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Abstract 

Investigating the close relationship between the three-dimensional structure and 

biological function of macromolecules is challenging because of their dynamic nature. This 

intrinsic dynamism allows them to adopt different three-dimensional structures, giving rise 

to conformational variability that gives them the ability to alter their biological function 

depending on the needs and conditions of their environment. To respond to the processes 

and characteristics responsible for this variability, structural biology focuses its efforts on 

understanding the molecular phenomena responsible for changes in the three-dimensional 

structure of a macromolecule. 

Among the structural biology techniques, CryoEM Single Particle Analysis (SPA) has 

become one of the preferred choices for the analysis of the structural characteristics of 

macromolecular complexes. By imaging a sample at different poses, it is possible to recover 

the 3D density map of a macromolecule directly from the CryoEM images, thus allowing to 

understand the structure adopted by the sample, as well as the biological implications in the 

macromolecule function derived from its conformational variability. 

However, the understanding on how macromolecule structure and biological function 

meet from just a single conformational state is limited. Macromolecules are dynamic entities 

able to adopt and modify their structure in response to their biological environment, allowing 

them to modify their function to accomplish a given task. Therefore, reconstructing a single 

CryoEM map from the macromolecule images discards a large amount of key structural 

information about the dynamics of the sample, information that would be needed to have a 

more complete biological picture of the sample under study. 

Instead of restricting the reconstruction of a macromolecule to a limited number of 

discrete states, it should be possible to take advantage of the fact that the CryoEM 

microscope can capture many conformational states when a sample is imaged, providing a 

large amount of structural data with the potential of unveiling the experimental 
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conformational landscape a macromolecule is most likely exploring under the CryoEM 

conditions. Thus, restricting protein reconstruction to just one (or a small number) of 

structural states is not a limitation of the CryoEM technique, but an intrinsic limitation of the 

assumptions currently taken by image processing algorithms when faced against the 

conformational variability challenge. 

To provide more insights on the structural variability of a macromolecule in CryoEM, we 

present in this dissertation (structured as a compendium of articles) a new advanced image 

processing method called Zernike3D specifically designed to tackle the heterogeneity 

problem from CryoEM data. The Zernike3D algorithm has proven to be a versatile tool when 

analyzing continuous flexibility, even when applied to different CryoEM datatypes. The 

Zernike3D method enables a more accurate identification of the motions describing a given 

conformational change, allowing to extract as many conformational states as CryoEM maps, 

particles, or structural models involved in the analysis, information that can be posteriorly 

gathered to describe an approximation of a macromolecule conformational landscape. 

In addition to the Zernike3D method, we propose a new reconstruction algorithm able to 

correct for the elastic deformation (previously estimated with the Zernike3D method) of 

CryoEM particles called ZART. Thanks to the heterogeneity correction and the characteristics 

of ZART implementation, it is possible to generate CryoEM maps with reduced motion blur 

artefacts induced by the conformational variability of the sample, thus enhancing hidden 

structural features and increasing the resolution of the CryoEM reconstructions. 

Keywords 
Cryogenic electron microscopy (CryoEM), Single Particle Analysis (SPA), structural biology, 

image processing, conformational variability, macromolecular flexibility, Zernike3D, 

Zernike3D-based Algebraic Reconstruction Technique (ZART). 

 

  



 

 

vi 

Resumen 

Investigar la estrecha relación presente entre la estructura tridimensional y la función 

biológica de las macromoléculas supone un desafío debido a la naturaleza dinámica de las 

mismas. Este dinamismo intrínseco les permite adoptar diferentes estructuras 

tridimensionales, dando lugar a una variabilidad conformacional que les brinda la capacidad 

de alterar su función biológica dependiendo de las necesidades y condiciones de su entorno. 

Para dar respuesta a los procesos y características responsables de esta variabilidad, la 

biología estructural centra sus esfuerzos en el entendimiento de los fenómenos moleculares 

responsables de los cambios en la estructura tridimensional de una macromolécula. 

Entre las técnicas de biología estructural, el Análisis de Partículas Individuales (SPA) en 

CryoEM se ha convertido en una de las opciones preferidas para el estudio de las 

características estructurales de los complejos macromoleculares. Al obtener imágenes de 

una muestra en diferentes poses, es posible recuperar el mapa de densidad 3D de una 

macromolécula directamente a partir de dichas imágenes, permitiendo comprender la 

estructura adoptada por la muestra, así como las implicaciones biológicas en la función de la 

macromolécula derivadas de su variabilidad conformacional. 

Sin embargo, la comprensión de cómo la relación entre la estructura de la macromolécula 

y su función biológica a partir de un único estado conformacional es limitada. Las 

macromoléculas son entidades dinámicas capaces de adoptar y modificar su estructura en 

respuesta a su entorno biológico, lo que les permite modificar su función para realizar una 

tarea determinada. Por lo tanto, la reconstrucción de un único mapa en CryoEM a partir de 

las imágenes de macromoléculas descarta una gran cantidad de información estructural 

clave para comprender la dinámica de la macromolécula, información que sería necesaria 

para tener una imagen biológica más completa de la muestra en estudio. 

En lugar de restringir la reconstrucción de una macromolécula a un número limitado de 

estados discretos, es posible aprovechar la capacidad del microscopio de capturar una 
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cantidad considerable de estados conformacionales en cada imagen de una muestra, 

proporcionando una gran cantidad de datos estructurales con el potencial de revelar el 

paisaje conformacional experimental que una macromolécula explora bajo las condiciones 

impuestas durante la preparación de la muestra. Por lo tanto, restringir la reconstrucción de 

proteínas a solo uno (o un pequeño número) de estados estructurales no es una limitación 

de la técnica, sino una limitación intrínseca de las asunciones actualmente tomadas por los 

algoritmos de procesado de imágenes cuando se enfrentan una muestra con un alto grado 

de variabilidad conformacional. 

Para proporcionar más información sobre la variabilidad estructural de una 

macromolécula en CryoEM, presentamos en esta tesis doctoral (estructurada como un 

compendio de artículos) un nuevo método avanzado de procesamiento de imágenes llamado 

Zernike3D, diseñado específicamente para abordar el problema de la heterogeneidad 

presente en los datos de CryoEM. El algoritmo Zernike3D ha demostrado ser una 

herramienta versátil al analizar la flexibilidad continua, incluso cuando se aplica a diferentes 

tipos de datos. El método permite, además, una identificación más precisa de los 

movimientos que describen un cambio conformacional determinado, permitiendo extraer 

tantos estados conformacionales como mapas, partículas o modelos estructurales 

involucrados en el análisis, información que se puede recopilar posteriormente para describir 

una aproximación de un paisaje conformacional para la macromolécula. 

Además del método Zernike3D, proponemos un nuevo algoritmo de reconstrucción capaz 

de corregir la deformación elástica (previamente estimada con el método Zernike3D) de las 

partículas en CryoEM llamado ZART. Gracias a la corrección de heterogeneidad y las 

características de la implementación del método, es posible generar mapas con una 

reducción de los artefactos de desenfoque de derivados de variabilidad conformacional de 

la muestra, mejorando así las características estructurales y aumentando la resolución de las 

reconstrucciones. 

Palabras clave 
Criomicroscopía electrónica (CryoEM), Análisis de partículas individuales (SPA), biología 
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estructural, procesamiento de imágenes, variabilidad conformacional, flexibilidad 

macromolecular, Zernike3D, Zernike3D-based Algebraic Reconstruction Technique (ZART). 
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Introduction 

Cryogenic Electron Microscopy (CryoEM) has become over the years one of the main fields 

in structural biology to understand the structural characteristics of macromolecular 

complexes. Since it originated in 1960s [1], CryoEM has undergone a series of breakthroughs 

before becoming the versatile technique we know nowadays. 

One of the main advances made in CryoEM is the set of technological changes that were 

captures under the words resolution revolution” which supposed the end of the low-

resolution revolution era around 2013. Before the resolution revolution, the CryoEM density 

maps resolved from the acquired particles were limited to a spatial resolution of around 10 

Å). At this resolution levels, the biological knowledge that could be drawn from the CryoEM 

maps supposed a major challenge, as most of the protein structure was represented by a set 

of “blobs” without internal structural features. The publication of the first near-atomic 

resolution structure [2] from non-crystalline data at 3 Å put an end to the “blob-era” with 

the culmination of a Nobel Prize granted to Jacques Dubochet, Joachim Frank, and Richard 

Henderson in 2017. 

From this point on, the interest in CryoEM increased, due to its capacity to estimate high 

resolution macromolecular structures while overcoming the main limitations of other 

popular techniques such as X-ray crystallography [3] and Nuclear Magnetic Resonance (NMR) 

[4]. Still, there were challenges to overcome at the image processing level, due to the 

complex conditions the acquired CryoEM particles are subjected to: CTF, low signal-to-noise 

ratio, conformational variability… 

One of the main advantages of CryoEM is the ability to capture macromolecular 

complexes at different conformational states. In other techniques, it is only possible to 

represent a macromolecule by a single 3D structure, suggesting that the macromolecule 

under study is static. The previous assumption is, however, not true in a biological 
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environment. For example, proteins exhibit an intrinsic dynamic nature, allowing them to 

restructure under different conditions to accomplish a given biological task. Thus, without 

explicitly addressing the dynamic nature of proteins it would not be possible to drive the 

cellular processes that make life possible. Therefore, the structural characteristics of proteins 

are strongly related to their biological function. 

Therefore, the main objective is structural biology is not only to resolve and understand 

the 3D structure a given macromolecular complex adopts, but to understand how the resolve 

structure and biological function meet to drive a relevant biological process, and how 

dynamics play a role in the modification of this function. 

Classically, the extraction of the different experimental conformations captured by 

CryoEM has relied on a process called 3D classification [5, 6, 7]. During a 3D classification, 

images corresponding to a different conformation are identified, isolated, and used to 

reconstruct several conformational states. However, 3D classification has two main 

limitations:  

1. It is only possible to obtain a limited number of states (that, furthermore, are 

predefined by the user) reliably out of the whole conformational landscape 

captured by the CryoEM particles. 

2. The reconstruction process of a given state supposes an averaging of the 

macromolecule signal, yielding a map which may still contain a mixture of 

conformational states. 

During this dissertation, structure as a compendium of articles, a new method able to 

overcome the limitations of classical 3D classification will be presented and discussed. The 

dissertation is organized as follows: Chapter 1 focuses on the description of the objectives of 

the dissertation (Chapter 1.1), followed by a presentation of a typical CryoEM pipeline and a 

brief introduction to the state of the art in CryoEM conformational heterogeneity methods 

(Chapters 1.2 and 1.3 respectively). Chapter 2 presents the proposed method and main 

results. Chapter 3 includes a list of all author publications. Chapter 4 summarizers the 

conclusions and future steps of this work. 
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1.1. Objectives 

This dissertation, structured as a compendium of articles, introduces a new CryoEM 

algorithm specifically developed to tackle the conformational heterogeneity problem in 

CryoEM Single Particle Analysis (SPA) [8]. The new method, called Zernike3D, has been 

specifically designed to estimate per-particle conformational states, allowing to estimate 

richer conformational landscapes compared to classical methods like 3D classification. The 

dissertation will be mostly focused on the mathematical description of the new algorithm, 

as well as its application to the main CryoEM datatypes (particles, volumes, and structural 

models). 

During the development of the Zernike3D algorithm, we identified the following research 

topics: 

• Definition of the Zernike3D basis, focusing on its ability to approximate molecular 

motions in the form of a deformation field expressed in term of the basis 

components. 

• Application of the Zernike3D basis to estimate conformational states starting from 

diverse types of CryoEM data (particles, volumes, and structural models), as well 

as overcoming the challenges each different datatype introduces in the 

identification of a meaningful motion. 

• Analysis of the estimated Zernike3D deformation fields to extract the main forces 

driving a molecular transition in the form of a strain and rotation field. 

• Application of the estimated deformation fields to perform a finer correction of 

the conformational heterogeneity during the reconstruction process in a new 

algorithm called ZART (Zernike3D-based Algebraic Reconstruction Technique). The 

new reconstruction algorithm has proven to be able to further improve the 

resolution of highly flexible molecular regions compared to standard CryoEM 

reconstruction algorithms. 

The Zernike3D algorithm, as well as their specific implementations needed to deal with 

the main CryoEM datatypes, have been implemented in the software Xmipp [9] and Scipion 

[10], allowing them to be easily accessed and used by the CryoEM community. 
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1.2. Preliminaries 

1.2.1. CryoEM processing workflow 

The following sections provides an overview of the processing pipeline commonly 

followed in CryoEM Single Particle Analysis (SPA). To complete the description of the SPA 

workflow, a graphical representation summarizing all the step to be described is provided in 

Figure 1. 

Note that the section will present only on the image acquisition and image processing 

steps and skip the sample preparation. Regarding the preparation of the CryoEM samples, it 

suffices to say that it involves the preparation of a solution containing the samples, which is 

posteriorly deposited on a grid made of carbon and gold. Once the sample has been placed 

in the grid, it is vitrified prior to imaging. 

CryoEM grids are composed by many patches containing the vitrified sample. Vitrification 

of the sample in an aqueous solution is essential to avoid sample denaturalization in vacuum, 

which is a condition needed by the CryoEM microscope to operate properly. Ideally, the 

vitrification should lead to a thin layer of vitreous ice, thus preventing the overlapping of 

particles on top of each other. A scheme of a typical CryoEM grid is shown in Figure 2. 

 

Figure 1: Scheme summarizing the main steps followed in a CryoEM image processing workflow [76]. 
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Within a grid patch, the orientational arrangement of the sample will be random. The 

previous condition is beneficial for SPA, as it allows capturing many projection images at 

different projection orientations, information that can be posteriorly used to reconstruct the 

CryoEM density map and analyze the sample structure. However, in some cases the 

distribution of orientations might exhibit some preferred orientations that might impact 

negatively in the quality of the CryoEM reconstruction. 

From all the different patches in grid, only those showing a good distribution of particles 

and quality are imaged. The quality of the patches can be analyzed in an automatic or manual 

way, allowing to define an acquisition planning. 

The image formation process in Transmission Electron Microscopy (TEM) relies on a beam 

of electrons flowing through the microscope column and reaching the path to be image. At 

this point, the interaction of the electrons with the sample in the patch will determine 

whether they are able to reach the electron detector or not. The number of electrons 

reaching the detector is counted and arranged in an image called “frame”. The number of 

electrons that interact with the patch is represented by a number called “dose” measured in 

number of electrons per Å2. The dose plays a key role in the imaging process, as it controls 

the tradeoff between radiation damage and the signal to noise ratio of the frames. In general, 

dose is kept low to reduce radiation image as much as possible. The CryoEM image formation 

process is exemplified in Figure 3. 

 

Figure 2: Representation of a CryoEM grid after vitrification [77]. 
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In addition, exposing the sample to the electrons for a long time might also lead to 

undesired effects. Therefore, it is common to acquire not one but several frames from the 

same patch, which are posteriorly grouped to create a “movie”. 

The next step in the image processing workflow consists of aligning the different frames  

[11, 12, 13] composing a movie to posteriorly compose them in a single image with improved 

signal to noise ratio called “micrograph”. Once the micrograph is obtained, it is possible to 

further analyze it to estimate the Contrast Transfer Function (CTF) [14, 15, 16], which is used 

later in the workflow to correct for the microscope defocus. CTF correction is mandatory to 

push the resolution of a map to near atomic levels. 

Apart from the CTF estimation, the micrograph can also be used to identify and isolate 

the sample into smaller images called “particles” in a process called picking [17, 18, 19]. 

Therefore, ideally a particle should contain only a single projection of the sample at a given 

orientation. In practice, the picking process will yield a mixture of ideal and unwanted 

particles, which need to be cleaned before feeding them into the reconstruction process. 

The cleaning step of picked particles is referred as 2D classification [20, 21, 22]. During 

this process, particles coming from a similar projection orientation are identified, aligned, 

and averaged to generate a cleaner particle image from the sample. If a 2D class is mostly 

 
Figure 3: Summary of the image formation process in CryoEM (modified from [80]). 
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composed by garbage particles, it will be averaged into a blurred 2D class, which can be used 

to filter and clean the particle set. 

Good 2D averages can also be used to generate an initial reconstruction of the sample 

structure called initial volume [23, 24, 25]. In general, initial volumes end up having very low 

resolution, but they represent a good starting point to enter the 3D refinement step [26, 27]. 

During the 3D refinement, particle orientations are finely tuned, progressively improving the 

reconstruction resolution. 

Once the refinement processed has finished, it is possible to further analyze the density 

map to either improve it (e.g., apply a sharpening step [28, 29, 30], denoising [31, 32, 33], 

resolution estimation [34, 35, 36]…) or trace the atomic structure if the resolution allows for 

it [37, 38, 39]. In general, if we assume that the sample is almost static, the previous workflow 

should lead to a good resolution map. However, the conformational variability captured in 

the particle images plays a significant role in the maximum quality achievable. For that 

reason, it is also common to analyze the conformational variability through a 3D 

classification. 

1.2.2. CryoEM 3D classification 

The most stablished method in CryoEM to disentangle the conformational variability 

information captured in a set of particles is 3D classification. The aim of the classification 

approach is to identify those particles whose projections match the structure of K different 

3D objects. Therefore, 3D classification leads to a coarse approximation of the 

conformational landscape of a macromolecule called discrete heterogeneity. 

Many classification methods have been proposed. For example, Relion [40] 3D 

classification takes advantage of maximum likelihood estimators to determine the 

probability that a given projection comes from one of the K possible underlying 3D structures 

that the algorithm will try to generate. In 3D classification, the number of underlying objects 

K is a parameter that needs to be set by the user. Although it is possible to ask a classification 

algorithm to look for many classes, most of the time only a small fraction of the classes found 

will attract enough particles to yield meaningful conformations. Therefore, 3D classification 

is limited to reconstruct the most stable structural states a given macromolecule adopts. 

It should be noted that the discrete heterogeneity approximation 3D classification 
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proposes has the capability to identify two types of variability: compositional variability and 

conformational variability. The main difference between the two is that compositional 

variability is mostly related to changes in the mass of the density map (e.g., a region of the 

macromolecule that is lost). In the case of conformational variability, structural differences 

are due to macromolecular motions. 

An example of a 3D classification process is provided in Figure 4. 

1.3. State of the art 

This chapter describes the current state of the art regarding the estimation of 

conformational landscapes in CryoEM. The chapter will start with an overview of the 

different approaches currently available to approximate conformational states from CryoEM 

data, followed by a more in detail description of the different algorithms being currently 

developed to accomplish the previous task. 

1.3.1. Overview 

The exploration of macromolecular conformational states is not new in CryoEM [41], 

although it has drawn a large attention lately due to the development of advanced 

algorithms capable of overcoming the main limitations of classical processing methods in a 

wide range of cases. 

Therefore, we could consider the conformational heterogeneity field is suffering a 

revolution, allowing researchers to extract for the first-time experimental approximations of 

 
Figure 4: Example of a 3D classification of the Contorsbody analog 2 protein (modified from [78]). 
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conformational landscapes, in contrast with the discrete approaches that limit the analysis 

to a small number of stable/highly represented states. 

The new conformational heterogeneity software could be classified based on the 

approach they follow to estimate conformational states from CryoEM data (usually, from 

CryoEM particles, as they capture a considerable number of states enough to approximate 

experimental conformational landscapes: 

• Density-based approaches: most software fall into this group, including the 

classical approach of 3D classification as well. Currently, CryoDRGN [42], Gaussian 

Mixture Models [43], and ManifoldEM [44] constitute the main representatives of 

this group. 

• Deformation field-based approaches: this approach is mostly followed when 

working with structural model, as it provides a very convenient way to deal with 

atomic positions. However, efforts are also being made to adapt their usage to the 

discretize world defined by voxels and pixels. 3DFlex [45] or Normal Mode Analysis 

[46] belong to this group of methods. In addition, the Zernike3D algorithm to be 

introduced in this dissertation relies also on deformation field principles. 

1.3.2. Density-based heterogeneity approach 

The density-based heterogeneity approach to estimate conformational heterogeneity 

could be considered as an evolution of the reconstruction process. Due to the low signal to 

noise ratios CryoEM particles exhibit, reconstruction requires many particles to average out 

the noise while giving more strength to the protein signal. However, the reconstruction 

principles under noisy conditions only hold under the assumption of having a static sample. 

If the number of particles is large enough, the 3D classification process will be able to 

identify the most stable states and isolate the particles that more likely correspond to that 

structure. However, in order not to sacrifice the protein signal, averaging of a substantial 

number of particles is still mandatory, leading to a mixture of more consistent conformations 

that help decreasing the effect of motion blur artefacts. 

Therefore, if we want more accurate conformational states, we need to define a 

reconstruction process able to denoise enough the reconstructed maps from a fewer number 
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of particles to reduce the conformational averaging. Thus, density-based approaches have 

arisen as an improved reconstruction that tries to minimize the number of particles needed 

to recover a meaningful structure, usually referred as “heterogeneous reconstruction”. 

One of the main advantages of the heterogeneous reconstruction method is its ability to 

deal with both, continuous and compositional heterogeneity. Continuous heterogeneity 

refers to the structural variability directly originated from the dynamic nature of 

macromolecules, allowing them to adopt different structural states. In contrast, 

compositional variability arises when the specimen under study suffers changes in its mass 

composition due to different causes (e.g., loss of regions due to denaturalization, ligand 

binding…). 

1.3.3. Deformation field-based approach 

The deformation field-based approaches are specifically designed to estimate the motion 

that a macromolecule needs to undergo to reach a different conformational state. Therefore, 

this approach does not estimate directly conformational states, but it defines a warping field 

that upon application leads to a particular structure. 

The most common way to define the previous warping field is as a deformation field. In 

essence, a deformation field is a composition of vectors, each of which defines the 

displacement needed to move a given point to a different location. For our purposes, the 

definition of point is rather general: although it has been commonly associated with an 

atomic position, it could also be extended to a pixel or voxel location is space. 

Deformation fields are the predilect choice when dealing with continuous heterogeneity, 

as they try to estimate the natural motion that connects two different conformational states. 

Compared to density based-approaches, deformation fields have proven to be more 

versatile, as they can be applied directly to different datatypes (particles, volumes, and 

atomic structures). In addition, they open the possibility to add conformational 

heterogeneity corrections in a reconstruction process to improve resolution, as it will be 

discussed in Section 2.1.5. Nevertheless, deformation fields cannot handle compositional 

heterogeneity unlike density-based approaches, so it needs to be handled beforehand to 

avoid misleading conformational estimations. 
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1.3.4. ManifoldEM 

ManifoldEM [44] was the first continuous and compositional heterogeneity algorithm 

introduced in the field, which proposes a slightly different approach compared to the other 

methods to be presented in this chapter. In ManifoldEM, the conformational landscape 

represented by a set of images is directly estimated from the images themselves, without 

the need to generate a 3D representation of the different conformational states.  

To that end, ManifoldEM disentangles the orientation and conformational variability by 

splitting the particle dataset into several projection orientation cones. Ideally, if each cone 

thickness becomes infinitesimally small, the orientation variability within the cone would be 

zero. In practice, due to the low signal to noise ratio particles exhibit, there is a tradeoff 

between cone thickness and orientation variability, although the choice of thickness usually 

makes this variability negligible. 

Within a cone, all particle images capture the protein virtually in the same orientation. 

Therefore, particle variability within a cone is mostly arising due to conformational 

variability. The next step ManifoldEM performs is to identify the continuous variational 

changes occurring in each cone, leading to an embedding approximating the particles’ 

conformational landscape. Lastly, the embedding of each cone is merged in a process called 

stitching. 

1.3.5. CryoDRGN 

CryoDRGN [42] is a deep learning-based algorithm designed to tackle the conformational 

heterogeneity problem with a heterogeneous reconstruction. To that end, CryoDRGN design 

involves a deep neural network able to learn how to produce heterogeneous reconstructions 

directly from a set of CryoEM particles with CTF and angular information stored. 

CryoDRGN has proven to be a powerful choice to deal with both, compositional and 

continuous heterogeneity through the estimation of a latent space that summarizes the 

conformational landscape of the macromolecule under study. The variational autoencoder 

architecture of CryoDRGN allows to transform any point in the latent space representation 

into a CryoEM density map by forwarding it through the decoder network. To reconstruct a 

whole volume, CryoDRGN relies on a positional encoding of the voxel coordinates, which are 
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combined with the latent space representations to decode the appropriate voxel value 

needed to recover the desired density map. 

1.3.6. Gaussian Mixture Models 

Gaussian Mixture Models (GMM) [43] is a density-based compositional and flexibililty 

heterogeneity algorithm included as part of EMAN package [47]. Unlike CryoDRGN, GMM 

proposes a deep neural network that decomposes the representation of a CryoEM density 

map as the sum of different Gaussian functions in 3D with variable widths and heights. The 

resolution and potential overfitting of the generated map will therefore depend on the 

number of Gaussian involved in the generation process. 

GMM proposes a training based on two different steps: Initially, the network learns how 

to produce a homogeneous (standard) reconstruction from a set of CryoEM particles. Once 

the first training step is over, the network is fine-tuned with the particle dataset to learn the 

heterogeneous reconstruction. After the previous two step process, the network will learn 

to produce the five main parameters needed to describe how to produce the gaussian 

composition yielding the density map: the gaussian spatial position (𝑋𝑋,𝑌𝑌,𝑍𝑍), and the 

gaussian widths and heights. 

1.3.7. Normal Mode Analysis 

Normal Mode Analysis (NMA) [46] is one of the first methods developed to analyze 

continuous conformational variability around an equilibrium state. The method is based on 

the description of the oscillations a macromolecule undergoes when it is perturbed from a 

stable state representing a minimum of energy. The vibration modes associated with the 

previous oscillation can be combined to describe complex motions around the initial 

equilibrium state in the form of a deformation field, that can be expressed in terms of the 

vibration modes and the Normal Mode basis. 

Normal Mode Analysis requires a structural model representing the starting equilibrium 

position previously described. In many cases, the structural model can be traced directly on 

the CryoEM density map reconstructed from the particles. However, it is also possible to 

create a pseudoatomic model directly from the map [48] to feed into the analysis.  
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NMA has also proven to be able to approximate conformational states from particles, as 

done by HEMNMA-3D [49] (integrated in ContinuousFlex software [50]). However, NMA has 

an intrinsic limitation on its usage, making the conformational landscape estimation 

semiautomatic: the vibration modes needed to describe the expected motions in a particle 

dataset needs to be preselected by the user. 

In the next Chapter, we will show how the Zernike3D approach is able to overcome the 

previous limitation of NMA, making the conformational estimation process fully automatic. 

1.3.8. 3DFlex 

3DFlex [45] is a deformation field-based software integrated as part of CryoSPARC [51] 

software. 3DFlex proposes an autoencoder neural network able to learn both, a 

homogeneous reconstruction obtained from the input particles, and a latent space that 

approximates the conformational landscape captured by the particles. By forwarding a latent 

space point into the decoder, 3DFlex network can translate the latent space representation 

into a deformation field used to warp the learn volume to generate a different conformation. 

In addition, the combined learning of the map and conformational latent space 

coordinates to yield a homogeneous “consensus” reconstruction with reduced motion blur, 

as the deformation fields allow the network to learn how to correct for the conformational 

heterogeneity present in the particle dataset. 
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Methodology and results 

The next Chapter focuses on the description of the Zernike3D basis and its possibilities, 

followed by the results obtained during the application of this method to different scenarios. 

The results included and discussed in this Chapter has been taken from the publications 

listed and included as part of this dissertation. 

The Chapter is structured as follows: the first sections provide the mathematical details 

of the Zernike3D basis and its main properties. Sections following the mathematical 

description of the basis offer more insights on how to apply the Zernike3D method to 

estimate the conformational variability from different CryoEM data types (volumes, 

structural models, and particles), as well as its application in ZART to correct the 

conformational heterogeneity to improve CryoEM reconstructions. Lastly, the main results 

obtained during the development of the Zernike3D and ZART methods will be presented and 

discussed. 

2.1. Mathematical description 

2.1.1. The Zernike3D basis 

To express the deformation field, we propose in this work a mathematical basis able to 

expand any function in the unit ball 𝐵𝐵. In general, the expansion could take the form: 

 
𝒈𝒈(𝒓𝒓) = �� � 𝜶𝜶𝑙𝑙,𝑛𝑛,𝑚𝑚𝑍𝑍𝑙𝑙,𝑛𝑛,𝑚𝑚(𝒓𝒓)

𝑙𝑙

𝑚𝑚=−𝑙𝑙

∞

𝑛𝑛=0

∞

𝑙𝑙=0

 
(1) 

Where 𝑍𝑍𝑙𝑙,𝑛𝑛,𝑚𝑚 represents the Zernike3D basis and 𝜶𝜶𝑙𝑙,𝑛𝑛,𝑚𝑚 is a Zernike3D coefficients 

determining the contribution of that component to the final expansion. It is important to 

note that the choice of the Zernike3D basis is not unique, as it is possible to find other 
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sensible choices of function combinations that would give rise to valid basis. However, the 

Zernike3D basis properties become helpful when applied to the conformational 

heterogeneity problem, as it will be discussed during the next sections. 

The Zernike3D basis 𝑍𝑍𝑙𝑙,𝑛𝑛,𝑚𝑚 is defined in terms of two different set of functions, the 3D 

real-valued (normalized) generalized Zernike polynomials (radial component) and the real-

valued spherical harmonics (angular component). References to the expressions of the 

functions composing the Zernike3D basis, as well as a table containing the expression of 

some of the basis components can be found here [52]. For this dissertation, it suffices to say 

the final expression of the Zernike3D basis can be obtained as: 

 𝑍𝑍𝑙𝑙,𝑛𝑛,𝑚𝑚(𝒓𝒓) = 𝑅𝑅�𝑙𝑙,𝑛𝑛1 (𝑟𝑟)𝑦𝑦𝑙𝑙𝑚𝑚(𝜃𝜃,𝜙𝜙) (2) 

where 𝑅𝑅�𝑙𝑙,𝑛𝑛1 (𝑟𝑟) represents the 3D real-valued and normalize Zernike polynomials and 

𝑦𝑦𝑙𝑙𝑚𝑚(𝜃𝜃,𝜙𝜙) refers to the real-valued spherical harmonics, 𝑟𝑟, 𝜃𝜃,𝜙𝜙 are the spherical coordinates 

of the point being considered. The values 𝑙𝑙 and 𝑛𝑛 are non-negative integers referring to the 

degrees of the spherical harmonics and Zernike polynomials, respectively, and 𝑚𝑚 is an integer 

such that −𝑙𝑙 ≤ 𝑚𝑚 ≤ 𝑙𝑙. An example of some Zernike3D basis components is provided in Figure 

 
Figure 5: Example of some Zernike3D basis components. The functions represented at the top show the spherical 
harmonics 𝑌𝑌𝑙𝑙𝑚𝑚 and the Zernike polynomials 𝑅𝑅𝑙𝑙,𝑛𝑛1  used for the composition of the basis components. The Zernike3D 

components 𝑍𝑍𝑙𝑙,𝑛𝑛,𝑚𝑚 shown are defined in the unit ball 𝐵𝐵. To simplify the visualization of the component variation along 
the ball, different shells have been represented [52]. 
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5. 

Similarly to other common basis in image processing such as the Fourier Transform, the 

basis degrees 𝑙𝑙 and 𝑛𝑛 control the frequency of the basis components. In macromolecular 

motions, smaller degrees of the basis will be able to represent collective motions (low 

frequency), while higher degrees will be responsible for approximating more localize 

movements (high frequency). 

2.1.2. Closure under rotations 

One of the most interesting properties of the Zernike3D basis is that it is close under 

rotations, meaning that changes in the rotation of the reference frame deformation fields 

can also be represented by the Zernike3D basis. The previous property holds as long as the 

origin of the reference frame does not change. 

Since a deformation field is just a 3D vector associated with a given position in space 𝑟𝑟, 

thanks to the closure under rotation property we can propagate any rotation applied to the 

field as follows: 

 
𝑨𝑨𝒈𝒈𝐿𝐿(𝑨𝑨−1𝒓𝒓) = �� � 𝑨𝑨𝜶𝜶𝑙𝑙,𝑛𝑛,𝑚𝑚𝑍𝑍𝑙𝑙,𝑛𝑛,𝑚𝑚(𝑨𝑨−1𝒓𝒓)

𝑙𝑙

𝑚𝑚=−𝑙𝑙

∞

𝑛𝑛=0

∞

𝑙𝑙=0

 
(3) 

Being 𝑨𝑨 a valid unitary rotation matrix. 

It is important to mention that the closure under rotation property is only true for 

continuous spaces. In case any discretization is applied (as happens with arrays of pixels and 

voxels), closure under rotation no longer holds. 

2.1.3. Numerical stability of the Zernike3D basis 

The series expansion representation of a complex function in any given basis requires an 

infinite number of components to yield a perfect approximation. As this is unattainable in 

practice, series expansions need to be truncated to a fixed number of components. 

Therefore, there exists a tradeoff between the computational complexity and the accuracy 

of the series expansion that depends on the truncation applied. 

Thus, the Zernike3D basis needs to be truncated in practice to a limited number of 
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components that will determine the accuracy and freedom the deformation field must 

represent a given motion. However, macromolecular motions tend to be collective [53], 

meaning that they can be approximated accurately by smooth deformation fields. Therefore, 

the number of Zernike3D components needed to expand macromolecular motions does not 

need to be large to get an accurate estimation of a given conformational transition. 

2.1.4. Deformation field scaling 

Th application of deformation fields to different CryoEM data type is possible thanks to 

the possibility of scaling the field to match grids at different resolutions. For example, a 

deformation field referred to a CryoEM density map can only be applied to its corresponding 

structural model if the scaling associated with the grid sampling rate is considered. Another 

example is the possibility to compute the deformation field in a low-resolution version of an 

image for performance purposes and apply it later to warp the original resolution images. 

Although scaling a deformation field is usually fast, as the number of deformation fields 

that need to be scaled becomes larger it can have a significant negative impact on the 

computational complexity. Luckily, the expansion of a deformation field in a series of 

Zernike3D coefficients can reduce considerable the number of operations needed to perform 

to successfully scale a field. 

The scaling of an arbitrary deformation field vector 𝒓𝒓𝑜𝑜 by a factor 𝑘𝑘 can be expressed as: 

 𝒓𝒓𝑑𝑑 = 𝑘𝑘𝒓𝒓𝑜𝑜 (4) 

If we expand the vectors 𝒓𝒓𝑜𝑜 and 𝒓𝒓𝑑𝑑 in term of the Zernike3D basis we reach: 

 
�� � 𝜶𝜶𝑙𝑙,𝑛𝑛,𝑚𝑚

𝑑𝑑 𝑍𝑍𝑙𝑙,𝑛𝑛,𝑚𝑚(𝒓𝒓𝑑𝑑)
𝑙𝑙

𝑚𝑚=−𝑙𝑙

= 𝑘𝑘�� � 𝜶𝜶𝑙𝑙,𝑛𝑛,𝑚𝑚
𝑜𝑜 𝑍𝑍𝑙𝑙,𝑛𝑛,𝑚𝑚(𝒓𝒓𝑜𝑜)

𝑙𝑙

𝑚𝑚=−𝑙𝑙

∞

𝑛𝑛=0

∞

𝑙𝑙=0

∞

𝑛𝑛=0

∞

𝑙𝑙=0

= �� � (𝑘𝑘𝜶𝜶𝑙𝑙,𝑛𝑛,𝑚𝑚
𝑜𝑜 )𝑍𝑍𝑙𝑙,𝑛𝑛,𝑚𝑚(𝑘𝑘−1𝒓𝒓𝑑𝑑)

𝑙𝑙

𝑚𝑚=−𝑙𝑙

∞

𝑛𝑛=0

∞

𝑙𝑙=0

 

(5) 

Therefore, from (5) we can conclude that scaling the Zernike3D deformation coefficients 

𝜶𝜶𝑙𝑙,𝑛𝑛,𝑚𝑚 is enough to a new expansion able to reproduce the scaled field (as long as the basis 

is evaluated in the correct positions). 
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 𝜶𝜶𝑙𝑙,𝑛𝑛,𝑚𝑚
𝑑𝑑 = 𝑘𝑘𝜶𝜶𝑙𝑙,𝑛𝑛,𝑚𝑚

𝑜𝑜  (6) 

2.1.5. ZART 

Although the most logical application of a conformational variability analysis is the 

exploration of the different conformational states a macromolecule may adopt, it is also 

possible to take advantage of it to perform some corrections. 

Being able to reach high resolutions in CryoEM density maps is of great importance, as it 

simplifies tracing the chain of atoms that define the real underlying atomic structure 

represented by the CryoEM map. However, resolution is usually not homogeneously 

distributed along the map, as it is common to get regions able to reach better resolutions 

that others. 

If we assume that the parameters needed to reconstruct a good CryoEM density map have 

been identified correctly (such as the CTF, particle alignment…), areas of the molecule that 

tend to be more static are usually recovered at a larger resolution. In contrast, highly flexible 

regions are characterized by a motion blur artefact that makes the interpretation of the map 

more difficult. 

Therefore, if we manage to resolve the conformational variability associated with every 

particle in a dataset, it should be also possible to apply those estimations to “undo” the 

molecular motions. In this way, all particles in the dataset will virtually represent the same 

conformational state as if they were completely static, leading to a reconstruction with 

improved resolution and reduce motion blurring. 

Following the previous hypothesis, we developed a new reconstruction algorithm called 

ZART (Zernike3D-based Algebraic Reconstruction Technique). The main contribution of ZART 

is its ability to include conformational variability estimations obtained from a Zernike3D 

analysis to correct for the non-rigid alignment of particles induced by molecular motions. 

In addition to the previous characteristic, ZART has also be designed so that it can include 

a sharpening step during the reconstruction, allowing reaching more meaningful local 

minima during the reconstruction process. Thanks to the previous sharpening step, ZART has 

proven to be able to reconstruct maps with improved local resolution compared to other 

standard software and methods such as CryoSPARC [51], Relion [40], or Fourier-based 
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reconstruction [54]. 

ZART is based on the Algebraic Reconstruction Technique [55], which provides a method 

to solve linear systems of equations. Luckily, the reconstruction process of a map out of a 

series of its projections can be formulated as finding the solution of a system of linear 

equations. 

Consider a set of experimental CryoEM images arranged in a vector 𝑰𝑰, and a matrix 𝐴𝐴 

containing the projection matrices needed to recover every image stored in 𝑰𝑰 from the 

underlying 3D object they represent 𝒙𝒙. Then, we can express the reconstruction problem as 

a linear system of equation of the form: 

 𝐴𝐴𝒙𝒙 = 𝑰𝑰 (7) 

To solve (7), ZART uses Block-ART [56] algorithm, an iterative algorithm that starts from 

an initial guess 𝒙𝒙(0). A sensible choice could be, for example, a volume filled with zeros, 

although other choices are also possible (e.g., an initial volume obtained from the particle 

dataset). By iterating over all the images in the dataset, it is possible to find 𝒙𝒙 with: 

 
𝒙𝒙(𝑘𝑘+1) = 𝒙𝒙(𝑘𝑘) + 𝜆𝜆𝑘𝑘�

𝐼𝐼𝑖𝑖 − 𝒂𝒂𝒊𝒊𝒙𝒙(𝑘𝑘)

‖𝒂𝒂𝑖𝑖‖2𝑖𝑖

𝒂𝒂𝑖𝑖 (8) 

Where 𝒂𝒂𝑖𝑖 is a vector with the contribution of each voxel in 𝒙𝒙(𝑘𝑘) onto pixel 𝑖𝑖, and 𝑖𝑖 is the 

corresponding index of the currently selected image (different for every 𝑘𝑘). The parameter 

𝜆𝜆𝑘𝑘 is a relaxation factor controlling the convergence speed of the ART iterative process 

(which might take values between 0 and 2). For noisy images, choosing a 𝜆𝜆𝑘𝑘 that converges 

too fast (values close to 1) might lead to divergence. 

The reason for choosing ART instead of other more standard reconstruction methods in 

CryoEM such as those based on the Fourier central slice theorem is the simplicity of including 

geometrical deformations in ART. Thus, iterative process described in (8) can be modified to 

include the heterogeneity correction coming from the Zernike3D per-particle deformation 

fields 𝒈𝒈𝐿𝐿(𝑟𝑟). Before describing how to consider the deformation fields in the ART process, 

let us disccused the image formation process considered in ZART algorithm. 

In ZART, we approximate the density map by a series expansion of basis functions of the 

form: 
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 𝑉𝑉(𝒓𝒓) = �𝑥𝑥𝑗𝑗
𝑗𝑗

𝑏𝑏 �
𝒓𝒓 − 𝒓𝒓𝑗𝑗
𝜎𝜎

� (9) 

being 𝒓𝒓 a position in 3D space, 𝒓𝒓𝑗𝑗 the basis function position, and 𝜎𝜎 the basis function scale. 

In ZART, Gaussian functions have been chosen to be the basis function used for the expansion 

of the density map. The main reason behind the previous choice is that Gaussian functions 

are easy to handle, and they can almost achieve partition of unity. In addition, since 

Gaussians are spherically symmetric, their projection does not depend on the projection 

direction, which becomes very handy during the ART reconstruction process.  

If we refer to the Gaussian basis function as 𝐺𝐺, we can define the projection of (9) along 

an arbitrary direction as follows: 

 
𝐼𝐼(𝒔𝒔𝑖𝑖) = �𝑥𝑥𝑗𝑗

𝑗𝑗

𝐺𝐺 �
(𝒔𝒔𝑖𝑖 − 𝒔𝒔𝑜𝑜) − 𝐸𝐸𝒓𝒓𝑗𝑗

𝜎𝜎
� 

(10) 

where 𝒔𝒔𝑖𝑖 refers to a given pixel position, 𝒔𝒔𝑜𝑜 refers to an image in-plane shift, and 𝐸𝐸 to the projection 

matrix needed to be applied to the volume 𝑉𝑉(𝒓𝒓). 

From the previous equation, we can easily apply a deformation field correction to drive image 𝐼𝐼 

towards a different conformational state: 

 
𝐼𝐼𝑑𝑑𝑑𝑑𝑑𝑑𝑜𝑜𝑑𝑑𝑚𝑚𝑑𝑑𝑑𝑑(𝒔𝒔𝑖𝑖) = �𝑥𝑥𝑗𝑗

𝑗𝑗

𝐺𝐺 �
(𝒔𝒔𝑖𝑖 − 𝒔𝒔𝑜𝑜) − 𝐸𝐸(𝒓𝒓𝑗𝑗 + 𝒈𝒈𝐿𝐿(𝒓𝒓𝑗𝑗))

𝜎𝜎
� 

(11) 

Therefore, in the ART process we can generate 𝐼𝐼𝑑𝑑𝑑𝑑𝑑𝑑𝑜𝑜𝑑𝑑𝑚𝑚𝑑𝑑𝑑𝑑 during the backward model step to 

improve the update of the voxel density values in every iteration and yield a heterogeneity 

corrected volume. 

Lastly, ZART also includes a multiresolution reconstruction mode, which allows to 

converge faster to more meaningful reconstructions without the need for many ART 

iterations. In a standard ZART reconstruction, the Gaussian basis functions are regularly 

distributed along the volume grid and have a fixed scale. However, in multiresolution the 

scale of the Gaussian to be placed in the grid will vary according to the local resolution 

estimated from the map being updated. In this way, areas with higher local resolution will 

be expanded by Gaussians with a smaller radius (allowing them to better represent the 

features in that region). In contrast, areas with lower local resolution (such as the volume 
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background) will be approximated by Gaussians with a larger radius, making the low 

frequency component more prominent. The estimation of the local resolution was done with 

MonoRes [57]. 

2.2. Zernike3D basis applications 

2.2.1. Application to CryoEM density maps 

One of the main advantages of working with deformation fields is the versatility they 

provide when applied to different data types. In the case of Zernike3D deformation fields, 

their application is also possible independently of the type of data we are working on with, 

as long as it lives on a 3D space. 

CryoEM density maps are the first 3D structural representation that can be obtained from 

a processing pipeline. As explained in previous sections in the dissertation, it is even possible 

to obtain several discrete conformational states through a 3D classification. 

Even though 3D classification has the potential to resolve several states, the structural 

relationships and motions connecting those states cannot be easily inferred. Therefore, 

conformational analysis arising directly from a set of CryoEM density maps can give us more 

insights on how different transitions occur. 

The application of a Zernike3D deformation field 𝒈𝒈𝐿𝐿 to a map is almost direct, and can be 

expressed as: 

 𝑉𝑉𝑑𝑑𝑑𝑑𝑑𝑑𝑜𝑜𝑑𝑑𝑚𝑚𝑑𝑑𝑑𝑑(𝒓𝒓) = 𝑉𝑉(𝒓𝒓 + 𝒈𝒈𝐿𝐿) (12) 

Since the volume 3D space is discretized into a grid of voxels, the previous evaluation can 

only be achieved by properly interpolating a density value in the position determined by the 

deformation field. Commonly, backward interpolation is the preferred choice to perform the 

previous task. However, we found more useful for the Zernike3D case the forward 

interpolation approach, which is properly handled to avoid the most common interpolation 

errors associated with this strategy. 

Although (12) provides a way to deform a volume according to the Zernike3D deformation 

field 𝒈𝒈𝐿𝐿, it does not provide a proper way to identify such a field. In general, finding the free 
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form of a deformation field will require a search over a large 3D space, making the process 

slow. Instead of finding directly the Zernike3D field, we can take advantage of the basis 

expansion to reduce the number of parameters to look for. As shown in (1), as we already 

know where and how to evaluate the Zernike3D basis 𝑍𝑍𝑙𝑙,𝑛𝑛,𝑚𝑚, the only missing piece needed 

to define the field is to look for the appropriate values for the Zernike3D coefficients 𝜶𝜶𝑙𝑙,𝑛𝑛,𝑚𝑚, 

which can be found by solving the following optimization problem: 

 min
𝒈𝒈𝐿𝐿

�|𝑉𝑉1(𝒓𝒓) − 𝑉𝑉2(𝒓𝒓 + 𝒈𝒈𝐿𝐿(𝒓𝒓)|𝑑𝑑𝒓𝒓 (13) 

Where 𝑉𝑉1 is a map representing the conformational state we want to approximate, 𝑉𝑉2 is 

the map we are going to move based on the estimated deformation field, and 𝒈𝒈𝐿𝐿 is the 

Zernike3D deformation field expanded in the Zernike3D basis as shown in (1). The previous 

problem can be solved using standard optimization methods such as Powell optimization 

[58]. 

It should be noted that the solution for equation (13) strongly depends on the initial 

conformation we are starting from, as well as the type of optimization method applied to 

find the optimal solution. In the case of Powell optimization, if the initial guess is too far from 

the ideal solution, the local optimization approach Powell is based on might get trapped in a 

local minimum not meaningful enough. In general, we found that a sensible initial guess for 

the Zernike3D coefficients 𝜶𝜶𝑙𝑙,𝑛𝑛,𝑚𝑚 is a vector full of zeros (i.e., no deformation field is applied 

to the initial state). 

Although solving (13) should lead to good enough deformation fields, in some cases where 

maps are noisy or affected by other artefacts the Powell optimization might found fields able 

to overfit to those errors. To prevent the optimization process from being trapped in 

unwanted local minima, we propose to add two extra terms to the previous minimization 

problem. 

The first term is the following: 

 𝜆𝜆1 �‖𝒈𝒈𝐿𝐿(𝒓𝒓)‖2𝑑𝑑𝒓𝒓 (14) 

The previous term penalizes any solution leading to a deformation field with a large 

magnitude, which usually leads to unwanted excessive deformation of some molecular 
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regions. The regularization term 𝜆𝜆1 determines the importance of this term in the overall 

cost function. 

The second term takes the form: 

 
𝜆𝜆2

|∫�𝑉𝑉1(𝒓𝒓) − 𝑉𝑉1�𝒓𝒓 + 𝒈𝒈𝐿𝐿(𝒓𝒓)��|𝑑𝑑𝒓𝒓
∫𝑉𝑉1(𝒓𝒓)𝑑𝑑𝒓𝒓

 
(15) 

It accounts for the penalization in those cases where the deformation field leads to 

changes in the total mass of the deformed volume. Similarly to the previous case, the 

parameter 𝜆𝜆2 controls the importance of the regularization in the overall cost function. 

2.2.2. Application to structural models 

Structural models constitute the next direct application of the Zernike3D deformation 

fields to explore new conformational states. Similarly to the CryoEM density maps 

application described in the previous sections, as structural models belong to the 3D space, 

the process of warping the atomic coordinates does not need any extra preprocessing step. 

In addition, structural models are represented by a set of continuous 3D dimensional 

coordinates, unlike density maps that are discretized into voxels. Therefore, the interpolation 

step needed to recover a new 3D density map after applying a deformation is not needed for 

the structural model application. 

For a set of 3D atomic coordinates 𝑺𝑺 and a Zernike3D deformation field 𝒈𝒈𝐿𝐿, the deformed 

set of new atomic coordinates can be obtained as: 

 𝑺𝑺𝑑𝑑𝑑𝑑𝑑𝑑𝑜𝑜𝑑𝑑𝑚𝑚𝑑𝑑𝑑𝑑 = 𝑺𝑺 + 𝒈𝒈𝐿𝐿 (16) 

We can also define an optimization problem that could be solved to estimate a set of 

Zernike3D coefficients 𝜶𝜶𝑙𝑙,𝑛𝑛,𝑚𝑚 able to expand the deformation field needed to approximate 

two different structural models as: 

 
min
𝒈𝒈𝐿𝐿

�∑ 𝑺𝑺𝑖𝑖1 − 𝑺𝑺𝒊𝒊2 + 𝒈𝒈𝐿𝐿𝑖𝑖
𝑁𝑁
𝑖𝑖

𝑁𝑁

2

 
(17) 

Where 𝑁𝑁 is the total number of atoms in the structural models and 𝑖𝑖 is the current atom 
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index needed to retrieve the atomic coordinates to be compared. Therefore, (17) provides a 

way to optimize the Zernike3D coefficients 𝜶𝜶𝑙𝑙,𝑛𝑛,𝑚𝑚 if the structural models have the same 

number of atoms, whose correspondence must be known beforehand. To solve the previous 

problem, it is possible to apply any optimization algorithm such as Powell optimization. 

The previous assumption is, however, not true in many cases (e.g., if pseudoatomic 

models are used). For those cases, we propose a modified version of the previous problem 

where correspondence is initially addressed by a KDTree [59] search, allowing to 

approximate the reference positions needed to define the deformation field as the mean of 

the closest neighbors of the current displaced position (the number of neighbors to be 

considered is determined by the user). 

Moreover, the cost function proposed in (17) is modified when the neighbor search 

approximation is applied to: 

 
min
𝒈𝒈𝑳𝑳
+,𝒈𝒈𝐿𝐿

−
�
∑ 𝑺𝑺�𝒌𝒌1 − 𝑺𝑺𝒊𝒊2 + 𝒈𝒈𝐿𝐿+𝑖𝑖
𝑁𝑁2
𝑖𝑖

𝑁𝑁2

2

+ �
∑ 𝑺𝑺�𝒌𝒌2 − 𝑺𝑺𝒊𝒊1 + 𝒈𝒈𝐿𝐿−𝑖𝑖
𝑁𝑁1
𝑖𝑖

𝑁𝑁1

2

 
(18) 

where 𝒈𝒈𝐿𝐿+ and 𝒈𝒈𝐿𝐿− stand for the deformation fields needed to approximate 𝑆𝑆1 from 𝑆𝑆2 and 𝑆𝑆2 

from 𝑆𝑆1 respectively. By looking for the previous two fields at the same time we are 

preventing Powell optimization from falling into unwanted local minima arising from the 

neighbor search. 

The previous optimization can be extended with the regularization term in (14) to avoid 

excessive deformations during the Powell optimization process. In addition to the 

regularization term, we also add a consistency term that drives the search of the deformation 

fields in such a way that 𝒈𝒈𝐿𝐿+ and 𝒈𝒈𝐿𝐿− are the inverse of each other [60]. The consistency term 

can be defined as follows: 

 𝐸𝐸𝑐𝑐𝑜𝑜𝑛𝑛𝑐𝑐 = 𝐸𝐸𝑐𝑐𝑜𝑜𝑛𝑛𝑐𝑐+ + 𝐸𝐸𝑐𝑐𝑜𝑜𝑛𝑛𝑐𝑐−  

=
∑ �𝑺𝑺𝑖𝑖1 − ��𝑺𝑺𝑖𝑖1 + 𝒈𝒈𝐿𝐿−𝑖𝑖� + 𝒈𝒈𝐿𝐿+𝑖𝑖��

2𝑁𝑁1
𝑖𝑖

𝑁𝑁1
 

+
∑ �𝑺𝑺𝑖𝑖2 − ��𝑺𝑺𝑖𝑖2 + 𝒈𝒈𝐿𝐿+𝑖𝑖� + 𝒈𝒈𝐿𝐿−𝑖𝑖��

2𝑁𝑁2
𝑖𝑖

𝑁𝑁2
 

(19) 

The combination of all the previous terms leads to the final form of the cost function to 
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be optimized in the case of working with two structural models with a different number of 

atoms (and therefore, with unknown atom correspondences). 

2.2.3. Application to CryoEM particles 

The last application of the Zernike3D basis is the approximation of conformational states 

captured at the CryoEM particle level. Unlike density maps and structural models, CryoEM 

particle sets allow to approximate much richer conformational landscapes due to the large 

number of particles generated during the image processing workflow (commonly, around 

100k to 1M images are usually generated). 

However, the structural information captured by the particle is collapsed along the 

projection direction. Therefore, the estimation of the molecular motions observed along the 

image plane (which is perpendicular to the projection direction) are well defined, but 

determining the real 3D motion is an ill posed problem. 

In addition, since the Zernike3D basis is defined in 3D, its application to the 2D particle 

case is not immediate as in the previous applications. Instead, Zernike3D deformation fields 

need to be defined in the 3D space, and posteriorly used to warp and generate a 2D image 

that can be compared with the experimental projection. The previous process is only possible 

if the CryoEM particles has angular information associated, as well as CTF to correct for the 

microscope defocus and improve the accuracy of the estimated motions. 

Similarly to the previous applications, two inputs are needed to approximate a 

conformational state from a particle: the experimental particle and a reference volume 

providing a starting equilibrium state to perform the search. During the estimation process, 

Zernike3D deformation fields will be computed and applied to the reference volume, leading 

to an approximation of the particle conformational state. Posteriorly, the angular alignment 

information associated with the particle will be used to project the deformed volume, 

generating a theoretical projection to be compared to the experimental particle. At this step, 

it is possible to compute a cost function through the comparison of the experimental and 

theoretical particles, which will be used to update the Zernike3D deformation fields if 

needed. A summary of the previous process is provided in Figure 6 
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The proposed cost function to be optimized reads as follows: 

 max
𝒈𝒈𝑳𝑳

𝜌𝜌(𝐼𝐼,𝐶𝐶𝑃𝑃𝜃𝜃(𝑉𝑉(𝒓𝒓 + 𝒈𝒈𝐿𝐿(𝒓𝒓))) (20) 

Being 𝐼𝐼 the current experimental image being process, 𝐶𝐶 the CTF associated with the 

particle, 𝑃𝑃𝜃𝜃 the projection operator along the direction defined by the angular geometry 

estimated for the particle, 𝑉𝑉 the reference map, and 𝒈𝒈𝐿𝐿 the Zernike3D deformation field 

expanded in term of the Zernike3D coefficients 𝜶𝜶𝑙𝑙,𝑛𝑛,𝑚𝑚 as defined in (1). The comparison 

between the experimental and simulated image relies on the Pearson correlation coefficient 

𝜌𝜌. To optimize the previous problem, Powell optimization is proposed, although other 

methods could also be applied. 

Although the optimization of (20) should be theoretically enough to approximate a given 

particle structural state, it has an infinite number of solutions equally optimal. As mentioned 

previously in this section, the approximation of 3D information from an image is an ill posed 

problem, as the information along the projection direction is missing. Therefore, we can 

assign any value to the deformation field along the previous projection direction without 

changing the image content of the theoretical particle generated during the optimization 

process. A conceivable way to address the previous problem is to regularize the cost function 

in (20) with an extra term accounting for unwanted deformations, as done for the previous 

application. Nevertheless, it should be noted that this type of regularization acts in a global 

manner, which might affect the overall estimation accuracy. 

Instead, it is possible to take advantage of the Zernike3D basis properties to completely 

cancel any deformation along any projection direction. Although this is not completely 

 
Figure 6:Summary of the application of the Zernike3D basis to find conformational states at particle level [79]. 
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realistic, it is the best possible assumption that can be taken when working at the per-particle 

level (i.e., we do not want to touch the equilibrium state along the projection direction to 

avoid unwanted guesses). 

The previous cancellation can be achieved thanks to the “closure under rotation” property 

of the basis. As we explained in Section 2.1.2, the Zernike3D deformation fields and 

Zernike3D coefficients 𝜶𝜶𝑙𝑙,𝑛𝑛,𝑚𝑚 can be easily modified to represent the same field 

independently of the rotations applied to the reference frame. Thus, we can take advantage 

of the reference frame rotation to effectively aligned our deformation field along the 

projection direction, which translates into a rotation of the coefficients 𝜶𝜶𝑙𝑙,𝑛𝑛,𝑚𝑚. At this point, 

it is possible to completely cancel the undesired deformation field component. 

It should be noted that the closure under rotation property only holds entirely for 

continuous spaces. However, the reference map is discretized into voxels, meaning that the 

rotated and corrected fields cannot be applied to the reference map. Before applying the 

corrected field, it must be rotated back to the map reference frame. After the previous step, 

unwanted deformation along the projection direction will be effectively corrected. The 

previous correction step is summarized in Figure 7. 

During the optimization of the deformation fields, it is possible to include the previous 

correction process to prevent the Powell optimizer from falling into unwanted local minima 

induced by the information collapsed in a particle image. 

Due to the high levels of noisy CryoEM particles are buried in, adding an extra 

regularization to keep the magnitude of the Zernike3D deformation fields low is a good 

practice to prevent overfitting to noise. To that end, we can extend the cost function 

equation (20) with the deformation penalization term introduced in equation (14). 

 
Figure 7: Summary of the correction of the deformation along the projection direction thanks to the closure under 

rotation property of the Zernike3D basis [79]. 
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Once the optimization of the Zernike3D deformation fields has finished for all the particles 

in a dataset, a set of Zernike3D coefficients 𝜶𝜶𝑙𝑙,𝑛𝑛,𝑚𝑚 will be obtained, representing the 

estimated per-particle conformational states. At this point it is a frequent practice to 

visualize the coefficient space, as it is expected to be a good experimental estimation to the 

conformational landscape the macromolecule under study has explored. However, the 

Zernike3D coefficients will have a large dimensionality value (e.g., for the default maximum 

degree values 𝑁𝑁 = 3 and 𝐿𝐿 = 2, every vector 𝜶𝜶𝑙𝑙,𝑛𝑛,𝑚𝑚 will end up having a total of 39 

coefficients). Therefore, a dimensionality reduction technique such as Principal Components 

Analysis (PCA) [61] or Uniform Manifold Approximation and Projection (UMAP) [62] needs to 

be applied to get a meaningful and representable conformational space. 

The reduced conformational spaces can be then explored, allowing the identification of 

the different states a molecule may be visiting. In addition, due to the fast application of the 

Zernike3D deformation fields, it is possible to generate in real time any conformational state 

from the landscape as a CryoEM density map or structural model, thus simplifying the 

understanding of the landscape features. 

2.3. Results and discusión 

2.3.1. Zernike3D application to density maps 

As we discussed in previous sections, the application of the Zernike3D basis to CryoEM 

density maps is almost straightforward. if we consider a set of maps instead, it is possible to 

take advantage of the continuous heterogeneity measurement extracted from every map 

pair in the set to infer heterogeneity information that would be hardly extracted from a visual 

inspection. 

The Zernike3D deformation fields computed from a pair of maps in a different 

conformational state can be further reduced into a single value, providing a way to compare 

how different the two conformational states represented by the maps are. For example, it 

would be possible to compute the root mean square distance of the two maps from the 

deformation field, or a correlation error between the deformed and reference 

conformational states. 

If instead of a single pair of maps we compared all the maps in a set in a pairwise fashion, 
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it is possible to arrange the previous comparison metrics in a matrix form. The previous 

distance matrix is, therefore, a good summary of how different the conformational states 

explored by a macromolecule are. 

However, the matrix representation is usually hard to interpret. Instead, it is possible to 

apply Multidimensional Scaling (MDS) [63] to recover a point cloud in 2D or 3D whose 

distances resemble the ones measured from the CryoEM maps and Zernike3D fields. We call 

the previous low dimensional representation a structure map. 

Structure mappings are useful to better understand the possible sequence of 

conformational states that have been extracted from a set of volumes. For example, a 

structure mapping would simplify the task of identifying molecular transitions or other 

structural characteristics captured by the maps. 

As an example of the structure mapping capabilities, different volume datasets were 

analyzed. The first example discussed in this dissertation consist of a synthetic dataset 

representing the opening and closing of a CCT complex [64]. To that end, 30 structural 

models were simulated from the transition using an adaptive anisotropic network model [65] 

implemented in ProDy [66]. The structural models were converted back to electron densities 

into Coulomb potential maps using the electron atomic scattering factors (EASFs) [67]. 

The thirty generated maps were posteriorly subjected to the Zernike3D structure map 

analysis. The results obtained are shown in Figure 8. 

As discussed before, once the Zernike3D deformation fields for a pair of volumes has been 

computed it is possible to compute many comparison measurements. In our case, two 

different metrics were used:  

• Deformation distance: Computed as the root mean square value of the 

deformation field computed from a pair of maps. 

• Correlation distance: Computed as the Pearson correlation coefficients between 

the map warped with the deformation field computed for the pair and the 

reference conformation. 

In general, the two previous metrics might lead to slightly different structure mappings 

showing distinctive features. However, we are lacking a criterion to determine which of the 

two mappings leads to a more meaningful order of the different states. Therefore, a 
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structure mapping consensus was developed.  

The approach followed by the mapping consensus if to find the linear combination of the 

different mappings obtained in such a way that the entropy of the mapping coming from the 

linear combination is minimized. The minimum entropy criterium taken in the consensus step 

enforces the presence of transitions or other structural relationships in the mapping, as this 

is the kind of information that could be expected from a structure mapping. 

As shown in Figure 8 deformation distance, correlation distance, and consensus structure 

 

Figure 8: Structure mappings obtained after analyzing a set of 30 CryoEM maps simulated from the opening and 
closing transition of a CCT complex [64] with the Zernike3D approach. The top mapping shows the results obtained 

with the deformation distance, middle shows the correlation distance results, and bottom the consensus of the 
previous two mappings [52]. 
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mappings obtained from the synthesized CCT conformations are similar. However, the 

correlation distance mapping is more sensitive to the presence of small structural variations 

for this case, providing a better ordering of the maps ranging from 14 to 1. As it can be seen 

in the bottom image, the consensus is able to produce a better identification of those states 

in the correlation mapping, giving more weight to it the linear combination. Overall, the three 

mappings show the expected transition recovered directly from the CryoEM maps, allowing 

to better identify the structural relationships among the simulated states. 

When working with experimental data, 3D classification is usually not able to reconstruct 

as many good enough conformational states as in the synthetic experiment described 

previously. Still, the computation of structure mappings might become handy to better 

identify the molecular motions behind the classified maps. 

In order to show the results that could be expected from a structure mapping analysis 

with experimental data, a set of seven human mitochondrial ribosome maps [68] were 

retrieved from the EMDB database. It should be noted that experimental maps might have 

different resolutions, which might lead to an artefactual ordering in the structure map. Thus, 

it is always convenient to filter the CryoEM maps to be analyzed to the same resolution (i.e., 

the smallest resolution present in the dataset) before forwarding them into the analysis. The 

results obtained from the seven experimental maps is shown in Figure 9. The structure 

mapping reveals the presence of two different structural transitions captured by the CryoEM 

maps, which would have been hardly identified by a visual inspection of the different 

 

Figure 9: Structure mapping obtained after applying the Zernike3D analysis to a set of 7 human mitochondrial 
ribosome maps [68]. The structure mapping reveals two different structural transitions captured by the CryoEM 

density maps [52]. 
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conformational states. 

Apart from analyzing the structural relationships represented by a set of CryoEM maps, 

the Zernike3D deformation fields can also be further analyzed to extract the strain and 

rotational forces driving a given molecular motion, as described in [69]. An example of the 

strain/rotation decomposition obtained from the human mitochondrial ribosome maps 1720 

and 1723 is provided in Figure 10. 

The strain rotation decomposition is translated into a set of values that can be used to 

color the original CryoEM maps. Based on the colormap from Figure 10, higher 

strain/rotational forces are colored in red, while lower forces are colored in blue. 

Lastly, the Zernike3D deformation fields computed from a pair of maps can also be applied 

to a structural model, allowing to easily reproduce the conformational state at atomic level. 

An example of the application of the Zernike3D fields to structural models is provided in 

Figure 11. 

It should be noted that the Zernike3D deformation field estimation is purely based on 

geometrical considerations arising from the structural information captured by the CryoEM 

maps. Therefore, the application of the Zernike3D fields to a structural model might lead to 

a representation with no stereochemical constrains imposed, which should be posteriorly 

addressed to correct the Zernike3D model. 

2.3.2. Zernike3D application to particles 

The extraction of conformational states directly from 2D CryoEM particle images is one of 

the main and most interesting contributions flexibility algorithms are making to the field. The 

large amount of structural data captured in a particle dataset allows flexibility algorithms to 

 

Figure 10: Strain (left) and rotation (right) decomposition obtained from the Zernike3D deformation field computed 
from the EMDB 1720 and 1723 maps [52]. 
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approximate the experimental conformational landscape explore by a macromolecule, in 

contrast to the classical classification approach limited to a reduced number of states. 

Therefore, the conformational estimations performed directly at particle level leads in last 

instance to a mapping much richer and complete than the structure mappings described in 

the previous sections. The new mappings do not only provide a much better understanding 

of the structural relationships relating different states, but they might also reveal new 

structural conformations hidden in the particle data due to their low representation. 

As explained in Section 2.2.3, the application of the Zernike3D basis to extract per-particle 

deformation fields (and therefore, conformational states) is also possible, as long as the 

projection of the 3D space is handled appropriately. However, structure mappings are no 

longer a viable option, due to the large dimensions of the distance matrices that would be 

obtained if all particles are considered. 

Instead, it is easier to analyze directly the Zernike3D coefficient space composed by the 

estimations obtained from the particles. Nevertheless, the high dimensionality of the 

Zernike3D coefficient vectors makes the interpretation of the estimated space a challenge. 

Thus, a dimensionality reduction step is advisable to visualize and simplify the interpretation 

of the Zernike3D conformational landscape. 

To assess the performance of the Zernike3D basis on the approximation of per-particle 

states and landscapes, several experimental datasets were selected and processed. The first 

dataset discussed in this Section is the EMPIAR 10028 dataset [70], which has become a 

popular choice for the evaluation of flexibility algorithms. 

 

Figure 11: Application of the Zernike3D fields computed from the open to the close CCT maps to the open CCT 
structural model [52]. 
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The EMPIAR 10028 dataset consists of a series of CryoEM particles of a P. falciparum 80 S 

ribosome bound to emetine. When analyzed with a 3D classification algorithm, two well 

differentiated conformational states can be identified, which capture a rotational motion of 

the small ribosomal subunit. The presence of a significant structural change in combination 

with the large size of the ribosome makes this dataset a good validation choice. 

Before subjecting the particles to the Zernike3D analysis, the original dataset downloaded 

from EMPIAR was further processed and cleaned inside Scipion [10]. In addition, the angular 

information extracted from different CryoSPARC refinements [51] was consensuated to 

achieve a more stable dataset. 

The consensuated particles were posteriorly analyzed with the Zernike3D algorithm, 

yielding the Zernike3D landscape. Figure 12 shows the obtained Zernike3D coefficient space 

reduced with UMAP [62]. 

As it can be observed from the landscape, two regions are easily identified, which 

correspond to the rotation of the small ribosomal subunit captured in the dataset. The 

Zernike3D landscape has been colored according to the average deformation magnitude that 

needs to be applied to the reference map to reach a different state. In this way, purple colors 

represent states that are closer to the reference map, while yellow colors are assigned to 

those states that represent a larger motion compared to the reference state. 

Similarly to the volume application, it is possible to apply any Zernike3D coefficient vector 

 

Figure 12: Zernike3D conformational landscape obtained from the EMPIAR 10028 particles [70] and reduced with 
UMAP [62]. The landscape reveals two well differentiated regions, marked with an orange and white dot. These two 

regions correspond to the unrotated and rotated states of the small ribosomal subunit present in the dataset. The 
colormap used to represent the landscape shows the average deformation magnitude that needs to be applied to the 

reference map to achieve a new conformational state [79]. 
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𝜶𝜶𝑙𝑙,𝑛𝑛,𝑚𝑚 extracted from the previous landscape to the corresponding reference map or its 

structural model. Figure 13 provides an example of the small ribosomal subunit rotation 

recovered through the Zernike3D fields extracted from the orange dot in Figure 12. 

As shown in the figure, the application of the Zernike3D fields extracted from the 

landscape can recover the expected conformational change. When compared to a 

CryoSPARC refinement (blue map in b) panel), it can be observed that there is an agreement 

between the two states. However, the application of the Zernike3D fields yield a map at the 

same resolution as the chosen reference state, while the resolution in a refinement is usually 

more limited due to the lower number of particles used during the reconstruction. Moreover, 

the Zernike3D fields can also be applied to a structural model as shown in c), allowing to 

recover a directly the atomic coordinates from the selected state without the need for 

tracing in a low-resolution map. It should be noted that the Zernike3D fields are estimated 

based on purely geometrical considerations. Therefore, stereochemical constrains should be 

posteriorly applied to the recover structure to improve their quality. 

The second dataset analyzed by the Zernike3D algorithm was the EMPIAR 10180 dataset 

[71], representing a catalytic spliceosome exhibiting a large degree of flexibility. In addition, 

the dataset includes a mixture of compositional and continuous heterogeneity, which might 

decrease the performance of the Zernike3D algorithm. Therefore, compositional 

heterogeneity was cleaned beforehand inside Scipion, leading to a cleaned dataset where 

continuous heterogeneity was more prominent. Posteriorly, the cleaned particle dataset was 

subjected to an angular consensus analysis to improve the stability of the particle angular 

assignation. 

The flexibility analysis conducted was similar to the workflow followed with the EMPIAR 

10028 dataset. The consensuated particles were analyzed through the Zernike3D basis, 

generating a set of Zernike3D coefficients that approximate the conformational landscape 

captured by the dataset. The Zernike3D landscape was further reduced with UMAP to 

simplify its visualization, as shown in Figure 14a. 

One of the easiest ways to analyze a conformational landscape is to draw several 

conformations from it that are uniformly distributed. To that end, it is possible to use a 

KMeans clustering of the original Zernike3D space, and use the representative coefficients 

associated with each cluster to recover a set of uniformly distributed states. Figure 14b 
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shows the resulting representative states extracted from a KMeans analysis with five 

clusters. 

The clustering reveals some of the main motions captured in the dataset, mostly 

associated with the top and bottom regions of the spliceosome. Figure 14c shows the 

application of the previous five representative to the structural model deposited with the 

EMPIAR 10180 dataset. The application of the Zernike3D deformation fields to a structural 

model simplifies the identification of the relevant and local motions described by the 

different states obtained from the conformational landscape. We provide in Figure 15 a 

closer comparison to two of the states shown in Figure 14c. 

The example of application of the Zernike3D algorithm to an experimental particle dataset 

focuses on a harder specimen due to its smaller size and SNR: the SARS-CoV-2 spike. The 

dataset proposed for this experiment comprises the EMPIAR 10514 and 10516 entries [72]. 

The two previous datasets were analyzed through a standard 3D classification inside 

Scipion [10], revealing a slight opening of the Receptor Binding Domain (RBD) in up 

conformation. Therefore, the analysis of the dataset is a good example to assess the 

performance of the Zernike3D method when faced with the identification of smaller motions 

and more localized motions. 

 

Figure 13: Example of the application of the Zernike3D fields (extracted from the orange dot in Figure 12) to recover 
the rotated ribosomal state present in the EMPIAR 10028 dataset. b) shows the comparisons of the Zernike3D rotated 

state (red) and the reference state (blue). b) shows the comparison of the Zernike3D rotated state (red) and the 
rotated state obtained from a CryoSPARC [51] homogeneous refinement (blue). The comparison shows that the 

Zernike3D fields can effectively recover the expected conformational state, but without the intrinsic loss in resolution 
that might induce the refinement. c) shows the application of the Zernike3D fields to recover the rotated state (red) at 
the level of structural models, compared to the structural model coming to the reference map (blue). Thus, versatility 

of the Zernike3D basis allows to recover directly any state in the landscape at atomic level [79]. 
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The conformational landscape obtained from the Zernike3D analysis is provided in Figure 

16a. To simplify the understanding of the landscape, we can translate the original 3D 

classified maps obtained from the dataset into the Zernike3D space, allowing to map at the 

same time the results of the discrete and continuous flexibility analysis. The combined 

landscape is show in Figure 16b. From the combined landscape, it can be easily seen the 

advantage of the continuous heterogeneity methods, as they are able to capture a significant 

amount of structural information that is lost during the classification process.  

 

Figure 14: Zernike3D analysis of the EMPIAR 10180 dataset [71]. a) show the Zernike3D conformational landscape 
recover from the particles and reduced with UMAP [62]. The colormap represents the average deformation of the 

deformation fields computed for each particle in the dataset. b) shows a set of 5 maps generated through the 
application of the Zernike3D fields to the reference map. The 5 conformations were uniformly sampled from the 

Zernike3D landscape with KMeans. c) shows the previous 5 sampled conformational at atomic level, obtained after 
applying the Zernike3D fields to the structural model deposited with the EMPIAR 10180 dataset [79]. 
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In addition, the combined landscape reveals a new region in the landscape that was not 

captured by the discrete heterogeneity analysis, due to the small number of particles 

defining that conformational landscape region. A thorough analysis of the region of interest 

shows a new conformational state that is slightly closing, opposite to the changes obtained 

with the classical discrete analysis as shown in Figure 17. The previous analysis shows the 

potential of the Zernike3D method in the identification of less stable states that may remain 

hidden to classical analysis. 

 

Figure 15: Comparison of two of the structural models recovered after applying the Zernike3D fields obtained from two 
of the five states uniformly sampled from the estimated Zernike3D conformational landscape in Figure 14a. The 

possibility of generating states directly at atomic level simplifies the analysis and understanding of the molecular 
motions captured by the conformational landscape [79]. 

 

Figure 16: Zernike3D conformational landscapes obtained from the analysis of the EMPIAR 10514 and 10516 datasets 
[72] and reduced with UMAP [62]. a) shows the estimated landscapes, colored according to the average deformation of 
the Zernike3D fields obtained for every particle. b) shows the combined landscape obtained after translating the original 
discrete classification results to the Zernike3D space, represented by the white dots. The combination of the continuous 

and discrete information simplifies the understanding of the conformational landscape and reveals a new structural 
region that was not possible to be captured by the classical discrete heterogeneity analysis [79]. 
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2.3.3. ZART reconstruction 

The application of the Zernike3D basis in the exploration of conformational landscapes 

and states is the standard approach in the analysis of conformational variability from CryoEM 

data. However, it is also possible to consider the estimated Zernike3D deformation fields a 

non-rigid alignment needed to correct for every particle variability and reduce motion 

blurring in CryoEM density maps, as discussed in Section 2.1.5. 

The development of ZART follows the previous reasoning, as it considers the 

conformational landscape to correct for the non-rigid alignments associated with every 

particle during the reconstruction process. The previous correction combined with the 

sharpening capabilities of the ZART reconstruction algorithm allows to reach more 

meaningful reconstruction with improved resolution. 

Before assessing the performance of the heterogeneity correction, ZART was compared 

with a standard Fourier reconstruction to discuss the effect of the intrinsic sharpening ZART 

applies during the reconstruction process. To that end, a synthetic dataset was generated 

from the SARS-CoV-2 PDB 6VSB [73]. The structural model was converted to a Coulomb 

potential map and projected to generate a set of 18k ideal CryoEM particles (i.e., with no 

 

Figure 17: Structural models extracted from the Zernike3D regions shown in the landscape included in the figure, 
corresponding to the two extreme points of the main transition defined by the discrete classification as shown in 

Figure 16b. The structural models show the capability of the Zernike3D method in the identification of small protein 
motions. 
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noise or CTF) with sampling rate 2.40 Å/px. The particle dataset was then reconstructed with 

ZART and Fourier reconstruction methods. The results obtained from the reconstructions are 

summarized in Figure 18. As it can be seen from Figure 18a and Figure 18b, ZART is able to 

significantly enhance the structural features of the spike compared to Fourier thanks to the 

sharpening it applies during the reconstruction, reaching a more meaningful CryoEM map. 

Together with the comparison, the convergence curve of ZART is also provided in Figure 18c, 

which shows a low enough convergence error after five thousand images have been 

analyzed. 

The previous ZART reconstructions were obtained following the “standard” 

reconstruction approach implemented in ZART. However, a multi-resolution approach was 

also implemented as described in Section 2.1.5. Therefore, the next experiment focuses on 

the analysis of the performance of the method when faced against an experimental dataset, 

including a comparison of the standard and multi-resolution approaches. The dataset to be 

analyzed corresponds to the EMPIAR 10391 [74], which was process inside Scipion [10] to 

extract a set of 35k particles with angular and CTF information estimated with Relion [40]. 

The particle dataset was posteriorly reconstructed with ZART following the standard and 

 

Figure 18: Comparison of ZART and Fourier reconstructions obtained from the synthetic dataset generated from the 
SARS-CoV-2 PDB 6VSB [73]. a) shows the comparison of the original map simulated from the structural model, Fourier, 
and ZART. A closer look to the maps suggests a better resolvability of the spike features in the case of ZART, thanks to 

its sharpening capabilities. b) shows a comparison of the three maps at the level of 2D slices. Similarly to a), ZART 
enhances the structural features compared to Fourier. c) shows the convergence curve for ZART after iterating through 

several images [55]. 
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multi-resolution approaches, and further analyzed to determine the quality of the maps. The 

results obtained are summarized in Figure 19. Figure 19a shows the CryoEM reconstructed 

maps obtained with Relion and ZART (multi-resolution with three levels, multi-resolution 

with six levels, and standard). The maps are colored according to their local resolution 

computed with MonoRes [57] and sharpened with DeepEMHancer [75] in wide target mode 

to reduce the noise. The maps suggest an improvement in resolution and feature 

resolvability in the case of ZART, similar to the results obtained from the 6VSB SARS-CoV-2 

spike.  

To compare the ZART (multi-resolution with six levels) more quantitatively and Relion 

reconstructions, the local resolution histograms were further analyzed as shown in Figure 

 

Figure 19: ZART reconstructions obtained from the EMPIAR 10391 dataset [74]. a) shows the reconstructed maps 
obtained with Relion [40] and ZART multi-resolution with 3 levels, multi-resolution with 6 levels, and standard) 
sharpened with DeepEMHancer [75]. b) shows a comparison of the local resolution histograms for ZART (multi-

resolution with 6 levels) and Relion computed with MonoRes [57]. c) shows the FSC curves obtained from the Relion 
and ZART maps. d) shows a comparison of the local resolution histograms obtained from the standard and multi-

resolution (with 6 levels) ZART reconstructions [55]. 
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19b. The resolution histograms also suggest a significant displacement of ZART voxels 

towards the high-resolution regime, improving the average local resolution from 7.0 Å to 4.0 

Å. In addition, the FSC curves computed from the reconstructed half maps are provided in 

Figure 19c. Following the trend extracted from the local resolution measurements, ZART 

maps improved the global resolution of the map around 0.3Å when compared to the Relion 

reconstruction, and 0.5Å when compared to the original map published with the EMPIAR 

10391 dataset. 

Together with the quality analysis of Relion and ZART reconstructions, a comparison of 

the local resolution histograms obtained from the standard and multi-resolution (with six 

levels) ZART reconstructions is also provided in Figure 19d. Although similar, the multi-

resolution approach introduces a slight increment in the local resolution thanks to the 

consideration of the local resolution estimations and variable Gaussian widths during the 

reconstruction process. 

The last experiment focuses on the analysis of ZART when flexibility correction is 

considered. To simplify the understanding and discussion of the flexibility correction effect 

 

Figure 20: Comparison of CryoSPARC [51] and ZART (with heterogeneity correction) reconstructions obtained from the 
EMPIAR 10028 dataset [70]. a) shows a comparison of the reconstructed CryoEM maps colored according to their local 

resolution estimated with MonoRes [57] and sharpened with DeepEMHancer [75]. b) shows the comparison of the 
local resolution histograms from MonoRes computed from the previous two maps. c) shows the FSC curves obtained 

from the two reconstructions [55]. 
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in the reconstruction, the multi-reconstruction approach was not considered for this case. 

However, it should be noted that it is possible to correct for the conformational variability in 

both, the standard and multi-resolution approaches. 

The EMPIAR 10028 dataset [70] previously analyzed in Section 2.3.2 was also subjected to 

the ZART analysis. In this case, the estimated Zernike3D conformational landscape provided 

in Figure 12 was forwarded to the ZART method together with the CryoEM particles to 

perform a heterogeneity corrected reconstruction. The original map reconstructed from the 

previous particles in CryoSPARC [51] was also recovered for comparison purposes. The 

results obtained from the previous analysis are summarized in Figure 20. An initial inspection 

of the CryoEM maps from Figure 20a shows similar structural features in the core of the large 

 

Figure 21: Example of some 2D slices extracted from the CryoSPARC [51] and ZART (with heterogeneity correction) 
reconstructions from the EMPIAR 10028 dataset [70]. ZART slices provided a better representation of the ribosomal 
structural features, which is accentuated in the small ribosomal subunit thanks to the heterogeneity correction. For 

visualization purposes, the negative values of CryoSPARC and ZART slices has been removed [55]. 
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ribosomal subunit, which is only subjected to residual motions. Instead, the small ribosomal 

subunit exhibits a better enhancement of its structural features, thanks to the correction of 

its rotation (as discussed in Figure 13) and other residual motions, which is significant enough 

to induce a larger degree of motion blurring in the case of CryoSPARC. Both maps in Figure 

20a are colored according to their local resolution computed with MonoRes [57] and were 

sharpened with DeepEMHancer [75] in wide target mode to reduce the noise. 

Figure 20b provides a more quantitative comparison of the two maps through the local 

resolution histograms extracted from MonoRes. Similarly to the EMPIAR 10391 case, ZART 

pushes a larger number of voxels towards the high-resolution regime, improving the average 

local resolution from 5.5 Å to 5.2 Å. In the case of the FSC curves show in Figure 20c, it can 

be observed a similar global resolution, with a slight improvement in the case of ZART of 

around 0.1Å. 

A comparison of CryoSPARC and ZART reconstructions at the level of 2D slices is also 

provided in Figure 21. The visualization in both cases has been modified to exclude the 

negative values in both maps. The comparison of the slices follows a similar trend to the one 

already observed at the level of the maps and resolution histograms, resulting in an 

enhancement of the structural features of the EMPIAR 10028 ribosome, which is more 

significant in the small ribosomal subunit thanks to the flexibility correction of ZART. 
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Conclusions and future work 

The main objective of this dissertation, structured as a compendium of articles, was to 

introduce a new method to analyzed continuous conformational variability from various 

CryoEM datatypes (maps, structural models, and particles) called the Zernike3D algorithm. 

The new method is based on the Zernike3D basis, a composition of the Zernike 

polynomials and spherical harmonics able to expand any function contained in a sphere. 

Thus, the basis expansion relies on the Zernike3D basis components 𝑍𝑍𝑙𝑙,𝑛𝑛,𝑚𝑚 and the Zernike3D 

coefficients 𝜶𝜶𝑙𝑙,𝑛𝑛,𝑚𝑚, that determine the contribution of each component to the expansion. 

The basis is then used to expand a deformation field describing the transition between two 

conformational states, which can be computed through the minimization of an appropriate 

cost function having the Zernike3D coefficients 𝜶𝜶𝑙𝑙,𝑛𝑛,𝑚𝑚 as unknown. Although our basis choice 

is not unique, we found it to have interesting properties that can be exploited to overcome 

several challenges during the search of the Zernike3D deformation fields. 

The applicability and performance of the basis was assessed on several CryoEM datasets 

(both, experimental and synthetic), which has proven to be versatile even when subjected 

to different CryoEM datatypes. The ability to apply the Zernike3D basis to CryoEM maps and 

particles allows to extract and analyzed the estimated heterogeneity information in diverse 

ways and opens the possibility to the design of combined analysis were discrete and 

continuous flexibility could be understood together. Moreover, the application of the 

estimated Zernike3D fields from maps or particles directly to structural models provides a 

new mechanism to understand conformational landscape at atomic level, as well as analyzing 

the approximated states with atomic-oriented tools such as Normal Mode Analysis or 

Molecular Dynamics. 

Apart from the identification and exploration of conformational landscapes, the 

Zernike3D estimations can also be considered as a non-rigid alignment able to partially 
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reduce blurring artifacts appearing during the CryoEM reconstruction process, leading to a 

decrease in the motion induce artefacts present in a map. The previous approach was 

implemented in a new reconstruction method called ZART, which combines reconstruction, 

sharpening, and heterogeneity correction to yield more meaningful reconstructions with 

enhanced structural features. The implementation of ZART also includes a multi-resolution 

reconstruction approach, able to analyze the local resolution of the maps being 

reconstructed to give a different resolution weight to different areas in the map. In this way, 

ZART can automatically focus on improving those map regions where the protein is found, 

further improving the accuracy and convergence speed of the method. 

3.1. Future work 

In this section we identify the main steps that we would like to follow to improve the 

Zernike3D and ZART methods described along the dissertation: 

• The classical optimization schemes proposed for the search of the Zernike3D 

coefficients 𝜶𝜶𝑙𝑙,𝑛𝑛,𝑚𝑚 could be improved if a neural network is employed. Using a 

neural network should provide a much faster search of the coefficients, as well as 

finding more meaningful conformations thanks to the batch optimization, which 

should be able to partially recover better the information along the projection 

direction of a particle by looking at the information of other views. 

• ZART is currently implemented on CPU with a multithreading strategy, which 

improves the performance of the algorithm. However, if suffers from a low 

performance when correcting for the heterogeneity involving very accurate 

Zernike3D fields expanded by a larger number of coefficients. To avoid excessive 

execution times, it would be worth doing a new ZART implementation on GPU to 

further improve its performance. 

• The heterogeneity correction presented with ZART was only evaluated in a single 

iteration. This implies that conformational landscapes and ZART reconstructions 

were done just once. Nevertheless, heterogeneity correction might not have fully 

converged after the previous first iteration. Thus, we would like to explore the 

applicability of the Zernike3D and ZART algorithms in an iterative manner to 
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perform a flexible refinement. Flexible refinement would take advantage of 

successive landscape estimations and ZART reconstructions to help in the 

simultaneous convergence of both algorithms towards more meaningful 

structures and conformational landscapes. 

• The analysis of conformational landscapes remains a challenging task to users, due 

to the lack of advanced visualization tools providing an interactive interface that 

allows to explore in real time and annotate the conformational states captured in 

the landscape. Therefore, the development of such tools would suppose a great 

benefit in the usability of the programs described along the dissertation. 
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Conclusiones y futuro 

El objetivo principal de esta tesis, estructurada como un compendio de artículos, consiste 

en introducir un nuevo método para analizar la variabilidad conformacional continua a partir 

de varios tipos de datos en CryoEM (mapas, modelos estructurales y partículas) llamado 

Zernike3D. 

El nuevo método se basa en la base Zernike3D, una composición de polinomios de Zernike 

y armónicos esféricos capaces de expandir cualquier función contenida en una esfera. Por lo 

tanto, la expansión de la base se basa tanto en los componentes de la base como en los 

coeficientes de Zernike3D 𝜶𝜶𝑙𝑙,𝑛𝑛,𝑚𝑚, que determinan la contribución de cada componente a la 

expansión. La base se utiliza para expandir un campo de deformación que describe la 

transición entre dos estados conformacionales, que pueden ser calcula mediante la 

minimización de una función de coste que define los coeficientes de Zernike3D 𝜶𝜶𝑙𝑙,𝑛𝑛,𝑚𝑚 como 

incógnita. Aunque nuestra elección de base no es única, encontramos que tiene propiedades 

interesantes que pueden ser explotadas para superar varios desafíos durante la búsqueda 

de los campos de deformación de Zernike3D. 

La aplicabilidad y el rendimiento de la base fueron evaluadas en varios conjuntos de datos 

(tanto experimentales como sintéticos), demostrando la versatilidad del método incluso 

cuando es sometido a diferentes tipos de datos en CryoEM. La capacidad de aplicar la base 

de Zernike3D a mapas y partículas permite extraer y analizar la información de 

heterogeneidad estimada de diversas maneras, abriendo la posibilidad al diseño de análisis 

combinados donde la flexibilidad discreta y continua pueden entenderse en conjunto. 

Además, la aplicación de los campos estimados a partir de mapas o partículas directamente 

a modelos estructurales proporciona un nuevo mecanismo para comprender el paisaje 

conformacional a nivel atómico, así como analizar los estados aproximados con herramientas 

orientadas a al estudio de modelos estructurales como el Análisis de Modos Normales o la 
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Dinámica Molecular. 

Además de la identificación y exploración de paisajes conformacionales, las estimaciones 

de Zernike3D también pueden considerarse como una alineación no rígida capaz de corregir 

las variabilidades conformacionales durante el proceso de reconstrucción de un volumen, lo 

que lleva a una disminución en los artefactos inducidos por movimiento presentes en un 

mapa. El enfoque anterior se implementó en un nuevo método de reconstrucción llamado 

ZART, que combina reconstrucción, mejora en la nitidez y corrección de heterogeneidad para 

producir reconstrucciones más significativas con características estructurales mejoradas. La 

implementación de ZART también incluye un enfoque de reconstrucción de múltiples 

resoluciones, capaz de analizar la resolución local de los mapas que se están reconstruyendo 

para dar un peso de resolución diferente a diferentes áreas en el mapa. De esta manera, 

ZART puede centrarse automáticamente en mejorar aquellas regiones del volumen donde se 

encuentra la proteína, mejorando aún más la precisión y la velocidad de convergencia del 

método. 

3.2. Trabajo futuro 

En esta sección identificamos los principales pasos a seguir para mejorar los métodos 

Zernike3D y ZART descritos a lo largo de la tesis doctoral: 

1. Los esquemas clásicos de optimización propuestos para la búsqueda de los 

coeficientes de Zernike3D 𝜶𝜶𝑙𝑙,𝑛𝑛,𝑚𝑚 podrían mejorarse si se emplea una red neuronal. El 

uso de una red neuronal debería proporcionar una búsqueda mucho más rápida de 

los coeficientes, así como encontrar conformaciones más significativas gracias a la 

optimización por lotes, que debería ser capaz de recuperar parcialmente mejor la 

información a lo largo de la dirección de proyección de una partícula a través de la 

información de otras vistas. 

2. ZART está implementado únicamente en CPU siguiendo una estrategia multihilo, lo 

que mejora el rendimiento del algoritmo. Sin embargo, se puede sufrir una pérdida 

de rendimiento al corregir la heterogeneidad a través de campos de Zernike3D 

expandidos por un mayor número de coeficientes. Para evitar tiempos de ejecución 

excesivos, se propone desarrollar una nueva implementación de ZART en GPU. 
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3. La corrección de heterogeneidad presentada con ZART fue evaluada a partir de una 

única estimación de heterogeneidad, lo cual implica que los paisajes 

conformacionales y las reconstrucciones ZART se hicieron una única vez. Sin embargo, 

es posible que la corrección de la heterogeneidad no haya convergido 

completamente después de esta primera iteración. Por lo tanto, explorar la 

aplicabilidad de los algoritmos Zernike3D y ZART de manera iterativa para realizar un 

refinamiento flexible podría suponer una mejora significativa en el uso de ZART. El 

refinamiento flexible aprovecharía las sucesivas estimaciones de paisajes 

conformacionales y las reconstrucciones ZART para ayudar en la convergencia 

simultánea de ambos algoritmos hacia mapas y estados estructurales más 

significativos. 

4. El análisis de paisajes conformacionales sigue siendo una tarea desafiante para los 

usuarios, debido a la falta de herramientas avanzadas de visualización con una 

interfaz interactiva que permita explorar y anotar en tiempo real los estados 

conformacionales capturados en el paisaje. Por lo tanto, el desarrollo de tales 

herramientas supondría un gran beneficio en la usabilidad de los programas descritos 

a lo largo de la tesis. 
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Structural biology has evolved greatly due to the advances introduced in fields

like electron microscopy. This image-capturing technique, combined with

improved algorithms and current data processing software, allows the recovery

of different conformational states of a macromolecule, opening new possibilities

for the study of its flexibility and dynamic events. However, the ensemble

analysis of these different conformations, and in particular their placement into

a common variable space in which the differences and similarities can be easily

recognized, is not an easy matter. To simplify the analysis of continuous

heterogeneity data, this work proposes a new automatic algorithm that relies on

a mathematical basis defined over the sphere to estimate the deformation fields

describing conformational transitions among different structures. Thanks to the

approximation of these deformation fields, it is possible to describe the forces

acting on the molecules due to the presence of different motions. It is also

possible to represent and compare several structures in a low-dimensional

mapping, which summarizes the structural characteristics of different states. All

these analyses are integrated into a common framework, providing the user with

the ability to combine them seamlessly. In addition, this new approach is a

significant step forward compared with principal component analysis and

normal mode analysis of cryo-electron microscopy maps, avoiding the need to

select components or modes and producing localized analysis.

1. Introduction

The application in electron microscopy of techniques such as

cryo-electron microscopy (cryo-EM), single-particle analysis

(SPA) (Carroni & Saibil, 2016) or electron cryo-tomography

(Schur, 2019) has proven to be a versatile tool to trace high-

resolution structures. In particular, cryo-EM SPA has proven

to be especially good at providing not only one structure, but a

series of them, with most methods aiming to resolve stable

states that are referred to as classes. In this way, we get a first

approximation to the conformational landscape of the

macromolecule, albeit restricted to these stable states.

However, the limited number of classes that can be

extracted from a 3D classification is usually not enough to

unveil fully the dynamics of a given macromolecule. The

complete characterization of a conformational landscape can

only be achieved through the analysis of multiple transient

and stable states needed to describe the molecular flexibility in

a more accurate manner. The knowledge of these transient

and stable states leads to a better description of how structural
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changes might affect molecular function or interaction affinity,

among other properties of interest.

The formulation we introduce here is oriented towards

modelling continuous flexibility (Sorzano et al., 2019), which

can be used to characterize the motions undergone by a

molecule when exploring different states. We have already

addressed this problem in our previous work on continuous

heterogeneity using normal mode analysis (NMA) (Sanchez

Sorzano et al., 2016). However, this process relied on manual

selection of the modes describing the structural changes

reflected by two cryo-EM maps, thus making the analysis of

molecular flexibility more complex for the user. The new

algorithm that we propose in this work tries to address this

problem by simplifying the analysis for the user.

In our new methodology, there is no longer a normal modes

space where some choices have to be made. Instead, a totally

new approach is presented here, based on an expansion on a

3D basis that does not require user intervention at all. We

have also improved the analysis of pairwise comparisons by

introducing a multidimensional scaling algorithm that auto-

matically combines the outputs from two different metrics.

Finally, the new algorithm also allows the analysis of local

strains and rotations, as done by us earlier (Sorzano et al.,

2016), with the advantage of having all the analyses integrated

into a single mathematical framework. We provide a more in-

depth comparison with alternative methods in Section 2.1.

The paper makes the following major contributions.

(i) The development of an automatic algorithm to analyse

continuous heterogeneity of macromolecules through cryo-

EM maps.

(ii) Representation of the strain and rotation components

defining a transition between two different conformational

states.

(iii) Representation of a series of conformations in a

structure mapping and consensus of different mappings

defined by different comparison metrics.

(iv) A methodology to compare cryo-EM maps with simu-

lated data.

(v) The application of deformation fields to atomic struc-

tures to predict different conformations given by a series of

cryo-EM maps.

2. Methods

2.1. Determining structural deformations

In order to detect the movements defining a conformational

transition between two states of the same macromolecule, we

need to determine the displacements that each region of the

molecule will undergo between the two states. The key

development in this work is the successful expression of the

maps in terms of a mathematical basis on which the

displacements are calculated. Although full details are

provided in Appendices A and B, here it suffices to say that we

use a generalized form of Zernike polynomials to expand

functions on a ball (as the macromolecule we are interested in

is defined inside a spherical volume). This is not the only

possible choice of basis functions [for example, it would have

been possible to use the Laguerre polynomials described by

Provencher & Voguel (2010) or the prolate spheroidal func-

tions (Greengard & Serkh, 2018)], and we do not expect

superiority of any of these possible bases as long as all of them

are bases of functions defined within a sphere. Additionally,

we find that Zernike polynomials have some appealing

mathematical properties especially well suited to our problem.

Indeed, these Zernike polynomials allow for the expansion of

functions on a sphere which do not vanish at the boundaries

(so that the more external parts of the macromolecule can

move). Moreover, the basis is closed under rotations. In

Appendix B we further explore its properties and its rela-

tionship to spherical harmonics.

Considering a pair of electron-density maps representing

two conformational states of a macromolecule, it is possible to

pose the displacement-finding problem as

min
gL

Z
V1ðrÞ � V2½rþ gLðrÞ�
�� �� dr; ð1Þ

where V1 and V2 represent two conformations of a given

molecule. Here it is important to note that we are measuring

the distance between the target and the distorted volumes in

terms of the L1 norm. Although it would also have been

possible to use the L2 norm, we have chosen this definition as

it is more robust to outliers (i.e. it is more robust to those cases

where the maps do not match completely or have missing

regions). The displacement to be applied to the coordinates of

V1 is defined by the deformation field g(r) parameterized

through the expansion in Zernike polynomials Zl, n, m(r) (see

Appendix A),

gLðrÞ ¼
XL

l¼0

XN

n¼0

Xl

m¼�l

�x
l;n;m

�y
l;n;m

�z
l;n;m

0
@

1
AZl;n;mðrÞ; ð2Þ

where N and L represent the maximum allowed degrees for

the Zernike polynomials and the corresponding spherical

harmonics, respectively.

The amount of displacement at every point is controlled by

the deformation coefficients al, n, m. Our objective is to find the

deformation coefficients that minimize the goal function in

equation (1). This is achieved through a Powell’s conjugate

direction method starting from an initial guess of al, n, m = 0 for

all indices l, n, m and directions x, y, z (that is, no deformation).

This initialization of the minimization method assumes that

the identity/equilibrium solution (al, n, m = 0) is close enough to

the real solution defining the structural transition represented

by the cryo-EM maps. Since in most of the cases this

assumption is fulfilled, this initial guess allows the minimiza-

tion method to find the set of coefficients that appropriately

describes the motion between the two maps. However, it is

important to note that there are many local minima where the

minimization process could be trapped. In this respect, and

although in our experience the initialization conditions

proposed in this work provide results close enough to the ideal

solution, there could be cases in which other ways to initialize

the algorithm could be more beneficial in terms of minima

search.
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The deformation field estimated above can be submitted to

the local strain and rotation analysis described by Sorzano et

al. (2016). This analysis reveals the nature (stretching,

compression or rotation) of the local forces acting on V1 to

transform it into V2 as well as their local intensity.

In our deformation model, it is possible to divide the

movements that a molecule may undergo into ‘low’- and

‘high’-frequency movements, depending on how localized

these movements are, e.g. a transition from an open to a closed

state can be considered a low-frequency movement, while the

rotation of a specific �-helix might be a high-frequency

movement. Parameters L and N specify the maximum degree

of the polynomials used in the description of molecular flex-

ibility. In this way, we may control the maximum frequency of

the movements that could be analysed by the basis. Obviously,

analysing larger L and N will result in a longer computational

time, because more al, n, m coefficients will need to be deter-

mined and there is a higher risk of overfitting. However, the

larger the values given to the parameters L and N, the higher

the frequencies the algorithm will be able to analyse (although

in general, global motions dominate the conformational

change; Bahar et al., 2010).

Although in many cases analysing global motions is enough

to describe in a precise manner the structural changes a

macromolecule may undergo, it can be the case that the

motions of interest are focused on a very localized area of the

molecule. In that case, being able to go to higher degrees on

the basis will allow the algorithm to study those motions

specifically, without modifying the areas that should remain

still. Another possibility is direct restriction of the structural

analysis to any specific region in the macromolecule by

centring a sphere on that area and selecting an appropriate

radius. In this way, it will not be necessary to reach very high

degrees in the basis (thus reducing the computational

complexity). However, by imposing these kinds of restrictions

the algorithm might include artefacts in the surface of the

sphere as the molecular regions outside of it will remain

untouched. Depending on the molecule and motions to be

analysed, the researcher can decide which analysis will be

more appropriate for a specific case.

It is important to mention that only in a very few cases did

we need to increase the degree of the basis to analyse a

localized motion that we were interested in, or have to play

with the regularization parameter to get a better approxima-

tion of the deformation fields, since the default values were

good enough for most of the experiments we have performed

so far.

To reduce the possibility of overfitting as much as possible,

we regularize the cost function by adding two penalty terms,

min
al;n;m

Z
V1ðrÞ � V2½rþ gLðrÞ�
�� �� dr

þ �1

Z
gLðrÞ
�� ��2

drþ �2

R
V1ðrÞ � V1½rþ gLðrÞ�
� �

dr
�� ��R

V1ðrÞ dr
:

ð3Þ

The first term of the regularization penalizes excessive

deformation and the second penalizes changes in the mass of

V1 due to the deformation. Regularization terms �1 and �2 are

usually given low values to prevent large deviations from the

ideal solution. Nevertheless, both can be set by the user to any

value they consider appropriate for their specific analysis. The

guideline for their selection should be that the three terms in

the goal function should have values of the same order of

magnitude. In our implementation, we report the three

contributions helping the user to choose these multipliers.

2.2. Relationship to other continuous deformation models

Probably the two most widely continuous deformation

models used by the structural biology community in mapping

the conformational space of biomolecules (or in analysing

cryo-EM images) are principal component analysis (PCA)

(Tagare et al., 2015) and normal mode analysis (NMA) (Cui &

Bahar, 2006). The three models (PCA, NMA and 3D Zernike)

claim to be bases for continuous movements. However, as will

be clarified below, they define bases of different mathematical

entities.

PCA considers a volume of size N 3 voxels as a vector in

R
N 3

. Due to the continuous heterogeneity and the uncertainty

in the 3D reconstruction process, the reconstructed map can

be considered as the mean of a set of other vectors (maps)

whose projections are acquired by the microscope. If we

consider the covariance matrix associated with that set of

maps (a matrix of size N 3
� N 3), then the principal compo-

nents form a basis (if the covariance matrix is not degenerate)

in which the set of maps can be linearly expressed. The PCA

approach approximates the deformed volume by a linear

combination of volumes (the principal directions),

V2ðrÞ ’ V1ðrÞ þ
X

n

�nVnðrÞ; ð4Þ

where Vn are the eigenvolumes of the PCA decomposition.

The undeformed model is then obtained by subtracting the

appropriate amount of each of the eigenvolumes,

V1ðrÞ ’ V2!1ðrÞ ¼ V2ðrÞ �
X

n

�nVnðrÞ: ð5Þ

Due to the low-frequency nature of the PCA principal direc-

tions (Sorzano & Carazo, 2021), the undeformed volume is

necessarily of low resolution.

In our model, we assume that any deformed volume V2 can

be undeformed by applying gL ,

V1ðrÞ ’ V2!1ðrÞ ¼ V2½rþ gLðrÞ�: ð6Þ

Zernike polynomials provide a basis for gL(r), not the

volumes. Our model revolves around the location of the voxel

(which implies a nonlinear relationship between V1 and V2),

providing an intrinsically better handling of the local char-

acteristics of the map, while in PCA there is a linear model at

the level of the volumes themselves (not their internal co-

ordinates).

Our approach has another potential advantage over the

PCA model: it can easily be applied to atomic structures fitted
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into V1. For any given atom in the atomic structure at a

position r1 , that is defined in the same coordinate system as

V1 , we simply have to move it to the location r1 + gL(r1).

In NMA, volumes are approximated by a set of P pseudo-

atoms with weights cp and basis function b(r) located at the

locations rp (Jonić & Sorzano, 2016),

V2ðrÞ ¼
X

p

cp bðr� rpÞ: ð7Þ

NMA is based on a second-order Taylor approximation of the

energy landscape of the macromolecule, starting with a

description of the interactions between the pseudoatoms. This

is typically treated using an elastic network model where

pseudoatoms within a distance criterion are connected by

harmonic springs (Bahar et al., 2010). The associated Hessian

is of size 3P � 3P and the normal modes are its eigenvectors

(sorted by increasing eigenvalue) and a basis of the R3P space.

Let us call uk 2 R
3P the k th normal mode, and uk; p 2 R

3 the

part of the normal mode corresponding to the p th pseudo-

atom. To deform V2 to make it similar to V1 we consider the

first K normal modes with different weights �k,

V2!1ðrÞ ¼
XP

p¼1

cp b r� rp þ
X

k

�kuk; p

 !" #
: ð8Þ

Similar to our method, NMA acts by displacing the location of

the pseudoatoms (our model acts by displacing the location at

which we must interpolate V2). However, an advantage of our

new method with respect to NMA is that the NMA defor-

mation is only known at the location of the pseudoatoms,

while our new method is fully defined within the sphere

containing the macromolecule. In this way, the NMA would be

a discretized version of the underlying continuous deforma-

tion field, while 3D Zernike polynomials would be an estimate

of that continuous field.

Summarizing, each of the methods described so far (PCA,

NMA and 3D Zernike polynomials) has a basis in different

mathematical entities (vectors in RN 3

, R3P or the set of square

integrable functions defined within the sphere of a given

radius). 3D Zernike polynomials have the advantage that they

are defined for every point in the macromolecule (as opposed

to NMA) and the undeformed volumes do not lose resolution

(as opposed to PCA).

Elastic deformations have also become popular for the

alignment of frames within a movie (Abrishami et al., 2015;

Tegunov & Cramer, 2019; Zheng et al., 2017). Although they

have not been explicitly used to deform volumes, one could

envision that they could be easily extended to three dimen-

sions. This would certainly be a possible approach and we

earlier used cubic splines for this purpose (Sorzano et al.,

2016). However, the basis used in this paper, which is defined

exclusively within a sphere, is more appropriate for the task at

hand (describing a function whose support is fully contained

within that sphere) than for a more generic set of functions

that constitute a basis of functions defined within a cube. This

‘greater appropriateness’ translates into requiring fewer

coefficients to express the same deformation field to the same

level of accuracy.

2.3. Distances between a set of maps

In most practical cases, the number of states that can be

reconstructed by cryo-EM SPA is larger than two, which

naturally implies the generalization of the case presented

above to a number of pairwise operations capturing the

different structural relationships among the set of maps under

consideration. This information is summarized in a graph

known as a structure map (Sanchez Sorzano et al., 2016) or

conformational landscape (Zhang et al., 2021b), which repre-

sents each conformation as a point in conformational space.

The closer two points are in the structure map, the more

similar they are.

By estimating the Zernike polynomial deformation for all

possible pair combinations in a set of N cryo-EM maps, a

distance matrix can be computed in which we measure how far

two cryo-EM maps are from each other. The deformation field

between the two cryo-EM maps gL(r) provides a mechanism

for calculating such a distance. For instance, we may define the

distance between two cryo-EM maps V1 and V2 as the sum of

the lengths of the deformations at each point,

d1ðV1;V2Þ ¼

Z
gLðrÞ
�� ��2

dr: ð9Þ

Besides equation (9), there are additional sensible ways of

defining the distance between two cryo-EM maps. One of

them consists of measuring the correlation between V1 and V2

once V2 is undeformed to resemble V1,

d2ðV1;V2Þ ¼ 1� � V2 rþ gLðrÞ
� �

;V1ðrÞ
� �

; ð10Þ

where � is Pearson’s correlation coefficient.

By comparing all cryo-EM maps, we would construct a

matrix of the distances of all versus all maps.

It is worth mentioning here that, in order to get accurate

comparison measurements, it is desirable to have a set of cryo-

EM maps with similar characteristics. In particular, it is

important to filter the maps in the set so that all their reso-

lutions match the lowest value present in the data set. In this

way, the structure mappings and distance matrices will not be

affected by resolution changes, leading to a more meaningful

projection of the different maps in the low-dimensional space

resulting from the application of this method.

2.4. Embedding of conformations using multiple multi-
dimensional scaling

Once we have the above-mentioned distance matrix, we

may use multidimensional scaling (MDS) (Härdle & Simar,

2012) to find points in a low-dimensional space of dimension p

(typically p = 2 or p = 3 for ease of representation) such that

the distances between points in the low-dimensional space

represent in some form the distances between the cryo-EM

maps in the full dimensionality space [e.g. equation (9)]. For a

detailed description of MDS, see Härdle & Simar (2012). If we

have N cryo-EM maps to compare, let us refer to the matrix
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collecting all the points in the low-dimensional space as X1

[X1 2MðN; pÞ, that is, the set of cryo-EM maps of size N � p].

The subscript 1 indicates that we used d1 to perform the low-

dimensional mapping.

If instead of equation (9) we use equation (10), then this

would give us another MDS representation X2 . While the

distance d1 concentrates on the amount of deformation

required to transform V1 into V2 , d2 describes the distance

between V1 and V2 after applying the inverse deformation to

V2 .

We could similarly conceive other strategies to measure the

distance between any pair of cryo-EM maps V1 and V2 . None

of them should necessarily be better than the others, since

each one addresses the problem from a different perspective.

In this regard, it is impossible to favour any one of the

different metrics without a specific task to accomplish.

However, it is still sensible to combine the different mappings

induced by each one of the distances as a way of producing a

single summary of all their information. For the task of

producing such a summary, we propose to construct a

combination of the embeddings that minimizes the entropy of

the result, understanding that the entropy is reduced when

more order is found.

At this point and following the aforementioned idea, we

may want to combine all those low-dimensional mappings into

a single set of points to summarize the relative distances

derived from each distance definition. For doing so we have

found useful the following procedure that we call multiple

multidimensional scaling:

(i) We take one of the mappings as reference, for instance,

X1.

(ii) We look for the affine transformation Ti that minimizes

the Frobenius norm [for an arbitrary matrix A, its Frobenius

norm is defined as kAkF ¼ ð
P

i; j jai jj
2
Þ

1=2] between each Xi

transformed mapping and the reference mapping (since the

MDS mappings of different distances, performed in an inde-

pendent way, normally result in mappings of different scales,

central locations, rotations and mirrors),

argmin
Ti

X1 � TiðXiÞ
�� ��

F
: ð11Þ

For convenience of notation, let us define T1(X1) = X1.

(iii) The consensus mapping is constructed as the convex

combination of all transformed mappings (the determination

of the specific �i coefficients for the combination will be

addressed in the following step),

Xa ¼
X

i

�iTiðXiÞ; ð12Þ

with the constraints �i � 0 and
P

i �i ¼ 1 (with these

constraints Xa is said to be a convex combination of the input

matrices). Note that the j th row of the matrix Xa (referred to

as xj, a) indicates the position of the j th cryo-EM map in the

low-dimensional space (whose dimension is p). For each one

of the consensus candidates we associate the probability

density function

paðxÞ ¼
X

j

1

N
G�ðx� xj;aÞ; ð13Þ

where G� is a p-multivariate spherical Gaussian whose

covariance matrix is �2I {in our experiments, we chose

� ¼ max½rangeðX1Þ; . . . ; rangeðXiÞ�=20, where range(Xi) is

the difference between the maximum and minimum values of

any of the components of the mapped vectors}.

(iv) Since the best combination of coefficients �i is not

known beforehand, each possible convex combination has to

be analysed. The criterion followed was to look for the convex

combination that minimized the Shannon entropy of the

probability density function defined above,

argmin
a

�

Z
paðxÞ log½paðxÞ� dx

� 	
: ð14Þ

The rationale is that we are looking for the convex combina-

tion that brings maximum order to the low-dimensional

mapping.

We observe that the procedure described above normally

finds a good balance between the properties of the different

low-dimensional mappings, resulting in well structured

summaries.

3. Results

This algorithm has been implemented in Xmipp (de la Rosa-

Trevı́n et al., 2013) and it is available through Scipion (de la

Rosa-Trevı́n et al., 2016) under the protocols named volume

deform - Zernike3D and struct map - Zernike3D.

We performed some tests with a pair of maps to compare

these two implementations to analyse the performance

improvement. The maps used for the tests had dimensions of

250 in X, Y and Z, leading to averaged execution times of 1 h

and 20 min (CPU) and 39.5 s (GPU). The tests were

performed with an Intel i7-9750H and a Nvidia 2060 with

Cuda 10.1, respectively.

3.1. Experiment 1: cryo-EM maps of the human mitochon-
drial ribosome

We first tested our approach using a small data set covering

a range of conformational states of a human mitochondrial

ribosome (Amunts et al., 2015), as previously described by

Sanchez Sorzano et al. (2016). To check whether the structure

map suggested two independent (pre-translocation and post-

translocation) states following different conformational tran-

sitions as found in our previous study (Sanchez Sorzano et al.,

2016), we applied the methodology described above with N =

3 and L = 2 (the maximum allowed degrees for the Zernike

polynomials and the spherical harmonics, respectively). As

expected, the structure map indeed suggests two independent

arrangements following their own conformational transitions,

grouped as red and blue dots in Fig. 1 (the black line segments

joining the dots are just provided to enhance visualization).

We thus conclude that the new approach is capable of

reproducing the results of previous supervised methods that

perform similar analyses and accurately groups the seven
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cryo-EM structures [indicated by their EMDB (Electron

Microscopy Data Bank, https://www.ebi.ac.uk/emdb/) identi-

fication numbers] into two groups of conformers, each repre-

sentative of a different functional state.

Additionally, the new approach also allows for the local

decomposition of the deformation field into local strains and

local rotations, as was done by Sorzano et al. (2016). The

representation of these two components is shown in Fig. 2 for

one of the pairs of ribosomes (EMDB entries 1720 and 1723).

In addition, Video 1 in the supporting information shows the

conformational changes described by these two maps. For this

video, we coloured the ribosomes using the rotation compo-

nent represented in Fig. 2 to simplify their comparison.

According to this analysis, the rotations appear to be distrib-

uted through the whole structure of the ribosome, although

the larger rotations (shown in red) are mostly found in the

small subunit. Similarly, the strains are mainly localized in the

small subunit and appear to be less distributed. This reveals

that the basis is capable of deforming in a localized fashion,

leading to a better description and identification of the

different movements that define the transition between the

two conformations. It is also possible to see that we are

obtaining results comparable with those found by Sorzano et

al. (2016), with the advantage of having all these analyses

unified in the same framework, which implies an overall

simplification leading to more complete studies.

3.2. Experiment 2: trajectory recovery of the CCT complex

Our next experiment is aimed at characterizing the ability

of the method to recover the sequence of events present in a

set of conformations defining a certain trajectory in confor-

mational space. Such conformations can be created compu-

tationally by taking advantage of biophysical methods such as

molecular dynamics simulations (MD) (Adcock &

McCammon, 2006) and normal mode analysis (NMA) (Bahar

et al., 2010), simulating the movements defining a transition

between two conformations. In this case, we used a trajectory

from a recent study (Zhang et al., 2021b), which was generated

using a purely NMA-based approach called the adaptive

anisotropic network model (adaptive ANM; Yang et al., 2010)

implemented in ProDy (Zhang et al., 2021a). This gave us 30

different models along an open–closed transition of the

mammalian chaperonin CCT complex between two atomic

models derived from a previous cryo-EM study (Cong et al.,

2012), taken from the Protein Data Bank (PDB) (wwPDB

Consortium, 2019), as described by Zhang et al. (2021b). The

starting structure with one ring open and one ring closed

(PDB entry 4a0w) (Cong et al., 2012) corresponded to an

ATP-bound state and the target structure with both rings in an

intermediate conformation (PDB entry 4a13) (Cong et al.,

2012) corresponded to the ADP-bound state, allowing us to

explore the conformational changes triggered by ATP

hydrolysis. In the adaptive ANM method, all steps are based

on coarse-grained normal modes calculated using the aniso-

tropic network model (ANM) (Atilgan et al., 2001; Doruker et

al., 2000; Eyal et al., 2006), providing coordinate changes for

C� atoms only. At each step, normal modes were selected that

had the highest directional overlap (correlation cosine) with

the deformation vector between the current conformation and

the target structure up until the sum of the squared overlaps

exceeded a threshold of 0.4. The contribution of each mode to

the deformation was chosen so as to take 20% of the

maximum provided by the unnormalized dot products (a

scaling factor of 0.2) so as to avoid unphysical deformations

while maintaining efficiency. The normal modes were re-

calculated until the root-mean-square deviation (r.m.s.d.) from

the target structure fell below 1 Å, resulting in a total of 30

steps. Each step recruited a larger number of modes and had a

smaller total size as the required deformation became less
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Figure 1
Structure mapping recovered a set of seven maps of the human
mitochondrial ribosomes (Amunts et al., 2015) from the data set retrieved
from the EMDB after running the Zernike3D algorithm. Two trajectories
are suggested that might correspond to two independent states (pre-
translocation and post-translocation) present in the data set, consistent
with results from a previous normal-mode-based structure mapping
algorithm (Sanchez Sorzano et al., 2016). The labels refer to the EMDB
entries.

Figure 2
Mitochondrial ribosome subunits 28S and 39S (from EMDB entry 1720)
coloured using the strain (left) and rotation (right) components extracted
from the deformation coefficients obtained when analysing the motion
described by EMDB 1720 and EMDB 1723. The conformational change
described by these two maps is represented in Video 1.



cooperative and more local (see Video 2). We focus our

discussion on the ring that goes from open to intermediate–

closed for simplicity.

We then transformed these atomic structures into Coulomb

potential maps using the electron atomic scattering factors

(EASFs) as described in previous work (Sorzano et al., 2015).

Fig. 3 shows the structure maps recovered after applying our

methodology. We can see that the sequential order of the 30

intermediate conformers along the trajectory was successfully

recovered by our approach. The direction, however, is arbi-

trary and in this case the start of the trajectory was numbered

as conformer 30 and the end as conformer 1.

With this example, we additionally illustrate the distinct

MDS mappings obtained when the distances d1 [amount of

deformation, Fig. 3 (top)] and d2 [similarity after deformation,

Fig. 3 (middle)] are used. Although the trajectory was

successfully recovered by both distances, the correlation

distance d2 was slightly more accurate in this case. The reason

is that most of the changes between the structures at the end of

the transition (labelled 1 to 13 by the algorithm) are high-

frequency movements (i.e. movements of loops or small

�-helices and �-sheets) that cannot be fully captured by the

Zernike 3D basis with N = 3 and L = 2 (although larger N and

L would allow one to express these small-detail movements,

they would also increase the computational cost). Fortunately,

the consensus mapping [Fig. 3 (bottom)] is able to identify the

existence of high-frequency movements and gives more weight

to the d2 mapping (correlation distance) automatically,

resulting in an almost exact recovery of the volume sequence

along the trajectory.

At least in this case we can conclude that d1 is very good for

describing the low-frequency movements (e.g. C23–C30),

while d2 is very good for characterizing the high-frequency

differences (ca C1–C13), and both perform well in the inter-

mediate-frequency regime. Depending on whether our set of

input maps are related by large or small movements, one

distance or the other will be better suited to capturing the

overall set of relationships. The consensus mapping will thus

analyse both mappings and automatically determine the

optimal weight that results in a low-dimensional mapping that

can be readily interpreted.

3.3. Experiment 3: comparison of atomic models and cryo-
EM maps from the rabbit ryanodine receptor RyR1

In the following example, we explored the possibility of

matching (pseudo/simulated) cryo-EM maps derived from

atomic models with experimental electron microscopy maps in

the same low-dimensional space. For this purpose we selected

five experimental cryo-EM maps deposited for the ryanodine

receptor 1 (RyR1) from rabbit (EMDB entries 8379, 8385,

8390, 8395 and 8373) and their respective atomic models in the

PDB (PDB entries 5tam, 5tau, 5taz, 5tb4 and 5t9n).

First, we converted the atomic models into density maps

using EASFs, as described in the previous section. Then, to

make the cryo-EM maps and atomic models comparable, we

also filtered all volumes in the analysis to a common resolution
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Figure 3
Structure maps of a set of 30 models obtained by an NMA-based
approach called adaptive ANM over an open–closed transition of the
chaperonin CCT from our previous study (Zhang et al., 2021b) using (top)
the deformation distance d1 , (middle) the correlation distance d2 and
(bottom) the minimum entropy consensus followed by an MDS analysis
of the corresponding distance matrices. The open conformation is
labelled as C30 and the closed one is C1. The intermediates predicted
along low-frequency modes starting from the open state are labelled C29,
C28 etc., whereas the vicinity of C1 populates conformers reached by
high-frequency modes. The latter is relatively more sensitive to the metric
used in the Zernike3D-based evaluation (compare d1 in the top panel and
d2 in the middle panel). The consensus path (bottom) provides an optimal
solution based on the convex combination of the structure mappings
shown in the top and middle plots in such a way that the entropy of the
final mapping is minimized.



(specifically, to the lowest of the reported resolutions of the

cryo-EM maps). Note that without applying this low-pass filter

the minimization process of equation (1) might not reach a

meaningful minimum. Finally, we applied the method

presented in this work to this combined data set.

Our results, shown in Fig. 4, report the main difficulties

that appear when mixing simulated and experimental cryo-

EM maps. While the structure map based on d1 (the distance

based on the amount of deformation) illustrates that many

pairs are correctly placed together, the structure map based on

d2 (the distance based on the similarity after undeforming)

discriminated between maps derived from atomic models and

maps coming from cryo-EM experiments. However, the point

of this example was to intermix maps from different origins, so

discrimination by origin was to be minimized, requiring a

further adjustment to our approach. To tackle this problem,

we extended our methodology by analysing separately the

sub-blocks of the distance matrix including only atomic or

only cryo-EM maps [see Fig. 5 (top)]. We thus performed the

MDS of each one of the sub-blocks independently, obtaining

the low-dimensional mappings XAA and XCC (the subscript

indicates whether it corresponds to atomic/computational or

cryo-EM/experimental maps). These two low-dimensional

mappings were the input into the consensus procedure

described in Section 2.4. Focusing on the consensus, we can

see that the information provided by the two mappings XAA

and XCC is combined into two different trajectories corre-

sponding to each dimension in the distance matrices (simu-

lated and experimental cryo-EM maps) that show a similar

distance relationship among their points, illustrating that both

trajectories correspond to the same states of RyR1. Therefore,

the counterpart of each other, and their relative distances/

positions, are retained [Fig. 5 (bottom)].

3.4. Experiment 4: application of the deformation field to
atomic models of the CCT complex

We described our deformation field gL as a function that

deforms V1 to let it become similar to V2 , that is, as we have

done in previous cases, acting only on two cryo-EM maps.

However, since the deformation field is defined in the co-

ordinate system of V1 , it can also be applied to atomic models

defined in the same coordinate system and not only to maps.

In this way, we can also deform an atomic model defined for V1

and use it as starting point for a model of V2 . Obviously, since

the new atomic model defined in the coordinate system of V2

has been constructed purely based on geometrical consid-

erations, all the stereochemical constraints have to be further

imposed.

An example of an atomic model deformed following the

previous procedure is presented in Fig. 6. The example was

taken from the same data set as used in Experiment 2, which

shows an open–closed transition of the CCT complex. The

figure illustrates how the deformation applied to the atomic

model of the open conformation results in an approximation

to the closed conformation. Naturally, we can now compare

this deformed model representing the closed conformation

with the one obtained directly from the experimental map of

the closed conformation. The r.m.s.d. (computed with

ChimeraX) between these two models was 5.29 Å, certainly

high, but substantially reduced compared with that between

the open–closed models without applying any deformation,

which was 7.90 Å. This r.m.s.d. reduction suggests that the

deformation applied is appropriately reproducing a confor-

mational change in the right direction, from open towards the

closed state.

However, the overall scores obtained for the two deformed

structures still show a high value, as many stereochemical
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Figure 4
Results obtained after applying the Zernike3D algorithm to a set of cryo-EM maps from the ryanodine receptor 1 (RyR1). The data set was constructed
in such a way that there are always two maps corresponding to the same conformational state: an experimental cryo-EM map and a cryo-EM map
simulated from the atomic structure associated with the previous experimental map. (a) A structure map obtained when comparing experimental cryo-
EM maps (red dots) and atomic models (blue dots) for RyR1 through the deformation distance d1. The results show that the method succeeded in
recovering most of the pairs defined by the experimental cryo-EM maps and atomic structures. (b) A structure map obtained when comparing
experimental cryo-EM maps (red dots) and atomic models (blue dots) through the correlation distance. In this case, the correlation metric fails to
recover the pairs but it identifies correctly the two different map types used for this analysis. (c) A consensus structure map resulting from the
combination of (a) and (b). The consensus provides an optimal solution that helps to identify the map pairs and the map types by keeping a similar
structural relationship in the blue and red branches. In these cases, none of these approaches are sufficient for creating a meaningful structure map based
on conformation alone, leading us to apply the improvement in Fig. 5.



features are not taken into account when computing the

deformations. In order to improve the geometry of the

deformed structures, we applied a real-space refinement

[executing Phenix software (Liebschnerm et al., 2019) with the

default parameters] to the predicted structures using their

respective electron-density maps. After this refinement, the

r.m.s.d. value measured before decreased further to 4.52 Å. As

a conclusion, the combination of deformation and refinement

of atomic structures enables us to achieve predictions of

different structure conformations on the path between two

end points, suitable for performing further studies, though

there is clearly room for improvement. For example, refining

in between smaller deformations could be of benefit, e.g. in

hybrid simulations methods where local refinement/simulation

complements global deformations (Krieger et al., 2020).

4. Conclusions

The development of automatic algorithms to study continuous

flexibility presented in this work results in simplified yet

precise procedures, avoiding the need for user interference

with the software and increasing the reproducibility of the

results. It is also a significant step forward with respect to

approaches like PCA and NMA of cryo-EM maps, avoiding

the need to select components or modes and producing

localized analysis.

The way this new approach works is by defining a new 3D

basis where all deformation occurs. It is conceptually similar to

the Fourier transform. The movements defining a transition

between two different conformational states are decomposed

into different components (that can be regarded as low-,

medium- and high-frequency movements). Those components

will depend on the degree of the basis used in the calculations.

The displacements needed along each different component to

minimize the distances between two electron-density maps are

stored in a series of deformation coefficients al, n, m , which can

be further analysed to obtain the local strains and rotations

undergone by the macromolecules during conformational

transitions. The new approach thus unifies two of our previous

developments (NMA and strain/rotation component extrac-

tion) for the analysis of continuous heterogeneity.

Apart from the information extracted from the deformation

coefficients, our method allows for the definition of a distance

measure based on the deformed electron-density maps, which
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Figure 5
Results obtained after applying the Zernike3D algorithm to a set of cryo-
EM maps from the ryanodine receptor 1 (RyR1) followed by a
decomposition of the distance matrix computed by the algorithm into
different blocks to recover more meaningful structure mappings. (Top) A
partition of the distance matrix into 2 � 2 blocks. Each block stores the
distances obtained when comparing the different map types used in this
test (pairs of experimental cryo-EM maps and maps derived from atomic
structures representing the same conformational state): AA (atomic
versus atomic), AC (atomic versus cryo-EM), CA (cryo-EM versus
atomic) and CC (cryo-EM versus cryo-EM). (Bottom) A consensus
structure map for pairs of RyR1 conformations (from atomic model-
derived simulated maps and from cryo-EM maps) resulting from the
analysis of the blocks. The red circles are used to enhance the
visualization of the different pairs. When compared with Fig. 4(a), it is
possible to see that this decomposition of the distance matrix leads to a
proper recovering of all the pairs found in the data set.

Figure 6
Deformation applied to one of the 30 CCT models obtained by the NMA-
based approach called adaptive ANM described in Experiment 2. The
deformation was computed using the cryo-EM maps simulated from the
30 models. The original atomic structure in the open state is shown in pink
and the deformed version in the closed state in cyan. The results show
that the deformation coefficients �l, n, m computed with maps can be
effectively applied to the atomic space of the model to approximate
geometrically the conformation represented by the cryo-EM map at the
level of atoms.



is useful for building distance matrices. These distance

matrices can be used afterwards to recover structure mappings

that show the structural relationships existing among the

diverse conformational states. Different definitions of the

distance measures may focus on different aspects of the

comparison. For this reason, we have devised a new procedure

to combine several low-dimensional mappings into a single

consensus mapping based on a minimum entropy criterion

that tends to produce well ordered low-dimensional mappings

and outperforms the results obtained by individual distance

metrics.

The possibility of converting atomic models back to elec-

tron densities opens the possibility of a combined analysis on

maps and models in the same conformational space. An

illustrative example has been provided in Experiment 4, where

cryo-EM maps, together with their respective structural

models between two end points, have been represented in the

same space as a set of experimental cryo-EM maps.

In the future, it may be interesting to explore alternative

bases for the deformation field and the distance between

volumes (like the Wasserstein distance).

APPENDIX A
3D real-valued generalized Zernike polynomials

In this section we discuss the functions that we use as basis

functions of the deformations in the unit ball B. We use the

generalized Zernike polynomials defined on the 3D ball; in

Appendix B1, we briefly review the relation of this basis to the

better-known 2D form of Zernike polynomials.

In general, the expansion of any real valued function g(r) 2

L2(B) in this basis is defined by the formula

gðrÞ ¼
X1
l¼0

X1
n¼0

Xl

m¼�l

�l;n;mZl;n;mðrÞ; ð15Þ

where �l, n, m are real-valued coefficients, and Zl, n, m(r) are the

3D real-valued (normalized) generalized Zernike polynomials

defined by the formula

Zl;n;mðrÞ ¼ R
1

l;nðrÞ y
m
l ð�; �Þ; ð16Þ

where r is the radial component of the 3D coordinate r, � and

� are its polar and azimuthal angles, respectively, in spherical

coordinates, n and l are non-negative integers, and m is an

integer such that �l � m � l. We refer to l as the spherical

frequency. ym
l is the real-valued spherical harmonic defined by

the formula

ym
l ð�; �Þ ¼ ð�1Þm

2l þ 1

4	

ðl � jmjÞ!

ðl þ jmjÞ!


 �1=2

Pjmjl

� ðcos �Þ

1 if m ¼ 0

21=2 cosðm�Þ if m> 0

21=2 sinðjmj�Þ if m< 0

8<
: ;

ð17Þ

where P m
l are the associated Legendre polynomials defined by

the formula

P m
l ðxÞ ¼

ð�1Þm

2l l!
ð1� x2

Þ
m=2 d lþm

dxlþm
ðx2
� 1Þl: ð18Þ

The real and imaginary parts of the complex-valued sphe-

rical harmonics are available in standard textbooks such as

that by Abramowitz & Stegun (1966). For completeness,

Table 1 shows these spherical harmonics in Cartesian coordi-

nates. Before defining the normalized generalized radial

Zernike polynomials denoted by R
p

l;n above, we define the

(unnormalized) generalized radial Zernike polynomials R1
l;n as

follows:
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Table 1
List of real-valued spherical harmonics ym

l ðr=jrjÞ.

Order (m)

Degree (l) �3 �2 �1 0 1 2 3
0

1

2

1

	

� 1=2

1 3

4	

� 1=2
y

r

3

4	

� 1=2
z

r

3

4	

� 1=2
x

r

2 1

2

15

	

� 1=2
xy

r2

1

2

15

	

� 1=2
yz

r2

1

4

5

	

� 1=2

�
�x2 � y2 þ 2z2

r2

1

2

15

	

� 1=2
xz

r2

1

4

15

	

� 1=2
x2 � y2

r2

3

1

4

35

2	

� 1=2

�
ð3x2 � y2Þy

r3

1

2

105

	

� 1=2
xyz

r3

1

4

21

2	

� 1=2

�
yð4z2 � x2 � y2Þ

r3

1

4

7

	

� 1=2

�
zð2z2 � 3x2 � 3y2Þ

r3

1

4

21

2	

� 1=2

�
xð4z2 � x2 � y2Þ

r3

1

2

105

	

� 1=2

�
ðx2 � y2Þz

r3

1

4

35

2	

� 1=2

�
ðx2 � 3y2Þx

r3



R
p
l;nðxÞ ¼ ð�1ÞnxlP ½lþðp=2Þ; 0�

n 1� 2x2
� �

; ð19Þ

where P ð�;�Þn are the Jacobi polynomials,

P ð�;�Þn ðxÞ ¼
ð�1Þn

2n n!
ð1� xÞ��ð1þ xÞ��

�
d n

dxn
ð1� xÞ

�
ð1þ xÞ

�
ð1� x2

Þ
n

� �
: ð20Þ

The definitions and properties of the standard associated

Legendre polynomials and Jacobi polynomials are available,

inter alia, in the book by Abramowitz & Stegun (1966).

Finally, while the radial polynomials are orthogonal (with

the appropriate norm), they are not orthonormal. This is easily

corrected by replacing the radial polynomials with the

normalized generalized radial Zernike polynomials, denoted

by R
p

l;n,

R
p

l;nðxÞ ¼ 21=2 2nþ l þ
p

2
þ 1

h i1=2

R
p
l;nðxÞ: ð21Þ

The parameter p is associated with the choice of inner product

and the dimensionality of the balls; in the case of a 3D ball, the

natural choice of p is p = 1, which yields the basis in (16) which

is orthonormal in the natural inner product on L2(B). We give

in Table 2 the explicit list of radial functions R
1

l;n that we use.

We recognize that our choice of basis functions for the

expansion is certainly not the only possible choice. We used

the Zernike polynomials (in the generalized form presented

here) to obtain an expansion of functions in a ball which do

not vanish at the boundaries. Our use of Zernike polynomials

also yields a basis that is closed under rotations. The graphical

representation of some components of the basis is shown in

Fig. 7.
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Table 2
Generalized and normalized radial Zernike polynomials.

R
1

0;0ðrÞ ¼ 31=2 R
1

0;1ðrÞ ¼ 71=2

�
5r2

2
�

3

2

 R
1

0;2ðrÞ ¼

ð11Þ1=2

�
63r4

8
�

35r2

4
þ

15

8


R

1

0;3ðrÞ ¼

ð15Þ1=2

�
429r6

16
�

693r4

16

þ
315r2

16
�

35

16


R

1

0;4ðrÞ ¼

ð19Þ1=2

�
12155r8

128
�

6435r6

32

þ
9009r4

64
�

1155r2

32
þ

315

128



R
1

1;0ðrÞ ¼ ð5
1=2
Þr R

1

1;1ðrÞ ¼
21r3

2
�

15r

2

R
1

1;2ðrÞ ¼

ð13Þ1=2

�
99r5

8
�

63r3

4
þ

35r

8


R

1

1;3ðrÞ ¼

ð17Þ1=2

�
715r7

16
�

1287r5

16

þ
693r3

16
�

105r

16


R

1

1;4ðrÞ ¼

ð21Þ1=2

�
20995r9

128
�

12155r7

32

þ
19305r5

64
�

3003r3

32
þ

1155r

128



R
1

2;0ðrÞ ¼ ð7
1=2
Þr2 R

1

2;1ðrÞ ¼ ð11Þ1=2

�
9r4

2
�

7r2

2

 R
1

2;2ðrÞ ¼

ð15Þ1=2

�
143r6

8
�

99r4

4
þ

63r2

8


R

1

2;3ðrÞ ¼

ð19Þ1=2

�
1105r8

16
�

2145r6

16

þ
1287r4

16
�

231r2

16


R

1

2;4ðrÞ ¼

ð23Þ1=2

�
33915r10

128
�

20995r8

32

þ
36465r6

64
�

6435r4

32
þ

3003r2

128



R
1

3;0ðrÞ ¼ 3r3 R
1

3;1ðrÞ ¼ ð13Þ1=2

�
11r5

2
�

9r3

2

 R
1

3;2ðrÞ ¼

ð17Þ1=2

�
195r7

8
�

143r5

4
þ

99r3

8


R

1

3;3ðrÞ ¼

ð21Þ1=2

�
1615r9

16
�

3315r7

16

þ
2145r5

16
�

429r3

16


R

1

3;4ðrÞ ¼

260015r11

128
�

169575r9

32

þ
314925r7

64
�

60775r5

32
þ

32175r3

128

R
1

4;0ðrÞ ¼ ð11Þ1=2r4 R
1

4;1ðrÞ ¼ ð15Þ1=2

�
13r6

2
�

11r4

2

 R
1

4;2ðrÞ ¼

ð19Þ1=2

�
255r8

8
�

195r6

4
þ

143r4

8


R

1

4;3ðrÞ ¼

ð23Þ1=2

�
2261r10

16
�

4845r8

16

þ
3315r6

16
�

715r4

16


R

1

4;4ðrÞ ¼

3ð31=2
Þ

�
76475r12

128
�

52003r10

32

þ
101745r8

64
�

20995r6

32
þ

12155r4

128



R
1

5;0ðrÞ ¼ ð13Þ1=2r5 R
1

5;1ðrÞ ¼ ð17Þ1=2

�
15r7

2
�

13r5

2

 R
1

5;2ðrÞ ¼

ð21Þ1=2

�
323r9

8
�

255r7

4
þ

195r5

8


R

1

5;3ðrÞ ¼

ð25Þ1=2

�
3059r11

16
�

6783r9

16

þ
4845r7

16
�

1105r5

16



R
1

5;4ðrÞ ¼

ð29Þ1=2

�
108675r13

128
�

76475r11

32

þ
156009r9

64
�

33915r7

32
þ

20995r5

128





APPENDIX B
Properties and relationships of this basis

B1. Properties of the polynomials involved – Zernike
polynomials

We note that slightly different definitions and normalization

are used in different sources; the most commonly used form of

Zernike polynomials is associated with 2D functions on the

unit disc, whereas we are interested in 3D functions on the unit

ball. The better-known traditional radial Zernike polynomials,

denoted here by ~RR
l

mðxÞ, are a special case of the generalized

radial Zernike polynomials R
p
n;lðxÞ,

~RR
m

l ðxÞ ¼ R0
m; ðl�mÞ=2ðxÞ; ð22Þ

with ~RR
m

l ðxÞ ¼ 0 if l � m is odd or if m > l. The definition of the

3D real-valued Zernike polynomial [equation (16)] is analo-

gous to the definition of the traditional 2D Zernike poly-

nomials Zm
l on the unit disc,

Z m
l ðr; �Þ ¼ ~RR

jmj

l ðrÞ
cosðm�Þ if m � 0,

sinðjmj�Þ if m< 0.

�
ð23Þ

Unfortunately, the common notation for the 2D and 3D cases

can be misleading: the parameter m here plays the role of the

parameter l in the analogous 3D case; the parameter m in the

3D case is related to the existence of both sine and cosine for

each m here, but does not otherwise have an immediate

counterpart here.

Some properties of these generalized Zernike polynomials,

including the higher-dimensional cases, are discussed in

further detail by Slepian (1964), Serkh (2015), Greengard &

Serkh (2018) and Lederman (2017).

The radial Zernike polynomials in equation (19) are

orthogonal with respect to the inner product,

f ðxÞ; gðxÞ
� �

¼

Z1

0

xpþ1f ðxÞ gðxÞ dx; ð24Þ

so that hR
p
l;n1
ðxÞ;R

p
l;n2
ðxÞi ¼ 0 if n1 6¼ n2. Note that they are not

necessarily orthogonal for different l, that is, hR
p
l1;n
ðxÞ;R

p
l2;n
ðxÞi

is not 0, in general. It follows that the Zernike polynomials

Zl, n, m (16) are orthogonal (across all different combinations

of n, l and m) on the natural inner product on the unit ball.

B2. A remark on numerical evaluation

As is the case with many orthogonal polynomials, the direct

computation using the explicit sum of monomials is generally

unstable and not recommended in numerical computation.

However, in this work, since we truncate the polynomials at

low n, the explicit form has been found experimentally to be

sufficiently stable. For additional details on computation see

Lederman (2017).

B3. Closure under rotations

We recall that we use basis functions defined in equation

(15), which are composed of a radial component and an

angular component. Furthermore, we truncate the expansion

in equation (2) such that if Zl, n, m(r) is in the expansion, then

Zl;n;m0 ðrÞ is also in the expansion for any �l � m, m0 � m. As is

well known, the rotation of the frame of reference of spherical

harmonics of a given spatial frequency l is a unitary operation

and closed rotations. If follows that the linear combination ofPN
n¼0

PL
l¼0

Pl
m¼�l �

x
l;n;mZl;n;mðrÞ is closed under rotations. In

other words, regardless of the frame of axis we choose for our

spherical harmonics, we can represent the same functions

using our choice of basis.

We recall that the deformation field gL(r) is a 3D vector

defined in equation (2) at any point r. If we rotate the axes x, y

and z we must rotate the vector gL(r) to obtain a vector in the

new coordinate system. As is well known,

AgLðA
�1rÞ ¼

XN

n¼0

XL

l¼0

Xl

m¼�l

A

�x
l;n;m

�y
l;n;m

�z
l;n;m

0
@

1
A ~ZZl;n;mðA

�1rÞ; ð25Þ

where A is the appropriate unitary rotation matrix.

It follows that the basis we have chosen is closed under

rotations; regardless of the orientation of the frame of refer-

ence we choose (but depending on the position of the centre),

we can represent the same fields. Furthermore, the transfor-

mation between frames of reference is unitary. We note that,

since the volume is defined on the grid, the problem definition

is not entirely closed under rotations, although the definition

of the field is closed under rotations.
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Figure 7
Representation of some components of the basis Zl, n, m regarding their
former angular and radial components Ym

l and R1
l;n. Since the spherical

harmonics Ym
l are only defined on the surface of the sphere, the

representation of the basis components Zl, n, m includes several spheres
whose radius is contained in the interval [0, 1] to have a better graphical
representation of the whole component. The real component would be
obtained by stacking all the spheres (whose radii belong to the interval
[0, 1]) concentrically. Each point in the three representations corresponds
to the value obtained when evaluating the corresponding functions on a
grid.



APPENDIX C
Complex-valued Zernike 3D basis

We may extend our basis function to a complex-valued

Zernike 3D basis. This second basis uses spherical harmonics,

which are well known basis functions for functions defined

over the surface of a unit sphere. For doing so, we should

define Z 0l;n;m [see equation (16)],

Z
0

l;n;mðrÞ ¼ R
1

l;nðrÞY
m
l ð�; �Þ; ð26Þ

where Ym
l ð�; �Þ are the standard spherical harmonics,

Ym
l ð�; �Þ ¼

2l þ 1

4	

ðl �mÞ!

ðl þmÞ!


 �1=2

Pm
l ðcos �Þ exp ðim�Þ: ð27Þ

It is well known that the spherical harmonics are a complete

orthonormal basis on the surface of the unit sphere such thatZ
�

Y
m1
l1
ðrÞ Y

m2
l2
ðrÞ

h i�
dr ¼

1 if l1 ¼ l2;m1 ¼ m2,

0 otherwise,

�
ð28Þ

where � is the surface of the unit sphere.

In this new basis the expansion would be expressed as

gðrÞ ¼
X1
n¼0

X1
l¼0

Xl

m¼�l

�l;n;m Z
0

l;n;mðrÞ: ð29Þ

The relationship between the expansion that uses the real-

valued basis functions and the expansion that uses the

complex-valued basis functions is

�l;n;m ¼

ð�1Þmþ1 i
21=2 �l;n;m � �l;n;�m

� �
if m< 0,

�l;n;0 if m ¼ 0,

ð�1Þm 1
2 �l;n;m þ �l;n;�m

� �
if m> 0,

8<
: ð30Þ

and for the basis functions

Zl;n;mðrÞ ¼

i
21=2 Z

0

l;n;mðrÞ � ð�1ÞmZ
0

l;n;�mðrÞ
� �

if m< 0,

Z
0

l;n;0ðrÞ if m ¼ 0,
1

21=2 Z
0

l;n;�mðrÞ þ ð�1ÞmZ
0

l;n;�mðrÞ
� �

if m> 0.

8><
>:

ð31Þ

Using the fact that the radial Zernike polynomials are a

complete radial orthonormal basis, and the fact that spherical

harmonics are a complete orthonomal basis on the the surface

of a sphere, one can show that the generalized Zernike poly-

nomials are a complete orthonormal basis of function on the

unit ball with respect to the natural L2 norm on the unit ball.

Suppose that r is a 3D coordinate of a point in real space

and R is a 3D frequency. Then the Fourier transform of the

complex-valued basis function would be

FZl;n;m

� �
ðRÞ ¼

Z
r2B

exp ð�ihR; riÞZl;n;mðrÞ dr

¼Ym
l

R

R

� 
1

ilð2	Þlþ1=2

ð�1ÞnJ2nþlþð1=2Þþ1ðRÞ

R
;

ð32Þ

where hr, Ri is the usual inner product in R3, R is the modulus

of R and J�(x) is the Bessel function of the first kind and order

�.
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Estimating conformational landscapes from
Cryo-EMparticles by 3DZernike polynomials

D. Herreros 1 , R. R. Lederman 2, J. M. Krieger1, A. Jiménez-Moreno1,
M. Martínez 1, D. Myška3, D. Strelak1,4, J. Filipovic 3, C. O. S. Sorzano 1,5 &
J. M. Carazo 1,5

The new developments in Cryo-EM Single Particle Analysis are helping us to
understand how the macromolecular structure and function meet to drive
biological processes. By capturing many states at the particle level, it is pos-
sible to address how macromolecules explore different conformations,
information that is classically extracted through 3D classification. However,
the limitations of classical approaches prevent us from fully understanding the
complete conformational landscape due to the reduced number of discrete
states accurately reconstructed. To characterize the whole structural spec-
trum of a macromolecule, we propose an extension of our Zernike3D
approach, able to extract per-image continuous flexibility information directly
from a particle dataset. Also, ourmethod can be seamlessly applied to images,
maps or atomic models, opening integrative possibilities. Furthermore, we
introduce the ZART reconstruction algorithm, which considers the Zernike3D
deformation fields to revert particle conformational changes during the
reconstruction process, thus minimizing the blurring induced by molecular
motions.

Cryo-electronmicroscopy (Cryo-EM) single particle analysis (SPA)1 has
proven to be a powerful technique to understand the structure of
macromolecules. By capturing individual images of the specimen in
different poses, it is not only possible to reconstruct the average
macromolecular conformationof the specimenunder study, but it also
brings to light the challenging problem of identifying several con-
formational states from the acquired dataset.

Generally, compositional heterogeneity, as well as flexibility, have
been addressed through 3D classification2. This approach allows
reconstructing a given number of different states from the particle
images based on the assumption that there is a defined number of
discrete conformational states being explored by the specimen. This
methodology has been very successful in the study of many systems,
being recently expanded to increase the number of states being
resolved3.

However, the explicit modeling assumption of the existence of
discrete motions has obvious limitations in most experimental cases,
depending on the actual biological system under study. Clearly,
removing this constraint is methodologically very challenging,
although the pay-offs are clear, both in terms of obtaining richer
conformational landscapes than currently done, and in providing
improved algorithmic stability and objectivity, removing many
assumptions and trial and error tests.

Limitations faced with discrete flexibility can only be solved at the
image processing level by a paradigm change introducing methods
able to handle continuous flexibility: the ability to extract macro-
molecular conformational information at the individual particle level
to get a sufficiently rich and populated landscape of molecular states.
Several approaches have been previously proposed to face continuous
flexibility, each from a different perspective4–9.
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In this work, we extend our recent Zernike3D algorithm10 (speci-
fically designed to deal with continuous heterogeneity) to precisely
accomplish the latter task starting from Cryo-EM images with some
unique properties, such as (1) the possibility to work with images,
maps, and atomic models in the same space, (2) a clear mathematical
design that intrinsically helps avoiding over-deformations in projec-
tion directions, and (3) a reconstruction algorithm (that we name
ZART - Zernike3D-based Algebraic Reconstruction Technique) that
takes into account individual particle conformational information,
reverts the structural changes, and obtains a newmap in whichflexible
regions have intrinsically increased resolution. Note that property (1)
indicates that one can work at the level of structural models, avoiding
multiple fitting steps, property (2) drastically reduces flexibility esti-
mation errors that would be very difficult to consider in other math-
ematical frameworks, and property (3) makes it possible to explore
states with a small number of classes while still reconstructing maps
with large datasets, though at improved resolution since motion
blurring is substantially reduced.

We note that the full derivation of ZART is rather technical, so we
present in this work its main properties in the context of continuous
flexibility, while the derivation of the algorithm in itself is presented as
a separate technical work.

Results
Conformational landscape of EMPIAR-10028 dataset
The following experiment is aimed at assessing the capacity of the
Zernike3D algorithm to identify conformational variability on real
Cryo-EM data. To that end, we analyzed the EMPIAR-10028 dataset11

corresponding to the P. falciparum 80 S ribosome bound to emetine.
This dataset has been extensively studied by other methods5,6,
becoming a popular validation dataset for continuous heterogeneity
algorithms.

In this work we have reprocessed that dataset inside Scipion12,
leading to a total of 50,000 particles. The workflow followed included
several cleaning steps to reduce as much as possible the number of
unwanted particles, followed by some consensus protocols to com-
pare the parameters estimated by different algorithms (angular
assignation, shifts, Contrast Transfer Function…) and keep only the
particles consistently estimated.

The previous particles were subjected to the Zernike3D analysis,
translating them to a set of Zernike3D coefficients. Themaximumbasis
degrees were set to N = 3 and L = 2 for the estimation of the deforma-
tion fields. In addition, the particleswere downsampled to a box size of
125 voxels to increase the performance of the algorithm. Apart from
the Zernike3D analysis, the particles were not subjected to other het-
erogeneity workflows such as classical 3D classification.

The resulting UMAP (Uniform Manifold Approximation and
Projection)13 representation of the Zernike3D coefficient space is
shown in Fig. 1. As it can be seen from the representation, the Zer-
nike3D coefficient space leads to an informative representation of the
heterogeneity present in the dataset. Two clear states are well differ-
entiated, representing the two rotation states of the small subunit of
the ribosome, as well as some other more localized movements. The
colormap used to represent the embedding describes the amount of
deformation associated with each deformation field: purple colors
correspond to small deformations and are usually associated with
conformational changes similar to the reference map, while yellow
colors are associated with bigger changes. The possibility of coloring
the coefficient space adds another dimension of information helping
in the analysis of the heterogeneity of the dataset.

There are two different possibilities to recover conformational
changes from the previous embedding: (1) applying a deformation
field to the reference or (2) exploring, by refinement and reconstruc-
tion, different areas of the conformational space. Option 1 represents
an almost instant and interactive exploration of the conformational

space, in which just by placing the cursor on any point of the repre-
sentation conformation we obtain a Zernike3D synthesis of a map,
while Option 2 goes to the original images and aims at exploring
whether there are residual errors not accounted for byZernike3D. In all
cases tested so far, the differences between the two options are
minimal, as it is shown in Fig. 2a, b. However, the application of the
deformation field leads to a higher resolution representation of the
conformational change (equal to the resolution of the referencemap),
while the refinement resolution is intrinsically limited to the number of
particles selected from the space.

In addition, the Zernike3D coefficients extracted from the con-
formational space can be applied simultaneously to the referencemap
and to a structural model traced (or aligned) from the reference. This
allows obtaining a rigid fitting of the atomic positions that match the
conformation of any particle in the dataset. An example of the appli-
cation of the Zernike3D coefficients to the ribosome atomic structure
can be found in Fig. 2c. However, it is worth mentioning that the Zer-
nike3D coefficients are computed exclusively based on geometrical
considerations, so the approximated structural models might need to
be refined to correct for stereochemistry artifacts. Indeed, it should
always be considered that the estimation of the deformation fields
describing a given transitiononlydependson the rigid alignmentof the
reference towards the conformation represented by a given particle.
Therefore, the estimated deformation field does not consider any
stereochemistry constrains, which should be posteriorly imposed to
avoid atomic clashes or improveRamachandranoutliers amongothers.

An example of the simultaneous exploration of the coefficient
space performed with the reference map and its structural model is
provided in Supplementary Movie 1 (we are aware that this and sub-
sequent videos are only graphical means to make more obvious con-
formational changes, and that they are not to be considered as
suggesting molecular trajectories at all). The different states were
obtained by grouping the coefficients with KMeans into 5 clusters.
Then, the cluster representatives were used to generate the deformed
maps/structures, which were afterward morphed with ChimeraX
software14.

The next step we followed in the analysis of the dataset is to use
the estimated deformation fields and the particles to reconstruct a
higher-resolution map by correcting the conformational changes of
each image with ZART. The comparison between the map recon-
structedwith CryoSparc15 and ZART reconstruction algorithm is shown
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Fig. 1 | EMPIAR-10028 Zernike3D conformational landscape. UMAP repre-
sentation of the Zernike3D coefficient space for the P. falciparum 80S ribosome
(EMPIAR-10028dataset). The colormap represents themodulus of the deformation
field that has to be applied to the referencemap tomatch the conformational state
of each particle projection image. Purple colors represent lower deformations
(close to the reference state). The representation shows a clear distinction between
two different states marked by the white (reference map) and orange (rotated
Pf80S state) dots.
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in Fig. 3a. The comparison of the twomaps shows a clear improvement
at both, the level ofmaps (a) and slices (b), in themoving and still areas
of the molecule. In order to make a more quantitative comparison of
the maps, we computed the local resolution histograms of both
reconstructions, which are compared in Fig. 3b. Similarly to the visual
inspection of the maps, the resolution histograms confirm the
improvement in local resolution, being the average resolution of ZART
pushed 1.01 Å compared to the mean resolution of CryoSparc.

Conformational landscape of EMPIAR-10180 dataset
The EMPIAR-1018016 dataset has become another standard dataset to
test continuous heterogeneity algorithms due to the large degree of

flexibility information it contains. The dataset corresponds to a pre-
catalytic spliceosome exhibiting an extensive heterogeneity already
observed by classical methods such as 3D classification.

Since the Zernike3D algorithm focuses on the analysis of con-
tinuous heterogeneity rather than compositional heterogeneity, the
dataset was preprocessed inside Scipion12 to clean asmuch as possible
the original deposited particles. The original dataset is composed of
around 320k particles, which were reduced to around 180k after the
cleaning steps.

The cleaned particles were afterward subjected to the Zer-
nike3D analysis to extract the different conformational changes
suffered by the pre-catalytic spliceosome. As we did in the previous

Fig. 2 | Example of Pf80S Zernike3D states. a Comparison of the reference con-
formation required by the Zernike3D algorithm (red) and the rotated Pf80S state
recovered from a homogeneous refinement with CryoSparc (blue). b Comparison
of the rotated Pf80S state recovered from the Zernike3D deformation fields (red)
and the rotated Pf80S state recovered from a homogeneous refinement with
CryoSparc (blue). The particles processed by CryoSparc are taken from the coef-
ficient space area defined by the orange dot in Fig. 1, and the deformation field is
computed with the coefficients associated with this dot. The comparison between
themaps displayed in a and b show that the Zernike3D conformation (b - redmap)

is consistent with the experimental conformation refined from the particles
selected from that regionof the coefficient space (blue). In addition, the application
of the deformation field does not decrease the resolution of the reference map.
cComparison of the atomic structure associatedwith theZernike3D referencemap
(red) and the structure deformed with the Zernike3D deformation fields (blue).
Since the Zernike3D can work indistinguishably with maps, atomic structures, and
particles, the rotated state can be appropriately reproduced at the atomic level
using the deformation fields estimated from the particles.

a)

b)Res (Å)

Cryosparc

ZART

Fig. 3 | Analysis of EMPIAR-10028 ZART reconstruction. a Comparison of P.
falciparum 80 S ribosome map refined with CryoSparc (blue) and the motion-
correctedmap recoverwith ourZARTalgorithm.The colormap represents the local
resolution estimation for each voxel computed with BlocRes23. The ZART recon-
structed map shows an overall improvement in resolution thanks to the deforma-
tion fields considered during the reconstruction process. b Resolution histogram

comparison for CryoSparc and ZART reconstructions obtained from the resolution
map computed by BlocRes. The histogram shows a clear displacement of the local
resolutions towards higher resolutions. The value provided in the legend of the
histograms shows the mean value of the local resolution estimations for both
reconstructions.
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experiment, we set the maximum basis degrees to N = 3 and L = 2,
and particles were binned to a box size of 128 pixels. The resulting
Zernike3D coefficient space is represented in Fig. 4a. The Zernike3D
space obtained is similar to the continuous heterogeneity region
described by other software like CryoDrgn (Fig. 6 of their manu-
script). However, the representation of the conformational changes
followed in the Zernike3D approach provides a more versatile
manner to assess structural variability.

An example of the versatility of the Zernike3D results is shown in
Fig. 4b, c, and SupplementaryMovie 2. Themaps and structures shown
in both Figures were obtained by clustering the Zernike3D space with
KMeans into 5 different regions. Then, the representative Zernike3D
coefficients of each cluster were extracted to represent the different
conformational changes.

Similarly to other algorithms, the conformational changes can be
represented at the level of Cryo-EM maps, although the Zernike3D
representation will keep the same resolution as the reference map
used for the analysis. In addition, the Zernike3D deformation fields can
also be applied directly to an atomic structure traced or fitted to the

reference map. In this way, it is also possible to compare the different
conformations at an atomic level.

An example of the comparison between two of the previous
structures is provided in Fig. 5. Thanks to the Zernike3D approach, it is
possible to analyze both, the local and global motion of the atoms
present in the structure, which provides a more accurate and infor-
mative representation of the conformational changes suffered by the
spliceosome.

SARS-CoV-2 spike one RBD up the conformational landscape
We next applied the Zernike3D algorithm to a set of particles acquired
from the SARS-CoV-2 spike. In our previous work17, we followed a
discrete classification approach followed by a PCA (Principal Compo-
nent Analysis)18 to study the presence of flexibility in these images,
revealing two different open conformations of one of the Receptor
Binding Domains (RBDs). The conformations represent small motions
around an open RBD state.

The analysis of this dataset is useful to assess the ability of the
Zernike3D algorithm to detect small motions from the noisy Cryo-EM

a)

c)

b)

20.0015.0010.005.000.00

Deforma�on magnitude (Å)

UMAP Zernike3D space

Fig. 4 | Analysis of the EMPIAR-10180 Zernike3D conformational landscape.
a UMAP representation of the Zernike3D coefficient space obtained from the
estimation of the per-particle conformational changes associated with EMPIAR-
10180. The color map represents the deformation field magnitude associated with
each particle involved in the analysis. b Example of five conformations extracted
from the landscape shown in a after clustering by KMeans. The different con-
formations correspond to the representatives of each KMean cluster. The dotted
gray lines are provided to enhance the visualization of the conformational changes.

Thedottedmapcorresponds to the referenceconformation, provided also to aid in
the visualization of the conformational changes. c Example of the conformational
changes shown in b at atomic levels. The conformations were obtained after
applying the deformation fields associated with the KMean representatives in b to
the atomic structure deposited with the EMPIAR-10180 dataset. The dotted lines
and the contour of the reference map are also shown to aid in the visualization of
the motions.
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images. Thus, we estimated the deformation fields for each particle
starting from one of the conformations reported in ref. 17. The para-
meters set for this execution were the same as those used in the pre-
vious experiments (N = 3 and L = 2, yielding a total of 39 components
per coefficient set. The particles were also downsampled to a box size
of 125 voxels). The UMAP representation of this space is shown in
Fig. 6a. The resulting space displays several interesting regions to be
analyzed, and it is much richer than the space explored by discrete
classification.

In addition, we can integrate the results of the previous discrete
classification analysis, resulting in two main classes, with our con-
tinuous flexibility approach, by projecting all this information into the
same Zernike3D space (in practice, in the reduced representation of
the conformational landscape), effectively combining maps and ima-
ges. The combined space is shown in Fig. 6b. The new representation
simplifies the analysis of the embedding, aiding in the identification of
the possible conformational changes of the spike by comparing the
continuous states to the information of the discrete classification.
Clearly, there is much more flexibility than the one originally accoun-
ted for by the discrete classification.

An exploration of the conformational space shown in Fig. 6a is
provided in Supplementary Movie 3. The different states presented in
the video were obtained by applying a set of 20 Zernike3D coefficients

to the referencemap and its traced structure, followed bymorphing in
ChimeraX. The representatives were obtained by clustering the space
with KMeans.

The embedding shows an interesting region (composed of a low
number of particles) along the direction defined by the white dots
representing each classified map. The analysis of this region reveals a
conformational change moving in the opposite direction to the one
defined by the two discrete classes, which was not previously identi-
fied. Supplementary Movie 4 shows the whole motion of the 1Up RBD
defined by the main transition identified in the coefficient space. This
result shows the importance of analyzing the heterogeneity on a per-
particle basis, as discrete classification might not have the ability to
resolve low-represented states.

The next stepwe followed in the analysis of the dataset was to use
the estimated deformation fields and the particles to reconstruct a
higher-resolution map by “undoing” the conformational changes of
each image. The motion-corrected map reconstructed with ZART is
provided in Fig. 7a. As expected, the information available in the
deformation fields leads to a better resolvability of themoving areas of
the spike (the RBDs and N-terminal domains (NTDs) for this specific
case), increasing the local resolution of these regions. Fig 7b shows a
comparison of the local resolution histograms associated with the
maps shown in Fig. 7a. The correction of the per-particle conforma-
tional changes leads to a significant increment of the local resolution in
the case of ZART, thanks to the reduction of the motion induced
blurring present in the CryoSparc reconstruction.

Discussion
Continuous heterogeneity is widely considered to be a significant
breakthrough in the Cryo-EM field, progressively becoming more
popular, as shown by the several new software developments to ana-
lyze this information from the acquired particle images.

In this regard, we have introduced an extension of the Zer-
nike3D algorithm during this work, which has proven to be a ver-
satile tool to study the continuous motion of macromolecules at the
level ofmaps, structures, and particle images. The extension focuses
on the extraction of per-particle conformations, leading to a much
more detailed description of the conformational landscape of a
molecule compared to classical 3D classification approaches. Fur-
thermore, the versatility of the Zernike3D basis unites maps, parti-
cles, and structures into a common framework, opening new
possibilities to perform combined heterogeneity analysis with all
data available.

Moreover, we have proven that the resulting coefficient space can
be applied simultaneously toCryo-EMmaps and atomic coordinates to
approximate a new conformational state. The approximation of the
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Fig. 6 | SARS-CoV-2 Zernike3D conformational landscapes. a UMAP repre-
sentation of the Zernike3D coefficient space for the SARS-CoV-2 coronavirus spike
open state obtained from the particles analyzed previously in ref. 17. Each point in
the space represents a different particle conformation. b Combined analysis of
particles and volumes (in white dots) corresponding to the two RBD states

described in ref. 17. Thanks to the combined analysis, we can detect a clear group of
particles corresponding to an unidentified conformation in the dataset. The col-
ormap in both images represents the modulus of the deformation field associated
with the conformation estimated for every particle.

Fig. 5 | Example of recovered Zernike3D spliceosome states at atomic level.
Example of two conformations obtained from the KMeans clustering of the Zer-
nike3D space in Fig. 4. The conformations were obtained after applying the Zer-
nike3D deformation fields to the atomic structure associated with the reference
map used during the Zernike3D analysis. The versatility of the Zernike3D results
allows following both, the local and global conformational changes due to the
atom’s motion, as shown from the different zooms in the recovered structures.
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conformational changes at the atomic level supposes another step in
the connection of the Cryo-EM landscapes with molecular dynamics.
This connection will allow getting real energetic landscapes directly
based on experimental data in the future.

In addition, we have developed the ZART reconstruction algo-
rithm,whichconsidersdeformationfields during the reconstruction to
“undo” conformational changes. In this way, it is possible tomodel the
blurring artifacts induced bymolecularmotions and increase the local
resolution of the reconstructed volumes.

Methods
This section is organized starting with general presentations of the
Zernike3D basis and its use for the case of particles exhibiting con-
tinuous flexibility (first two subsections), and then dedicating several
subsections to useful properties of our proposed method, see also
Supplementary Methods.

We also provide some metrics regarding the performance of the
Zernike3D algorithm in Table 1.

Zernike3D basis definition
We use the Zernike3D to estimate the deformation field associated
with a given conformational transition, as we previously described in
our work10.

The Zernike3D basis is an infinite-dimensional function space
defined over the unit ball. Thus, it is convenient to express it as the
combination of a radial and an angular component. For this basis, we
have chosen the normalized and generalized definition of the Zernike

polynomials as the radial component:

�R
p
l,nðxÞ=

ffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2n+ l +

p
2
+ 1

r
Rp
l,nðxÞ ð1Þ

p being a parameter associated with the inner product and
dimensionality of the polynomials. For example, in a 3D scenario, the
appropriate value of p should be 1.

The previouslymentioned angular component is defined in terms
of the real spherical harmonics:

yml ðθ,ϕÞ= ð�1Þm
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>:

ð2Þ

By combining the previous two components, we obtain the final
definition of the Zernike3D basis:

Zl,n,mðrÞ= �R
1
l,nðrÞyml ðθ,ϕÞ ð3Þ

Estimating deformation fields from particles
As we explained in the previous section, the Zernike3D basis was
initially formulated to be applied to 3D spaces. Therefore, it is quite
direct to estimate conformational transitions from maps or atomic
structures, as they live in a three-dimensional space. However, this is
not the case for Cryo-EM particles, as we are intrinsically losing infor-
mation along the projectiondirectionduring the acquisitionprocess in
the reduction from the three-dimensional space where the Coulomb
potential of the specimen is defined to the two-dimensional space of
the projection images being acquired in the microscope. In other
words, conformational changes along the projection direction cannot
be extracted from an individual image, since an infinite number of
them would be compatible with the image information.

Table 1 | Execution times for the Zernike3D algorithm

Performance metrics for the Zernike3D algorithm

Image size N L Time per-particle (s) Time for 106 particles (min–150
threads)

128 3 2 0.1076 39.93

300 3 2 0.182 300.00

b)
Res (Å)

a) Cryosparc

ZART

Fig. 7 | Analysis ofSARS-CoV-2ZART reconstruction. aComparisonof SARS-CoV-
2 coronavirus spike refined with CryoSparc and themotion-correctedmap recover
with our ZART algorithm. The colormap represents the local resolution computed
from BlocRes23. ZART reconstruction presents a clear improvement in map quality
in the RBD, NTDs, and other regions of the spike thanks to the correction of the

motions. b Resolution histogram comparison for CryoSparc and ZART recon-
structions. The histogram shows a clear displacement of the local resolutions
towards the high-resolution regime in the case of ZART. The resolution value
provided in the legend of the histograms corresponds to the mean of the local
resolution measurements.
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The algorithm we present in this work starts by computing a
referencemap/model (in practice, and continuing the presentation for
the case of maps, it is common to either use an average map or one
of the discrete classes). This map will be the origin (reference) to
obtain the deformation fields from the parameters of the Zernike3D
basis. The approach is summarized in Fig. 8, and it is a common pro-
cedure in optimization. In brief, it is an iterative procedure in which
deformation fields are applied to the reference map and the resulting
projection images are compared with the experimental ones until
convergence.

Following the aforementioned method, finding the deformation
field to describe the state represented by a given particle can be
expressed as:

max
gL

ρ ðI,CPθðV ðr + gLðrÞÞÞÞ ð4Þ

ρ being the Pearson’s correlation coefficient, I an experimental
Cryo-EM particle, C the CTF estimated for that particle, Pθ the pro-
jection operator along the 3D direction and in-plane shift defined by
the parameters θ, V the reference volume needed to apply the Zer-
nike3D deformation field, and gL the displacement suffered by each
voxel due to the deformation field. The vector gL depends on each
Zernike3D component, and it is expressed as:

gLðrÞ=
XL
l =0

XN
n=0

Xl

m=�l

αx
l,n,m

αy
l,n,m

αz
l,n,m

0
B@

1
CAZl,n,mðrÞ ð5Þ

where the αl,n,m’s are the Zernike3D coefficients. The previous coeffi-
cients determine the contribution of each component of the basis to
the deformation field.

The parameters N and L determine the maximum degrees of the
Zernike polynomials and spherical harmonics. Therefore, they will
determine the accuracy of the deformation fields: higher values will
result in sharper andmore accurate deformation fields, at the expense
of increased execution times. By default, the two previous parameters
are set to N =3 and L=2, which should be enough to avoid overfitting
and get meaningful and accurate deformation fields in most cases.
Nevertheless, the parameters can be manually set by the user in case
higher accuracy is desired.

The maximization of Eq. 4 is achieved through a Powell’s con-
jugate direction method starting from an initial guess of αl,n,m =0 for
all indices l,n,m and directions x,y,z (that is, no deformation). Thanks
to the optimizationmethod and the procedure described in Fig. 8, it is

possible to find the different component contributionsαl,n,m such that
the deformation field to be applied to the reference map V leads to a
conformational state compatible with the particle I.

In order to avoid possible overfitting during the Powell search of
the Zernike3D coefficients, an extra regularization term is added to
Eq. 4:

max
gL

ρ ðI,CPθðV ðr + gLðrÞÞÞÞ+ λ1
Z

∣gLðrÞ∣2dr ð6Þ

The additional regularization term accounts for the total defor-
mation the reference map has suffered after applying the estimated
deformation field. Depending on the value of λ1, the optimization
search will be allowed to exploreminima leading to a larger or smaller
deformation, so it is recommended to set it at a low value to avoid
overfitting without compromising the minima search. The user can
choose the value of λ1 to be applied to a specific dataset. We recom-
mend selecting a value belonging to the range ½0:01, 0:001� to avoid
undesired results during the optimization process.

It is worth mentioning that the Zernike3D algorithm does not
require a minimum number of particles to be executed, as the defor-
mation fields are estimated for every particle. Therefore, it is possible
to process datasets coming from a consensus or other cleaning
methods19, whose parameters are more accurately estimated but have
fewer particles overall.

Deformation field consistency along the projection direction
In this work, we estimate 3D deformation fields from 2D images.
However, the information limitations introduced above make this
procedure conceptually challenging. Indeed, if we compare the infor-
mation stored in a projection and amap, it would be possible to check
that we have identical information as long as we restrain the compar-
ison to the projection plane where the image exists. In spite of that, the
image has an intrinsic loss of information in the projection direction, as
we are collapsing the map information stored along this direction.

Following the previous reasoning, the deformation field is well-
defined across the projection plane, but it is ill-defined along the
projection direction. This implies that there are infinite ways of
deforming amap along the projection direction defined by particles so
that the projection of the deformed volume is still consistent with the
particle. Therefore, the Powell optimization proposed previously
might find different solutions for each particle along the projection
direction. Moreover, this inconsistency might lead to the global opti-
mization process being more prone to get trapped in local minima,
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Fig. 8 | Zernike3D workflow at particle level. Estimation of the Zernike3D
deformationfields fromaparticle image. The process requires thedeformation of a
reference map to be consistent with the dimension of the deformation field, which
is defined by the set of Zernike3D coefficients. Each coefficient component is

estimated by Powell’s conjugate direction method, so Pearson’s correlation coef-
ficient ρ between the experimental and theoretical projection obtained from the
deformed map is maximized.
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resulting in wrong estimations of the conformational landscape. An
example of the undesired effect generated by not considering the
missing information along the projection direction is provided in
Supplementary Fig. 3.

Ideally, the best solution to the previous problem would be to
drive the optima search so that all particles are not deformed along
their respective projection direction. For this reason, a sensible choice
would be to completely restrict the deformation along the projection
direction.

One possible way to achieve this is to include different regular-
ization terms restricting excessive deformations. Nevertheless, it
would be challenging to find the weights needed for each regulariza-
tion term, especially along the projection direction, a situation that
introduces a new parameter quite difficult to estimate in the process.

The Zernike3D method overcomes that obstacle by taking
advantage of the properties of the basis to altogether remove any
deformation along theprojectiondirectiondefinedby aparticle, either
during the optimization or after it. As we showed in ref. 10, the Zer-
nike3D basis is closed under rotations. Thus, it is possible to rotate the
Zernike3D coefficients towards a different reference frame as follows:

AgLðA�1rÞ=
XN
n =0

XL
l =0

Xl

m=�l

A

αx
l,n,m

αy
l,n,m

αz
l,n,m

0
B@

1
CA~Zl,n,mðA�1rÞ ð7Þ

A being a rotation matrix. Therefore, it is possible to rotate the
Zernike3D coefficients according to the angular information of the
particle. For example, we can rotate the coefficients so that the Z
direction of the new frame is effectively aligned with the projection
direction of a particle. Then, we can cancel the rotated coefficients
associatedwith the Z-axis in this new frame, as those only contribute to
the deformation field along the projection direction.

However, it is essential to note that the previous property only
holds in a continuous space. Hence, the basis is not closed under
rotations due to the discretization and sampling of the space into
voxels. Thus, the rotated coefficients cannot be applied to the volume,
as the reference frames are entirely different. Instead, we can unrotate
themodified Zernike3D coefficients, so their reference framematches
again with the reference map. Thus, it is possible to fully remove the
deformation along the projection direction by combing all the pre-
vious steps, making all the deformation fields consistent, and avoiding
solutions with unrealistic deformations. The whole procedure is
summarized in Fig. 9.

Note that we also use a global regularization term in our optimi-
zation approach, as previously indicated, but it is global and does not
differentiate among projection directions. In our experience, the

previously stated “consistency principle” introduced by mathemati-
cally clear handling of the lack of information along individual pro-
jection directions is quite important factor in our quest for estimating
deformation fields, and it represents a clear advantage of the Zer-
nike3D approach.

Zernike3D-based ART reconstruction algorithm
In general, 3D reconstruction algorithms start from the principle that
we have a set of projections coming from a homogeneous set of par-
ticles. However, this assumption no longer holds for those macro-
molecules exhibiting large degrees of freedom. Therefore, it is not a
surprise that molecular motions are a well-known source of blurring
artifacts arising when reconstructing a Cryo-EM map from a set of
Cryo-EM images. As a consequence, correcting the motions present in
a particle image will be expected to boost the resolution and resolva-
bility of blurry areas in Cryo-EM maps.

The per-particle estimation of the deformation fields by the Zer-
nike3D basis can be effectively applied to correct molecular motions,
aiding the reconstruction process with flexible information. To that
end, we developed an ART-based (Algebraic Reconstruction Techni-
que) reconstruction algorithm that uses the Zernike3D deformation
fields to improve the final quality of motion-related blurry areas.

A detailed description of ART and its application in Cryo-EM can
be found at ref. 20. Here it suffices to say that ART finds themapwhose
projections are compatible with the experimental data through an
iterative process of the form:

V ðk + 1ÞðrÞ=V ðkÞðrÞ+ λP*
HðPHV ðrÞ � IkðsÞÞ ð8Þ

V being the reconstructed volume, λ the ART relaxation factor,PH

the projection operator, and P*
H its adjoint operator, Ik the experi-

mental image used at the k-th iteration, r a 3D coordinate, and s a 2D
coordinate. The previous equation refers to the update to be applied
to the reconstruction associated with a single image, although the
algorithm will iterate over the whole particle dataset applying the
previous correction to achieve the final reconstruction.

One advantage of ART over other reconstruction methods is that
it can be easily modified to include new information to be taken into
accountduring the iterative reconstructionprocess. Thus, it is possible
to modify the previous equation by adding the deformation field
previously estimated:

V ðrÞk + 1 =V ðrÞk + λP*
HðPHðV ðr + gLðrÞÞ � IkðsÞÞ ð9Þ

gL rð Þ being the displacement at a given 3D position computed
through Eq. 5.

, , ( ), , ( )

, , ( ), , ( )
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X

b) c)

90⁰ −90⁰

Fig. 9 | Projection direction correction workflow. Procedure to cancel excessive
displacements associated with the projection direction in a deformation field
defined by the coefficients αl,n,m rð Þ. a Representation of a deformation field with
over-deformation along the X direction (projection direction). b The over-
deformed volume and the associated deformation coefficients are rotated so that
the projection direction matches the Z axis. At this point, it is possible to

completely cancel the Z component on the rotated coefficients, as they only con-
tribute to the over-deformation of the deformed map. This leads to the set of
coefficients α00

l,n,m rð Þ. c The modified coefficients are rotated back to the original
position defined by themap’s grid. In thisway, a new set of coefficients α00

l,n,m (r) are
obtained, defining a deformation field consistent along the projection direc-
tion (X axis).
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By introducing the displacements gL into the ART algorithm, we
are improving the correction value that will be applied to V at each
iteration, as the difference between the theoretical and experimental
images is taken based on the conformational change present in the
particle. Thus, the reconstruction process can generate more mean-
ingful solutions for areas subjected to significant motions.

Moving Zernike3D coefficients through different resolutions
One of the main issues arising when working with Cryo-EM particles is
the low signal-to-noise ratios that they exhibit. Although the average of
a very high number of images overcomes that problem, the procedure
also mixes several conformational changes at the same time. There-
fore, the estimation of continuous flexibility is usually done directly on
particle images, even if conditions are far from ideal.

To estimate motions more efficiently, it is common to filter the
particles at a given resolution to increase the signal-to-noise ratio.
Similarly, it is possible to downsample the images after the filtering
process to improve the performance of the estimations.

However, the Zernike3D coefficients αl,m,n have a strong depen-
dency on the size of the volume under study. This implies that the
coefficients computed from a downsampled map cannot be directly
applied to the original volume and vice versa.

Luckily, it is possible to move a set of Zernike3D coefficients to a
different resolution similar to the procedure described in previous
sections. By downsampling a map, we scale its space by a given factor
k. Therefore, the relation between two vectors with the samedirection
in the previous two spaces is:

ro = krd ð10Þ

ro and rd being the vectors associated with the original and
downsampled spaces, respectively.

We can express the earlier two vectors based on the components
of the Zernike3D basis as follows:

PN
n=0

PL
l =0

Pl
m=�l

αo
l,n,m

~Zl,n,mðroÞ=k
PN
n=0

PL
l =0

Pl
m=�l

αd
l,n,m

~Zl,n,mðrdÞ

=
PN
n=0

PL
l =0

Pl
m=�l

kαd
l,n,m

~Zl,n,mðk�1roÞ
ð11Þ

Thanks to Eq. 11, it is possible to show that the scaling relation
existing between the vectors xo and xd is shared by the corresponding
Zernike3D coefficients:

αo
l,n,m = kαd

l,n,m ð12Þ

This leads to a very convenient and straightforward conversion to
use coefficients estimated on low-resolution images in the original
high-resolution maps.

Merging embeddings of different nature
Our previous work10 showed that the Zernike3D basis could effectively
study the continuous heterogeneity of Cryo-EM maps and atomic
structures converted to electron densities.

Similarly,wehaveproven in theprevious sections the applicability
of this same tool to a set of Cryo-EM particles. In all cases, the esti-
mation of the deformation fields represented by the Zernike3D coef-
ficients is comparable,meaning thatweare translating the information
of the three main Cryo-EM entities (maps, atomic structures, and
particles) to a common framework or space defined by the coeffi-
cients αl,m,n.

Translating maps, structural models, and particles to a common
framework opens interesting possibilities and advantages, such as
studying and comparing discrete and continuous heterogeneity or
addressing how well simulated and experimental data correlate.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The datasets analyzed with the Zernike3D algorithm and ZART are
publicly available in EMPIAR under the entries: 10028 [https://doi.org/
10.6019/EMPIAR-10028], 10514 [https://doi.org/10.6019/EMPIAR-
10514], 10516 [https://doi.org/10.6019/EMPIAR-10516], and 10180
[https://doi.org/10.6019/EMPIAR-10180]. The phantom dataset pro-
cessed in the Supplementary Material is available in GitHub in the
repository Zernike3D_Phantom_Data [https://zenodo.org/badge/
latestdoi/541505536]21.

Code availability
The Zernike3D algorithm has been implemented in Xmipp22 and it is
available through Scipion12 under the plugins “scipion-em-xmipp” and
“scipion-em-flexutils”. The protocols corresponding to the algortihms
described in this manuscript are “flexutils - angular align - Zernike3D”
and “flexutils - reconstruct ZART”.
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Abstract

One of the main purposes of CryoEM Single Particle Analysis is to reconstruct the three-dimensional
structure of a macromolecule thanks to the acquisition of many particle images representing different
poses of the sample. By estimating the orientation of each projected particle, it is possible to recover
the underlying 3D volume by multiple 3D reconstruction methods, usually working either in Fourier or in
real space. However, the reconstruction from the projected images works under the assumption that all
particles in the dataset correspond to the same conformation of the macromolecule. Although this requi-
site holds for some macromolecules, it is not true for flexible specimens, leading to motion-induced arte-
facts in the reconstructed CryoEM maps. In this work, we introduce a new Algebraic Reconstruction
Technique called ZART, which is able to include continuous flexibility information during the reconstruc-
tion process to improve local resolution and reduce motion blurring. The conformational changes are mod-
elled through Zernike3D polynomials. Our implementation allows for a multiresolution description of the
macromolecule adapting itself to the local resolution of the reconstructed map. In addition, ZART has also
proven to be a useful algorithm in cases where flexibility is not so dominant, as it improves the overall
aspect of the reconstructed maps by improving their local and global resolution.
� 2023 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://crea-

tivecommons.org/licenses/by-nc-nd/4.0/).
Introduction

CryoEM SPA1 has proven to be one of the most
successful techniques to recover the structure of a
macromolecule at near-atomic resolution. In addi-
tion, its ability to capture different macromolecular
states is driving the CryoEM field towards a new
way of analyzing and understanding macromolecu-
lar flexibility.
However, the reconstruction of structures at high

resolution is compromised when the sample is
heterogeneous, as the reconstruction algorithms
r(s). Published by Elsevier Ltd.This is an open ac
assume that all particles involved in the
reconstruction process are compatible with a
single underlying 3D map. To overcome the
current challenges arising with heterogeneous
datasets, it is possible to take advantage of 3D
classifications2 to isolate the particles belonging to
a given conformation to improve the resolution of
the reconstruction. Nevertheless, the classification
process will decrease the number of particles that
are available to reconstruct a given conformation,
compromising again the maximum resolution
achievable. In addition, new methods specifically
cess article under theCCBY-NC-ND license (http://creativecommons.org/
Journal of Molecular Biology 435 (2023) 168088
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developed to estimate richer conformational land-
scapes are also appearing in the field.3–8 However,
these algorithms focus on the estimation of new
conformational states, but they do not take advan-
tage of the estimated heterogeneity information to
further improve the resolution in those areas exhibit-
ing larger degrees of flexibility.
In this work, we propose a novel reconstruction

algorithm called ZART (Zernike3D-based
Algebraic Reconstruction Technique), an ART-
based1 9 multiresolution reconstruction method able
to take advantage of the estimated per-particle con-
tinuous heterogeneity computed by the Zernike3D
algorithm to correct particle inhomogeneities.10

Thanks to the previous correction, it is possible to
improve the local resolution of the reconstructions.
Additionally, ZART has been designed to improve
the features of the final maps even if motion correc-
tions are not considered, helping with the tracing of
the map to achieve better structures. Finally, a mul-
tiresolution approach has been adopted to adapt
the local complexity of the reconstructed map to the
estimated local resolution.
Compared to the first implementation of ZART

presented in,10 this work proposes a major change
in the algorithm, allowing to reconstruct hetero-
geneity corrected maps even if the Zernike3D infor-
mation was estimated in particles with a larger
sampling rate. Also, in our previous implementation,
the reconstruction sampling rate was restricted to
the particles’ sampling rate used during the land-
scape estimation, thus compromising the maximum
resolution possible. Now, we have dropped this
constraint as we are able to adapt the Zernike3D
coefficients to any pixel size of interest.
In addition, the multiresolution reconstruction

mode of ZART is also introduced, which provides
a new approach to further improve the quality of
the reconstructions compared to the previous
implementation.

Results

SARS-CoV-2 spike phantom reconstruction

The main objective of the following results is to
analyze the characteristics of ZART through the
reconstruction of a synthetic dataset. To that end,
we simulated a SARS-CoV-2 Coulomb potential
map using the EASFs2 11 from the PDB 6VSB.12

The map was then projected to generate a gallery
of 18,309 images with a sampling rate 2.40 �A/px.
The motivation behind downsampling the images is
to get a dataset where the sharpening effect of ZART
can be more easily assessed. It is worth mentioning
that the images were not further processed to include
noise or the CTF3 of the microscope. Our aim at this
moment is to produce an ideal dataset that allows
1 Algebraic Reconstruction Technique.

2 Electron Atomic Scattering Factors.

3 Contrast Transfer Function.

2

characterizing ZART capabilities in optimal condi-
tions. Later in the article, we will use experimental
data in which noise and CTF are naturally present.
We compared the reconstructions by ZART and

Fourier gridding13 as implemented in Xmipp.14

The resulting maps are shown in Figure 1(a) and
Figure 1(b). As can be seen from the 3D volumes
and the slices, ZART yields a reconstruction with
finer details, simplifying the interpretation of the
map features compared to a standard Fourier
reconstruction.
Since the simulated particles constitute an ideal

homogeneous dataset, no motion correction was
applied during the reconstruction of the ZART
map. Therefore, the main reason behind the
improvement in the features of the map comes
from the deconvolution with a Gaussian implied by
our method. This idea is further discussed in
Section ‘Zernike3D Algebraic Reconstruction
Technique’.
In addition to the evaluation of the quality of the

reconstructions, Figure 1(c) also includes the
convergence curve extracted from the
reconstruction error computed during the first
iteration of the ZART algorithm for every image.
The plot shows that a meaningful reconstruction
(in terms of convergence) can be achieved after
processing 5000 images from the original
phantom dataset. However, it is important to note
that the convergence speed has a strong
dependence on the relaxation factor chosen to
reconstruct a given dataset. A more detailed
discussion of the importance of the relaxation
factor in the reconstruction process is available in
Section ‘Zernike3D Algebraic Reconstruction
Technique’.
Figure 2 shows amore detailed comparison of the

reconstructed Fourier and ZART maps against the
structure used to generate the phantom data.
Thanks to the intrinsic sharpening of ZART, the
reconstructed map is able to define better the
local features present in the spike atomic structure.

Arabinofuranosyltransferase reconstruction

In order to assess the performance of our ZART
reconstruction algorithm on a more realistic
scenario, the dataset EMPIAR-10391 was used
for this task.15 This dataset was processed inside
Scipion following a complete workflow to extract a
complete particle set of 35 k images with a sampling
rate 1.06�A/px. The alignment and CTF information
associated with the particles was estimated with
Relion.16

The particles were afterwards reconstructed with
Relion and ZART and in all cases sharpened with
3DEMhancer.18 In the case of ZART, we followed
three different reconstruction approximations: a
standard reconstruction and two multiresolution
reconstructions with M ¼ 3 and M ¼ 6 multiresolu-
tion levels respectively. Heterogeneity correction
was not applied in this cases in order to compare



Figure 1. Results obtained for the comparison of ZART and Fourier-based reconstruction for the SARS-CoV-2
spike phantom images. (a) shows the original phantom simulated from PDB 6VSB, and the Fourier and ZART
reconstruction from the phantom images. The map comparison shows that ZART provides a sharper representation
of the different features of the spike. (b) shows some slices of the maps represented in a). Similarly to the conclusion
drawn from the maps, ZART provides a sharper representation of the features compared to Fourier, providing a more
meaningful representation. (c) shows the convergence curve of ZART during the first iteration of the algorithm. As can
be seen from the curve, around 5000 images are needed to be processed to get a meaningful reconstruction in terms
of convergence. Together with the original scatter data, the Savitzky–Golay filtered curve is also provided to aid in the
visualization of the plot.

Figure 2. Comparison of Fourier and ZART reconstructions against the atomic structure 6VSB used to simulate the
phantom particles. Thanks to the intrinsic sharpening characteristics of ZART, the reconstruction is able to define
more accurately different areas of the map. The panels were generated with ChimeraX software,17 and histogram
thresholds were set to 0.388 and 0.209 for Fourier and ZART respectively.
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more effectively the standard and multiresolution
reconstruction modes. The resulting reconstructed
maps are shown in Figure 3(a). The colormap rep-
resents the local resolution estimation in Angstroms
for each voxel, computed with MonoRes.19 As can
be seen from the maps and their corresponding
local resolutions, ZART provides a reconstruction
with improved local resolution and better features
compared to the Relion reconstruction.
In order to provide a more quantitative

comparison of the maps, the local resolution
histograms computed with MonoRes were also
compared. Figure 3(b) shows the comparison of
the resolution histogram of Relion and ZART
multiresolution map with M ¼ 6 resolution levels.
As can be seen from the histograms, ZART
pushes a larger number of voxels towards the
Figure 3. Reconstructions of the Arabinofuranosyltransf
comparison of the Relion and ZART reconstructions sharpen
we perform two multiresolution reconstructions with 3 and 6
multiresolution. The map comparison suggests that ZART
resolution. However, this is difficult to appreciate directly on t
quantitative assessment in other panels of this Figure. Pane
shown in (a) computed with MonoRes.19 The histograms sh
the high-resolution regime. (c) shows the FSC curves of the
new reconstruction method pushes the overall resolution
resolution between the ZART reconstructions both in standa
that multiresolution supposes a little improvement in the
multiresolution grids with variable Gaussian widths.

4

high-resolution regime in the range of 2.5 �A–3.2 �A.
Thanks to this push, the average of the local
resolutions improves from 7.0 �A to 4.0 �A.
We also computed the FSC curves of all the

reconstructions analyzed during this section. The
resulting curves are shown in Figure 3(c). It can
be noted that ZART also improves the global
resolution of the map from 3.3 �A to 3 �A. This
implies an improvement of 0.3 �A due to ZART and
of 0.5 �A compared to the reported resolution of
the originally published maps, thanks in this latter
case of the quality of the complete workflow used
in this work.
Another effect that can be observed when

comparing the standard and multiresolution
reconstructions in ZART is that multiresolution can
further improve the local resolution histograms of
erase from the EMPIAR-10391 dataset. (a) shows a
ed by DeepEMhancer18 software. In the case of ZART,

levels respectively and a standard reconstruction without
provides a sharper representation with improved local
hese small representations and for that, we are making a
l (b) shows the local resolution histograms of the maps
ow that ZART pushes a large number of voxels towards
maps shown in (a). As shown in the previous panels, our
of the map around 0.3 �A. (d) Comparison of the local
rd and in multiresolution mode. The comparison shows
local resolution values thanks to the consideration of
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the reconstructed volumes, although the difference
is small. Figure 3(d) shows the comparison of the
local resolution histograms between the final
reconstruction of ZART (in standard mode) and
the ZART in multiresolution mode (with 6
multiresolution levels). The two histograms show a
similar type of distribution of the local resolutions,
although multiresolution pushes a larger amount
of values towards the high-resolution regime. In
addition, multiresolution implementation has little
impact on the performance of every reconstruction
iteration, allowing to achieve maps in a similar
time compared to the standard reconstruction
mode.
Figure 4 shows amore detailed comparison of the

Relion and ZART reconstructions against the
original structure published with the dataset. In
order to make the comparison more reliable, the
structural model has not been further refined
against any of the two previous maps, and no
sharpening was applied to the volumes. The result
illustrates how the sharpening applied by ZART
leads to a reconstruction representing more
Figure 4. Comparison of Relion and ZART reconstruc
structure published with the EMPIAR-10391 dataset (PD
characteristics of ZART, the reconstruction is able to better
The panels were generated with ChimeraX software,17 and
Relion and ZART respectively.

5

accurately the features of the
arabinofuranosyltransferase.
Additionally, a comparison of ZART with

CryoSPARC non-uniform refinement was
performed, in order to better assess the
performance against other algorithms applying a
de-blur to the resulting map. The results are
provided in Figure 5. Overall, both CryoSPARC
and ZART maps show similar features, although
for some regions ZART showed a better definition
of the molecular structure. We also provide a
comparison of the local resolution histograms
associated with the two previous reconstructions,
together with some measurements drawn from
them in Supplementary Figure 1.
P. falciparum 80S ribosome reconstruction

The P. falciparum 80S ribosome of EMPIAR-
1002820 has become a quite standard dataset to
evaluate the performance and accuracy of continu-
ous heterogeneity algorithms, due to the presence
of significant conformational changes that can be
extracted directly at particle level.
tions (without sharpening) against the original atomic
B entry 6WBX). Thanks to the intrinsic sharpening
define different map regions at similar map thresholds.
histogram thresholds were set to 0.012 and 0.255 for



Figure 5. Comparison of CryoSPARC non-uniform refinement and ZART reconstructions (without sharpening)
against the original atomic structure published with the EMPIAR-10391 dataset (PDB entry 6WBX). The comparison
shows that the de-blurring applied by the two algorithms leads to similar results, although ZART is able to define better
some structural features. The panels were generated with ChimeraX software,17 and histogram thresholds were set to
0.85 and 0.255 for CryoSPARC and ZART respectively.
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Therefore, we decided to evaluate the ability of
ZART to revert conformational changes and
improve motion-blurred areas with the EMPIAR-
10028 dataset. To that end, we processed the
submitted data inside Scipion to get a set 50 k
particles with CTF and alignment information.
Both, the alignment and CTF were estimated with
CryoSPARC21 in two independent runs, followed
by a consensus step22 to improve the accuracy of
the measurements. The sampling rate of the
images fed to the reconstruction algorithms was
1.34 �A/px.
We estimated the per-particle conformational

changes with the Zernike3D algorithm.10 This
method relies on a mathematical basis able to
express a deformation field that can be used to
approximate any particle conformation in 3D at the
level of CryoEM maps or atomic structures.
In this example, the estimated deformation fields

are considered during the reconstruction process
to reduce the structural differences among the
particles and reduce motion blur artefacts. The
application of the deformation field compensation
can be done either using the standard ZART
reconstruction algorithm or its multiresolution
version. However, in this case, and with the aim of
reducing the number of parametric choices and
concentrating only on the differences due to
motion correction, the reconstruction of the
ribosome was done using standard ZART.
6

The comparison of the map reconstructed with
CryoSPARC21 and ZART with motion correction is
provided in Figure 6(a). The maps were coloured
according to their local resolution value estimated
with MonoRes. As can be seen from the results,
ZART provides better features (mostly on moving
regions, such as the small subunit of the ribosome)
thanks to the per-particle structural corrections.
Figure 6(b) shows the comparison of the local

resolution histograms computed with MonoRes.
Similarly to the results offered in the previous
section, the application of ZART with motion
correction increases the resolution of a larger
number of voxels, mainly in the range from 3.0 �A
to 4.5 �A. The average of the local resolution is
also improved from 5.5 �A to 5.2 �A. The
comparison of the FSC curves is also provided in
Figure 6(c). In this case, ZART pushes the FSC
around 0.1 �A.
Figure 7 shows amore detailed comparison of the

differences between the CryoSPARC and ZART
reconstructions in regions of high flexibility. The
figure shows the comparison of the CryoSPARC
and ZART reconstructions against the original
structural model published together with the
dataset. The structural model has not been further
refined considering any of the two maps to
simplify the comparison. Thanks to the correction
of the ribosome motions, ZART is able to define
better different features in flexible regions such as



Figure 7. Comparison of CryoSPARC and ZART reconstructions (with motion blur correction) against the original
atomic structure published with the EMPIAR-10028 dataset (PDB entries 3J79 and 3J7A). Thanks to the correction of
each particle conformation during the reconstruction, ZART is able to define better the features usually hidden due to
motion blur artefacts. The panels were generated with ChimeraX software.17

Figure 6. Comparison of ZART and CryoSPARC reconstructions for the P. falciparum 80S ribosome from EMPIAR-
10028 dataset. (a) shows a comparison of the Cryosparc and ZART reconstructions sharpened by DeepEMhancer18

software. In the case of ZART, we perform a standard reconstruction with no multiresolution, but correcting the motion
blur artefacts thanks to the Zernike3D deformation fields computed for each particle in the dataset. The map
comparison shows that ZART provides a sharper representation with improved local resolution. (b) shows the local
resolution histograms of the maps in (a) computed with MonoRes.19 The histograms show that ZART pushes a large
number of voxels towards the high-resolution regime, being most of the voxels at the range 3.0�A–4.5�A. (c) shows the
FSC curves of the maps shown in (a). For this case, ZART improves the overall resolution of the map by around 0.1�A.
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Figure 8. Comparison of Bfactor corrected CryoSPARC reconstruction and ZART reconstructions (with motion blur
correction). Both maps were post-process with DeepEMHancer18 software in order to decrease the noise of the maps
and improve the interpretability of the results. The Bfactor correction applied to the Relion reconstruction enhances
the features located mostly on the core of the ribosome as observed in (c) compared to ZART. However, flexible
regions are not properly recovered, being lost due to their low SNR as shown in (a) and (b). In contrast, ZART motion
correction helps reducing the motion blur induced by the molecular motions, thus yielding a more complete map even
after applying its intrinsic sharpening and DeepEMHancer. The panels were generated with ChimeraX software.17

Table 1 Execution times for the ZART algorithm (note that the standard ZART version has been the one used for this
reporting). N and M are the parameters defining the size of the Zernike3D base. We show the performance for N ¼ 3 and
M ¼ 2, which corresponds to our most common choice of parameters when estimating deformation fields, and also the
one for N=– and M=–, which refers to the case when no motion correction is considered during the reconstruction. We
observe that for one million particles of size 300x300 pixels the time goes from three-quarters of an hour to an hour and a
half, depending on whether we consider or not the deformation field correction (on a powerful CPU server, the GPU
version is still under development).

Performance metrics for ZART algorithm

Image size N M Iteration time 106 particles (hours - 150 threads)

300 3 2 1.407

300 - - 0.746
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loops and key residues, as shown in the figure,
producing information that can now be used to
further refine the traced structural model starting
from the ZART map, leading to better results.
We also provide a more in-depth comparison of

the signal of different map slices in Supplementary
Figure 2. As can be seen from the slice
comparison, ZART provides a better
representation of the features in the map,
including the small subunit of the ribosome thanks
to the heterogeneity correction coming from the
Zernike3D deformation fields. Negative values
have been excluded from the slices of CryoSparc
and ZART to enhance the visualization of the
protein signal.
In addition, ZART reconstruction was compared

against the previous CryoSPARC map after

8

applying a Bfactor to better assess the intrinsic
sharpening capabilities of ZART against other
sharpening methods. In addition, both ZART and
CryoSPARC Bfactor-corrected maps were post-
process with DeepEMHancer using wide target
mode, in order to decrease the noise of the
reconstruction while keeping as reliably as
possible the original information of the volumes.
The comparison is provided in Figure 8. The

application of the Bfactor improves the quality of
the ribosome core features, as this region is more
rigid. However, the low SNR of the high-flexibility
regions prevents them from being recovered
appropriately after the Bfactor correction.
In contrast, the motion correction applied by

ZART provides a better definition of the moving
regions in the ribosome, which are properly
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recovered even after applying the intrinsic
sharpening of ZART and DeepEMHancer.
Table 1 provides some metrics about the

computational performance of ZART.

Conclusions

We have introduced a new ART-based
reconstruction method called ZART in this
manuscript. Thanks to the modification in the
interpolation scheme and volume recovery
process, ZART is able to improve the local
resolution of the reconstructed maps, without the
need to further modify or refine the alignment and
CTF information of the input particles.
Moreover, ZART can also create amapwhere the

estimated Zernike3D deformation field per particle
can be compensated for, or computationally
“reverted”, thus reducing motion blurring during
the reconstruction and increasing the resolution of
very flexible areas in the macromolecule.
Compared to the implementation introduced in,10

ZART reconstructions are no longer limited to the
sampling rates used during the estimation of confor-
mational landscapes. Therefore, is now possible to
correct the heterogeneity-induced blurring of maps
without compromising resolution, allowing ZART
to reach high-resolution heterogeneity-corrected
maps.
In addition, in this work we described the ZART

multiresolution reconstruction approach, which
takes advantage of the local resolution
estimation of the maps reconstructed every two
iterations to determine the resolution that should
be used to further update different regions of the
map. Multiresolution has proven to be a useful
approach, as it leads to high-quality results
without the need for so many ZART iterations,
reducing the execution times compared to the
initial implementation introduced in.10 Finally, a
multiresolution approach has intrinsically the
potential to be less prone to be trapped in local
minima.23 Although we have not observed this
effect in the cases presented in this work, these
characteristics remain to be further explored in
other data sets.

Methods

The Algebraic Reconstruction Technique

We express the reconstructed map in a series
expansion with a basis function b rð Þ:
V rð Þ ¼

X
j

x j b
r � r j
r

� �
ð1Þ

where r is a coordinate in the 3D space, rj represents the

location of the j-th basis function and r its scale. The
basis functions chosen are Gaussian functions. If all
sigmas are equal, then the expression above can be
expressed as a convolution.
9

V rð Þ ¼
X
j

x jd r� rj
� � !

Hb
r

r

� �
ð2Þ

These Gaussians are distributed in a regular,
rectangular grid with a step of r pixels. Our
motivation for this choice is that Gaussians can
approximate a partition of unity with a very low
error24 when the spacing between two Gaussians
is equal to their standard deviation. Partition of unity
is an important property of basis functions that guar-
antees that they can reproduce any Sobolev func-

tion of the space W 2 (that is, sufficiently smooth,
square-integrable functions). Additionally, Gaus-
sians are spherically symmetric and their projection
does not depend on the projection direction, making
them very computationally efficient.
The projection of this volume onto an image is

modelled as the line integral of this map. The
projection direction and the in-plane shift are given
by an Euler matrix, E , that acts on the spatial
coordinates.25 We define the auxiliary matrix eHt

that will help to transform the 2D coordinate of the
image into a 3D coordinate of the volume and will
also help to perform the line integral as

eHT
t ¼

1 0 0

0 1 0

0 0 t

0
B@

1
CA ð3Þ

Then, the projection is given by

I sð Þ ¼ R
V E�1 eHT

t s
� �

dt

¼ R X
j

x j b
E�1eHT

t
~s�r j

r

� � !
dt

¼
X
j

x j

R
b

E�1 eHT
t
~s�r j

r

� �� �
dt

ð4Þ

Tildes above represent homogeneous
coordinates.
The projection of a 3DGaussian is a 2DGaussian

of the samer. Let us refer to the 2DGaussian asG.
Then, the projection above can be simplified to

I sð Þ ¼
X
j

x jG
s�Er j
r

� �
ð5Þ

If there is an in-plane shift, s0, then the model
above has to be modified to

I sð Þ ¼
X
j

x jG
s�s0ð Þ�Er j

r

� �
ð6Þ

For a particular pixel si we will have

I sið Þ ¼
X
j

x jG
si � s0ð Þ � Er j

r

� �
¼
X
j

x jaE ;s0 ;ij ð7Þ

where the coefficient aE ;s0 ;ij represents the projection of

the j-th basis of the volume onto the i-th pixel of the
image whose alignment parameters are given by the

matrix eE and the in-plane shift s0.
We may collect all experimental images into a

single vector, I, and construct the corresponding
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matrix, A, with all the matrices for the individual
projections. Then, the reconstruction problem boils
down to solve a linear equation system of the form

Ax ¼ I ð8Þ
Among the possible algorithms to solve this

equation system, we have chosen Block-ART as it
provides a good balance between computational
complexity and convergence speed.9

The 3D reconstruction process starts with an
initial solution, x 0ð Þ, typically an empty vector of
zeroes. Then, it iterates over the different
experimental images and updates the k -th
estimate of the 3D reconstruction according to

x kþ1ð Þ ¼ x kð Þ þ kk
X
i

I i � ai ; x
kð Þ

kaik2
ai ð9Þ

where ai is a vector with all the contributions of all the j
basis functions onto the pixel i , and i goes over the
selected image (different for each k ). kk is a relaxation
factor between 0 and 2.
The closer to 1 the faster the algorithm will

converge, although this is only feasible if the
experimental measurements are of good quality.
In CryoEM, the Signal-to-Noise Ratio of the
projections is in the order of 0.01. For this reason,
k is typically kept low.
Our output is the vector xj , that is, the Gaussian

coefficients. By doing this, we are deconvolving
the map with a Gaussian at the same time that we
reconstruct it. In the multiresolution section below,
we will show that the width of this Gaussian is
locally defined and that we are, thus, doing a local
deconvolution based on the local resolution of the
map.

Zernike3D Algebraic Reconstruction
Technique

One of the main reasons to choose ART as the
basis for the ZART algorithm is the freedom it
gives to supply prior knowledge during the
reconstruction process. In the case of ZART, this
information is related to the structural information
of each particle, which is computed by the
Zernike3D algorithm.
The Zernike3Dmethod26 is a novel approach able

to describe per-particle conformational changes
based on the estimation of a deformation field gL,
so that the relationship between the deformed and
the undeformed volume is
V deformed rð Þ ¼ V undeformed rþ gL rð Þð Þ ð10Þ
where the deformation field is expressed in terms of the
Zernike3D basis Z l ;n;m and a series of Zernike3D

coefficients al ;n;m as:

gL rð Þ ¼
XL
l¼0

XN
n¼0

Xl

m¼�l

ax
l ;n;m

ay
l ;n;m

az
l ;n;m

0
B@

1
CAZ l ;n;m rð Þ ð11Þ

The estimation of the deformation field amounts
to estimating the a coefficients in the equation
10
above. Once they are determined, we may use
incorporate them in the series expansion to have
a deformation, projection model (see Eq. 6):

Ideformed sð Þ ¼
X
j

x jG
s�s0ð Þ�E r jþgL rjð Þð Þ

r

� �
¼
X
j

x jaE ;s0 ;gL ;ij

ð12Þ
That is, in the deformed projection, the

coefficients of the undeformed map, x j , have to be
projected to a point given by the projection
direction and the deformation field. The term
aE ;s0;gL;ij now encodes the projection, in-plane
shift, and deformation.
The main advantage of including the

heterogeneity information in the ART
reconstruction process through the Zernike3D
deformation fields is the possibility to properly
correct the non-rigid alignments associated with
macromolecular motions. In a normal
reconstruction process, the reconstruction volume
is assumed to be the conformational state
represented by all the particles in the dataset.
However, the previous assumption does not hold
when the macromolecule exhibits large degrees of
flexibility, leading to a motion-induced blurring in
the resulting map. The per-particle deformation
fields introduced a non-rigid alignment able to
correct for the heterogeneity inconsistencies of the
particles, making the dataset more consistent
during the reconstruction process and thus
reducing motion blur artefacts.
The unknowns of the linear equation system in

Eq. 8, x j , refer to the undeformed map. However,
the A matrix contains projections of the deformed
images. In this way, we obtain the remarkable
result that ZART can reconstruct an undeformed
map with information coming from the deformed
particles together with the deformation field. Still,
we should warn that since the calculation of the
deformation field itself will never be perfect due to
the image noise, errors in this estimation will
translate into the “estimated” undeformed map; in
other words, the quality of the reconstructed
undeformed map depends on the capacity of the
Zernikes to faithfully reproduce the observed
deformations.
In order to improve the aspect of the final maps,

ZART only uses the Gaussian convolution for the
computation of the volume projections that will be
compared to the experimental image. Once the
correction image has been computed, ZART will
look at the Gaussian coefficients to update the
reconstruction. Since the Gaussian coefficients
are sharper than the Gaussian itself, the
reconstructed map will be sharper, making it
easier to choose an appropriate threshold to
visualize the reconstruction.
Regarding the CTF, particles should be

previously corrected (for example, by means of a
Wiener2D filter) before inputting them in ZART.
The current criterion to stop iterations in ZART is
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by reaching a maximum number of iterations
specified by the user (by default, 10). Still, the
user can decide whether to save or not the partial
reconstructions for every iteration, in order to
analyze how the reconstruction evolves and
determine which iteration is yielding better results.

Multiresolution reconstruction

In addition, we have exploited the almost partition
of unity property of Gaussians to propose a
multiresolution reconstruction scheme. The
resolution of the reconstructed map is limited by
the standard deviation of the basis of the series
expansion. Large standard deviations will lead to
lower-resolution maps as we are introducing a
stronger low-frequency component during the
reconstruction. But, because the separation
between bases is equal to the standard deviation,
we will also require fewer coefficients and they will
be less affected by noise.
Our multiresolution implementation discretizes

the possible r’s to a finite set of possible values
determined by the local resolution. Let us assume
that we have M multiresolution levels, each one
with a rm . Then, we have M superposing grids (at
locations rmj ), and the series expansion above
becomes:

V rð Þ ¼
X
m

X
j

xm
j d r� rmj

� � !
Hb

r

rm

� � !
ð13Þ
Figure 9. Diagram of the ZART reconstruction process in
heterogeneity information is not available. (2) shows the mo
the Zernike3D deformation fields for every particle in the da

11
Our multiresolution reconstruction algorithm
follows the next steps:

1. Initially, ZART performs two ART iterations to com-
pute an initial even/odd reconstruction with the parti-
cles. At this moment, a large and fixed Gaussian
spacing and standard deviation are used.

2. The two half maps are used to measure the current
local resolution of the reconstruction with
MonoRes.19 We calculate the histogram of the local
resolution and divide it into M equally populated bins.
Then, we approximate the local resolution at the loca-
tion rj by the centre of its local resolution bin, let us

refer to it as bR rj
� � ¼ bRm . We associate a Gaussian

standard deviation to each one of these bin centres:
rm ¼
bRm

2T s

being T s the sampling rate of the particles involved in
the reconstruction. In this way, the Nyquist resolution
corresponds to a value r ¼ 1:0, which defines the
size of the Gaussian fulfilling the partition of unity.

3. Once the local standard deviations have been com-
puted, ZART performs another two ART iterations
in multiresolution mode. In our implementation, for
each of the M grids, only the xm

j coefficients of the

series expansion whose local resolution is associated
with rm are updated, while all the rest remain as 0.

4. Steps 2 and 3 are then repeated according to the total
number of ART iterations specified by the user.
standard mode. (1) represents the steps followed when
tion blur correction workflow thanks to the estimation of
taset.



Figure 10. Diagram of the ZART reconstruction process in multiresolution mode. The estimation of the Zernike3D
deformation fields is dotted, as it represents an optional step: if the estimation is computed, the multiresolution mode
will reconstruct a motion blur-corrected version of the macromolecule.
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When the multiresolution mode is selected, the
user can determine the number of Gaussians
(referred to as “levels” in the program) that will be
used during the reconstruction (i.e. if M ¼ 3 levels
are chosen, the reconstruction will be able to use
up to three Gaussians of different spacing and
standard deviation).
A visual representation of the reconstruction

process of both, standard and multiresolution
modes is provided in Figure 9 and Figure 10.
Data Availability

The data used to test the ZART algorithm are
publicly available in EMPIAR under the entries
10028 and 10391.
12
Code Availability

The ZART algorithm has been implemented in
Xmipp14 and it is available through Scipion 3.027

under the plugin scipion-em-flexutils.
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