associated with EMPIAR-
10180. The color map represents the deformation field magnitude associated with
each particle involved in the analysis. b Example of five conformations extracted
from the landscape shown in a after clustering by KMeans. The different con-
formations correspond to the representatives of each KMean cluster. The dotted
gray lines are provided to enhance the visualization of the conformational changes.

The dotted map corresponds to the reference conformation, provided also to aid in
the visualization of the conformational changes. ¢ Example of the conformational
changes shown in b at atomic levels. The conformations were obtained after
applying the deformation fields associated with the KMean representatives in b to
the atomic structure deposited with the EMPIAR-10180 dataset. The dotted lines
and the contour of the reference map are also shown to aid in the visualization of
the motions.

experiment, we set the maximum basis degrees to N=3 and L=2,
and particles were binned to a box size of 128 pixels. The resulting
Zernike3D coefficient space is represented in Fig. 4a. The Zernike3D
space obtained is similar to the continuous heterogeneity region
described by other software like CryoDrgn (Fig. 6 of their manu-
script). However, the representation of the conformational changes
followed in the Zernike3D approach provides a more versatile
manner to assess structural variability.

An example of the versatility of the Zernike3D results is shown in
Fig. 4b, ¢, and Supplementary Movie 2. The maps and structures shown
in both Figures were obtained by clustering the Zernike3D space with
KMeans into 5 different regions. Then, the representative Zernike3D
coefficients of each cluster were extracted to represent the different
conformational changes.

Similarly to other algorithms, the conformational changes can be
represented at the level of Cryo-EM maps, although the Zernike3D
representation will keep the same resolution as the reference map
used for the analysis. In addition, the Zernike3D deformation fields can
also be applied directly to an atomic structure traced or fitted to the

reference map. In this way, it is also possible to compare the different
conformations at an atomic level.

An example of the comparison between two of the previous
structures is provided in Fig. 5. Thanks to the Zernike3D approach, it is
possible to analyze both, the local and global motion of the atoms
present in the structure, which provides a more accurate and infor-
mative representation of the conformational changes suffered by the
spliceosome.

SARS-CoV-2 spike one RBD up the conformational landscape
We next applied the Zernike3D algorithm to a set of particles acquired
from the SARS-CoV-2 spike. In our previous work”, we followed a
discrete classification approach followed by a PCA (Principal Compo-
nent Analysis)"® to study the presence of flexibility in these images,
revealing two different open conformations of one of the Receptor
Binding Domains (RBDs). The conformations represent small motions
around an open RBD state.

The analysis of this dataset is useful to assess the ability of the
Zernike3D algorithm to detect small motions from the noisy Cryo-EM

Nature Communications | (2023)14:154
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images. Thus, we estimated the deformation fields for each particle
starting from one of the conformations reported in ref. . The para-
meters set for this execution were the same as those used in the pre-
vious experiments (V=3 and L =2, yielding a total of 39 components
per coefficient set. The particles were also downsampled to a box size
of 125 voxels). The UMAP representation of this space is shown in
Fig. 6a. The resulting space displays several interesting regions to be
analyzed, and it is much richer than the space explored by discrete
classification.

In addition, we can integrate the results of the previous discrete
classification analysis, resulting in two main classes, with our con-
tinuous flexibility approach, by projecting all this information into the
same Zernike3D space (in practice, in the reduced representation of
the conformational landscape), effectively combining maps and ima-
ges. The combined space is shown in Fig. 6b. The new representation
simplifies the analysis of the embedding, aiding in the identification of
the possible conformational changes of the spike by comparing the
continuous states to the information of the discrete classification.
Clearly, there is much more flexibility than the one originally accoun-
ted for by the discrete classification.

An exploration of the conformational space shown in Fig. 6a is
provided in Supplementary Movie 3. The different states presented in
the video were obtained by applying a set of 20 Zernike3D coefficients

Fig. 5 | Example of recovered Zernike3D spliceosome states at atomic level.
Example of two conformations obtained from the KMeans clustering of the Zer-
nike3D space in Fig. 4. The conformations were obtained after applying the Zer-
nike3D deformation fields to the atomic structure associated with the reference
map used during the Zernike3D analysis. The versatility of the Zernike3D results
allows following both, the local and global conformational changes due to the
atom’s motion, as shown from the different zooms in the recovered structures.

a)

9.22
6.92
4.61
231

0.00

Deformation magnitude (A)

Fig. 6 | SARS-CoV-2 Zernike3D conformational landscapes. a UMAP repre-
sentation of the Zernike3D coefficient space for the SARS-CoV-2 coronavirus spike
open state obtained from the particles analyzed previously in ref. 7. Each point in
the space represents a different particle conformation. b Combined analysis of
particles and volumes (in white dots) corresponding to the two RBD states

to the reference map and its traced structure, followed by morphing in
ChimeraX. The representatives were obtained by clustering the space
with KMeans.

The embedding shows an interesting region (composed of a low
number of particles) along the direction defined by the white dots
representing each classified map. The analysis of this region reveals a
conformational change moving in the opposite direction to the one
defined by the two discrete classes, which was not previously identi-
fied. Supplementary Movie 4 shows the whole motion of the 1Up RBD
defined by the main transition identified in the coefficient space. This
result shows the importance of analyzing the heterogeneity on a per-
particle basis, as discrete classification might not have the ability to
resolve low-represented states.

The next step we followed in the analysis of the dataset was to use
the estimated deformation fields and the particles to reconstruct a
higher-resolution map by “undoing” the conformational changes of
each image. The motion-corrected map reconstructed with ZART is
provided in Fig. 7a. As expected, the information available in the
deformation fields leads to a better resolvability of the moving areas of
the spike (the RBDs and N-terminal domains (NTDs) for this specific
case), increasing the local resolution of these regions. Fig 7b shows a
comparison of the local resolution histograms associated with the
maps shown in Fig. 7a. The correction of the per-particle conforma-
tional changes leads to a significant increment of the local resolution in
the case of ZART, thanks to the reduction of the motion induced
blurring present in the CryoSparc reconstruction.

Discussion

Continuous heterogeneity is widely considered to be a significant
breakthrough in the Cryo-EM field, progressively becoming more
popular, as shown by the several new software developments to ana-
lyze this information from the acquired particle images.

In this regard, we have introduced an extension of the Zer-
nike3D algorithm during this work, which has proven to be a ver-
satile tool to study the continuous motion of macromolecules at the
level of maps, structures, and particle images. The extension focuses
on the extraction of per-particle conformations, leading to a much
more detailed description of the conformational landscape of a
molecule compared to classical 3D classification approaches. Fur-
thermore, the versatility of the Zernike3D basis unites maps, parti-
cles, and structures into a common framework, opening new
possibilities to perform combined heterogeneity analysis with all
data available.

Moreover, we have proven that the resulting coefficient space can
be applied simultaneously to Cryo-EM maps and atomic coordinates to
approximate a new conformational state. The approximation of the

b)

Deformation magnitude (A)
=~y
(-]
=

described in ref. . Thanks to the combined analysis, we can detect a clear group of
particles corresponding to an unidentified conformation in the dataset. The col-
ormap in both images represents the modulus of the deformation field associated
with the conformation estimated for every particle.
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Fig. 7| Analysis of SARS-CoV-2 ZART reconstruction. a Comparison of SARS-CoV-
2 coronavirus spike refined with CryoSparc and the motion-corrected map recover
with our ZART algorithm. The colormap represents the local resolution computed
from BlocRes?. ZART reconstruction presents a clear improvement in map quality
in the RBD, NTDs, and other regions of the spike thanks to the correction of the

2 4 5 6
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motions. b Resolution histogram comparison for CryoSparc and ZART recon-
structions. The histogram shows a clear displacement of the local resolutions
towards the high-resolution regime in the case of ZART. The resolution value
provided in the legend of the histograms corresponds to the mean of the local
resolution measurements.

conformational changes at the atomic level supposes another step in
the connection of the Cryo-EM landscapes with molecular dynamics.
This connection will allow getting real energetic landscapes directly
based on experimental data in the future.

In addition, we have developed the ZART reconstruction algo-
rithm, which considers deformation fields during the reconstruction to
“undo” conformational changes. In this way, it is possible to model the
blurring artifacts induced by molecular motions and increase the local
resolution of the reconstructed volumes.

Methods
This section is organized starting with general presentations of the
Zernike3D basis and its use for the case of particles exhibiting con-
tinuous flexibility (first two subsections), and then dedicating several
subsections to useful properties of our proposed method, see also
Supplementary Methods.

We also provide some metrics regarding the performance of the
Zernike3D algorithm in Table 1.

Zernike3D basis definition

We use the Zernike3D to estimate the deformation field associated
with a given conformational transition, as we previously described in
our work™.

The Zernike3D basis is an infinite-dimensional function space
defined over the unit ball. Thus, it is convenient to express it as the
combination of a radial and an angular component. For this basis, we
have chosen the normalized and generalized definition of the Zernike

Table 1| Execution times for the Zernike3D algorithm

Performance metrics for the Zernike3D algorithm

Imagesize N L Time per-particle (s) Time for 10° particles (min-150

threads)
128 3 2 0.076 39.93
300 3 2 0182 300.00

polynomials as the radial component:
R, (00=v2\/2n+1+ g +1RP () )

p being a parameter associated with the inner product and
dimensionality of the polynomials. For example, in a 3D scenario, the
appropriate value of p should be 1.

The previously mentioned angular component is defined in terms
of the real spherical harmonics:

A1 —1mD! im0 o fl P
e Crm L (€0s0) V2cos(mg) if m>0

V2sin(jm|@) if m<0
2

By combining the previous two components, we obtain the final
definition of the Zernike3D basis:

W' ®.9)=(-D"

Z1nm() =R 4Ny}, ) 3)

Estimating deformation fields from particles

As we explained in the previous section, the Zernike3D basis was
initially formulated to be applied to 3D spaces. Therefore, it is quite
direct to estimate conformational transitions from maps or atomic
structures, as they live in a three-dimensional space. However, this is
not the case for Cryo-EM particles, as we are intrinsically losing infor-
mation along the projection direction during the acquisition process in
the reduction from the three-dimensional space where the Coulomb
potential of the specimen is defined to the two-dimensional space of
the projection images being acquired in the microscope. In other
words, conformational changes along the projection direction cannot
be extracted from an individual image, since an infinite number of
them would be compatible with the image information.

Nature Communications | (2023)14:154
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Fig. 8 | Zernike3D workflow at particle level. Estimation of the Zernike3D
deformation fields from a particle image. The process requires the deformation of a
reference map to be consistent with the dimension of the deformation field, which
is defined by the set of Zernike3D coefficients. Each coefficient component is

estimated by Powell’s conjugate direction method, so Pearson’s correlation coef-
ficient p between the experimental and theoretical projection obtained from the
deformed map is maximized.

The algorithm we present in this work starts by computing a
reference map/model (in practice, and continuing the presentation for
the case of maps, it is common to either use an average map or one
of the discrete classes). This map will be the origin (reference) to
obtain the deformation fields from the parameters of the Zernike3D
basis. The approach is summarized in Fig. 8, and it is a common pro-
cedure in optimization. In brief, it is an iterative procedure in which
deformation fields are applied to the reference map and the resulting
projection images are compared with the experimental ones until
convergence.

Following the aforementioned method, finding the deformation
field to describe the state represented by a given particle can be
expressed as:

max p (I, CPo(V(r +g,(r))) “)

p being the Pearson’s correlation coefficient, / an experimental
Cryo-EM particle, C the CTF estimated for that particle, P, the pro-
jection operator along the 3D direction and in-plane shift defined by
the parameters 6, V the reference volume needed to apply the Zer-
nike3D deformation field, and g, the displacement suffered by each
voxel due to the deformation field. The vector g; depends on each
Zernike3D component, and it is expressed as:

X
(xl,n,m

L N [
gL(r): ZZ Z a{n,m

[=0n=0m=-[ v4
(xl,n,m

Z[,n,m(r) (5)

where the a; , ,,’s are the Zernike3D coefficients. The previous coeffi-
cients determine the contribution of each component of the basis to
the deformation field.

The parameters N and L determine the maximum degrees of the
Zernike polynomials and spherical harmonics. Therefore, they will
determine the accuracy of the deformation fields: higher values will
result in sharper and more accurate deformation fields, at the expense
of increased execution times. By default, the two previous parameters
are set to N =3 and L =2, which should be enough to avoid overfitting
and get meaningful and accurate deformation fields in most cases.
Nevertheless, the parameters can be manually set by the user in case
higher accuracy is desired.

The maximization of Eq. 4 is achieved through a Powell’s con-
jugate direction method starting from an initial guess of «; , ,, =0 for
all indices /,n,m and directions x,y,z (that is, no deformation). Thanks
to the optimization method and the procedure described in Fig. 8, it is

possible to find the different component contributions «, ,, ,, such that
the deformation field to be applied to the reference map V leads to a
conformational state compatible with the particle /.

In order to avoid possible overfitting during the Powell search of
the Zernike3D coefficients, an extra regularization term is added to
Eq. 4:

maxp (1, CPo(V(r +,(r)) + / g, (ndr ©)

The additional regularization term accounts for the total defor-
mation the reference map has suffered after applying the estimated
deformation field. Depending on the value of A;, the optimization
search will be allowed to explore minima leading to a larger or smaller
deformation, so it is recommended to set it at a low value to avoid
overfitting without compromising the minima search. The user can
choose the value of A; to be applied to a specific dataset. We recom-
mend selecting a value belonging to the range [0.01,0.001] to avoid
undesired results during the optimization process.

It is worth mentioning that the Zernike3D algorithm does not
require a minimum number of particles to be executed, as the defor-
mation fields are estimated for every particle. Therefore, it is possible
to process datasets coming from a consensus or other cleaning
methods'®, whose parameters are more accurately estimated but have
fewer particles overall.

Deformation field consistency along the projection direction
In this work, we estimate 3D deformation fields from 2D images.
However, the information limitations introduced above make this
procedure conceptually challenging. Indeed, if we compare the infor-
mation stored in a projection and a map, it would be possible to check
that we have identical information as long as we restrain the compar-
ison to the projection plane where the image exists. In spite of that, the
image has an intrinsic loss of information in the projection direction, as
we are collapsing the map information stored along this direction.
Following the previous reasoning, the deformation field is well-
defined across the projection plane, but it is ill-defined along the
projection direction. This implies that there are infinite ways of
deforming a map along the projection direction defined by particles so
that the projection of the deformed volume is still consistent with the
particle. Therefore, the Powell optimization proposed previously
might find different solutions for each particle along the projection
direction. Moreover, this inconsistency might lead to the global opti-
mization process being more prone to get trapped in local minima,
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Fig. 9 | Projection direction correction workflow. Procedure to cancel excessive
displacements associated with the projection direction in a deformation field
defined by the coefficients qa, , ,,(r). a Representation of a deformation field with
over-deformation along the X direction (projection direction). b The over-
deformed volume and the associated deformation coefficients are rotated so that
the projection direction matches the Z axis. At this point, it is possible to

A1 a"l,n,m @)

/_;()O\A

completely cancel the Z component on the rotated coefficients, as they only con-
tribute to the over-deformation of the deformed map. This leads to the set of
coefficients a;, (). ¢ The modified coefficients are rotated back to the original
position defined by the map’s grid. In this way, a new set of coefficients &}, ,, (r) are
obtained, defining a deformation field consistent along the projection direc-

tion (X axis).

resulting in wrong estimations of the conformational landscape. An
example of the undesired effect generated by not considering the
missing information along the projection direction is provided in
Supplementary Fig. 3.

Ideally, the best solution to the previous problem would be to
drive the optima search so that all particles are not deformed along
their respective projection direction. For this reason, a sensible choice
would be to completely restrict the deformation along the projection
direction.

One possible way to achieve this is to include different regular-
ization terms restricting excessive deformations. Nevertheless, it
would be challenging to find the weights needed for each regulariza-
tion term, especially along the projection direction, a situation that
introduces a new parameter quite difficult to estimate in the process.

The Zernike3D method overcomes that obstacle by taking
advantage of the properties of the basis to altogether remove any
deformation along the projection direction defined by a particle, either
during the optimization or after it. As we showed in ref. °, the Zer-
nike3D basis is closed under rotations. Thus, it is possible to rotate the
Zernike3D coefficients towards a different reference frame as follows:

N L l af,n,m ~
AgATD=3 > > Al G | ZiamA7) @
n=01=0m=-I O(f
n,m

A being a rotation matrix. Therefore, it is possible to rotate the
Zernike3D coefficients according to the angular information of the
particle. For example, we can rotate the coefficients so that the Z
direction of the new frame is effectively aligned with the projection
direction of a particle. Then, we can cancel the rotated coefficients
associated with the Z-axis in this new frame, as those only contribute to
the deformation field along the projection direction.

However, it is essential to note that the previous property only
holds in a continuous space. Hence, the basis is not closed under
rotations due to the discretization and sampling of the space into
voxels. Thus, the rotated coefficients cannot be applied to the volume,
as the reference frames are entirely different. Instead, we can unrotate
the modified Zernike3D coefficients, so their reference frame matches
again with the reference map. Thus, it is possible to fully remove the
deformation along the projection direction by combing all the pre-
vious steps, making all the deformation fields consistent, and avoiding
solutions with unrealistic deformations. The whole procedure is
summarized in Fig. 9.

Note that we also use a global regularization term in our optimi-
zation approach, as previously indicated, but it is global and does not
differentiate among projection directions. In our experience, the

previously stated “consistency principle” introduced by mathemati-
cally clear handling of the lack of information along individual pro-
jection directions is quite important factor in our quest for estimating
deformation fields, and it represents a clear advantage of the Zer-
nike3D approach.

Zernike3D-based ART reconstruction algorithm

In general, 3D reconstruction algorithms start from the principle that
we have a set of projections coming from a homogeneous set of par-
ticles. However, this assumption no longer holds for those macro-
molecules exhibiting large degrees of freedom. Therefore, it is not a
surprise that molecular motions are a well-known source of blurring
artifacts arising when reconstructing a Cryo-EM map from a set of
Cryo-EM images. As a consequence, correcting the motions present in
a particle image will be expected to boost the resolution and resolva-
bility of blurry areas in Cryo-EM maps.

The per-particle estimation of the deformation fields by the Zer-
nike3D basis can be effectively applied to correct molecular motions,
aiding the reconstruction process with flexible information. To that
end, we developed an ART-based (Algebraic Reconstruction Techni-
que) reconstruction algorithm that uses the Zernike3D deformation
fields to improve the final quality of motion-related blurry areas.

A detailed description of ART and its application in Cryo-EM can
be found at ref. *°, Here it suffices to say that ART finds the map whose
projections are compatible with the experimental data through an
iterative process of the form:

VED ()= VO (r) + AP (P, V(F) — 1(S)) 8)

V being the reconstructed volume, A the ART relaxation factor, Py
the projection operator, and P}, its adjoint operator, I, the experi-
mental image used at the k-th iteration, r a 3D coordinate, and s a 2D
coordinate. The previous equation refers to the update to be applied
to the reconstruction associated with a single image, although the
algorithm will iterate over the whole particle dataset applying the
previous correction to achieve the final reconstruction.

One advantage of ART over other reconstruction methods is that
it can be easily modified to include new information to be taken into
account during the iterative reconstruction process. Thus, it is possible
to modify the previous equation by adding the deformation field
previously estimated:

VIO = V() + NPy (P (V(r +8,(1) = 1,(9)) )

g,(r) being the displacement at a given 3D position computed
through Eq. 5.
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By introducing the displacements g, into the ART algorithm, we
are improving the correction value that will be applied to V at each
iteration, as the difference between the theoretical and experimental
images is taken based on the conformational change present in the
particle. Thus, the reconstruction process can generate more mean-
ingful solutions for areas subjected to significant motions.

Moving Zernike3D coefficients through different resolutions
One of the main issues arising when working with Cryo-EM particles is
the low signal-to-noise ratios that they exhibit. Although the average of
a very high number of images overcomes that problem, the procedure
also mixes several conformational changes at the same time. There-
fore, the estimation of continuous flexibility is usually done directly on
particle images, even if conditions are far from ideal.

To estimate motions more efficiently, it is common to filter the
particles at a given resolution to increase the signal-to-noise ratio.
Similarly, it is possible to downsample the images after the filtering
process to improve the performance of the estimations.

However, the Zernike3D coefficients «, ,, , have a strong depen-
dency on the size of the volume under study. This implies that the
coefficients computed from a downsampled map cannot be directly
applied to the original volume and vice versa.

Luckily, it is possible to move a set of Zernike3D coefficients to a
different resolution similar to the procedure described in previous
sections. By downsampling a map, we scale its space by a given factor
k. Therefore, the relation between two vectors with the same direction
in the previous two spaces is:

r,=kry (10)

r, and r; being the vectors associated with the original and
downsampled spaces, respectively.

We can express the earlier two vectors based on the components
of the Zernike3D basis as follows:

N L 1
'n, k> > X
n=0[=0m=-[ n=0[=0m=-I

]
Z k(x[nmzlnm(k ro)
n=0[=0m=-(

a;in,mzl,n,m (rd)
1)

Thanks to Eq. 11, it is possible to show that the scaling relation
existing between the vectors x,, and x, is shared by the corresponding
Zernike3D coefficients:

o =kal 12)
0(l,n,m 0(l,n,m
This leads to a very convenient and straightforward conversion to

use coefficients estimated on low-resolution images in the original
high-resolution maps.

Merging embeddings of different nature

Our previous work'® showed that the Zernike3D basis could effectively
study the continuous heterogeneity of Cryo-EM maps and atomic
structures converted to electron densities.

Similarly, we have proven in the previous sections the applicability
of this same tool to a set of Cryo-EM particles. In all cases, the esti-
mation of the deformation fields represented by the Zernike3D coef-
ficients is comparable, meaning that we are translating the information
of the three main Cryo-EM entities (maps, atomic structures, and
particles) to a common framework or space defined by the coeffi-
cients o, ,, -

Translating maps, structural models, and particles to a common
framework opens interesting possibilities and advantages, such as
studying and comparing discrete and continuous heterogeneity or
addressing how well simulated and experimental data correlate.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

The datasets analyzed with the Zernike3D algorithm and ZART are
publicly available in EMPIAR under the entries: 10028 [https://doi.org/
10.6019/EMPIAR-10028], 10514 [https://doi.org/10.6019/EMPIAR-
10514], 10516 [https://doi.org/10.6019/EMPIAR-10516], and 10180
[https://doi.org/10.6019/EMPIAR-10180]. The phantom dataset pro-
cessed in the Supplementary Material is available in GitHub in the
repository  Zernike3D_Phantom_Data  [https://zenodo.org/badge/
latestdoi/541505536].

Code availability

The Zernike3D algorithm has been implemented in Xmipp? and it is
available through Scipion' under the plugins “scipion-em-xmipp” and
“scipion-em-flexutils”. The protocols corresponding to the algortihms
described in this manuscript are “flexutils - angular align - Zernike3D”
and “flexutils - reconstruct ZART".
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Supplementary Methods

A 3D Real-valued generalized Zernike polynomials

The Zernike3D basis is an infinite funcitonal space able to reproduce any function within the
unit ball B. Therefore, it is convinient to define the basis components as a composition of a
radial and an angular function.

In general, the expansion of any real valued function g(r) € Lo(B) in this basis is defined by
the formula

oo 0o l
g(’l’) = ZZ Z al,n,le,n,m(r)' (1)

=0 n=0m=—1

where o, ., are real-valued coefficients, and the Z; ,, ., (r) are the 3D real-valued (normal-
ized) generalized Zernike polynomials defined by the formula

Zinn (1) = Ri (r)yi" (0, ) (2)

where r is the radial component of the 3D coordinate r, and 6 and ¢ are its polar and
azimuthal angles in spherical coordinates, n and [ are non-negative integers, and m is an integer
such that -l <m <.

As it can be seen from [2] we decompose the Zernike3D basis into a radial and an angular
component. A logical choice of functions to define the angular component are the real-valued
spherical harmonics ", that depend on the spherical frequency | as follows:

20+ 1 (1 — |ml)! ! ifm =0
n 'P‘mI(COSH) V2cos(m¢)  if m >0 (3)

yi'(0,0) = (=1)" T
A (L fm)! V2sin(|m|p) if m <0

where P/ are the associated Legendre polynomials defined by the formula

_1\ym l+m
Py = G ey ey @

Our radial component consist of the (normalized) generalized Zernike polynomials (applied

to the 3D case) defined as:
Rﬁn(x)=\/§\/2n+l+g+1Rﬁn(m). (5)

being R}, () the unnormalized generelized Zernike polynomials

1+%,0) (

R}, (z) = (f1)“zlp,§ 1—22%), (6)

The main reason to choose the normalized version of the function is to make them orthonor-
mal with respect to the inner product determined by p. The previous parameter is related with
the dimensionality and inner product of the ball where the basis is defined. Therefore, fix the
value p = 1 to yield an orthonormal basis with respect to the natural inner product on Lo (B),



which corresponds to the case of a 3D ball.

We would like to remark that our choice of functions to define the basis is not unique. However,
the combination of the normalized generalized Zernike polynomials and the spherical harmonics
yields a basis with very helpful properties to manipulate the computed deformation fields, such
us being closed under rotations.

B Closure under rotations

As is well-known, the rotation of the frame of reference of spherical harmonics of a given spatial
frequency [ is a unitary operation and closed rotations. If follows that the linear combination of

30 Y aummZinm(r) is closed under rotations. In other words, regardless of the frame
n=01=0m=—1
of axis we choose for our spherical harmonics, we can represent the same functions using our

choice of basis.

The deformation field gy, (7) expressed by the Zernike3D basis is a 3D vector defined at every
position r. Thus, any rotation applied to axes x,y, z will be propagated to the deformation
vectors gr,(r), defined now in the new coordinate system. As is well known,

lnm

N L
AgL = Z Z ZZA l n,m Zl,n,m,(A_lr) (7)

lnm

where A is the appropriate unitary rotation matrix.

From the previous reasoning, it follows that the Zernike3D basis is closed under rotations; As
long as the origin of the reference frame is kept fixed, we can find a new set of coefficients
@}, that represents the same deformation independently of the reference frame of rotation.
Furthermore the transformation between frames of reference is unitary.

It is worth mentioning that the previous property is only valid for continuous spaces. Since
we are working with discretized volumes, the basis does not fulfill completly the closue under
rotations property. However, the property can still be applied as long as the application carefully
considers the discretization of the space.

C Conformational landscape of simulated chaperone CCT
data

In order to show the capabilities and describe the characteristics of the continuous heterogeneity
analysis carried out by the Zernike3D algorithm, a synthetic dataset based on five simulated
conformations of a CCT complex was studied.

The dataset was computationally created by the NMA-based (Normal Mode Analysis) ap-
proach referred to as adaptive ANM (Anisotropic Network Model) (1)) implemented in ProDy
software (2). The dataset was designed to reproduce the open-close transition described in (3).



We obtained a sampling of 5 structures along the previously used conformational transition (7).
Subsequently, each atomic structure was converted to Coulomb potential maps using the Elec-
tron Atomic Scattering Factors (EASFs) (8), and a projection gallery of 45 particles was created
for each conformation, leading to a total of 225 particles (having such a low number of particles
was done on purpose to show that we can successfully analyze small datasets where a genuine
continuous flexibility is present). The previous phantom particles were not further process to
include noise, shifts, or the Contrast Transfer Function (CTF) to be able to determine the lower
bound of the method’s errors. In our tests with experimental data the effects of noise, shifts
and CTF are obviously included.

For this test, a set of coefficients oy, Wwas obtained for each one of the 225 particles.
The basis degrees chosen were N = 3 and L = 2, leading to coefficient vectors of 39 different
components each. Thus, the dimensions of the coefficients space must be reduced before its
visualization with a dimensionality reduction method such as UMAP (Uniform Manifold Ap-
proximation and Projection) (4) or PCA (Principal Components Analysis) (6). The reduced
coefficient space from PCA is shown in Figure [Ta]

As seen from the resulting embedding, the first three conformational changes are well dif-
ferentiated. However, the images corresponding to the last two changes tend to be placed in a
similar region of the space. As we showed in our previous work (7)), the changes corresponding
to the last structures are mediated by high-frequency modes, making them more similar and
less resolvable in the coefficient space.

As we explained in Methods Subsection ”Merging embeddings of different nature” in the
main manuscript, it is possible to translate both particles and maps into Zernike3D coefficients.
Therefore, it is possible to determine where the maps are located in the space defined by the
particles to identify each conformation better. Figure [1b|shows the combined coefficient space
between the maps simulated from the atomic structures and the images projected from these
maps.

Figure [IH] provides valuable information about the landscapes computed with the Zernike3D
approach.

e Since the method relies on a reference map, the estimation error for each particle will
increase as the conformation between the particle and the reference differs. The main
reason behind this effect is that we are trying to estimate a per-particle conformation.
Therefore, the Zernike3D approach can use the information along the image plane to
define the deformation field needed to reach a new state. However, it cannot estimate this
information along the projection direction, as it has been collapsed due to the projection
process. As a result, we can see a higher dispersion in Figure as particle move away
from the reference map.

e The Zernike3D coefficient estimated for a particle will be placed surrounding the real 3D
state associated with that particle. If we focus on the white dots in Figure[1b| (correspond-
ing to the real 3D maps used to generate the projected particles), we can appreciate the
previous arrangement of the per-particle Zernike3D coefficients. As expected, conforma-
tions closer to the reference will be closer to the real conformation, as the error committed
along the projection direction will be smaller.

It is worth to highlight that the previous effects are only significant when the signal to noise
ratio of the particles is high. Thus, in a real case scenario, the large amount of noise present in
every particle will dominate.



Since the Zernike3D approach estimates conformational changes based on the information of
a single particle, it was interesting to test the capability of the method to determine meaningful
landscapes at different levels of noise. To that end, we simulated a larger dataset of 700 particles
with the simulated CCT maps described before. Gaussian noise was posteriorly added to the
particle images to simulate new datasets with varying Signal to Noise Ratios (SNRs). Each
one of the previous datasets were subjected to the Zernike3D analysis to assess the capacity
of the method to recover conformational landscapes under different noise levels. The resulting
landscapes are provided in Figure [

As expected, higher noise levels will progressively decrease the quality of the landscapes.
However, it is possible to see that for common SNRs in CryoEM (0.01-0.001), the Zernike3D
approach is still able to recover appropriately a landscape with the expected shape and order of
the conformations.

Lastly, we applied the estimated coefficients to reconstruct a map with the new ART algo-
rithm described previously. The main objective of this test is to determine whether deformation
coefficients can be used to recover the reference volume from those images projected from the
other conformations present in the dataset. Due to the reduced number of particles, the recon-
structed map is not expected to achieve high resolution. Instead, the objective of this phantom
dataset was to prove that ZART can “undo” per-particle conformational changes and achieve
better resolution independently of the states they represent.

The comparison of the resulting reconstruction and the reference volume is shown in Fig-
ure [2l The figure shows that the new ZART reconstruction method can revert properly image
deformations, recovering the different reference volume from them.
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(a) (b)

Suplemmentary Fig. 1: a) PCA representation of the Zernike3D coefficient space for particles representing the open-
closed transition of a chaperone CCT complex simulated by adaptive ANM. Each point in the Figure represents
a different projection of a volume, and the coloring determines to which conformation each image belongs. The
coefficient space shows a clear distintion among the different sampled conformations of the CCT complex. b) PCA
representation of the Zernike3D coefficient space resulting from the translation of both projections and maps to
Zernike3D coefficients. The white dots represent the coefficients arising from the deformation fields of the maps
that gave rise to the different projections shown in colors. The results show that the maps tend to be surrounded
by their respective projection images.



Suplemmentary Fig. 2: New ZART reconstruction method applied to the embedding shown in Figure |l The map
to the left corresponds to the reference open map, the map in the middle shows the ZART reconstruction recovered
from the projections not associated to the reference volume (a total of 180 particles corresponding to the blue,
purple, green, and yellow dots displayed in the coefficient space), and the map to the right is one of the original
closed conformations whose projections were used to reconstruct the ZART map. The comparison of the volumes
shows that the reference map is appropriately recovered when the conformation of each projection is undeformed by
the deformation fields estimated with the Zernike3D algorithm. The middle map is unsurprisingly of low resolution
in line with the small number of particles. The black line is provided to highlith the open-closed conformational
change represented by the maps.



1) Corrected deformation field 2) Uncorrected deformation field 3) Target map

Deformation magnitude: 59.0282 A

Deformation magnitude: 3.5823 A

Suplemmentary Fig. 3: Example of deformation field inconsistency along the projection direction. Pannel 1)
shows the deformed reference map after correcting the aberrations associated with the deformation field along the
projection direction. Pannel 2) shows the deformed reference map after being modified by the original deformation
field (no correction along the projection direction). Pannel 3) shows the target map the deformation field is trying to
approximate. As it can be seen from the Figure, if the projection direction is not handled correctly, the estimation
over missing information will lead to unwanted conformational changes with exagerated deformation magnitudes.



No noise SNR=1.3452 SNR=0.1450 SNR=0.0095 SNR=0.0024

HEOOMN

Ref C1 C2 C3 C4

Suplemmentary Fig. 4: Assessment of the robustness of the Zernike3D algorithm to different levels of noise. Even
at low SNRs, the Zernike3D landscape shows a meaningful shape and order of the conformations described by the
phantom particles.
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