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Motivation and Objectives

Group background

This thesis has been conceived within a research group with large experience in the ap-

plication of computational and experimental methodologies to the solution of key prob-

lems in biology (The Biocomputing Unit (BCU) of the National Center for Biotechnol-

ogy (CNB): http://biocomp.cnb.csic.es/). For a group with these characteristics, the po-

tential of positron emission tomography (PET) in modern biology (Cherry and Gambhir

(2001)) and the need of tools for the management of PET data (Cherry and Chatziioan-

nou (2004)) did not go unnoticed. For those reasons, PET was one of the sources of data

considered in the proposal of the project “From information to knowledge: The manage-

ment and analysis of large data set of complex objects in structural biology and func-

tional genomics”. Three research different groups with a common core in the topic of

the development of new methods for the management and analysis of large data sets of

complex biological objects, participated in the project. The Universidad Autónoma group

(http://www.ii.uam.es/esp/investigacion/index.php?siglas=GTSB, attached to the BCU) was

in charge of the subproject entitled “Toward Visual Proteomics: tools for 3D-Map Calcu-

lation and Management(BIO2007-67150-C03-03)”. The aim of this subproject was the

development of new data models and graphics environments that take into account PET
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functional image data on small animals together with genomics and proteomics data, in or-

der to place the knowledge on molecular mechanism in a physiological context. The group

had never worked with PET and the important challenge of familiarization with a fairly

complex technique had to be addressed before starting with the project. In exchange for

the inexperience in the PET field, an important background in reconstruction of data from

other image techniques existed (Marabini et al. (1997), Marabini et al. (1998), Sorzano

et al. (2001), Marabini et al. (2004), Sorzano et al. (2008)) that was able to be transferred

to the PET environment. For these reasons, the UAM group coordinated a Network-related

project of six laboratories on PET reconstruction for small animals (FIS PI040683). This

project proposed to adapt several reconstruction algorithms to the singularities of small

animal scanners and to perform an objective quantitative comparison of their performance

under realistic conditions. The project had, for the UAM group, a double purpose. First,

from the point of view of contribution to the field, the application of the knowledge owned

on image reconstruction to the development of PET reconstruction algorithms. The recon-

struction algorithms are known to have an important role in the success of the small animal

PET (Lewitt and Matej (2003)), and any chance of improvement in the reconstruction field

is well justified. Second, from the point of view of learning, the project provided an ex-

cellent first contact with the PET data and environment, before focusing on the biological

applications of the technique. The present work has been developed in the framework of

the second mentioned project. This is thus a thesis on PET image reconstruction that has

the underlying function of familiarize a group with PET; a tool that fits in perfectly with its

line of research in techniques applied to the extraction of biological knowledge.
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State of the art and objectives

Once focused on PET reconstruction, a clear trend towards the algorithms known as “itera-

tive” was found in the literature (Qi and Leahy (2006)) and this work has been consequently

devoted to this type of reconstruction. It is well know that what makes iterative algorithms

to obtain images with better resolution and noise properties than other approaches is the

accurate statistical model of the data formation and acquisition process they are based in.

Concerning the data model, the Poisson distribution is a widespread accepted model for the

positron emission process, which is the source of data in PET. The most popular family of

iterative reconstruction algorithms (based on the Maximum Likelihood Expectation Max-

imization MLEM (Vardi et al. (1985)) algorithm) is indeed based on a Poisson model of

the positron emissions. For that reason the MLEM has been chosen as the iterative scheme

in which the reconstructions of this thesis are based in. Regarding the acquisition process

model, in the MLEM algorithms family, it is composed of a collection of statistical terms,

arranged in a matrix structure known as the “system matrix” or the “system response ma-

trix”. The system matrix terms result from the combination of a great variety of complex

factors, many of which can be dependent on the particular scanner features and/or on the

experiment conditions. Apart from being a complicated mathematical problem, the system

matrix calculation requires high computational resources both in terms of time and storage

(Herraiz et al. (2006)).

The computation of the system matrix terms is thus a challenging task that at the same

time constitutes a crucial step in the achievement of high quality reconstructions. This

assertion is in agreement with the large number of works that are continuously published

on the topic (Veklerov et al. (1988), Mumcuoglu et al. (1996), Qi et al. (1998), Kudrolli

et al. (2002), Rafecas et al. (2004), Alessio et al. (2006), Herraiz et al. (2006), Panin et al.

(2006a),Panin et al. (2006b), Scheins et al. (2006), Moehrs et al. (2008), Tohme and Qi
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(2009), Ortuño et al. (2010), Aguiar et al. (2010), Pratx and Levin (2011), Herraiz et al.

(2011)), all of them focused on the computation of the system matrix in an accurate and

efficient way. However, among all these works, no one has been found that gathers and

takes into account all the peculiarities of the so-called ”continuous detectors“ technology

(Karp et al. (1990)). Being the system modeling a key issue in statistical reconstructions,

the lack of specific models implies that the reconstructions obtained so far from continuous

detector data do not take fully advantage of the benefits of working with this technology.

This is an important issue, in particular for the development of the FIS project, since one of

the groups collaborating owned data from one of these scanners (Balcerzyk et al. (2009),

Sánchez et al. (2012)), and in general for the PET community, where a renewed interest

for this type of scanners has emerged in the last years (Hun et al. (2002), Tavernier et al.

(2005))

The main problem that arises when the existing system matrix implementations want to

be used with continuous detectors technology is that they are not able to retain the whole

precision of the data this type of detectors provides. The analytical implementations of the

system matrix that would be able to retain such precision (Vardi et al. (1985)), have been

traditionally discarded in pursuit of other experimental (scanner measurements, Monte

Carlo simulations) methodologies (Rafecas et al. (2004), Panin et al. (2006a), Alessio

et al. (2006), Ortuño et al. (2010)). Apart from being specially suited for reconstruction

of continuous detectors data, the analytical approaches to the system matrix computation

have other benefits (noise free, precision, flexibility) for the PET reconstruction in general.

The reason these benefits have not been fully explored so far is that elaborated analyt-

ical methodologies give place to high time consuming implementations. Consequently,

only those analytical approaches based in simplified models of the PET process are fea-

sible. However, now that the recent technological advances (computer clustering, use of
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Graphical Processing Units (GPUs)) provide computational resources that allow increas-

ingly complex implementations of the system matrix (Pratx and Levin (2011), Herraiz et al.

(2011)), a door is open to check to what extent a proper analytical implementation of the

system matrix can lead to improved reconstructions.

The study of the state of the art has lead therefore to two open problems in the field

of PET reconstruction: the lack of reconstruction methods adapted to the requirements of

the continuous detector technology and, more generally, the lack of elaborated analytical

methodologies for the system matrix calculation. These have been the two main topics this

work has been focused in.

Structure of the document

According to the previous discussion, and after a general introduction to the PET technique

provided in Chapter 1, this dissertation is built around Chapters 2 and 3, whose contents

are briefly described bellow:

1. Chapter 2 deals with the application of analytical methodologies to the computation

of the system matrix. As has been mentioned, such methodologies have not been

fully exploded so far, due to their slow performance. Now that the technology is

allowing increasingly faster implementations, is the moment to check the improve-

ments these methodologies can achieve. But, even if the analytical approaches are

expected to have a great number of advantages, it has to be taken into account that

the system matrix is a statistical model of a very complex process, in which effects

of very different nature are involved. Some of these effects will undoubtedly be

well modeled by an analytical approach, but there may be other effects for which

an analytical treatment may not be appropriate. The objective of the chapter is not,

therefore, to develop a purely anatitical system matrix implementation, but to explore
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how the advantages of these approaches, that haves been traditionally discarded due

to its inefficiency, can be exploited. In Chapter 2, a thorough study of the PET data

acquisition and of how the different methodologies are appropriate to model this pro-

cess in the system matrix is performed. The result of this study is a new approach for

the calculation of the system matrix based on the synergy between the analytical and

other experimental approaches. The main advantages and limitations of each of the

previous works on this topic are analyzed so that they justify the choices made in the

design of the new system matrix. Moreover, the implication each of these choices

has in the image domain has been studied in order to evaluate to what extent the new

scheme improves the reconstructions.

2. Chapter 3 deals with the reconstruction for continuous detectors data. The under-

lying reason that has led to the development of the new methodology introduced in

Chapter 2 is the absence of specific approaches that are able to retain the precision

of the data provided by the continuous detectors devices. Reconstructions of data

from this kind of scanners are currently performed with system matrices that do not

take into account this or other particularities of this technology. Consequently, the

reconstructions obtained so far do not take advantage of the benefits of working with

continuous detectors. Once the new approach to the system matrix computation has

been developed in Chapter 2, it will be proved in Chapter 3 how it can be adapted not

just to retain the precision of the continuous detector data, but to account for other

peculiarities of this type of devices. Apart from the new methodology to compute

the system matrix, other issues of the reconstruction (data format, sensitivity calcu-

lation) have been adapted to the continuous detectors requirements, giving place to

a reconstruction scheme totally suited to this type of detectors, whose advantages in

the image domain have been proved.

13



Chapter 1

Introduction to Positron Emission

Tomography (PET)

1.1 Functional imaging

Medical imaging has traditionally been thought of as a way of viewing the body’s anatomy.

Indeed, x-ray computed tomography and magnetic resonance imaging yield exquisitely de-

tailed images of the anatomical structures. However, in some cases it is useful to acquire

images of physiologic function instead of (or in addition to) images of anatomy. Such im-

ages can be acquired by the class of imaging techniques known as nuclear medicine imag-

ing, whose two major subbranches are the single-photon emission computed tomography

(SPECT), and the positron emission tomography (PET).

Both techniques involve the injection of a radiopharmaceutical into the subject under

study to image properties of the body’s physiology. A radiopharmaceutical consits of two

parts: a tracer compound that interacts with the body and a radioactive label. The tracer

principle (George de Hevesy, early 1900s) states that the radioactive labeled compounds are
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incorporated to biochemical pathways in the same way as nonradiactive materials. There-

fore, by way of the emission of gamma rays, the radioactive labels can be used to track

the flow and distribution of important substances in the body. The tracer principle has

two powerful benefits as a basis for imaging biological processes. First, it can be used to

measure molecular concentrations with tremendous sensitivity, as one can readily detect

even minute quantities of radioactive material. Second, tracer measurements are noninva-

sive, since the concentration of tracer is deduced from counts of gamma rays emitted from

within the body as the result of radioactive decay of the administered tracer.

A wide range of biologically interesting compounds can and have been synthesized

with radionuclide tags thus permitting the measurement of quantities of interest going from

glucose metabolism to gene expression. Among other applications, the nuclear imaging

techniques can be used to detect tumors, locate areas of the heart affected by coronary

artery disease or identify brain regions influenced by drugs (Cherry and Chatziioannou

(2004)).

1.2 Positron emission tomography

1.2.1 Electronic collimation

SPECT uses radiouclides that emit single gamma rays in the 80 − 350 keV range. These

gamma rays can be detected externally by position-sensitive detectors, also known as

gamma cameras. A collimator is inserted between the patient and the detector that lets

pass only photons that approach the detector with certain angles while discarding the other

photons (see Figure 1.1). In order to image the patient from many points of view, the pro-

cess is repeated by positioning the gamma camera at many orientations about the patient.

Although the majority of SPECT scans at the present time are done for the diagnosis of
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cardiac disease, there are many other clinical and research applications where SPECT is

used.

Figure 1.1: Parallel-hole collimator SPECT. Although photons are
emitted isotropically at each point, only those emitted along
lines parallel to the channels of the collimator reach the
detector (drawings are not to scale).

SPECT collimation does an inefficient use of the emitted radiation, as the gamma rays

not perpendicular to the camera face are absorbed by the lead walls between the holes.

However, the collimator is necessary to define the direction from which the gamma rays

are coming, thereby providing spatial information. PET studies do not require a physi-

cal collimator, but use a scheme of detection called “electronic collimation”. Electronic

collimation is based on the use of positron emitting radioisotopes as radioactive labels.

Positrons are the antiparticles to the electrons, with the same mass but with opposite elec-

tric charge. When the positrons reach thermal energies, they interact with nearby electrons
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by the formation of a hydrogen-like orbiting pair called positronium. Positronium is unsta-

ble and eventually decays, via annihilation, into a pair of 511 keV gamma photons emitted

at 180 degrees relative to one another with completely random orientantion. A PET scanner

consists basically of a collection of gamma-ray detectors connected to circuitry that senses

the timing of the gamma-ray detections. When two gamma rays are detected roughly si-

multaneously (typically an acceptance time window of a few nanoseconds is imposed), the

coordinates of each photon interception are recorded by the detector system. The segment

line defined by the two detected points is usually referred to as line of response (LOR).

1.2.2 PET data

The data provided by a PET scanner are not directly in the form of a tomographic image,

but consist of a collection of lines of response (LORs). Consequently, some computer

reconstruction method must be applied in order to estimate the radiotracer distribution that

gave place to the measurements.

The collection of LORs can be stored before the reconstruction in different formats.

Data can be binned as a function of the LOR spatial orientations, through structures called

sinograms. The sinogram is a representation of the detections measured at a given plane.

For each plane, a sinogram is a two-dimensional matrix with the vertical columns repre-

senting projection angles and the horizontal rows representing spatial positions within the

projections, as shown in Figure 1.3. An alternative option is the storage mode known as

list-mode. List-mode acquisition is achieved by storing information regarding the acquired

events as they are detected one-by-one in the form of a list.

There are some sources of error in the recorded data. The errors come from the as-

sumption that an annihilation event occurred along each of the LORs that make up the

PET data. Not all the coincidence events accepted by the tomograph meet this assumption.
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Site of 
annihilation

Coincidence
detection γ

γ

Figure 1.2: Schematic diagram of electronic collimation in PET. Two
gamma rays emitted as a result of positron annihilation are
sensed at two detectors at roughly the same instant. Thus, it
can be inferred that a positron was generated along the line
segment connecting the detectors involved.

It can happen that one or both annihilation photons interact in the object being scanned.

Consequently, photons lose all (this effect is referred to as “attenuation”) or a part of their

energy and can be scattered in a new direction. The interaction of the gamma rays with the

object can give place to the existence of three different situations that cause coincidence

events (see Figure 1.4):
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Figure 1.3: Sinogram formation. Coincidence events in PET scanner
are categorized by plotting each LOR as function of its
angular orientation versus its displacement from center of
gantry

• A “True coincidence” occurs when a positron annihilates and both of the gamma rays

are detected without either of them scattering in the object to be scanned.

• If one or both photons are scattered, but both photons are detected in coincidence,

the result is a “Scattered coincidence” This is a source of error in the data, since the

original annihilation is not on the line joining the coordinates of the detected photons

and the resulting LOR will be misplaced.
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• If one of the photons misses the detector (this can be due to an interaction or to

the relatively small solid angle subtended by the detector ring), the time window

will usually contain only one detected photon and the coordinates will be discarded,

unless the same situation arises close enough in time with another annihilation. This

case is called a “Random Coincidence” (or “Accidental coincidence”) and is a source

of error since the two detected photons come from different annihilations, neither of

which is on the line in space joining the coordinates of the detected photons.

Random
coincidence

Scattered
coincidence

True
coincidence

= Annihilation event
= Gamma ray
= Assigned LOR

Figure 1.4: The three different situations that can give rise to a
coincidence event measured in a PET scanner
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During image reconstruction, corrections can be made for both randoms and scatter

(Lewellen (2008)). There are two standard approaches for measuring the randoms. The

delayed-window approach is based in applying a timing acceptance window that is delayed

from the prompt window and only samples random events. The second approach calculates

the randoms by measuring the single event rates in each detector. Scatter detection can be

reduced by applying an energy acceptance criteria or estimated and corrected after data

acquisition. Several analytical methods used with this purpose can be found in Lewellen

and Karp (2004).

1.2.3 PET detectors

Although various alternatives continue to be considered (Lewellen (2008)), the most com-

mon PET detector block scheme is based on some form of scintillation detector coupled to

photomultiplier (PMT) tubes. The overall function of the detection system is to convert the

interaction of a 511 keV gamma ray in the scintillator into a robust current pulse that can

be detected and processed by relatively standard electronics. Specifically, when a photon

interacts in the scintillator, electrons are moved from the valence band to the conduction

band. The electrons return to the valence band at impurities in the crystal, emitting many

optical-wavelength photons in the process. The light obtained at the scintillator is collected

by the PMTs, which convert the light photons into electrons and amplify the signal. This

current is sensed by accompanying electronics, which compute the spatial coordinates of

the gamma-ray event relative to the face of the camera and register the occurrence of an

event.

In order to optimize the detection process, a scintillator should thus be fast (for accurate

timing), dense (so that the probability level of the 511 keV gamma rays interacting in them

is somewhat high), have high light output (for position accuracy) and be cheap to produce.
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Currently, the high-end PET scanners being offered are mainly based on bismuth germinate

(BGO), lutetium oxyorthosilicate (LSO) and gadolinium oxyorthosilicate (GSO).

Scintillator-based Detector designs

The first PET scanners used one PMT per scintillator crystal (Phelps et al. (1978)). As

designs began to reduce the crystal cross section to obtain higher spatial resolution, several

limitations to this approach were encountered. On the one hand, the existing PMTs were

too large to pack them together with a full block of very small crystals. On the other hand,

the large number of PMTs and electronic channels increased the cost of the system. As a

result, two alternative scintillator detector designs (see Figure 1.5) emerged in the 1980s:

• The first scheme is based on large area continuous crystals viewed by an array of

PMTs (Karp et al. (1990)). Traditionally, the position of an event in a continuous

detector is determined by calculating the centroid of the emitted light by means of a

modified resistor network amongst all PMT array pads. In a continuous crystal detec-

tor, the main characteristics of the detector (especially energy and spatial resolution)

are expected to be strongly related to the crystal surface treatment. For this reason,

the surface treatment of the crystal must be optimized before mounting the crystal on

the final module.

• The second approach uses smaller discrete crystals that shape the light response func-

tion (LRF) to allow the decoding of crystal positions with a small number of PMTs

(Casey and Nutt (1986)). The LRF can be controlled with different coupling com-

pounds at the interface and surface finishing or by using different lengths of reflector

between the crystals. Typically, four PMTs are placed over the crystals in a rectan-

gular pattern and ratios are formed from the PMT signals to provide a transverse and

axial position signal.
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PMTs

Crystal

(a)

PMTs

Crystals

(b)

Figure 1.5: The major scintillator-PMT schemes options currently in
use. (a) Continuous large crystal read by an array of PMTs.
(b) Array of crystals with different treatments and/or
reflectors viewed by a small number of PMTs.

The advent of new technical developments such as position sensitive photomultipliers

PS-PMTs (Kume et al. (1986)) has led the PET scintillator-based detectors to evolve in a

variety of design approaches, whose detailed description is out of the scope of this docu-

ment. However, all these designs are based in the two above mentioned basic approaches,

and their performance is still strongly associated to the continuous/pixelated nature of the

scintillators:

• The use of continuous scintillators instead of pixellated blocks allows, in principle,

to improve the spatial resolution (since the detected positions are not associated to

the centers of pixelated components), while avoiding the problems of light collection

efficiency that are related to fine pixellation of the crystals. Additionally, the cost

and complexity of the detector are reduced. On the other hand, the large continuous

crystal approach requires scintillators with higher stopping power, in order to prevent
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the light from spreading too far in the crystal and achieve accurate spatial localiza-

tion of the events. Unfortunately, the scintillators with higher stopping power can’t

currently be grown into large crystals. An exception is LSO, with high scintillation

efficiency, high cross-section for 511keV gamma rays and fast decay time, which

result in excellent count-rate performance (Siegel et al. (1995)). Other disadvantages

currently associated to the use of this kind of scintillators are the non-uniformity and

the nonlinearity in the camera response, but their effects can be minimized during the

process of camera calibration (Sánchez et al. (2004)).

• The discrete crystal machines offer higher sensitivity due to the higher stopping

power of the scintillators used (BGO, LSO or GSO) and much higher count-rate

performance. On the other hand, as every scintillator pixel must be treated individu-

ally before being inserted in the detector block, the cost and complexity of the PET

system increases. Moreover, in a pixelated detector, energy resolution is a function

not only of the intrinsic scintillation efficiency of the crystals, but also of the crystal

size (Giménez et al. (2004)). This is due to the fact that smaller cross section crys-

tals exhibit greater light loss and, consequently, lower energy resolution (a high light

yield from a scintillator normally improves the energy resolution because it reduces

the Poisson noise of the PMT signal).

Detector geometry

A PET scanner is composed by several of the detector modules described in the previous

section. The blocks can be configured as full static rings that completely surround the

patient (Surti et al. (2005)) or as partial rings in a rotation device that allows the obtaining

of the needed angular sampling (Del Guerra et al. (2006)).

In two-dimensional scanners, multiple planes of detectors surround the patient with
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dense material, or “septa”, separating each plane, as shown in Figure 1.6 (left). The septa

stop photons traveling between planes so that coincidence events are collected only be-

tween pairs of detectors in a single plane. Using this configuration, the data are separable

and the image can be reconstructed as a series of two-dimensional sections. In contrast,

the three-dimensional scanners (Figure 1.6 (right)) have no septa so that coincidence pho-

tons can be detected between planes. In this case, the reconstruction problem is not sep-

arable and must be treated directly in three dimensions. The septa removal in the three-

dimensional mode increases the total number of detected photons and hence increases the

signal to noise ratio. However, the number of scatter coincidences increases considerably

when working in this mode (Townsend (1991)).

Figure 1.6: Schematic diagram of an axial cross section through (left) a
2D and (right) a 3D PET scanner. The septa in the 2D
scanner stop out-of-plane photons while the 3D scanner
detects these events as additional data
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1.3 Small animal PET

PET scanners for human imaging have improved dramatically since their introduction in

the mid-1970s. Clinical PET scanners typically produce reconstructed tomographic im-

ages with a spatial resolution in the 5 to 8 mm range. These clinical systems have also

been used for animal research, predominantly in the larger laboratory animals such as non-

human primates, dogs and pigs, where the spatial resolution is often adequate. There has

been attempts to image smaller animals such as rats on these clinical scanners (Agon et al.

(1988), Ingvar et al. (1991)) but the spatial resolution is sufficient for only a narrow range

of applications. The first dedicated animal PET scanners were also designed for larger re-

search animals, particularly for brain imaging in non-human primates (Cutler et al. (1992),

Watanabe et al. (1997)). These systems were designed to obtain somewhat higher spatial

resolution than clinical PET systems.

With the tremendous advances in mouse genomics and the wide range of animal models

of human disease based on mice and rats, there has been significant motivation to extend the

PET technique to imaging of small animals. The first dedicated small animal PET scanner

(Bloomfield et al. (1995), Bloomfield et al. (1997)) took the standard detector technology

being developed for clinical PET systems but placed these detector units in smaller diam-

eter rings than common clinical PET scanners to form a compact PET system for rodent

imaging. Although the spatial resolution was not superior to that found in clinical systems,

it did elegantly demonstrate the concept of a dedicated small animal PET system and a

tremendous amount of useful research was carried out with it. In the mid-1990s numerous

groups began to develop small animal PET scanners with detector technology developed

specifically for that application and with improved spatial resolution (Marriott et al. (1994),

Lecomte et al. (1996), Bruyndonckx et al. (1996), Pichler et al. (1998), Chatziioannou et al.

(1999)). It must be remarked that two Spanish research groups have been involved in the
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design, development and manufacture of three of the commercially available small animal

PET systems:

• The rPET (Vaquero et al. (2004)) and the ARGUS PET (Vaquero et al. (2005)) (com-

mercialized under the name of eXplore VISTA by General Electric Health Care) are

two pixelated small animal PET scanners developed by people of the Medical Imag-

ing Laboratory at Gregorio Marañón Hospital (Madrid, Spain).

• The Albira PET (Balcerzyk et al. (2009)) is a small animall PET scanner with mono-

lithic crystals developed in the Instituto de Fı́sica Corpuscular (IFIC) and manufac-

tured by Oncovisión (Valencia, Spain)

1.3.1 Comparison of small animal imaging techniques

One of the main advantages of PET is its noninvasive character. It is clear that noninvasive

techniques providing the same or similar information than other techniques in which it

is needed to euthanize the animal (as autoradiography or tissue dissection do) have great

value. It permits longitudinal, within-subjet study designs to follow disease models and

interventions over periods of days, weeks and even months. Because the same animal

is used at every time point, each animal serves as its own control and variability due to

interanimal differences is effectively removed. Therefore, a single animal studied multiple

times by PET may in some instances provide the same data that would have needed tens

of animals using traditional invasive techniques requiring sacrifice of the animal. This

means a great reduction in cost and speed results. It may also improve the quality of

the data (because of the within-subject design), although this has yet to be unequivocally

demonstrated.

There exist other non-invasive techniques such as magnetic resonance (MRI) and x-ray
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computed tomography providing exquisite high resolution images that are largely reflec-

tive of anatomy. Although they have an important place in small animall imaging, these

techniques do not provide functional data and they are in general more suited to address a

different set of questions. Some limited functional information can be obtained with mod-

ern magnetic resonance imaging methods, although the sensitivity levels are much lower

than those provided by PET.

There also exist optically based techniques for in vivo functional imaging. These are

also non-invasive techniques, that provide functional image at high levels of sensitivity.

The problem with these techniques is that the emitted light can penetrate just several mil-

limeters of tissue. The depth limitation along with the lack of tomographic methods for

accurately computing the 3D emission distribution limit optical imaging methods to the

smaller laboratory animals (mice) or to superficial imaging in larger animal models.

Another important advantage of PET over the optical techniques is that it enables the

distribution of the radionuclide (and therefore the molecule to which it is attached) to be

measured in quantitative units, assuming that appropriate corrections are made for physical

factors such as gamma ray attenuation and scatter in the tissue. In optical imaging, light

scatter makes accurate quantification extremely challenging.

Finally, as has already been stated, compared with nuclear imaging techniques that use

single gamma ray-emitting radionuclides (SPECT), PET has at least one order of magni-

tude advantage in sensitivity because the direction of an incident gamma ray is defined

electronically by the detection of the opposing gamma ray. The physical collimation used

by SPECT dramatically reduces the detected gamma ray event rate per unit of injected dose

of radioactivity.
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1.3.2 Applications

Dedicated small animal PET scanners are already being used for many different applica-

tions. These include measurements of the glucose metabolism in the rat brain and heart

(Moore et al. (2000), Kornblum et al. (2000)) studies of the dopaminergic system in the rat

(Hume et al. (1996)) and mouse (Chatziioannou et al. (1999)) brain, or investigation of the

effect of photodynamic therapy in a mouse tumor model (Lapointe et al. (1999)).

Gene expression

In the environment of structural biology and functional genomics in which this dissertation

has been conceived, an area of application that attracts great interest is the merger of PET

with molecular biology to create methods to measure gene expression in vivo (Gambhir

et al. (2000)). Genes direct the physical development and behavior of an organism. The

long strand of nucleotides of which a gene consist of contains a coding sequence, which

determines what a gene produces (such as a protein). This sequence is controlled by a pro-

moter region, which regulates when, where, and to what extent the gene generates the prod-

uct which it encodes. Gene expression is the process by which, under the promoter control,

the coding sequence is made manifest as a physical and biologically functional gene prod-

uct. Research into gene expression will enable scientists to decipher the functions of genes

and their protein products, and to get a clearer picture of the complex regulatory networks

that control fundamental biological processes. To understand these complex processes,

there is a growing interest in studying the conditions under which each gene in the DNA

sequence is expressed. The use of non-destructive imaging procedures like PET that allow

to follow individual subjects of a same population over an extended period during which

various procedures are performed, are especially valuable for the timely advancement of

research in gene expression.
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A PET reporter gene has been successfully used (Tjuvajev et al. (1998), Gambhir et al.

(1999), Gambhir et al. (2000)) that is able to produce a protein that is capable of trapping

a positron-labeled compound. The reporter gene is driven by the same promoter (the pro-

moter can be thought of as a switch that controls the level of expression of the gene) as

the gene of interest, such that when the gene of interest is expressed, the reporter gene is

also expressed. The retention of the positron-labeled probe by the protein product of the

PET reporter gene has been shown to be proportional to the level of reporter gene expres-

sion, which in turns reflects the level of expression of the gene of interest (Gambhir et al.

(2000)). In this way, the location, magnitude of expression and time course of expression

levels of any gene that is introduced in a mouse can be monitored in vivo. The same PET

reporter gene approach can be used in transgenic mice where every cell in the mouse car-

ries the PET reporter gene, but the signal is only detected when the promoter driving the

PET reporter gene is switched on. This enables endogenous gene expression to be studied

in mouse models. There are widespread applications for these PET reporter gene meth-

ods (Gambhir et al. (1999)). For example, genetic tagging of tumor cells that can then be

followed over time after injection in an animal, studies of the efficiency of gene therapy

vectors for delivering genes into experimental animals, interactions between cancer cells

and the immune system, or studies of gene expression patterns during development to see

when certain genes are switched on or off. This opens up many powerful research opportu-

nities that take advantage of the ability of PET to longitudinally measure gene expression

in an entire mouse.

1.3.3 Resolution and sensitivity in small animall PET

The previous sections have introduced the advantages and the benefits of the use of PET

in the field of biomedical research. However, it must be taken into account that, due to
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the differences in size between rodents and humans, small animal PET imaging imposes

challenging performance requirements, particularly on system sensitivity and on image

resolution (Vaquero and Desco (2005)).

Resolution

There are many examples in the small animal PET field where the ability to visualize and

accurately measure radiopharmaceutical accumulation in structures that have dimensions

of a millimeter or less in size is important (Stickel et al. (2007)). The typical image reso-

lution of many of PET systems is in the 1-to 2.5-mm range (Cherry and Gambhir (2001)).

Whether the submillimiter range is close to be reached for small animal PET is not all clear

since there are several complex factors interacting to limit spatial resolution during data

formation and collection:

• Positron physics. The assumption that the annihilation that gave place to the true co-

incidences occurred somewhere along the line connecting the two involved detectors

does not take into account the effect of two positron physics factors:

– Positron range: Before reaching thermal energies, positrons travel through tis-

sue giving up their kinetic energy principally by Coulomb interactions with

electrons. The distance the positron travels before annihilating is termed positron

range. The magnitude of this range depends on the positron energy, which

varies widely among isotopes and with the fraction of air in the tissue. The

only known way to reduce this effect is using a strong magnetic field, an attrac-

tive approach since the PET scanner can be potentially merged with a Magnetic

Resonance Imaging (MRI) scanner (Blanco (2006)).

– Non-collinearity: One would normally expect the annihilation gamma rays to

be antiparallel. However, the residual kinetic energy and momentum of the
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positron and electron at the time of annihilation results in an angular uncertainty

in the direction of the 511 keV photons that can be modelled as a Gaussian dis-

tribution with a standard deviation of 0.212 degrees (DeBenedetti et al. (1950)).

Scanner design can minimize non-collinearity by minimizing the separation be-

tween detectors.

• Crystal penetration. Once the gamma rays reach the scintillator, they may travel

some distance in the scintillator before being absorbed. As a result, if the gamma ray

enters the crystal at an oblique angle, the location of the interaction will not be the

same as the point of entry into the scintillator. Thus, an incorrect line of response will

be assigned to the interaction because the LOR is normally assigned to a position at

the front of the crystal interaction. This source of error worsens as the source position

moves radially away from the center of the scanner because a larger fraction of the

gamma rays enter the crystals at oblique angles. The consequence of this effect is a

non uniform resolution response that degrades radially across the field of view.

One solution that is a very active area of development is to add the ability to de-

termine how deep in the crystal an event actually occurs (Lewellen et al. (2004),

Inadama et al. (2006)). Moreover, crystals with high density help to reduce the crys-

tal penetration effect, since their high stopping power reduces the variability of the

depth of interaction (DOI) of incident gamma rays in the detectors.

• Detector scatter. A 511 keV photon can undergo two main interactions in the scin-

tillator: Compton scattering and photoelectric absorption. A Compton scattering in-

teraction results in a scattered photon and a recoil electron. Photoelectric absorption

results in a photoelectron and in a characteristic x-ray. The x-ray produced in pho-

toelectric absorption and the Compton scattered photon may interact again at some

distance from the original interaction site or alternatively they may escape from the
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detector. As a result, each 511 keV gamma photon emitted can cause interactions

at different points in the scintillator crystal. The position of the final event depends

on the particular detector readout and signal processing of the system. The center

of mass of the deposited energy is the positioning approach underlying most cur-

rent PET detector technology, although other positioning approaches exist (Tavernier

et al. (2005)). Independently of the positioning method, the increase in the number

of interactions in the scintillator leads to an increase in the error of the location of the

initial photon interaction (Stickel and Cherry (2005)).

The degradation of the spatial resolution due to the detector scatter can be fought

using narrow detectors that reduce the room for secondary interactions and a good

energy discriminator that rejects the low energy events coming from secondary inter-

actions (Stickel and Cherry (2005)). However, both the detector thickness reduction

and energy discrimination have the cost of a possible reduction in the overall scan-

ner sensitivity. Rafecas et al. (2003) show how to overcome this problem by using

individual crystal readout along with an appropriate identification scheme to select

the primary crystal. Other techniques applied during calibrations (Surti et al. (2009))

have shown to reduce the effect of the detector scatter in the reconstructed spatial

resolution.

• Light emission. Unlike one to one scintillator-photomultiplier tube coupled detec-

tors, detector blocks like those shown in Figure 1.5, have additional degradation of

their spatial resolution, since the shared scintillation photons within the block create

an uncertainty in positioning the events. In linear positioning algorithms, as the en-

ergy centroid computation, the result is a loss of resolution due to misidentification

of the interaction point. An alternative, is to use positioning techniques based on

statistical models of the light behavior within the scintillators (Joung et al. (2000))
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rather than linear algorithms.

• Detector design. Each of the detector designs described in Subsection 1.2.3 deals

with particular issues that contribute to the resolution degradation:

– For a detector composed of small discrete crystals, all interactions are assumed

to occur at the center of individual crystals and consequently the spatial reso-

lution of a pixelated scanner is limited to approximately half the width of an

individual crystal (Lewellen (2008)).

– In the case of continuous designs, where the light response function (LRF) is

not shaped, the statistics of the light emission and collection as well as the

distortions in the shape of the LRF due to reflections from the sides and back

surfaces work to degrade the positioning of the event (Lewellen (2008)). The

LRF can depend strongly on the DOI if the crystal is thick enough and the light

reflections are not controlled. This DOI dependence can be either an hindrance

or an added parameter to extract and utilize to address the parallax problem

(Lerche et al. (2005)).

• Statistics of the light. The resolution is affected as well by the statistical fluctuations

of the phototube signals, which depend upon the light output of the crystal and the

conversion efficiency of the photocathodes. High light output scintillators are chosen

to minimise the statistical fluctuations.

Sensitivity

Sensitivity in the PET environment refers to the fraction of radioactive decays that result

in a detected event. Being the amount of injected dose rather limited for small animals

(in order to not perturb their biological systems), high levels of sensitivity are needed to
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achieve acceptable numbers of detected events and consequently acceptable signal to noise

ratios in the reconstructions (Cherry and Chatziioannou (2004)). However, the sensitivity

of most current animal PET scanners is in the range of 0.5 − 2.5% at the center of the

scanner (Chatziioannou (2002)), indicating that a large number of decays do not lead to

recorded events. There are three major ways in which events are lost (Stickel and Cherry

(2005)). First, one or both of the 511 keV photons may not intersect the detector system.

This is remedied by designing PET systems with good solid angle coverage. Second, if a

photon intersects a detector it may not interact with it. This requires that detectors have

reasonable efficiency. Typical efficiencies are in the range of 20 − 70%, and depend on

the detector material and thickness. Finally, events are not detected if they fall outside

the energy windows set in order to reject secondary interactions of the particles with the

scintillator. Tight energy windows (e.g 350−650 keV) can reject a very significant fraction

of events. It is therefore important to set energy thresholds that can capture all possible

events.

The path towards much higher sensitivity animal PET systems, without increasing cost,

is to design high efficiency (> 60%) detectors with adequate depth of interaction determi-

nation to compensate for the resolution degradation, as will be discussed in next section.

They can be brought closer to the animal to reduce the detector area required per unit solid

angle coverage. Using this approach, along with optimized energy selection, should yield

system sensitivities in the range of 10− 20% (Stickel and Cherry (2005)).

1.4 Reconstruction

It has been mentioned that the small animal PET studies require higher sensitivity and res-

olution capabilities than the clinical applications. It is clear that, in spite of its advantages,

these performance issues (along with the scanner cost, access to PET tracers, and user
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friendliness) will ultimately dictate the level and extent of PET’s participation in the future

of the biology (Cherry and Chatziioannou (2004)). Initially, the effort to address these chal-

lenges had been focused largely on instrumentation (some outlines on this topic have been

provided in Section 1.3.3). But as animal PET scanner technology started to mature, it en-

countered certain limitations to overcome these problems. For example, the requirements

of high resolution and sensitivity can be satisfied using detector modules composed of nar-

row and long crystals, placed in a gantry with the smallest possible diameter. However,

long pixelated crystals lead to significant detection uncertainties due to the crystal penetra-

tion. The use of short pixelated crystals reduces this effect but at the same time leads to

a reduced detection efficiency. On the other hand, the increase of the gantry diameter can

reduce the DOI effect but at the same time leads to a reduction of sensitivity and a degrada-

tion of the spatial resolution due to the non-collinearity of the pairs (Ortuño et al. (2010)).

Under these paradoxical circumstances, other areas apart from the instrumentation have

started to be given their due attention. A particularly important area is the reconstruction

step, in which the acquired data are converted to tomographic images. There is actually

strong evidence that the use of appropriate reconstruction algorithms will be required to

achieve submillimeter reconstructed images at acceptable signal-to-noise values in small

animal PET studies (Cherry and Chatziioannou (2004)).

1.4.1 Analytical reconstruction

The early techniques of image reconstruction from PET data were analytical approaches

based on the method of Filtered Back Projection (FBP) (Shepp and Logan (1974)). FBP is

a mathematical technique based on an idealized model of PET that ignores many significant

features of real data. Specifically, FBP assumes that the number of detected gamma-ray

events traveling a particular direction approximates the line-integral of the radio-isotope
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distribution along that line, from which the image can be reconstructed using analytical

inversion formulas. In spite of its approximate nature, FBP has enjoyed widespread use

and great longevity largely because of its computational simplicity. Unfortunately, FBP

amplifies the signal noise when applied to the low-count data of nuclear molecular imaging

(it is still a good method for applications where the number of measured counts is high,

as computed tomography), and there is a growing interest in the development of recon-

struction alternatives that overcome this problem (Kinahan and Rogers (1989), Ollinger

and Fessler (1997), Lewitt and Matej (2003)). These techniques represent an important

contribution to the results obtained traditionally with FBP, providing better resolution and

noise characteristics.

1.4.2 Iterative reconstruction

Analytical methods typically neglect noise and complicating physical factors in an effort

to obtain frameworks that yield explicit inversion formulas for the reconstruction problem.

The introduction of iterative methods allowed for the explicit inclusion of realistic factors in

the reconstruction process. These algorithms achieve better spatial resolution and improved

signal-to-noise ratio than the analytical methods, while maintaining the quantitative nature

of the data (Johnson et al. (1997), Chatziioannou et al. (2000)). The price of this added

refinement is that the resulting set of equations describing the problem becomes very large

and non-linear, and solving for the tracer distribution by direct inversion of the forward

problem becomes intractable. In this case, the equations must be solved using iterative

methods (Lee et al. (2004)).

All the iterative reconstruction methods share a number of common traits. The general

model behind statistical reconstruction involves repeating the process of projecting an im-

age estimate, comparing the estimated projections to the measured data to compute some
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form of error, backprojecting the error and using the error to update the image estimate.

Two wide classes of iterative algorithm exists, namely algebraic and statistical. Clas-

sical algebraic iterative algorithms, such as ART and MART (Gordon et al. (1970)) are

based on the Kaczmarz method of solving systems of linear equations (Kaczmarz (1937)).

Although not widely used in nuclear medicine, they form an important basis for understand-

ing the statistical algorithms that were developed later and for which iterative methods are

mainly used.

Statistical algorithms have two basic parts: a statistical criterion (the basis for determin-

ing which image among the many possible is to be the solution) and a numerical algorithm

(the method for finding the solution prescribed by the criterion). The most successfull early

statistical algorithm, MLEM (Vardi et al. (1985)) uses a Poisson model of the produced

data, related to the maximum likelihood statistical criterion, along with the EM algorithm

as numerical method.

A serious disadvantage of MLEM is its slow convergence, which can lead to pro-

hibitive reconstruction times on standard computer platforms (Lewitt and Matej (2003)).

Several acceleration techniques have been proposed for the MLEM algorithm. Lewitt and

Muehllehner (1986) improved convergence speed by incorporating an over-relaxation pa-

rameter. Tanaka (1987) used a frequency amplification method to accelerate the estimation

of the higher-frequency components in the image. The ordered subsets expectation maxi-

mization (OSEM) method (Hudson and Larkin (1994)) divides the data into subsets, giving

a factor speed increase proportional to the number of subsets chosen. Browne and DePierro

(1996) proposed the row-action maximum-likelihood algorithm (RAMLA), which uses as

many subsets as there are projections. However, these block methods don’t necessarily

converge, as reported empirically by Byrne (1997). The space-alternating generalized EM

(SAGE) (Fessler and Hero (1994)) improves the convergence rate by updating each pixel

individually and using a matrix-based projection model. Rebinning methods such as single
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slice rebinning (SSRB) (Daube-Witherspoon and Muehllehner (1987)) or Fourier rebin-

ning (FORE) (Defrise et al. (1997)) can reduce the dimensionality of 3D acquisitions by

performing a set of 2D reconstructions to obtain volumetric data, although there is a loss

of image quality with respect to the more time consuming fully 3D implementation.

In addition to the slow convergence issue, there is another important drawback related

to the MLEM derived methods: at high iteration numbers, images exhibit high-variance

behavior (Leahy and Qi (2000)). This is usually attributed to either the fact that there is no

stopping rule in this kind of iterative reconstruction or to the statistical (noisy) nature of the

detection process and reconstruction method (Herraiz et al. (2006)). The usual approach to

overcome this drawback is either to use stopping rules (Veklerov and Llacer (1987), John-

son (1994), Coakley (1991)) or to smooth the images with kernels (Snyder et al. (1987),

Liow and Strother (1991)) filters (Slijpen and Beekman (1999)) or wavelet based methods

(Mair et al. (1996)).

The Maximum a Posteriori (MAP) methods (Green (1990)) offer a more flexible and

principled method of encouraging desirable properties in the reconstructed imagen by in-

corporating a priori information (priors) that models the distribution of activity and noise

in the acquired data. The regularizing influence of the prior, controls the variance of the

reconstruction, and hence the MAP methods do not exhibit the instabilities at higher itera-

tions encountered using MLEM and OSEM (Qi et al. (1998))

There exist also statistical algorithms based on a Gaussian model of the produced data,

related to the weighted least squares (WLS) criteria, which result in quadratic objective

functions. These can efficiently use many established numerical algorithms, such as coor-

dinate gradient (Tsui et al. (1991), Kaufman (1993)) or coordinate descent (Fessler (1994)),

and result in faster reconstruction algorithms.

The algorithms mentioned above use binned data (projection sets) to reconstruct the

image. Concerning the List-mode format, it is not amenable to analytic reconstruction
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methods such as FBP without first histogramming the data into a standard sinogram or

projection data format, which can be an inefficient procedure. However, there exist several

versions of the MLEM and OSEM algorithms (Reader et al. (1998), Reader et al. (2002b),

Rahmim et al. (2004)) for the list-mode data.

The MLEM algorithm

As mentioned in the previous section, the MLEM algorithm is a golden standard of the sta-

tistical reconstruction. Since its publication in 1985, most of the work in this field has been

based on finding alternatives to the MLEM that offer faster convergence, improved reso-

lution, contrast and/or signal-to-noise ratio. The MLEM reconstruction algorithm (Vardi

et al. (1985)) is indeed a golden standard in the statistical reconstruction field. It seems

worth to analyze in detail the work by Vardi et al. (1985) in order to have a clear idea about

where the advantages of statistical reconstruction stem from.

The mathematical development of Vardi et al. (1985) starts from the well known state-

ment that positron emissions from a large number of radioactive nuclei occur according

to a Poisson distribution. The reconstruction problem consists of finding out the unknown

intensity function λ(r) : r ∈ R3 of the emission spatial Poisson point process in a certain

region H (the patient’s body) of R3.

The measured data set n∗(d), from which the Poisson intensity function must be esti-

mated, are the total number of coincidences in each tube d formed by a pair of detectors.

Since classifying the annihilations according to the discrete detectors pair that detected

them amounts to a thinning of the Poisson point process, it can be shown that the data

n∗(d) (with d = 1..D, D being the the maximum number of detector bins), constitute a

collection of independent Poisson random variables with mean:
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λ∗(d) =

∫
R3

λ(r)c(r, d)dr d = 1, ..., D (1.1)

where c(r, d) is the probability that a line originated at the spatial point r is detected at the

discrete tube d.

The manipulation of images in digital form is an essential part of virtually all scientific

disciplines. In applications in which the physical magnitude is not inherently discrete (as

is the density function that PET reconstruction algorithms try to estimate), a digital image

is used to represent the continuous image that, in turn, represents the physical magnitude.

When implementing the reconstruction algorithm described in Vardi et al. (1985), it was as-

sumed that the radiotracer volume can be approximated by a fine grid of B basis functions.

If v(r − rb) stands for the general mathematical expression of the basis function centered

at point rb, then:

λ(r) ≈
B∑

b=1

λ(b)v(r− rb) (1.2)

where the weight λ(b) will be the image value at the b-th basis function, which is propor-

tional to the total number of positron-emitting nuclei contained in the volume spanned by

the basis function. Substituting (1.2) into (1.1), the following expression is obtained for the

mean of the measured data in each tube d:

λ∗(d) ≈
B∑

b=1

λ(b)p(b, d) (1.3)

where

p(b, d) =

∫
R3

v(r− rb)c(r, d)dr (1.4)
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is the probability that an event generated in the region defined by the b-th function is de-

tected in the tube d. Coefficients p(b, d) can be arranged in a matrix called the system

response matrix or simply, the system matrix.

At this point, the activity distribution λ(r) that maximizes the probability of obtaining

the measured data n∗(d) must be found. Since the collected data follow a Poisson model,

this corresponds to the maximization of the probability function:

P (n∗) =
D∏

d=1

e−λ∗(d)λ
∗(d)n∗(d)

n∗(d)!
(1.5)

The expression in (1.5) can be rewritten in terms of the set of basis functions by means

of substituting λ∗(d) by the expression given by (1.3). As the resulting expression is con-

cave, hence it follows that sufficient conditions for λ to be a maximizer of the likelihood are

the Karush-Kuhn-Tucker (KKT) conditions (Karush (1939)), which can be satisfied with

many iterative schemes. Particularly appealing is the one given by the expectation maxi-

mization algorithm. The final expression given in Vardi et al. (1985) is an instance of this

algorithm and constitutes the basis for much of the work in statistically based algorithms

in medical image reconstruction over the last years:

λnew (b) =
λold (b)

p(b, .)

D∑
d=1

n∗(d)p(b, d)
B∑

b=1

λold (b) p(b, d)

(1.6)

where

0 < p(b, .) =
D∑

d=1

p(b, d) (1.7)

The term p(b, .) is a normalization factor representing the probability of detecting (con-

sidering all possible detectors) a pair of photons arbitrarily emitted from within function b.

42



It is usually referred to as sensitivity matrix.

Nowadays, there is a growing trend to store PET measurements in the so-called list-

mode data. This mode has the advantage of a higher accuracy since the detections need not

be discretized into projections or sinograms. Reader et al. (1998) developed an expression

equivalent to Eq (1.6) for the case of data sorted in list-mode:

λnew (b) =
λold (b)

p(b, .)

N∑
n=1

p(b, d)
B∑

b=1

λold (b) p(b, d)

(1.8)

N is the total number of measured events. As can be observed, each line is treated

individually instead of being grouped into tubes of response, and thus the measurement

term n∗(d) is now equal to one in the numerator of the summation. This adaptation requires

also to change slightly the meaning of the terms of the system matrix p(b, d), which now

stand for the probability that an emission from the basis function b is detected along the

LOR d defined by the n-th event. The list-mode reconstruction equation is especially suited

for PET systems that make use of continuous detectors, since in these systems events are

not binned into discrete detectors. In this case, the list-mode version of the algorithm can

be used in order to avoid rebinning and preserve all the information obtained during the

acquisition.
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Chapter 2

Use of Integral Schemes for the System

Matrix Calculation

2.1 Introduction

As stated in Chapter 1, there is strong evidence that statistical algorithms achieve better

image quality than the analytical approximations. Two key features distinguish statistical

algorithms from conventional analytical reconstruction techniques. First, their ability to

optimize the performance in low-count situations by modeling the statistical variability

inherent in photon limited coincidence detection. Second, their ability to maximize the

resolution recovery by accurately modeling the geometry and the physics of the scanner

(Qi et al. (1998)). In Chapter 1 it has been pointed out that the MLEM approach (Vardi

et al. (1985)) constitutes a reference in the field of statistical reconstruction. This algorithm

assumes that the emissions follow Poisson statistics and incorporates the data acquisition

model through the so-called system matrix. The terms p(b, d) that form the system matrix

describe the relationship between sources and data. Specifically, each p(b, d) stands for the
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probability that an event generated in the region defined by a basis function b is detected in a

LOR d. The operations in which the knowledge of the system matrix is required during the

reconstruction are known as the forward and backward projection operations. The forward

projection is the operation that predicts the data which would result from a source activity

estimation λold (given by the mathematical relationship
∑B

b=1 λold (b) p(b, d) in Eq (1.6)).

The backprojection projects data onto a source volume distribution and is used to update

the source estimation from the comparison between the predicted and the real data. In Eq

(1.6), the backward projection is given by the updating of the volume elements λold (b) in

each iteration.

2.2 State of the art

It is well known that the quality of the images obtained through statistical reconstruction

depends strongly on how faithfully the theoretical model incorporated through the system

matrix depicts the real PET process (Tohme and Qi (2009)). The computation of the system

matrix should take into account the geometry of the scanner, the positron physics (non-

collinearity and positron range), the attenuation and scatter in the source volume, and the

detector response associated effects, both in terms of sensitivity and resolution (crystal

penetration, detector scatter, light detection/collection, electronics and readout design,...).

The price of the enhancements achieved by the accurate statistical schemes is that the

reconstructions require substantially greater computation time and/or storage requirements

than the analytical reconstructions. Iterative algorithms perform repeatedly the forward and

backward projection. These operations are the most time consuming parts of the iterative

reconstruction programs and require the knowledge of the whole system matrix (Herraiz

et al. (2006)), whose size is large in high resolution 3D PET systems (Ortuño et al. (2010)).

Reaching a good compromise between image quality and efficiency is thus a key challenge
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in statistical reconstruction. This is the reason that an important effort has been devoted to

find alternative implementations of the system matrix that provide high quality reconstruc-

tions at feasible reconstruction time and storage conditions. It should be also noted that this

thesis is primarily aimed at contributing in this direction.

2.2.1 Basic methodologies

In descending order of accuracy, the approaches to the computation of the system matrix

can be classified in three main categories:

1. Empirical methodologies: The most accurate description of the PET process would

be obtained through direct measurement of the system matrix from the scanner for

which data are going to be reconstructed. The system matrix could be obtained by

scanning a source at every basis function position, and recording the response. Un-

fortunately, the large number of scans required makes this approach presently un-

practical. (Panin et al. (2006b) makes a temporal estimation of 2.6 years to complete

the system matrix acquisition of the clinical Hi-Rez scanner (Bercier et al. (2004))

assuming scanner azimuthal symmetries). Moreover, the experimental setup can be

challenging due to the need to precisely locate the point source (Alessio et al. (2006))

2. Monte Carlo methodologies: Monte Carlo (MC) simulators offer the possibility of

modeling the physics of a PET scanner very precisely. An alternative to the direct

measurement of the system matrix is thus the MC simulation of the above mentioned

source scanning process. The feasibility of this approach has been shown in Veklerov

et al. (1988), Boning et al. (2001), Rafecas et al. (2004), Vandenberghe et al. (2006)

or Ortuño et al. (2010). Nevertheless, the simulated acquisition of the system matrix

encounters some difficulties:
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• Although current Monte Carlo simulators provide very accurate modeling of

the data scanning, there are still effects in the photon detection process that are

difficult or impossible to model in a simulation (Tohme and Qi (2009)) an hence

a Monte Carlo approach will be always less precise than an empirical approach.

• Monte Carlo simulators are fairly slow and, as stated in Moehrs et al. (2008), a

substantial number of simulations are required to reduce the statistical noise

of the estimated matrix elements. Several investigators have dealt with the

compromise between time and statistical accuracy in the MC computation of

the system matrix: Rafecas et al. (2002) studies the effect of the number of

simulated events in the noise propagation from the matrix into the image and

considers the role of system symmetries to improve the statistical quality of the

matrix. Giménez et al. (2005) determines which simplifications can be done to

accelerate the MC simulation without jeopardizing the accuracy of the system

model. In despite of these proposals, the Monte Carlo based computation of

the system matrix might be impractical if the number of LORs is too big or not

enough computational power is available (Moehrs et al. (2008)).

• The computational time demand that imposes the statistical accuracy to the

simulation of the system matrix often forces MC approaches to precompute the

system matrix and store it to be used during reconstruction. The fact that the

size of the system matrix for high-resolution 3D PET scanners is in the order

of several billions of elements (Ortuño et al. (2010)) makes the precomputation

of the whole system matrix a challenging task in terms of storage requirements.

Certain implementations exploit the sparsity (Ortuño et al. (2010)) and the sym-

metries (Johnson et al. (1994), Rafecas et al. (2004)) of the system matrix in
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order to save space. But in addition to the pure storage problem, the precompu-

tation once and for all of the system matrix entails other complications:

– It limits the flexibility of the algorithm implementation to a fixed setup

of the scanner and to a fixed type and size of the basis function used to

approximate the continuous tracer distribution.

– Even if the size of the system matrix can be reduced enough to keep it

in memory, the access to disk for every forward and backward projection

operation can considerably slow down the reconstruction (Herraiz et al.

(2006)).

– The sorting of the simulated data into the matrix is a computation-expensive

procedure hindered by the huge size of the matrix. Rafecas et al. (2004)

employs a database management system to overcome this problem.

– In the case of continuous scintillators, the positions d assigned to the de-

tected photons do not correspond to a discrete group of crystal center pairs,

but to continuous locations within the blocks. The resulting p(b, d) terms

are thus continuous functions of d. An artificial discretization of the de-

tection locations has thus to be done in order to precompute and store the

continuous p(b, d) terms. The data under reconstruction would have to be

rebinned to fit to the discretized system matrix terms. Since the main ad-

vantage of the continuous scintillators technology is indeed the precision

with which the photons are positioned within the block, the rebinning of

the acquired data involves a clear waste of resources.

3. Analytical methodologies: Finally, there exist analytical implementations of the

system matrix. Unlike the Monte Carlo approaches, the analytical approaches are

noise-free and usually very fast (Strul et al. (2003)). This allows the computation
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of the elements of the system matrix on the fly at reconstruction time, thus avoiding

the storage problems above mentioned. However, on its quest to speed up the re-

construction process, these methods typically overlook important physical effects of

the PET acquisition process and use simple geometric system models based on the

intersection of the lines (Siddon (1985)) or the tubes of response (Ollinger and Gog-

gin (1996), Scheins et al. (2006), Schretter (2006)) with the basis functions, other

improved ray-tracers (Aguiar et al. (2010)) or the solid angles subtended at the de-

tectors by each basis function (Chen et al. (1991), Terstegge et al. (1996), Johnson

et al. (1997), de la Prieta et al. (2006)).

2.2.2 Hybrid approaches

Johnson et al. (1994) and Selivanov et al. (2000) show how the enhancement of a simple

analytical geometrical model with a spatially variant detector response may improve the

quality of the results without significantly jeopardizing the efficiency of the system matrix

computation. These works can be thought as the basis for a great amount of hybrid ap-

proaches that combine the analytical methods with empirical and MC results in order to

obtain high precision models at affordable storage and/or time requirements.

Analytical-empirical approaches

Certain approaches combine analytical calculations with empirical measurements. Panin

et al. (2006a) and Panin et al. (2006b) construct the forward projector for the Hi-Rez scan-

ner (Bercier et al. (2004)) using parameterized responses estimated from point sources data

measured at different positions in a portion in the field of view. In Frese et al. (2003) the

parameterized responses are determined for the IndyPET scanner by processing scans of
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line source phantoms positioned near the center of the field of view. While both meth-

ods result in significant improvements in image quality, their main weakness is their lack

of flexibility, since they are aimed to specific devices. Based on the a priori geometrical

knowledge of the scanners for which the system model is going to be computed, several

assumptions and simplifications in the model are done that allow to reduce the number

of empirical measurements needed to compute the analytical responses. Even after these

simplifications, the methods require extensive and very accurate empirical measurements

using a positioning robot.

Analytical-MC approaches

The combination of MC and analytical strategies results on less complex calculations of the

system matrix that allow for a higher flexibility on its estimation. Kudrolli et al. (2002) im-

plements the forward and backprojection operations using stochastic sampling techniques

based on Monte Carlo tools. In this work the forward and backward projections are cal-

culated on the fly relying on parallel processors to give fast reconstructions. The approach

thus eliminates the need to explicitely calculate the system matrix while keeping the accu-

racy provided by the Monte Carlo methods. The accuracy and the speed of the work by

Kudrolli et al. (2002) is proved, but just on ideal data, that ignores the effects of attenua-

tion, scatter and response systematic errors. Herraiz et al. (2006) uses a MC simulator to

precompute the elements of the system matrix considering sparseness along with all possi-

ble axial and in-plane symmetries as well as certain quasi-symmetries. The elements of the

system matrix are stored as cubic spline profiles and matched to the voxel size during re-

construction. In this way, the advantages of on-the-fly calculation (matching the profiles to

voxel size) and of fully stored system matrix are combined. While it is shown to be an ac-

curate and efficient implementation of the system matrix, the precomputation of the source

dependent effects (attenuation, scatter and positron range) relies on assumptions about the
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properties of the imaged object.

Separated-effects approaches

Both the analytical-empirical and the analytical-MC approaches to the computation of the

system matrix have still certain associated limitations. On the one hand, the analytical-

empirical approaches (Panin et al. (2006a), Panin et al. (2006b), Frese et al. (2003)) lead

to too ad-hoc system matrix implementations in order to reduce and simplify the measure-

ments. On the other hand, the analytical-MC methods (Kudrolli et al. (2002), Herraiz et al.

(2006)) may rely on assumptions about the data formation model, due to the limitations of

the MC techniques and to the need of precomputation. This suggests that an optimal hy-

brid approach should make use of the three methodologies (empirical, MC and analytical)

available for the system matrix computation. Such combination of strategies is achieved

by the noteworthy family of hybrid approaches that model each effect that occurs in the

data stream of a PET scanner separately (in the following, referred to as the “separated-

effects” approaches). A great variety of works (Qi et al. (1998), Mumcuoglu et al. (1996),

Reader et al. (2002a), Rahmim et al. (2003), Strul et al. (2003), Lee et al. (2004), Staelens

et al. (2004), Alessio et al. (2005), Alessio et al. (2006), Bao et al. (2008), Sureau et al.

(2008), Rahmim et al. (2008), Moehrs et al. (2008), Iriarte et al. (2009), Tohme and Qi

(2009)) have proved the benefits of this approach, which rely on explicitely considering the

diversity of the effects occurring during the PET acquisition process, for which an homo-

geneous treatment may result in non optimal calculations. By modeling each effect using

the methodology that better fits to its requirements, these approaches achieve a synergy

between the three basic methodologies. It is not worth to perform complex and costly em-

pirical or Monte Carlo experiments to model the response of effects for which accepted

analytical fast noise-free models are available. This is clearly the case of the geometrical

factors, but also of other physical effects, such as the photon non-collinearity deviation
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angle, which is known to have a Gaussian distribution (DeBenedetti et al. (1950)). In

the cases where the analytical approach becomes either too complex to allow on-the-fly

computation or too general to accurately reflect certain specific features, an experimental

estimation can be used instead. This can be the case of effects such as the photon interac-

tion physics within the scintillator. While in these cases an empirical model should provide

more accurate results, the complexity of the measurement process can lead to the prefer-

ence for a Monte Carlo estimation. In any case, since the model used to describe each

effect may change from one reconstruction to another without altering the rest of models,

the separated-effects approaches enjoy a great flexibility in terms of scanner setups (geom-

etry, material...), experimental conditions (isotope, subject under study) or reconstruction

features (type and size of the basis function).

Independently of the methodology used to model each part of the process, a different

problem arises when the separately modeled effects have to be combined to form the whole

system matrix. Different approaches exist to address this issue:

• Factored approaches: The most popular way of combination is to express the sys-

tem matrix as a product of independent matrices, each one standing for one or a

collection of effects. This approach achieves substantial savings both in storage

(since each matrix component is highly structured and sparse) and computational re-

quirements (since the forward and backward projection can be performed efficiently

with the stored matrix). Although several approaches exist (Reader et al. (2002a),

Rahmim et al. (2003), Sureau et al. (2008)), the scheme proposed by Mumcuoglu

et al. (1996) for the two-dimensional case and extended by Qi et al. (1998) to the

three-dimensional case is considered a golden standard that has given place to many

successful system matrix implementations (Lee et al. (2004), Alessio et al. (2005),

Alessio et al. (2006), Bao et al. (2008), Tohme and Qi (2009)) for PET iterative
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reconstruction. The successful implementations of the system matrix based on the

factored approach have shown to be efficient and to achieve good quality results.

Probably this is the reason that the accuracy of the approach has never been much

questioned, even if it completely ignores the interdependence between the different

effects. Certain authors (Kudrolli et al. (2002), Herraiz et al. (2006), Ortuño et al.

(2010)) have pointed out whether expressing the system matrix as a product of inde-

pendent factors is a reliable approach, but the shortcomings of the factored schemes

have never been further specified. Moreover, the effect that these limitations may

have in the quality of the reconstructions has never been observed, since there is not

an alternative that is able to compete with the factorization for the combination of

effects.

• Integral approaches: Several schemes have been proposed (Strul et al. (2003), Stae-

lens et al. (2004), Moehrs et al. (2008), Iriarte et al. (2009)) that model the effects

separately through probability density functions and combine them by means of in-

tegration. These approaches have shown a good agreement with fully Monte Carlo

based calculations using less computation. However, in these schemes the system

matrix loses the sparsity of their factored counterparts, which makes its storage an

impractical task. Furthermore, the resulting integral expressions are too complex

to be analytically solved, which makes the on-the-fly calculation a computational

challenge. For this reason, these schemes are forced either to ignore effects that are

present in the factored models (Strul et al. (2003), Staelens et al. (2004), Iriarte et al.

(2009)) or to consider these effects by means of corrections (Moehrs et al. (2008)).

Furthermore, even after these simplifications, the incorporation of these response

models in a reconstruction algorithm without assuming important simplifications be-

yond the unavoidable numerical integration (Moehrs et al. (2008)) has still to be
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checked. Under these circumstances a suitable comparison between the integral and

factored schemes is not possible. Consequently, although due to their higher degree

of accuracy, the integral schemes can be expected to achieve better reconstructions

than the efficient factorization, it has not been yet been proved to what extent this

statement is true.

2.3 Objectives of the Chapter

The review of the literature on the system matrix computation suggests that the approaches

that model separately the different parts of the PET data acquisition process have a great

number of advantages, since they are able to simultaneously profit the benefits of the ana-

lytical, Monte Carlo and empirical methodologies.

While the benefits of the separation of the effects seem to be clear, the importance

of the scheme used for their combination is a subject that has not yet been explored. As

stated in the previous section, there are technically two possibilities for the combination of

the effects: the factored and the integral schemes. In principle, the integral schemes are

more accurate but the great computational challenge they pose has traditionally made them

infeasible. As a result, factorization has become the only choice. As well as being the only

option, the efficient factored schemes have led to high quality efficient reconstructions, and

consequently, their limitations have never been much questioned.

Nowadays, several technological advances are making possible the use of increasingly

complex system models at feasible reconstruction times. In Herraiz et al. (2006) the re-

construction algorithm runs on several CPUs using the message passing interface (MPI)

protocol, whereas Herraiz et al. (2011) and Pratx and Levin (2011) perform graphics pro-

cessing unit (GPU)-based implementation of the reconstruction iterative algorithms. In

terms of reconstruction time, these advances allow for the implementation of the so-far
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impractical integral schemes and for their comparison with the traditionally unquestioned

factored approaches. Based on these statements, the objectives of this chaper are:

1. In Section 2.4, a new scheme for the system matrix computation is introduced. The

new scheme benefits of the advantages of separating the effects, since each step of

the PET acquisition process is able to be modeled with a different methodology, but

uses a scheme of integration for the combination of the effects, in which their inter-

dependence is explicitly considered. Since the same effects as in the most complete

factored schemes are considered in its development, the new scheme can be consid-

ered as the first fair reference with which to compare the factorization.

2. A qualitative analysis of the schemes of combination of the separately modeled ef-

fects is performed along Section 2.5. Specifically, it will be shown in Subsection

2.5.1 how the factored scheme can be deduced from the integral scheme introduced

in Section 2.4, after certain assumptions about the data formation process have been

done. Moreover, in 2.5.1, other common assumptions done by the factored schemes

in order to reduce their computational requirements will be pointed out. Next, in

Subsection 2.5.2, the importance of each of these assumptions is analyzed, based on

well-known properties of the effects each of them concerns. In this way, the sim-

plifications in which the widespread factored scheme is based in, are, by first time,

specified and analyzed.

3. The new integral scheme introduced in Section 2.4 plays a key role in the theoretical

analysis of the schemes of combination of effects performed in Section 2.5. How-

ever, as it has been mentioned, its implementation is expected to be a great challenge,

since it is based on a complex multidimensional integral. Moreover, although several

techniques have been mentioned that can accelerate substantially the reconstructions

(MPI, GPUs implementation), the increasing complexity of scanners implies a large
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number of data and reconstructed basis functions, as well as more sophisticated ac-

quisition protocols, such as dynamic studies, which always require the reconstruction

approaches to be as efficient as possible (Herraiz et al. (2011)).

On the other hand, although several important weakpoints have been found in the

factored schemes of combination, other parts of the factorization have been found

to have a good agreement with the real acquisition process. Based on these state-

ments, a new mixed scheme for the combination of the separately modeled effects

is introduced in Section 2.6. The new scheme keeps the factorization of effects in

those cases in which the assumptions involved have been found to be acceptable. In

those cases in which the factorization has proved to be inaccurate, the combination

of effects has been done by means of integration. In this way, the benefits of the

(efficient and simple) factored schemes and the (accurate but impractical) integral

schemes have been joined, in a justified and explicit way for the first time.

4. The new mixed scheme introduced in Section 2.6 is aimed to obtain higher quality

results by maximizing the accuracy of the response model while simplifying its im-

plementation and minimizing the computational resources employed. The achieve-

ment of these objectives is well backed up from a theoretical point of view, since the

new scheme is the result of a thorough analysis performed along Sections 2.4, 2.5 and

2.6. In order to complete the study, it has been checked to what extent the objectives

are accomplished in the reconstruction domain. With this purpose, the mixed scheme

has been implemented and incorporated to a reconstruction algorithm in Section 2.7

and then has been evaluated in terms of quality and efficiency in Section 2.8.

56



2.4 An integral scheme

The system matrix terms, which have been referred to as p(b, d), stand for the probability

that a positron emission from the basis function b is detected at certain scanner position d.

In this section a new scheme for the computation of these terms is introduced. With this

purpose, a thorough tracking of the events that take place since a positron is emitted from b

until a gamma pair is registered and positioned by the detection system will be performed

in the following subsections. Each of these subsections deals with the description of a

step in this process, which can embrace one or several of the effects ocurring during the

PET acquisition data. Widespread noise-free analytical models are used to represent those

effects for which such models exist. Otherwise, a brief review of the literature of existing

models is done. In any case, the methodology is open for the modification, improvement or

neglection of the models behind each effect, without altering the rest of the system matrix.

As it can be checked, the steps in which the acquisition process has been divided have

been chosen to match the matrices in which the most popular factored schemes decouple

the system matrix. These factors stand for the positron range, geometry, attenuation in the

object, detection efficiency and detection positioning. The inclusion of all these effects in

the new methodology ensures its loyalty to the PET acquisition process in the small animal

field, based on the high quality results achieved by the factored approaches.

However, the combination of the different parts of the process to form the whole system

matrix is not done following the widespread scheme of factorization. As it can be checked,

each of the subsection builds on the previous one, taking into account the interdependence

between the successive effects with a scheme of integrals and probability density functions.

Consequently, an expected added value provided by the thoroughness of the new scheme

of combination with respect to the factorization is expected to be provided.

The development is valid for both the static ring and to the rotating geometry although
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for simplicity just the two detection blocks involved in the determination of d will be con-

sidered (as shown in Figure 2.1). Moreover, the two detectors shown in the following

figures have been chosen to be parallel, but the results apply to any relative position of the

blocks.

2.4.1 Basis function approximation

The aim of this section is to develop a mathematical representation of the physical data

acquisition process beginning at a positron emission within a basis function b. Since the

data acquisition process strictly starts with an emission from a certain point r0 of the con-

tinuous radiotracer, it would be more faithfully represented with continuous p(r0, d) terms

(with analogous definitions than the p(b, d) terms). However, the need to manipulate data

in a digital form imposes the construction of the continuous radiotracer as a sum of basis

functions b that leads to a model based on discrete p(b, d) terms. The relationship between

p(r0, d) and p(b, d) can be easily computed if the basis function centered at position rb is

interpreted as the probability density function of the emitting points within a certain re-

gion of space v(r0) (for this it is needed that the basis function is non negative and that it

integrates to 1):

p(b, d) =

∫
r0∈b

p(r0, d)vb(r0)dr0 (2.1)

From this point the present section will focus on the computation of the continuous

p(r0, d) terms, through which the characterization of the data acquisition process will be

done. Once these terms have been obtained, Eq (2.1) can be used to generalize the result to

any type and size of basis function used to approximate the continuous radiotracer.
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2.4.2 Positron range

In the computation of the probability that an emission from a point r0 gives place to a

coincidence at d, it must first be observed that, since a positron travels certain distance

before annihilating, the gamma pair can be emitted from a position r different from the

emission point r0, as shown in Figure 2.1.

d1

d2r

r0
X

X

Figure 2.1: Positron range. A positron emitted from r0 may travel
certain distance before annihilating at r

The inclusion of the positron range effect in the computation of p(r0, d) is given by the

following expression:
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p(r0, d) =

∫
r

p(r, d)fr0(r)dr (2.2)

fr0(r) represents the 3-D probability density function of the annihilation point for a

positron emission occurred at r0. Since the positron range is an object and radioisotope

dependent effect this distribution should be re-estimated for each experiment. Different

approaches can be found in the literature to estimate the positron range via experimental

measurements (Cho et al. (1975), Phelps et al. (1975)) MC simulations (Levin and Hoff-

man (1999), Champion and Loirec (2007), Alessio and MacDonald (2008)) and analytical

expressions (Palmer and Brownell (1992)) and it has to be remarked that a considerable

variation has been found among all of them (Cal-González et al. (2009)). The reason for

this uncertainty is that the tortuous path that positron follows in tissue is probably the most

poorly understood of the resolution degradation factors in PET.

p(r, d) stands for the probability that a positron-electron annihilation occurred at a

generic location r gives place to a coincidence detected at position d. From this point

the development will be focused on the computation of p(r, d).

2.4.3 Geometry

The pair of photons following an annihilation from r are emitted at 180 degrees (the non-

collinearity effect will be considered later) relative to one another. If the line along which

each gamma pair propagates is defined by two angles, azimuthal γ and polar ϕ (see Figure

2.2), the probability that a pair emission from r is detected at d can be expressed as:

p(r, d) =

∫
γ

[∫
ϕ

p(r, γ, ϕ, d)f(ϕ, γ)dϕ

]
dγ (2.3)
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where f(ϕ, γ) is the likelihood that a gamma pair with orientation defined by ϕ and γ is

emitted. Since it is known that the spatial orientation of the emitted pairs is random, this

likelihood can be set to f(ϕ, γ) = cosϕ/2π, which corresponds to an uniform distribution

of the emissions in the space. In principle, the angular integration limits of Eq. (2.3) should

be such that all the possible gamma pairs emitted from r are included in the integral. In

practice, these limits can be restricted to account just for those emitted pairs that are likely

to give place to a detection at d. The integration range should therefore exclude those pair

emissions in which one or both of the gamma photons do not intersect the scanner and

those pair emissions that, although intersecting the scanner, are not likely to give rise to

a coincidence at d. The former restriction will be imposed by the scanner geometry and

the later by the effects that will be modeled in the following sections through p(r, γ, ϕ, d),

which will reduce the range of pairs detectable at d to those intercepting the detectors in a

neighborhood of d. Appendix A shows how to compute the integration range for ϕ and γ

that limits the emissions to such neighborhood.

2.4.4 Non-collinearity

The p(r, γ, ϕ, d) term stands for the probability that the gamma pair originated in r and

with spatial orientation defined by ϕ and γ is positioned at d by the detection system. The

following subsections deal with the computation of this term. The first phenomena that will

be included in its computation is the photon non-collinearity. So far, it has been assumed

that the two gamma photons emitted from r are antiparallel, and share, therefore, their

spatial orientation, defined by the angles γ and ϕ. However, the variation in momentum of

the positron results in an angular deviation from the antiparallel orientation. The inclusion

of this effect in the computation of p(r, γ, ϕ, d) is as follows:
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d1

d2

r
X

511keV

511keVγ,φ

Figure 2.2: Geometry. The gamma pair spatial orientation is defined by
the angles ϕ and γ in the coordinate system shown in the
right bottom corner of the figure

p(r, γ, ϕ, d) =

∫
θ1

f(θ1)

[∫
θ2

pacc(r, γ, ϕ, θ1, θ2, d)f(θ2)dθ2

]
dθ1 (2.4)

where θ1 is the deviation from the theoretical 180 degrees orientation given by the

original (ϕ, γ) and θ2 defines, among all the planes containing the original collinear pair,

in which of them the deviation occurs (Figure 2.3 shows the case in which this plane is

parallel to the z axis). f(θ1) is the probability density of θ1, which is well established as a
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Gaussian-distributed variation from the 180 degrees with σ = 25 milliradians (DeBenedetti

et al. (1950)). On the other hand, θ2 can be assumed to be uniformly distributed between 0

and π radians, and therefore f(θ2) = 1/π. Appendix B shows how to compute the spatial

orientation of the gamma photons from ϕ, γ, θ1 and θ2.

d1

d2

r
X

θ1

γ,φ

θ2

Figure 2.3: Non-collinearity. The deviation from the collinear situation
is defined by the angles θ1 (degree of non-collinearity) and
θ2 (plane where the non-collinearity takes place).

pacc(r, γ, ϕ, θ1, θ2, d) is the probability that the gamma pair with orientation defined by

ϕ, γ, θ1 and θ2, gives place to a detection at d. The following sections study the computation

of this term in depth.
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2.4.5 Attenuation

The photons emitted by the radiopharmaceutical may interact with tissue and other materi-

als as they pass through the subject to be imaged. The loss of detection of true coincidence

events that are completely absorbed is referred to as attenuation. In order to account for

this effect, pacc(r, γ, ϕ, θ1, θ2, d) can be expressed as:

pacc(r, γ, ϕ, θ1, θ2, d) = pdet(r, γ, ϕ, θ1, θ2, d)patt(r, γ, ϕ, θ1, θ2) (2.5)

where patt(r, γ, ϕ, θ1, θ2) is the probability that a gamma pair emitted from r and propagat-

ing along the direction defined by ϕ, γ and the deviation given by θ1 and θ2 is not absorbed

by the object and reaches the detectors. This probability can be expressed as the product of

the individual survival probabilities of each of the photons, which are known to follow an

exponential distribution (Ollinger and Fessler (1997)):

patt(r, γ, ϕ, θ1, θ2) = e
R Latt1
0 µ(l)dle

R Latt2
0 µ(l)dl (2.6)

Latt1 i = 1, 2 are the distances traveled by the annihilation photons within the atten-

uating medium (before reaching the scintillator) in the direction given by γ, ϕ, θ1 and

θ2 and the integration variables l cover these distances. The attenuation coefficient µ(l)

is a function of the attenuating medium’s physical properties (atomic number and den-

sity) and the energy of the photon. In most instances, a discretized version of the terms

patt(r, γ, ϕ, θ1, θ2) is experimentally estimated and stored. A source surrounding the patient

is used with this purpose. Then, the probability of survival for each LOR of the scanner

is computed as the ratio of the number of photons pairs detected with the patient present

(the transmission scan) to the number detected in the absence of the patient or attenuation

medium (blank scan) (Lewellen and Karp (2004)). Alternatively, the transmission scan
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can be used to reconstruct an image of the linear attenuation values via statistical methods

(Lange et al. (1987), Fessler et al. (1997), Mumcuoglu et al. (1994))

pdet(r, γ, ϕ, θ1, θ2, d) stands for the probability that a pair of photons that reach the de-

tectors after propagating from the point r with orientations defined by γ, ϕ, θ1 and θ2, gives

place to a coincidence at d, and its computation is discussed in the following subsections.

2.4.6 Detection efficiency

In the computation of pdet(r, γ, ϕ, θ1, θ2, d), it has to be taken first into account that the pair

that reaches the detector faces may not be detected because no detector is 100% efficient.

In order to include this effect in the system matrix model, the term pdet(r, γ, ϕ, θ1, θ2, d)

can be splitted in two as follows:

pdet(r, γ, ϕ, θ1, θ2, d) = pdet sens(r, γ, ϕ, θ1, θ2)ppos(r, γ, ϕ, θ1, θ2, d) (2.7)

where pdet sens(r, γ, ϕ, θ1, θ2, d) stands for the probability that the photon pair defined by r,

γ, ϕ, θ1 and θ2 finally leads to a coincidence event and ppos(r, γ, ϕ, θ1, θ2, d) stands for the

probability that the coincidence is assigned to LOR d. The next subsection will deal with

the effects involved in the event positioning while this subsection deals with the calculation

of pdet sens(r, γ, ϕ, θ1, θ2, d).

The first condition that a gamma pair that reaches the detectors must meet to generate

a coincidence, is that both photons interact with the scintillators. As has been mentioned

in the previous section, the probability of interaction of the photons with matter can be

approximated by an exponential distribution. It can be easily inferred from this statement,

that the probability that both photons interact with the scintillator is:

pint(r, γ, ϕ, θ1, θ2) = (1− eµLsci1 )(1− eµLsci2 ) (2.8)
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Where Lscii i = 1, 2 are the lengths the photons emitted from r intersect the scintillators

in the direction given by ϕ, γ, θ1, θ2 and µ is the linear attenuation coefficient of the

scintillator.

The interaction of both photons is a necessary but insufficient condition for the gener-

ation of a coincidence. Other effects may complicate the detection of both photons once

they have interacted with the scintillators. For example, photons can’t be detected dur-

ing the so-called “dead time” because the counting system is busy processing previously

detected events. Moreover, the differences in timing synchronization may cause misalign-

ments in the timing windows between detectors pairs, reducing the detection efficiency.

The detection efficiency drops as well due to other effects such as crystal imperfections,

physical variations in the light guides, the PMTs or the electronics and variations in the

PMT gains. Due to its ad-hoc nature, these effects are usually measured through calibra-

tion procedures in which the detectors are irradiated with a source of known activity and

then applied in the form of normalization factors. Obviously, the procedures to obtain the

normalization factors do not account just for the effects related to the detector sensitivity,

but include all the effects involved in the measurement process. However, the normalization

factors should account only for the effects that have not already been considered in other

parts of the system matrix. The so-called component-based methods that include separated

factors for the different effects (Hoffman et al. (1989), Casey et al. (1996), Badawi and

Marsden (1999), Bai et al. (2002)), allow to match the normalization to the whole model.

These methods are thus specially suitable to compute the normalization correction in the

statistical framework.

Based on the previous discussion, the term pdet sens(r, γ, ϕ, θ1, θ2, d) will be expressed

as follows:

pdet sens(r, γ, ϕ, θ1, θ2, d) = pint(r, γ, ϕ, θ1, θ2)pcal(r, γ, ϕ, θ1, θ2) (2.9)
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In order to account for the fact that the detection of a gamma pair passes first through

the interaction of the photons with the scintillators (whose probability, pint(r, γ, ϕ, θ1, θ2),

is given by Eq (2.8)) and then through a bunch of heterogeneous effects, represented by

the term pcal(r, γ, ϕ, θ1, θ2), for which no analytical accepted models exist but that can be

incorporated to the model by means of calibration procedures.

2.4.7 Event positioning

The remaining term ppos(r, γ, ϕ, θ1, θ2, d) stands for the probability that the coincidence

generated by the gamma pair defined by r,γ, ϕ, θ1 and θ2, is positioned at d. In principle,

this term should be a binary function equaling one for those gamma pairs reaching the

detectors within the limits imposed by d and zero otherwise. However, the effect of two

important resolution degrading factors makes this probability to be a rather more complex

function. First, it has to be taken into account that the photons may travel a certain distance

within the scintillator before their first interaction. As a result, the interaction may be

shifted to locations different from the entry crystals of the photons. This effect has already

been referred to as crystal penetration. Second, it has to be taken into account that the

product of the first interaction with the scintillator (the x-ray produced in photoelectric

absorption or the Compton scattered photon) is available for additional interactions that, in

turn, can give rise to further particles and interactions with the scintillator. This phenomena

has been already referred to as detector scatter and, as stated in Mumcuoglu et al. (1996),

may result in mispositioning.

Many works have shown how the incorporation of the crystal penetration and the de-

tector scatter factors to the system matrix is highly advantageous in the reconstruction of

high-resolution small animal PET data (Lee et al. (2004)). Nevertheless, these effects are

known to be also a major cause of the non-sparsity of the system matrix (since they made
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broader the volume of space that can produce coincidence counts in each pair of detectors

(Selivanov et al. (2000))), and of the non redundancy of its components (since they show

a highly spatially variant behavior (Alessio et al. (2006))). The crystal penetration and de-

tector scatter factors are therefore a source of both accuracy and complexity for the system

matrix. This makes their computation a challenging task, as is reflected by the extensive

modeling that this part of the system matrix has been object of.

Certain approaches collectively model both effects by means of Monte Carlo simula-

tions (Qi et al. (1998), Alessio et al. (2006), Bao et al. (2008)) or scanner measurements

(Lee et al. (2004), Alessio et al. (2005), Tohme and Qi (2009)) and store the discretized re-

sults to be used during reconstruction. In other cases separated models for the two factors

(Strul et al. (2003), Staelens et al. (2004), Rahmim et al. (2008), Moehrs et al. (2008), Iriarte

et al. (2009)) are obtained and later combined in a single scheme. In the second case, for the

crystal penetration, an analytical exponential model is typically used in all the cases, pro-

vided that the probability of interaction is known to drop exponentially with the distance the

photon travels. For the detector scatter, the Klein-Nishina distribution (Klein and Nishina

(1929)) along with the National Institute of Standard and Technology (NIST) photon cross

section tables (/http://physics.nist.gov/PhysRefData/Xcom/Text/XCOM.html) cover the sta-

tistical information needed to accurately model the multiple interactions. However, dealing

analytically with the infinite multiple interactions patterns that every single photon can

give rise to is an impracticable problem, and the idea of developing analytical expressions

to model the detector scatter has been traditionally discarded. These tools are much more

well suited to be sampled by Monte Carlo simulators, as has already been done to estimate

the effect of the detector scatter in Moehrs et al. (2008) and Rahmim et al. (2008). Other

works have tried models based on Gaussian distributions (Staelens et al. (2004), Iriarte

et al. (2009)). However, it can’t be guaranteed that the mispositioning due to the detector

scatter is going to behave as a Gaussian in all cases, since important differences may exist
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among the event positioning in the different devices.

2.4.8 The whole system matrix

The phenomena involved in the positioning of the photons that have been described in

Subsection 2.4.7 constitute the last step in the PET data acquisition process. Therefore,

with their inclusion in the new integral scheme, the aim of this Section has been achieved.

The final expression for the system matrix terms of the new integral scheme can be obtained

by rearranging the terms that have been introduced along the previous subsections into a

single expression:

p(b, d) =

∫
ro

vb(r0)

[∫
r

fr0(r)

[∫
γ

[∫
ϕ

f(ϕ, γ)

[∫
θ1

f(θ1)

[∫
θ2

f(θ2)patt(r, γ, ϕ, θ1, θ2)

pdet sens(r, γ, ϕ, θ1, θ2)ppos(r, γ, ϕ, θ1, θ2, d)dθ2

]
dθ1

]
dϕ

]
dγ

]
dr

]
dr0 (2.10)

Where:

vb(r0) is the spatial distribution of the basis function b,

fr0(r) is the probability density function of the annihilation point for a positron emission

occurred at r0,

f(ϕ, γ) is the probability density function of the spatial orientation of the gamma pair emis-

sions,

f(θ1) is the probability density function of the non-collinearity angle,

f(θ2) is the probability density function of the plane where the non-collinearity of the pho-

tons takes place,

patt(r, γ, ϕ, θ1, θ2) is the probability that a gamma pair emitted from r and propagating
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along the direction defined by ϕ and γ and the deviation angles θ1 and θ2 is not absorbed

and reaches the detectors,

pdet sens(r, γ, ϕ, θ1, θ2, d) stands for the probability that the photon pair that is not absorbed

and reaches the detectors leads to a coincidence event,

ppos(r, γ, ϕ, θ1, θ2, d) stands for the probability that the coincidence is assigned to LOR d.

One or several options to compute these expressions and their associated integration

limits have been provided in the sections that have dealt with the effects each of them

accounts for.

2.5 Analysis of the schemes of combination

In the previous section, a new methodology for the computation of the system matrix has

been developed. As it has been pointed out, the new methodology shares advantages with

the most popular factored models (Qi et al. (1998)), in terms both of accuracy (since the

effects considered are the same) and of the flexibility with which each part of the acquisi-

tion process is able to be modeled (since each part of the model is individually considered).

However, unlike the factored approaches, the methodology introduced combines the mod-

els of the different effects with a higher degree of mathematical precision, using integrals

of probability density functions instead of products of independent discrete matrices. In

this section, the importance of the differences between the integral and factored schemes

of combination will be studied. This analysis will be performed in two steps:

1. In Subsection 2.5.1, the factored schemes will be questioned. Specifically, it will be

first shown how the factored approach can be deduced from the new approach given

by Eq (2.10), after certain assumptions about the data acquisition process are made.

Then, it will be shown how the efficiency of the factorization relies also in certain
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assumptions of the model. These are interesting results from the theoretical point of

view, as the simplifications made by the factored models had never been formally

stated before.

2. Once the assumptions made by the factored approaches have been specified, it will

be discerned and justified in Subsection 2.5.2 which of them make sense, and which

ignore important aspects of the data acquisition process. This analysis is expected

to give an important clue of the influence of these assumptions in the reconstruc-

tions domain, since the accuracy of the model is directly related to the quality of the

reconstructions achieved by iterative algorithms.

2.5.1 Analysis of the factored schemes

The most popular factored schemes (based on Mumcuoglu et al. (1996) and Qi et al. (1998))

express the system matrix as follows:

P = pdet.senspblurpattpgeoppos (2.11)

In a reconstruction in which the continuous radiotracer distribution is approximated as

a sum of bj (j = 1, 2...N ) discrete basis functions and in which the scanner contains di

(i = 1, 2...M ) possible detector pairs, pdet.sens and patt are the M ×M diagonal Normal-

ization and Attenuation matrices. The diagonal elements ((i, i)) on these matrices contain,

respectively, the correction factors for the detection efficiency of each LOR di and the

survival probabilities of the photon pairs contained in each LOR di. pgeo is the N × M

Geometric Projection matrix with each element (i, j) equal to the probability that a a pho-

ton pair produced in a basis function bj reaches the front faces of the detector pair di in the

absence of attenuation and assuming perfect photon-pair collinearity. pblur is the M ×M

71



matrix known as the Blurring matrix. It is used to model the mispositioning of events pro-

duced by the photon-pair non-collinearity, detector scatter and penetration. Each element

(i, i′) in this matrix equals to the probability that a pair originally reaching the detector at

pair di gives place to a detection in d′i due to the mentioned effects. ppos is the N × N

Positron range matrix. Each (j, j′) element in this matrix stands for the probability that a

decay from within a basis function bj gives place to an annihilation in another basis func-

tion b′j due to the effect of positron range. It can be checked that all the effects behind

the matrices pdet.sens, pdet.blur, patt, pgeo and ppositron have been included along Subsections

2.4.2 to 2.4.7 in the new integral model.

A term p(b, d) of the factored system matrix, with b corresponding to one of the j =

1, 2...N basis functions and d corresponding to one of the i = 1, 2...M detector pairs can

be demonstrated to be equal to:

p(b, d) = pdet sens(d)
M∑
i=1

{
pblurr(di, d)patt(di)

N∑
j=1

{pgeo(bj, di)ppos(b, bj)}

}
(2.12)

Scheme development

In the following, it will be shown how these terms can be obtained as a simplification of

the terms of the new integral scheme, which, as shown in Subsection 2.4.8 are given by:

p(b, d) =

∫
ro

vb(r0)

[∫
r

fr0(r)

[∫
γ

[∫
ϕ

f(ϕ, γ)

[∫
θ1

f(θ1)

[∫
θ2

f(θ2)patt(r, γ, ϕ, θ1, θ2)

pdet sens(r, γ, ϕ, θ1, θ2)ppos(r, γ, ϕ, θ1, θ2, d)dθ2

]
dθ1

]
dϕ

]
dγ

]
dr

]
dr0 (2.13)

The first modification needed to factorize Eq (2.13) is to extract from the integral
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scheme the effects related to the detector efficiency and reconsider them in the form of

correction factors for each LOR:

p(b, d) = pdet sens(d)

∫
ro

vb(r0)

[∫
r

fr0(r)

[∫
γ

[∫
ϕ

f(ϕ, γ)

[∫
θ1

f(θ1)

[∫
θ2

f(θ2)

patt(r, γ, ϕ, θ1, θ2)ppos(r, γ, ϕ, θ1, θ2, d)dθ2

]
dθ1

]
dϕ

]
dγ

]
dr

]
dr0 (2.14)

The importance of this step will be discussed in detail in Subsection 2.5.2.

In order to continue the factorization of Eq (2.14), the gamma pairs emitted from the

annihilating point r can be grouped according to their spatial orientations (γ, ϕ) as follows:

p(b, d) = pdet sens(d)

∫
ro

vb(r0)

[∫
r

fr0(r)

[
M∑
i=1

{∫
γi

[∫
ϕi

f(ϕ, γ)

[∫
θ1

f(θ1)

[∫
θ2

f(θ2) .

patt(r, γ, ϕ, θ1, θ2)ppos(r, γ, ϕ, θ1, θ2, d)dθ2

]
dθ1

]
dϕ

]
dγ

}]
dr

]
dr0 (2.15)

The pairs with orientations defined by azimuthal and polar angles in the intervals γi and

ϕi are those whose photons reach the scintillator at the front faces of the detector pair i (in

the absence of attenuation and assuming perfect photon-pair collinearity). In the case of

continuous detector technology, the grouping of gamma pairs should be done according to

certain artificial discretization of the detectors. In any case, the expression in Eq (2.15) is

still equivalent to the one in Eq(2.14) and this step does not constitute a modification of the

integral model. Reordering terms in Eq (2.15), it becomes:
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p(b, d) = pdet sens(d)
M∑
i=1

{∫
ro

vb(r0)

[∫
r

fr0(r)

[∫
γi

[∫
ϕi

f(ϕ, γ)

[∫
θ1

f(θ1)

[∫
θ2

f(θ2) .

patt(r, γ, ϕ, θ1, θ2)ppos(r, γ, ϕ, θ1, θ2, d)dθ2

]
dθ1

]
dϕ

]
dγ

]
dr

]
dr0

}
(2.16)

The second assumption that leads to the factored model is made at this point in order to

discretize the attenuation effect. Within each subset of gamma pairs reaching the detector i

the probability that neither of the photons of the pair is absorbed as they propagate towards

the detectors, is considered as independent of the point from which the gamma pair has

been emitted (r) and of the spatial orientation of the gamma pair (given by γ, ϕ, θ1 and θ2).

As a result, from now on, patt(r, γ, ϕ) will be referred to as patt(di) and pulled outside the

integrals in r, γi, ϕi, θ1 and θ2:

p(b, d) = pdet sens(d)
M∑
i=1

{
patt(di)

∫
ro

vb(r0)

[∫
r

fr0(r)

[∫
γi

[∫
ϕi

f(ϕ, γ)

[∫
θ1

f(θ1)

[∫
θ2

f(θ2) .

ppos(r, γ, ϕ, θ1, θ2, d)dθ2

]
dθ1

]
dϕ

]
dγ

]
dr

]
dr0

}
(2.17)

The importance of this assumption will be further analyzed in Subsection 2.5.2.

Now, in order to match to the factored model, where the non-collinearity, crystal pen-

etration and detector scatter are gathered in the pblurr term, the following notation will be

adopted:

pblurr(r, γ, ϕ, d) =

∫
θ1

f(θ1)

[∫
θ2

ppos(r, γ, ϕ, θ1, θ2, d)f(θ2)dθ2

]
dθ1 (2.18)
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The system matrix expression can now be written as:

p(b, d) = pdet sens(d)
M∑
i=1

{
patt(di)

∫
ro

vb(r0)

[∫
r

fr0(r)

[∫
γi

[∫
ϕi

f(ϕ, γ)pblurr(r, γ, ϕ, d)

dϕ

]
dγ

]
dr

]
dr0

}
(2.19)

Another simplification in the integral scheme has to be made at this point in order

to reach the factored model. Similarly to what has been done for the attenuation term

patt(r, γ, ϕ), the blurring term pblurr(r, γ, ϕ, d) will be pulled outside the integrals and re-

named pblurr(di, d) in order to remove its dependence from r,γi,ϕi within each tube i, which

constitutes the basis of this assumption:

p(b, d) = pdet sens(d)
M∑
i=1

{
pblurr(di, d)patt(di)

∫
ro

vb(r0)

[∫
r

fr0(r)

[∫
γi

[∫
ϕi

f(ϕ, γ)

dϕ

]
dγ

]
dr

]
dr0

}
(2.20)

The significance of this simplification in the model will be studied in Section 2.5.2.

Now, the following notation will be adopted:

pgeo(r, di) =

∫
γi

[∫
ϕi

f(ϕ, γ)dϕ

]
dγ (2.21)

Since this integral computes the solid angle spanned from the point r to the faces of the

detector pair di, and therefore matches the geometrical factors of the system matrix. With

the new notation, the expression for the system matrix terms becomes:
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p(b, d) = pdet sens(d)
M∑
i=1

{
pblurr(di, d)patt(di)

∫
ro

vb(r0)

[∫
r

fr0(r)pgeo(r, di)

dr

]
dr0

}
(2.22)

Two further assumptions have been done at this point in order to express Eq (2.22) in

the factored form of Eq (2.12) . First, it will be assumed that the annihilation points r can

be grouped according to the basis function bj they belong to:

p(b, d) = pdet sens(d)
M∑
i=1

{
pblurr(di, d)patt(di)

∫
ro

vb(r0)

[
N∑

j=1

{∫
rj

fr0(r)pgeo(r, di)

dr

}]
dr0

}
(2.23)

The integration limits rj cover now the annihilation limits that conform the basis func-

tion bj . Next, it will be assumed that, for all the annihilation points rj belonging to the basis

function bj , the solid angle subtended into the detector pair i is the same. Consequently,

the term pgeo(r, di) is renamed pgeo(bj, di) and can be pulled outside he integral in r:

p(b, d) = pdet sens(d)
M∑
i=1

{
pblurr(di, d)patt(di)

∫
ro

vb(r0)

[
N∑

j=1

{
pgeo(bj, di)

∫
rj

fr0(r)

dr

}]
dr0

}
(2.24)
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The relevance of these two assumptions will be analyzed in Subsection 2.5.1. Reorder-

ing terms in Eq (2.24) gives:

p(b, d) = pdet sens(d)
M∑
i=1

{
pblurr(di, d)patt(di)

N∑
j=1

{
pgeo(bj, di)

∫
ro

vb(r0)

[∫
rj

fr0(r)

dr

]
dr0

}}
(2.25)

And the last group of integrals of this expression can be renamed as ppos(b, bj):

ppos(b, bj) =

∫
ro

vb(r0)

[∫
rj

fr0(r)dr

]
dr0 (2.26)

Since it can be easily demonstrated that it computes the probability that a decay from

b0 gives place to an annihilation within bj , due to the effect of the positron range. With the

new notation, the expression for the system matrix terms becomes:

p(b, d) = pdet sens(d)
M∑
i=1

{
pblurr(di, d)patt(di)

N∑
j=1

{pgeo(bj, di)ppos(b, bj)}

}
(2.27)

which exactly matches the expression for the system matrix terms for the factored

scheme shown in Eq (2.12).

Scheme storage

So far, it has been demonstrated how the traditional factored scheme for the system matrix

computation can be obtained as a simplification of the new integral scheme proposed in

Section 2.4, after certain assumptions about the data acquisition model have been made.
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Once the system model has been expressed as a product of independent matrices, the fac-

tored schemes precalculate and store each of these matrices and then compute the system

matrix terms at reconstruction time by applying Eq (2.12) on the fly. Even if the size saving

from factoring the effects has been proved (Qi et al. (1998)), the computational challenge of

the factored schemes still lies in the storage of each of the factors compounding Eq (2.11).

Being both the number of basis functions (N ) and the number of LORS (M ) typically

above the million in high resolution small animal PET scanners, these factors are expected

to demand high memory resources. For that reason, the most popular factored approaches

rely in other assumptions that, even though are not strictly inherent to the factorization

process, are necessary in order to make the matrix storage feasible:

• The storage of the M × M normalizing and attenuation matrix does not represent

such a challenge since, as it has been already mentioned, just the elements of the

diagonal have to be saved.

• The N × M geometric matrix pgeo is very sparse, given the small fraction of basis

functions that can produce coincidences at each detector pair, and a great saving

in storage can be realized by storing only the non zero elements (Qi et al. (1998)).

Moreover this matrix has in-plane, axial and parallel sinogram symmetries that can

be exploited (Johnson et al. (1994), Chen et al. (1991)).

• Several measures are taken for the storage of the pblurr(di, d) terms of the M × M

pblurr matrix. First, the sparsity of the Blurring matrix is increased by considering

that a LOR di “blurrs” just into a few neighboring elements d in the radial, azimuthal

and axial direction (Mumcuoglu et al. (1996)). Moreover, in many cases the blurring

effect is not just truncated, but completely ignored along the axial (Mumcuoglu et al.

(1996), Qi et al. (1998), Lee et al. (2004), Tohme and Qi (2009)) and/or the azimuthal
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directions (Alessio et al. (2005), Alessio et al. (2006), Bao et al. (2008)). The dimen-

sionality of the Blurring matrix is reduced as well by assuming certain spatially in-

variances. Specifically, some approaches assume that the blurring remains the same

for all azimuthal angles and only obtain the pblurr(di, d) terms for a single projec-

tion angle of di (Mumcuoglu et al. (1996), Qi et al. (1998), Lee et al. (2004), Alessio

et al. (2005), Alessio et al. (2006)). Other approaches assume as well that the blurring

terms are identical for all the ring differences (the axial difference between the two

crystals that define the LOR di) and ring planes (i.e., the relative position of the plane

containing two detectors). Such approaches apply the pblurr(di, d) terms obtained for

the LORs di at the central transaxial plane (i.e., a plane perpendicular to the scanner

axial axis placed at 0 mm from the axial center) to all other rings (Mumcuoglu et al.

(1996), Qi et al. (1998), Alessio et al. (2005), Alessio et al. (2006)).

• Regarding the N ×N positron range matrix, some works use analytical approxima-

tions. For example, in Rahmim et al. (2008) the contribution between basis functions

is modeled as a 3D biexponential curve. However, in most cases the effect is just ig-

nored by assuming 18F studies with positron range in sub-millimetre, and the matrix

ppos is set equal to the identity matrix (Qi et al. (1998)).

The validity of the above mentioned assumptions, needed for the efficient storage of the

matrix, will be studied in the following subsection.

2.5.2 Analysis of the simplifications

In the previous subsection, the simplifications involved in the factorization of the system

matrix have been unraveled. Being the faithfulness to the data acquisition process the basis

for the high quality of the images obtained by iterative algorithms, such simplifications can

expected to have certain influence in the reconstructions. In order to get a clue of the extent
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of this influence, an analysis of how much each of these simplifications disagree with the

real PET process will be performed in the following.

Detector efficiency

First, in order to pass from Eq (2.13) to Eq (2.14), the effects related to the detector effi-

ciency have been taken of the integral to turn them into correction factors pdet sens(d) that

can be measured for each LOR according to one of the component-based methods quoted

in Subsection 2.4.6. It has to be noted that, as stated by Leahy and Qi (2000), multiplying

the elements of the system matrix by measured efficiencies pdet sens(d)p(b, d), is a common

practice not restricted to the purely factored schemes based in the works of Mumcuoglu

et al. (1996) and Qi et al. (1998). When the detector efficiency is considered in the form of

correction factors the resulting expression for the reconstruction algorithm is:

λnew (b) =
λold (b)∑D

d=1 pdet sens(d)p(b, d)

D∑
d=1

n∗(d)pdet sens(d)p(b, d)
B∑

b=1

λold (b) pdet sens(d)p(b, d)

(2.28)

And, as stated by Espallardo (2009), since the pdet sens(d) factors can be canceled out

in the second factor, the effect of modifying the system matrix by the efficiencies in the

MLEM scheme is:

λnew (b) =
λold (b)∑D

d=1 pdet sens(d)p(b, d)

D∑
d=1

n∗(d)p(b, d)
B∑

b=1

λold (b) p(b, d)

(2.29)

As scan be observed, the efficiencies pdet sens(d) only modify the sensitivity matrix.
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Since the success of iterative algorithms is mostly based in the accuracy with which the for-

ward and backward projections are performed, removing the effects accounted in pdet sens(d)

from these operations is likely to jeopardize the quality of the reconstructions. Provided

that the component-based methods allow to model in pdet sens(d) just the phenomena that

have not been considered in other parts of the system matrix, the collection of effects rep-

resented by pdet sens(d) should be minimized. The factorization of the efficiency is justified

in the case of the effects that have been included in the term pcal(r, γ, ϕ, θ1, θ2) in Subsec-

tion 2.4.6, since its ad-hoc nature makes any other way of modeling these effects a rather

complex task. On the other hand, the factorization does not seem to be necessary in the

case of the probability of interaction of the photons with the scintillators, for which a wide

accepted analytical model exists and has been provided in Eq (2.8). Based on this discus-

sion, and being the probability interaction of photons with the scintillator a key factor of

the detector efficiency, it can be concluded that the factorization of this effect should be

avoided.

Attenuation

The second step in the factorization (pass from Eq (2.16) to Eq (2.17)) has been to discretize

the attenuation term patt(r, γ, ϕ) into attenuation factors for each LOR patt(di). This step

entails the assumption that all the pairs whose photons reach the scintillators within the

limits of the crystals that form di, have the same survival propability, independently of

their annihilation point (r), and orientation (given by the angles ϕ, γ, θ1 and θ2).

Being the tendency in the small animal environment to reduce the size of the pixelated

crystals (Surti et al. (2009)), the gamma pairs restricted to a pair di will be concentrated in

a narrow tube of response. The non-collinearity of the pairs may increase the size of this

tube. However, being the Gaussian standard deviation from the collinear situation in the

order of 25 milliradians, and given the reduced diameter of the small animal scanners, the
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tube is not expected to get much wider by the effect of the non-collinearity. The gamma

pairs confined to a tube of response are therefore expected to transverse a similar portion

of the attenuation object which will have similar tissues properties. Consequently, within

the limits imposed by di, the probability that neither of the photons are absorbed is not

expected to vary significatively from one pair to another. This statement, along with the

fact that the total thickness of the attenuation medium makes the attenuation a relatively

minor effect for small animal (Yao et al. (2005)), make the factorization of the attenuation

term reasonably acceptable.

Blurring

In the next step to the factorization (from (2.19) to (2.20)), the so-called blurring term

pblurr(r, γ, ϕ, d) has been pulled outside the integrals in r, γ and ϕ. The new blurring term,

that has been renamed as pblurr(di, d), stands for the probability that a gamma pair that

reaches the scintillator within the limits of a detector pair di and is detected by the system,

is positioned at d. This step involves thus the assumption that the gamma pairs reaching

di share their probability of being positioned at LOR d, independently of its emitting point

and orientation.

As has been stated, the pair mispositioning that the blurring term represents accounts for

the effects of the non-collinearity, crystal penetration and detector scatter. In the factored

approaches, just the depth dependence (i.e., distance of the positron annihilation point from

the detectors) of these effects is discussed. Specifically, the work by Mumcuoglu et al.

(1996) justifies the depth dependence for the inter-crystal detector scatter and for the crystal

penetration. On the other hand, the non-collinearity is assumed as depth independent for

the benefit of sparseness, even if the uncertainties in the angular separation of the pair

are clearly dependent of the distance of the annihilation point from the detectors. The

mispositioning due to the non-collinearity is not expected to be critical in the small animals

82



environment, where the detector spacing is reduced (Cherry and Gambhir (2001)). As a

result, the depth independence or other assumptions regarding the non-collinearity are not

expected to trade the quality of the reconstructions.

Unlike the non-collinearity, the penetration and the detector scatter effects are known to

be highly resolution degrading effects in the small animal environment (Lee et al. (2004)).

The factored approaches ignore the dependence of these effects with the radial position of

the annihilation point within the detector tube and with the orientation of the gamma pair,

but no justification is given for these assumptions. However, the properties of these effects

suggest that this dependence might exist. In the case of the crystal penetration, the rays that

enter the crystal at large incidence angles will be clearly more likely to cross the detectors

and be detected at further positions from the entry point than those with normal incidence

(as shown in Figure 2.4 (top)). Moreover, the crystals crossed by a photon on its trajectory

depend on its entry point in the scintillator, which in turn depends on the radial position of

the pair within the detector pair (as shown in Figure 2.4 (bottom)).

The radial and angular dependence of the detector scatter can’t be predicted in such a

direct manner, since the multiple interactions give place to a rather more complex effect

than the penetration. However, certain clues of this dependence can be found based on

general characteristics of the phenomena that give place to the multiple photon interactions.

On the one hand, the location of the first interaction, in which the direction and radial

position of the gamma photon are involved, can be expected to have an important role

in the final position of the event. On the other hand, it might be expected that photons

propagating along different angular trajectories will give place to different scatter processes

that will give place to different mispositioning patterns, since the energy of the Compton

scattered photons is known to be dependent upon the angle between the incident and the

scattered photon.

The previous discussion suggests that certain radial and angular dependency of the
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γ1
γ2
γ3

γ1γ2
γ3

Figure 2.4: Influence of the angular (top) and radial (bottom) position
of the gamma ray in the mispositioning due to the
penetration effect. The photons labeled γ1 and γ3 on the top
will be more likely to be positioned in the upper and lower
crystals respectively whereas the photon labeled γ2 wont
give place to mispositioning due to the penetration. The
photon labeled γ1 at the bottom will be more likely to be
positioned in the upper crystal than the photon labeled γ2,
which in turn will be more likely to be positioned in the
upper crystal than the photon labeled γ3.

penetration and the detector scatter can be expected, but it is not enough to justify whether

the invariance assumptions about these effects made by the factored approaches should be
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accepted or not. On the one hand, the great influence that these effects are known to have

in the resolution achieved by the small animal devices makes them worthy of extremely

accurate models, and any possible discrepancy of these models with the real acquisition

process should be avoided. On the other hand, the fact that the invariability assumptions

are limited to the photon pairs confined to the tube of response defined by a pair of narrow

detectors, surely limits the range of variation of the effects along the radial and angular

dimensions. Moreover, it is known that the resources saving from factoring out the detector

blurring as compared to incorporating it in the geometric matrix is high (Qi et al. (1998)).

Being the assumption or not of the blurring invariance a critical point in the algorithm

performance, further experiments have been carried on in order to precise to what extent

the variability of pblurr(r, γ, ϕ, d) with r, γ and ϕ is worth to be considered in the model.

For fixed r, γ and ϕ the terms pblurr(r, γ, ϕ, d) can be interpreted as the statistical dis-

tribution of the LORs in which the pair defined by these parametres can be positioned

(i.e., an histogram of assigned LORs d for a given gamma pair). The objective of the ex-

periments has been to test if, as assumed by the factored schemes, all the pairs confined

within a given tube of response di give place to the same distributions of d, indepen-

dently of the radial component of r and of the orientation of the gamma pair γ, ϕ (i.e.,

if pblurr(r, γ, ϕ, d) = pblurr(di, d) for all the pairs within a detector pair di)

For the sake of simplicity, the experiments have been run just on detector pairs di placed

on the central transaxial plane of the devices simulated. Moreover, just the blurring into

other detector pairs d of this plane has been studied. This means that just the transanxial

component of the blurring has been considered, but the results obtained can be directly

extrapolated to the axial direction. Once limited to the central transaxial plane and in order

to account for cases with different order of incidence angle, the invariance of the blurring

has been analyzed in a center and an off-center detector pair. Figure 2.5 shows the resulting

simulation setup, whose dimensions (scanner diameter and crystal size) have been matched
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to the characteristics of three different commercially available devices: the A-PET (Surti

et al. (2005)), the YAP-S(PET) II (Del Guerra et al. (2006), Moehrs et al. (2008)) and the

microPET II (Tai et al. (2003)) scanners. As can be checked in Table 2.1, three cameras

with rather different features have been chosen for the study, to ensure that the conclusions

obtained won’t be restricted to the peculiarities of a particular device.

(a) (b)

Figure 2.5: Center (a) and off-center (b) detector pair of the central
transaxial plane of the setups for which the blurring
invariance will be studied

A-PET YAP-S(PET) II microPET II

Crystal cross section (mm) 2 1.5 0.975

Crystal depth (mm) 10 20 12.5

Scanner Diameter (cm) 19.7 4 16

Scintillator Material LYSO YAP:Ce LSO

Table 2.1: Main features of the scanners for which the blurring invariance will be studied
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In order to check to what extent all the gamma pairs confined to the center and off-

center detector pairs share their pblurr(r, γ, ϕ, d) term, the distributions generated by dif-

ferent pairs emitted at the central depth of the tubes with different angular orientations and

from different radial positions have been compared. Figure 2.6 shows an example of the

experimental setup for the case of two pairs emitted at different radial positions within the

center detector pair.

Assuming that the timing synchronization related effects are considered in the nor-

malization procedure (through the term pcal(r, γ, ϕ, θ1, θ2) defined in Subsection 2.4.6),

the LOR distribution pblurr(r, γ, ϕ, d) associated to a gamma pair can be considered as

the composition of two independent crystal distributions (referred to as p1(rk, ϕ, γ, c) and

p2(rk, ϕ, γ, c) in Figure 2.6), each of them associated to one of their forming photons.

Without loss of generality, the comparison has been reduced to the crystal distributions

produced by just one of the photons of each pair.

The crystal distributions have been obtained with the well-known simulator GATE,

(the GEANT4 Application for Tomographic Emission) (Jan et al. (2004)), which encapsu-

lates the GEANT4 libraries for the simulation of the passage of particles through matter

(Agostinelli et al. (2003)). Several beam photon sources (see Figure 2.7 for further details)

have been simulated within each detector pair to generate the distributions. A large number

of photons have been generated from each of the beams to obtain high SNR estimations.

The hits generated by the photons in the scintillators have been reduced to single events

whose position is obtained with an energy-weighted centroid of the different hit positions

and stored in an output file. The single positions have then been histogrammed in the

crystal positions to give place to the searched distributions. The differences between these

distributions have then been measured using the Kullback-Leibler (KL) divergence (Kull-

back and Leibler (1951)), which is often used to measure the distance between probability

distributions.
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γ11γ12

γ21γ22

p2(r1,φ,γ|c)

p2(r2,φ,γ|c)

c

c

p1(r1,φ,γ|c)
c

p1(r2,φ,γ|c)
c

r2

r1

Figure 2.6: Example of experimental setup. The aim of this experiment
is to check wether the two gamma pairs emitted from
different radial positions r1 and r2 within the detector tube
give place to the same LOR positioning distribution. Since
such LOR distributions can be obtained as a composition of
the individual crystal distributions each photon of the pair
gives place to, the comparison will be performed over one
of the crystal distributions (i.e., it will be checked whether
p1(r1, ϕ, γ, c) = p1(r2, ϕ, γ, c))

Table 2.2 shows, for the three simulated scanners, the KL values among the beams

emitted with different angular orientations. Table 2.3 shows the KL values among the

beams emitted from different radial positions. The left side contains the results for the
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(a)

B3
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B3
B2
B1
B4
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(c)

B3
B2
B1
B4
B5

(d)

Figure 2.7: Beams simulated to study the influence of the angular
orientation (top) and radial position (bottom) of the gamma
pairs in the positioning. The yellow beams (B1) correspond
to the pair connecting the centers of the two detectors that
define the LOR. The red and pink beams (B3 and B5)
correspond to the maximum angular/radial deviation from
the centered pair that a gamma pair can have within the
detector limits (i.e., the beams connecting the ends of the
detector pairs).The green and blue beams (B2 and B4)
correspond to intermediate angular/radial deviations.
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center LOR shown in Figure 2.7(a) whereas the right side contains the results the off-

center LOR shown in Figure 2.7(b). Since the KL divergence is not a symmetric measure

(the KL from P to Q is not necessarily the same as the KL from Q to P), for each pair of

beams it has been computed in both directions. However, it can be checked in Tables 2.2

and 2.3, that the two values obtained for a pair of beams are very similar in all cases. As

expected, the KL divergence is null when comparing distributions of identical beams. In

order have a reference value with which to interpret the non null values, the accepted depth

independence of the blurring (Mumcuoglu et al. (1996)) has been used. This value has

been obtained by comparing the distributions obtained from beams generated at different

depths of the center and the off-center pairs (see Figure 2.8). For all the depths simulated,

the KL values obtained are in the order of 10−5, which is several orders below the values

obtained for the KL divergences among the beams shown in Figure 2.7. This suggests that

the angular and radial invariance of the blurring produced by the beams within a detector

pair should not be as unquestionably accepted as the depth invariance.

Depth 1
X

(a)

Depth 2
X

(b)

Depth 3
X

(c)

Figure 2.8: Setup used to check the depth invariance of the blurring
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A-PET

Centre LOR Off-Center LOR

KL b1 b2 b3 b4 b5 b1 b2 b3 b4 b5

b1 0.000 0.013 0.483 0.013 0.480 0.000 0.076 0.363 0.034 0.142

b2 0.014 0 0.386 0.053 0.563 0.086 0.000 0.104 0.197 0.366

b3 0.725 0.528 0.000 0.901 1.334 0.336 0.085 0.000 0.525 0.754

b4 0.017 0.053 0.563 0.000 0.386 0.035 0.191 0.615 0.000 0.037

b5 0.722 0.901 1.334 0.528 0.000 0.141 0.370 0.924 0.036 0.000

microPET

Centre LOR Off-Centre LOR

KL b1 b2 b3 b4 b5 b1 b2 b3 b4 b5

b1 0.000 0.009 0.079 0.008 0.079 0.000 0.000 0.000 0.013 0.023

b2 0.009 0.000 0.040 0.034 0.126 0.000 0.000 0.000 0.016 0.028

b3 0.098 0.048 0.000 0.156 0.270 0.000 0.000 0.000 0.019 0.031

b4 0.009 0.034 0.126 0.000 0.040 0.013 0.017 0.020 0.000 0.001

b5 0.097 0.156 0.270 0.048 0.000 0.024 0.029 0.032 0.001 0.000

YAP

Centre LOR Off-Centre LOR

KL b1 b2 b3 b4 b5 b1 b2 b3 b4 b5

b1 0.000 0.010 0.714 0.010 0.715 0.000 0.024 0.119 0.017 0.057

b2 0.010 0.000 0.621 0.042 0.779 0.025 0.000 0.034 0.084 0.146

b3 0.936 0.752 0.000 1.091 1.456 0.104 0.029 0.000 0.205 0.290

b4 0.011 0.042 0.779 0.000 0.621 0.016 0.080 0.228 0.000 0.014

b5 0.938 1.091 1.456 0.752 0.000 0.056 0.148 0.341 0.013 0.000

Table 2.2: KL divergences among the beams emitted with different angular orientations
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A-PET

Centre LOR Off-Centre LOR

KL b1 b2 b3 b4 b5 b1 b2 b3 b4 b5

b1 0.000 0.010 0.064 0.011 0.064 0.000 0.061 0.297 0.028 0.109

b2 0.011 0.000 0.026 0.042 0.118 0.067 0.000 0.087 0.160 0.289

b3 0.076 0.029 0.000 0.137 0.241 0.276 0.073 0.000 0.434 0.614

b4 0.011 0.042 0.118 0.000 0.026 0.029 0.158 0.507 0.000 0.027

b5 0.076 0.137 0.240 0.029 0.000 0.110 0.299 0.751 0.026 0.000

microPET

Centre LOR Off-Centre LOR

KL b1 b2 b3 b4 b5 b1 b2 b3 b4 b5

b1 0.000 0.009 0.080 0.008 0.079 0.000 0.012 0.064 0.008 0.029

b2 0.009 0.000 0.041 0.035 0.127 0.012 0.000 0.019 0.036 0.072

b3 0.099 0.048 0.000 0.157 0.272 0.058 0.017 0.000 0.099 0.149

b4 0.009 0.035 0.127 0.000 0.041 0.008 0.039 0.117 0.000 0.007

b5 0.098 0.157 0.272 0.048 0.000 0.031 0.080 0.183 0.007 0.000

YAP

Centre LOR Off-Centre LOR

KL b1 b2 b3 b4 b5 b1 b2 b3 b4 b5

b1 0.000 0.006 0.032 0.006 0.032 0.000 0.006 0.032 0.006 0.032

b2 0.006 0.000 0.010 0.025 0.064 0.006 0.000 0.010 0.025 0.064

b3 0.034 0.011 0.000 0.069 0.122 0.034 0.011 0.000 0.069 0.122

b4 0.006 0.025 0.064 0.000 0.010 0.006 0.025 0.064 0.000 0.010

b5 0.035 0.069 0.122 0.011 0.000 0.035 0.069 0.122 0.011 0.000

Table 2.3: KL divergences among the beams emitted from different radial positions
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In order get an idea of where the causes for the high KL values lie in, some of the crystal

distributions obtained in the above mentioned experiments are shown next. The graphs in Figures

2.8-2.13 plot these distributions for the A-PET, microPET and YAP scanners. Each column in these

figures plots the distributions obtained for three different beams emitted from within one of the de-

tector pairs (center or off-center) for which the experiments have been carried on. The left columns

show distributions for beams with different radial positions whereas the right columns show dis-

tributions for beams with different angular orientations. The top figures at each column provide a

graphical reference to identify each distribution with the beam from which it has been obtained:

the yellow distributions correspond to the beams connecting the centers of the detectors (the beams

labeled B1), whereas the red and pink distributions correspond to the maximum angular/radial de-

viation from this line that a gamma beam can have within the detector limits (the beams labeled B3

and B5). Since each of the Figures 2.8-2.13 shows the distributions for beams emitted from within

a same detector pair, all the distributions in a figure should be identical if the radial and angular in-

variance assumptions of the blurring were correct. However, important differences can be observed

among the shape of these distributions. The figures illustrate as well, how difficult is to find a single

distribution that gathers the (in many cases conflicting) properties of all the distributions in a single

detector tube. For example, in the case of the centred detector pairs (Figures 2.8, 2.10 and 2.12), it

is not possible to find a distribution that keeps both the symmetric shape of the distribution of the

beam B1 and the oppositely symmetric shapes of the distributions of the beams B3 and B5. Similar

incongruencies can be found among the off-center pair distributions. The grey filled areas plotted

in the graphs correspond to the crystal distributions proposed by Mumcuoglu et al. (1996) and Qi

et al. (1998) to represent the blurring produced by any gamma pair within the detector pair, once

the invariance is assumed. These reference distributions are generated by photons striking the pair

from an in-plane line source oriented normal to, and at the center of the detector pair (the grey line

shown in Figure 2.9 for the center line case). This seems to be a good approach, since the reference

distribution contains contributions from beams emitted from all the radial positions and with all the

angular orientations. However, the differences between this distribution and the distributions of the
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pairs it is supposed to represent, become evident in the figures.

Line
Source

Figure 2.9: In-plane line source used to obtain the reference
distributions for the center line.

The experimental results suggest that all the gamma pairs confined to a given detector pair do

not share at all the statistical distribution of the LORs in which they can be eventually detected. This

confirms that the radial and angular invariance of the penetration and the detector scatter should not

to be accepted. It has to be noted, however, that among the three scanners that have been simulated,

the microPET scanner shows the maximum blurring invariance levels. It can be checked that the

KL-divergences values of Tables 2.2 and 2.3 are rather lower that the values obtained for the A-PET

and YAP scanner and that the distributions in Figures 2.10 and 2.11 are more uniform than their

counterparts for the other scanners. It could be expected therefore that the good results achieved by

the factored schemes in the works of Qi et al. (1998) and Mumcuoglu et al. (1996) for the microPET

scanner were not achieved for reconstructions from the A-PET and the YAP data.
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Figure 2.8: Crystal distributions obtained for the center LOR of the A-PET scanner.
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Figure 2.9: Crystal distributions obtained for the off-center LOR of the A-PET scanner.
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Figure 2.10: Crystal distributions obtained for the center LOR of the microPET scanner.
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Figure 2.11: Crystal distributions obtained for the off-center LOR of the microPET scanner.
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Figure 2.12: Crystal distributions obtained for the center LOR of the YAP-S scanner.
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Figure 2.13: Crystal distributions obtained for the off-center LOR of the YAP-S scanner.
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Basis functions

Two more assumptions have been done to definitely factorize the integral approach. These assump-

tions concern the properties of the basis functions used to represent the continuous radiotracer dis-

tribution. The first of them (pass from Eq (2.22) to Eq (2.23)), states that the annihilation points can

be grouped according to the basis function they belong to. Clearly, such grouping can be done just

when no overlapping between the basis functions that conform the radiotracer distribution exists. In

principle, this is not such a restrictive condition, since the voxels, which constitute the most popular

type of basis function used in PET reconstruction (Qi2006), meet this condition. However, it has to

be noted that this assumption closes a door to other types of basis functions such as blobs or splines,

that have shown to have certain advantages over the voxels in other reconstruction environments

(Marabini et al. (1998)).

Once limited to the reconstruction with voxels, the second assumption (pass from Eq (2.23) to

Eq (2.24)) states that the term pgeo(r, di) is constant within the limits of the voxel bj . In statistical

terms, this means that the geometrical probability that an emission from r reaches the detector di is

the same for all the points r that conform bj . The validity of this assumption depends clearly on the

voxel size, since the differences among the solid angles subtended by the points of the voxel into the

detector di will be larger as the distances among these points increase. Nowadays there is a clear

tendency in the small animal environment towards the reconstruction with decreasingly voxel sizes,

based on the search for covering small imaging details (Shakirin et al. (2008)). Consequently, this

assumption is not expected to have a great influence in the quality of the reconstructions.

Based on the current reconstruction tendencies, it can be said that the two assumptions concern-

ing the basis functions are not expected to trade the accuracy of the model. However, they certainly

limit the flexibility of the reconstructions as they restrict the type and size of basis functions that

can be used.
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Storage

Once the factored scheme has been obtained as a simplification of the integral scheme, it has been

stated at the end of Subsection 2.5.1 that the works based in the factorization usually rely on some

assumptions about the model in order to achieve a practical storage of the Geometrical, Blurring

and Positron range matrices:

• Regarding the Geometrical matrix, the symmetries in which its size reduction is based are

well backed up by the works of Chen et al. (1991) and Johnson et al. (1994).

• Concerning the Blurring matrix, several strategies have been followed, whose validity is

justified in the following:

– Concerning the truncation of the p(di, d) terms to a few neighboring elements d of di,

the number of affected elements is set according to a prefixed selected window size that

eliminates just the p(di, d) terms below a certain percentage of the maximum value. It

is not therefore expected to have a great influence in the quality of the results.

– However, the limit case in which the blurring is completely ignored along the axial or

azimuthal direction is not such a reasonable assumption since, as shown by Alessio

et al. (2006), each LOR di “blurrs”’ in all three dimensions. Even if the work by Qi

et al. (1998) provides justifications for these simplification in the projection domain,

the effect of these simplifications in the reconstructions has never been checked.

– The assumption of rotational symmetry would be true for perfect ring scanner geome-

tries, but not in modern PET scanners that use block detectors and have a polygonal

shape. As it has been proved by Tohme and Qi (2009), in these cases the symmetry is

only true on the block level and the variations that may occur due to the block effects

(e.g, photons scattered between a pair of adjacent detectors in two adjacent blocks do

not behave the same way as those scattered between adjacent detectors in the same

block) should be considered. The effect or the block structure is particularly signifi-

cant for small animal pet scanners, which have a small ring diameter (Tohme and Qi
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(2009)).

– The use of the p(di, d) terms obtained in the central transaxial plane for all other rings

is acceptable for scanners with small axial field-of-view, like the microPET (4.9 cm),

but it is not appropriate for scanners with larger axial length, like the A-PET scanner

(12 cm). The effect of this assumption in the images should therefore be checked.

• As for the N ×N positron range matrix, ignoring the effect is clearly not a suitable option in

all cases. As stated by Cal-González et al. (2009), recent developments in detector technology

have reduced crystal size and now there are small animal PET scanners with near 1mm

spatial resolution, which is comparable to positron range of most commonly used isotopes.

Being the positron range an object dependent effect, no sparsity, symmetries or invariance

assumptions can be exploited in order to reduce the resources that the storage of a huge

N × N matrix requires. The on-the-fly approach prevails, therefore, over an experimental

precomputation. On the other hand, whether the analytical approach followed by Rahmim

et al. (2008) is a good option of not, is a question out of the scope of this work, since, at it

has been mentioned, the positron range is an effect that still needs to be further studied.

2.6 A mixed scheme

A new mixed scheme for the combination of the separately modeled effects of the PET data acqui-

sition process is introduced in this section. The new scheme is a compromise between the accuracy

of the (otherwise impractical) integral scheme introduced in Section 2.4 and the efficiency of the

factored schemes, which, as shown in the previous subsections, are based on several simplifications

of the data formation process. In order to reach such compromise, the new scheme will be obtained,

as the factored approach, as a simplification of the integral model introduced in Section 2.4, but now

based just on the assumptions that have found to be acceptable in Section 2.5. The development of

the mixed scheme starts, therefore, on the expression for the integral scheme, given by:
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p(b, d) =
∫
ro

vb(r0)
[∫

r
fr0(r)

[∫
γ

[∫
ϕ

f(ϕ, γ)
[∫

θ1

f(θ1)
[∫

θ2

f(θ2)patt(r, γ, ϕ, θ1, θ2)

pdet sens(r, γ, ϕ, θ1, θ2)ppos(r, γ, ϕ, θ1, θ2, d)dθ2

]
dθ1

]
dϕ

]
dγ

]
dr
]

dr0 (2.30)

The first modification that has been done to factorize this expression has been to extract the de-

tector efficiency pdet sens(r, γ, ϕ, θ1, θ2) and reconsider it in the form of a measured normalization

factor for each LOR. However, in Subsection 2.5.2 it has been found convenient to let the probabil-

ity of interaction of the photons with the scintillators inside the integral and to factorize the rest of

effects related to the efficiency of the detection, grouped in a term called pcal(r, γ, ϕ, θ1, θ2). The

resulting expression after these considerations is:

p(b, d) = pcal(d)
∫
ro

vb(r0)
[∫

r
fr0(r)

[∫
γ

[∫
ϕ

f(ϕ, γ)
[∫

θ1

f(θ1)
[∫

θ2

f(θ2)patt(r, γ, ϕ, θ1, θ2)

pint(r, γ, ϕ, θ1, θ2)ppos(r, γ, ϕ, θ1, θ2, d)dθ2

]
dθ1

]
dϕ

]
dγ

]
dr
]

dr0 (2.31)

where, as stated in Section 2.4.6:

pint(r, γ, ϕ, θ1, θ2) = (1− eµLsci1
(r,γ,ϕ,θ1,θ2))(1− eµLsci2

(r,γ,ϕ,θ1,θ2)) (2.32)

being Lscii (i = 1, 2) the lengths that the photons emitted from r intersect at each scintillator in the

direction given by (ϕ, γ, θ1, θ2), and µ the linear attenuation coefficient of the scintillator.

Next, as has been done in Subsection 2.5.1, and provided that it does not constitute a modifi-

cation of the integral model, the gamma pairs emitted from the annihilating point r can be grouped

according to the LOR di their photons reach. Reordering the terms after this rearrangement leads

to:
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p(b, d) = pcal(d)
M∑
i=1

{∫
ro

vb(r0)
[∫

r
fr0(r)

[∫
γi

[∫
ϕi

f(ϕ, γ)
[∫

θ1

f(θ1)
[∫

θ2

f(θ2)patt(r, γ, ϕ, θ1, θ2)

pint(r, γ, ϕ, θ1, θ2)ppos(r, γ, ϕ, θ1, θ2, d)dθ2

]
dθ1

]
dϕ

]
dγ

]
dr
]

dr0

}
(2.33)

Then, according to the discussion in Subsection 2.5.2, the attenuation term can be factored for

each LOR di without serious consequences on the model:

p(b, d) = pcal(d)
M∑
i=1

{
patt(di)

∫
ro

vb(r0)
[∫

r
fr0(r)

[∫
γi

[∫
ϕi

f(ϕ, γ)
[∫

θ1

f(θ1)
[∫

θ2

f(θ2)

pint(r, γ, ϕ, θ1, θ2)ppos(r, γ, ϕ, θ1, θ2, d)dθ2

]
dθ1

]
dϕ

]
dγ

]
dr
]

dr0

}
(2.34)

At this point, the factored models group the non-collinearity, crystal penetration and detector

scatter effects in a single term, pblurr(r, γ, ϕ, d) (see Eq (2.35)) and pull it outside the integrals in

r,γ and ϕ, removing its variability with these parametres within each detector pair. Things have to

be done differently in the new hybrid model. On the one hand, the grouping of effects necessarily

entails the additional incorporation of the probability of interaction term pint(r, γ, ϕ, θ1, θ2). This

term can’t be pulled out the integrals in θ1 and θ2, and hence it can’t be separated from the rest of

effects. On the other hand, as has been concluded in Subsection 2.5.2, the penetration and detector

scatter should be kept within the integrals, in order to account for their variability with r,γ and

ϕ. A particular model for the blurring effects is thus needed, that accounts for the probability

of interaction of the photons and that considers the variability of the penetration and the detector

scatter with r, γ and ϕ within each tube of detection. The approach used by Moehrs et al. (2008),

Rahmim et al. (2008) and Iriarte et al. (2009) to model the penetration and detector scatter meets

these requirements. According to these works, the probability that a pair of photons that interact

with the detectors gives place to a detection in d can be expressed as:

105



pint(r, γ, ϕ, θ1, θ2)ppos(r, γ, ϕ, θ1, θ2, d) = p(d1)p(d2) =

(∫ L1

0
pmult(r, γ, ϕ, θ1, θ2, l, d1)f(l)dl

)(∫ L2

0
pmult(r, γ, ϕ, θ1, θ2, l, d2)f(l)dl

)
(2.35)

In this expression, the probability of detection in d has first been decomposed as the individual

probabilities of detection of the photons in d1 and d2, being these the two crystals that define d.

Then, in each integral the variable l covers the length the photons enter into the scintillators in the

direction given by ϕ, γ, θ1 and θ2, accounting for the crystal penetration. As shown in Figure 2.10,

L1 and L2 stand for the maximum value of these lengths in the detectors containing d1 and d2

respectively. f(l) stands for the likelihood that the first interaction of a 511keV photon occurs at

each l, in account for the probability of interaction. This likelihood is modeled with an exponential

distribution:

f(l) = µe−µl (2.36)

that integrated over the intersection length with the crystal gives place to the expression for the

probability of interaction that has been given in Eq (2.8).

The terms pmult(r, γ, ϕ, θ1, θ2, l, dk) (k = 1, 2) account for the detector scatter. Each of them

stands for the probability that a gamma photon emitted from r in the direction defined by ϕ, γ, θ1

and θ2, that interacts after traveling a distance l within the scintillator, is finally positioned at dk.

The work by Iriarte et al. (2009) models this effect with a Gaussian distribution, whose standard

deviation varies with l and is estimated with Monte Carlo simulations. The works by Moehrs et al.

(2008) and Rahmim et al. (2008) estimate the distributions directly from Monte Carlo simulations.

Substituting Eq (2.35) in Eq (2.34) leads to:
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Figure 2.10: L1 and L2 stand for the intersections of the photons paths
with the detectors containing d1 and d2 respectively. The
integration variable l (cyan line) covers these lengths.

p(b, d) = pcal(d)
M∑
i=1

{
patt(di)

∫
ro

vb(r0)
[∫

r
fr0(r)

[∫
γi

[∫
ϕi

f(ϕ, γ)
[∫

θ1

f(θ1)
[∫

θ2

f(θ2)

(∫ L1

0
pmult(r, γ, ϕ, θ1, θ2, l, d1)f(l)dl

)(∫ L2

0
pmult(r, γ, ϕ, θ1, θ2, l, d2)f(l)dl

)

dθ2

]
dθ1

]
dϕ

]
dγ

]
dr
]

dr0

}
(2.37)
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In order to highlight the fact that the new hybrid model explicitely considers the interdependence

of the blurring effects (non-collinearity, crystal penetration and detector scatter) with the geometry,

these effects will be expressed jointly through the following new term:

pgeo blurr(r, di, d) =
∫

γi

[∫
ϕi

f(ϕ, γ)
[∫

θ1

f(θ1)
[∫

θ2

f(θ2)
(∫ L1

0
pmult(r, γ, ϕ, θ1, θ2, l, d1)f(l)dl

)
(∫ L2

0
pmult(r, γ, ϕ, θ1, θ2, l, d2)f(l)dl

)
dθ2

]
dθ1

]
dϕ

]
dγ (2.38)

pgeo blurr(r, di, d) stands for the probability that an annihilation in r whose photons reach the

detector pair di, leads to a coincidence event positioned at d, accounting for the non-collinearity,

penetration and detector scatter effects. Actually, by modifying the limits of integration γi and ϕi,

the right side of Eq (2.38) can be used to compute this probability for any range of gamma pairs

emitted from r (i.e., not just those pairs reaching di). With the new notation, the expression for the

system matrix becomes:

p(b, d) = pcal(d)
M∑
i=1

{
patt(di)

∫
ro

vb(r0)
[∫

r
fr0(r)pgeo blurr(r, di, d)dr

]
dr0

}
(2.39)

Finally, if the assumption of working with non-overlapping small basis functions is accepted,

the same procedure that has been applied to Eq (2.22) can be carried out on Eq (2.39), leading to

the definitive expression of the new mixed scheme:

p(b, d) = pcal(d)
M∑
i=1

patt(di)
N∑

j=1

{pgeo blurr(bj , di, d)ppos(b, bj)}

 (2.40)

In the new scheme, ppos(b, bj) stands again for the probability that a decay from b gives place

to an annihilation within bj , due to the effect of the positron range. The term pgeo blurr(r, di, d)

has been renamed pgeo blurr(bj , di, d) because under the mentioned assumptions about the basis
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functions, its behavior has been stated to be the same for any point r within the basis function bj .

The generalization from point to basis function can be extrapolated to the pmult(r, γ, ϕ, θ1, θ2, l, dk)

terms included in the pgeo blurr(bj , di, d) expression, and consequently these terms will be referred

to as pmult(bj , γ, ϕ, θ1, θ2, l, dk) in the following.

Eq (2.40) computes the system matrix terms for the new mixed scheme. As has been mentioned,

this scheme intends to be a tradeoff between the accuracy of the integral and the simplicity and

efficiency of the traditional factored schemes. Based on the conclusions of Subsection 2.5.2 the

fidelity to the data formation process has been ensured in each step between the integral model in

Eq (2.30) and the new scheme in Eq (2.40), while keeping the factored structures in the cases where

it does not compromise the accuracy of the model.

2.7 Implementation

The new hybrid scheme introduced in Section 2.6 has been applied to the system matrix calculation

of a commercial PET camera. In the next section, the reconstructions obtained with the newly

introduced model will be compared with those provided by previous existing models. Previously,

this section deals with the characterization of the camera for which the system model has been

obtained (Subsection 2.7.1) and the details on the system matrix implementation (Subsection 2.7.2).

2.7.1 PET camera

The equipment that has been simulated in this study is an A-PET scanner. This device is composed

of 14.456 2 × 2 × 10 mm LYSO crystals individually coupled (i.e., without forming blocks) with

a 2.3 mm pitch in a single annular lightguide. Further specifications can be found in Surti et al.

(2005).
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2.7.2 System matrix

The computation of each system matrix term using Eq (2.40) passes through the individual knowl-

edge of pcal(d), patt(di), pgeo blurr(bj , di, d) and ppos(b, bj) for any combination of b, bj , d and di.

The terms pcal(d), patt(di) and ppos(b, bj) keep the meaning they had in the factored schemes and

the sparse structures proposed by the factored approaches to store them can be thus kept. Either pre-

vious or new methodologies can be used to model each of these effects, since the scheme allows for

the individual modification of the models without altering the rest of the components of the matrix.

The computational challenge of the new scheme is the computation of the pgeo blurr(bj , di, d)

terms given by Eq (2.38), that explicitely consider the interdependence of the blurring with the

geometry. The combination of both factors leads to a loss of the sparsity of the new term (as

compared with the factorization of the effects) that increases considerably the memory requirements

needed for its storage. Qi et al. (1998) calculate an increase by a factor of three, but it must be noted

that it is an underestimation, based on several spatially invariance assumptions made to store the

blurring component (mentioned at the end of Subsection 2.5.2).

Since the precomputation of pgeo blurr(bj , di, d) seems not to be a plausible option, its on-the-fly

computation is imposed. The expression for pgeo blurr(bj , di, d) as given by Eq (2.38) is a four di-

mensional integral that cannot be analytically expressed in a closed form and has to be calculated by

means of numerical integration. Since this integration has to be repeatedly solved at reconstruction

time, several accelerating techniques have been used in order speed up the reconstructions:

1. First of all, the whole Eq (2.40) has been reexpressed to achieve a combination of the geom-

etry and the blurring effects more convenient for its on-the-fly calculation. The first step to

obtain the new expression is to substitute in Eq (2.40) the expression of pgeo blurr(bj , di, d)

given by Eq (2.38):
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p(b, d) = pcal(d)
M∑
i=1

patt(di)
N∑

j=1

{[∫
γi

[∫
ϕi

f(ϕ, γ)
[∫

θ1

f(θ1)
[∫

θ2

f(θ2)

(∫ L1

0
pmult(bj , γ, ϕ, θ1, θ2, l, d1)f(l)dl

)(∫ L2

0
pmult(bj , γ, ϕ, θ1, θ2, l, d2)f(l)dl

)

dθ2

]
dθ1

]
dϕ

]
dγ

]
ppos(b, bj)

}}
(2.41)

the summations and integrals can now be rearranged and the term patt(di) can be put inside

the integrals in γi and ϕi:

p(b, d) = pcal(d)
N∑

j=1

{
M∑
i=1

{[∫
γi

[∫
ϕi

patt(di)f(ϕ, γ)
[∫

θ1

f(θ1)
[∫

θ2

f(θ2)

(∫ L1

0
pmult(bj , γ, ϕ, θ1, θ2, l, d1)f(l)dl

)(∫ L2

0
pmult(bj , γ, ϕ, θ1, θ2, l, d2)f(l)dl

)

dθ2

]
dθ1

]
dϕ

]
dγ

]
ppos(b, bj)

}}
(2.42)

The combination of sums
∑M

i=1

∫
γi

∫
ϕi

entails an artificial grouping of the gamma pairs emit-

ted from bj , as a function of the detector pair they reach. This grouping, which has been per-

formed for demonstration purposes, can now be undone for a more efficient implementation

of the system matrix:
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p(b, d) = pcal(d)
N∑

j=1

{[∫
γ

[∫
ϕ

patt(di(bj , γ, ϕ)f(ϕ, γ)
[∫

θ1

f(θ1)
[∫

θ2

f(θ2)

(∫ L1

0
pmult(bj , γ, ϕ, θ1, θ2, l, d1)f(l)dl

)(∫ L2

0
pmult(bj , γ, ϕ, θ1, θ2, l, d2)f(l)dl

)

dθ2

]
dθ1

]
dϕ

]
dγ

]
ppos(b, bj)

}
(2.43)

The angular limits γ, ϕ now cover all the gamma pairs emitted from bj (as it has been men-

tioned in Subsection 2.4.3, these limits can be reduced to account just for those pairs reach-

ing the detector at a neighborhood of d). The attenuation term patt(di) has been renamed as

patt(di(bj , γ, ϕ)), since it is still the same function of the discrete detectors the gamma pair

reaches, which are fully defined by the variables bj , γ and ϕ.

The original expression provided by Eq (2.40) is the result of a development in which it

wanted to be shown how the new scheme is an improvement of the factored approach and

has had, therefore an important role for demonstration purposes. Moreover, it would still

be the appropriated expression in case that the pgeo blurr(bj , di, d) terms were needed to be

precomputed and stored. However, the precomputation option has been discarded in this

work. The new expression in Eq (2.43) is more appropriate for the on-the-fly computation

of the conjoint geometrical and blurring effects since just one four-dimensional numerical

integral has to be solved, instead of the M integrals that the implementation of Eq (2.40)

involves.

2. As has been done for the patt(di(bj , γ, ϕ)) terms, the values for the distributions f(ϕ, γ),

f(θ1), f(θ2), f(l) and pmult(r, γ, ϕ, θ1, θ2, l, dk) that have to be calculated each time the nu-

merical integration is computed, have been discretized and stored in look-up tables. An effort
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has been done to fit these tables in RAM, avoiding thus costly disk access. This constraint

does not pose a problem for f(ϕ, γ), f(θ1), f(θ2) and f(l), since they are unidimensional

distributions on a bounded domain, for which a fine discretization does not require high stor-

age needs.

The discretization of the seven dimensional detector scatter terms pmult(bj , γ, ϕ, θ1, θ2, l, d1)

and pmult(bj , γ, ϕ, θ1, θ2, l, d2) is apparently a more challenging task. However, a more in-

depth analysis of these terms can reduce the storage requirements to the extent that enables

their allocation in the RAM. For a photon emitted from a point r of bj (for small basis func-

tions it has been assumed that all their conforming points are equivalent in the model) that

propagates along the direction defined by γ, ϕ, θ1 and θ2 and interacts with the scintilla-

tor after traveling a distance l within it, the terms pmult(bj , γ, ϕ, θ1, θ2, l, dk) k = 1, 2 can

be thought as the statistical distribution of the discrete positions dk in which it can be po-

sitioned (i.e., an histogram of assigned crystals dk for a given photon interaction). Since

the positions dk are already discrete variables in a pixelated device like the Phillips A-PET,

the discretization has to be applied to r, γ, ϕ, θ1, θ2 and l. If the depth-independence is

accepted, what these four variables define is the position of the first interaction with the scin-

tillator of a photon that enters the scintillator at an angle defined by γ, ϕ, θ1 and θ2. The

pmult(bj , γ, ϕ, θ1, θ2, l, dk) can be thus reexpressed as a function of these two parametres, as

pmult((x′, y′, z′), γ′, ϕ′, dk), where (x′, y′, z′) define the the position of the interaction in a

crystal relative coordinate system and γ′, ϕ′ define the orientation of the photon (see Figure

2.11). If all the crystals are assumed to be identical, the pmult((x′, y′, z′), γ′, ϕ′|dk) distribu-

tions can be estimated just for one of the crystals of the arrangement and then applied to all

the rest by performing the appropriate translation and/or rotation. In case of block systems,

the distributions should be estimated for each crystal element inside a detector block and the

results can be applied to the rest of blocks.

The A-PET is under the first assumption, and therefore the range of variation of (x′, y′, z′) is

bounded by the reduced crystal dimensions. Given the FOV and scanner dimensions for the
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Figure 2.11: Position of the first interaction as a function of r, γ, ϕ, θ1,
θ2 and l (a) and as a function of (x′, y′, z′) and ,γ′, ϕ′ (b)

A-PET, the maximum incidence angles γ′ and ϕ can be estimated to be below 50◦. Moreover,

in a scanner with pixelated detectors that shape the light response, the spread in the position-

ing due to the detector scatter is expected to be rather limited, which allows to truncate the

distributions to a few crystal positions dk. In these conditions, the storage of the detector

scatter distributions in RAM becomes apparently feasible.

Nevertheless, the previous works with a similar model of blurring (Moehrs et al. (2008),

Rahmim et al. (2008)), achieve further reductions on the storage size of the detector scatter

distributions by ignoring their dependency with the (x′, y′, z′) coordinates of the first inter-

action with the crystal (i.e., considering just the dependency on the pair orientation (γ′,ϕ′)).

Since no justification for this assumption is provided by these works, an analysis of its reli-

ability has been done in order to determine whether it should be incorporated or not to the

model. The GATE Monte Carlo simulator has been used with this purpose.

In order to study the dependency of the distributions with the x′ coordinate of the first inter-

action, a collection of point sources in the central transaxial plane of the FOV, covering half
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a pixelated crystal in the tangential direction have been simulated (see two of these sources

in Figure 2.12). 511 keV gamma-ray beams normally incident to the detector have been gen-

erated from each of the sources. For each generated beam, one million of emissions were

simulated and the events generated were positioned using a centroid approach. Since the

GATE simulations allow to follow the track of events for each annihilated photon, each de-

tection has been recorded along with the positions of the interactions that preceded it. In this

way, the distributions (histograms of the crystal detections) can be obtained as a function of

the position of the first interaction with the scintillator (x′, y′, z′). In order to study the vari-

ability along the tangential direction x′, the position distributions for the events whose first

interaction took place at a fixed DOI (the crystal center, at z′ = 5, as shown in Figure 2.12)

have been compared. Table 2.4 shows the KL divergences among the distributions for inter-

actions at different x′ positions. The results obtained for the variability of the distributions

with the x′ coordinate can be directly extrapolated to the variability with the y′ coordinate.

In order to study the variablity along the DOI (radial direction z′), the distributions for the

events whose first interaction took place at a fixed tangential position (the crystal center, at

x′ = 0, as shown in Figure 2.13) have been compared. Table 2.5 shows the KL divergences

among the distributions obtained for different z′ positions of the interaction with the crystal.

In order to measure the variablity of the detector scatter with the photon orientation, several

beams have been generated with their gamma rays entering the crystals at different oblique

angles γ′ ((being γ′ = 0 equal to perpendicular incidence)), but all of them transversing

the center of the crystal (two of these beams are shown in Figure 2.14). The distributions

for events with first interaction at this point (i.e., the position x′ = 0, z′ = 5 in the crystal

system), have been obtained. Table 2.6 shows the KL divergences among these distributions.

Tables 2.4 and 2.5 suggest that remarkable differences exist among the detector scatter dis-

tributions obtained along the radial and tangential dimensions of a crystal. Moreover, these

differences are comparable to (or even larger than) the differences due to the different photon

orientations, given by Table 2.6. For that reason, and provided that it does not compromise
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511keV x’=x1
x’=x2

d

dk

dk

511keV

pmult(x1,y’,z’,φ’,γ’,dk)

pmult(x2,y’,z’,φ’,γ’,dk)

Figure 2.12: Experimental setup to compute the variability of the
detector scatter distributions as a function of the x′

position of the first interaction with the crystal

x’(mm) -1.0 -0.5 0.0 0.5 1.0
-1.0 0.0000 0.1903 0.3432 0.5196 0.8526
-0.5 0.1507 0.0000 0.0260 0.0894 0.3674
0.0 0.2495 0.0242 0.0000 0.0242 0.2473
0.5 0.3674 0.0894 0.0250 0.0000 0.1507
1.0 0.8526 0.5196 0.3392 0.1903 0.0000

Table 2.4. KL divergences among distributions for interactions at different x’
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511keV z’=z1 z’=z2

d
pmult(x’,y’,z1,φ’,γ’,dk)

dk

dk

pmult(x’,y’,z2,φ’,γ’,dk)

Figure 2.13: Experimental setup to compute the variability of the
detector scatter distributions as a function of the z′

position of the interaction in the crystal

z’(mm) -4.0 -2.0 0.0 2.0 4.0
-4.0 0.0000 0.0060 0.0235 0.0875 0.2070
-2.0 0.0043 0.0000 0.00143 0.0650 0.1901
0.0 0.0194 0.0138 0.0000 0.0202 0.0969
2.0 0.0585 0.0494 0.0147 0.0000 0.0364
4.0 0.1443 0.1404 0.0790 0.0371 0.0000

Table 2.5. KL divergences among distributions for interactions at different z′
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511keV
γ’= γ 1

511keV

γ’= γ 2

dk

dk

pmult(x’,y’,z’,φ’,γ1’,dk)

pmult(x’,y’,z’,φ’,γ2’,dk)

Figure 2.14: Experimental setup to compute the variability of the
detector scatter distributions as a function of the angular
orientation of the photon leading to the first interaction in
the crystal

γ′(deg) -40 -20 0.0 20 40
-40 0.0000 0.0314 0.2368 0.2504 0.5160
-20 0.0289 0.0000 0.0512 0.1059 0.2316
0.0 0.0963 0.0293 0.0000 0.0245 0.0869
20 0.2316 0.1059 0.0492 0.0000 0.0289
40 0.5160 0.2693 0.1969 0.0314 0.0000

Table 2.6. KL divergences among distributions for interactions with different γ
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the efficiency of the approach in terms of storage, it has been decided to precompute and

store distributions that take into account the variability of the detector scatter effect along all

these dimensions, unlike previous approaches that just consider the angular orientation.

3. Finally, the number of integration points used to approximate each integral of Eq (2.43) has

been minimized. The number of points between the integral limits is estimated ad-hoc for

each integral performed by fixing the distance among integration points, which keeps the

precision with which all the integrals are estimated. In order to minimize the number of

points without trading the accuracy of the numerical approximation, several arbitrary system

matrices have been obtained with a extremely small interpoint distance. These references

have been compared with the same matrix obtained using descending degrees of precision

(i.e., enlarged interpoint distances). The normalized root-mean-square error (NRMSE =r
〈
(
xm−xc

)2
〉

max (xm)−min (xm) , with xm and xc being the vectors containing the values of the system

matrices being compared) has been used as the comparison measure. The interpoint distance

has been chosen to be the maximum distance that keeps the NRMSE value below 10−3

2.8 Evaluation

In this section, the system model that has been developed, implemented and incorporated to an

iterative algorithm has been tested with reconstructions from simulated data. Subsection 2.8.1 deals

with the mechanisms of the iterative schemes in which the system matrix has been incorporated.

The sets of data along with the figures of merit used to evaluate the reconstructions are described in

Subsection 2.8.2. Subsections 2.8.3 and 2.8.4 deal with the evaluation of the reconstructions from

two different points of view: the accuracy and the efficiency. These two viewpoints correspond with

the two main pillars on which the new scheme has been built. On the one hand, the development of

the new model has been based on finding out the weak points of previous approaches. The degree

of incongruence with the real PET process of these shortcomings has been analyzed in order to

decide whether to keep them in the new model or to overcome them. In Subsection 2.8.3 it will
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be checked to what extent the decisions that have been taken at this regard have a positive effect in

the reconstruction domain. On the other hand, as has been already pointed out, the measures taken

in order to increase the accuracy of the system response, lead to an increase of the computational

cost of the algorithm. As a result, and even if only the strictly necessary modifications have been

done, the new model will give place to less efficient reconstructions than the previous approaches.

Subsection 2.8.4 examines the efficiency of the new model as well as the efficiency of the previous

approaches in which it is based, and whose limitations overcome.

2.8.1 Reconstruction algorithm

The system matrix computed as described in Section 2.7.2 has been incorporated to an iterative

reconstruction scheme in order to evaluate the adequacy of the model through the quality of the re-

constructed images. The basis of the reconstruction algorithm has been the MLEM algorithm (Vardi

et al. (1985)). The list-mode version has been chosen (Reader et al. (1998)) to preserve all the in-

formation obtained during the data acquisition. The sensitivity matrix has been calculated for each

voxel once at the beginning of the reconstruction, as the sum of the individual probabilities of detec-

tion over all possible system tubes, as Eq (1.7) states. As can be checked in the preceeding sections,

both the accuracy improvement and the efficiency reduction that are going to be checked concern

just the geometrical and blurring (which, in turn, concerns the non-collinearity, penetration and de-

tector scatter factors) terms of the system matrix model. The aim of this work is to test the adequacy

of the modifications to previous works that have lead to the new mixed model. Consequently, and

provided the scalability of the scheme, just these effects have been considered in the reconstruc-

tions. Moreover, and as has been stated before, the assumptions concerning the non-collinearity are

not expected to have a great influence in the quality of the reconstructions, since it is a relatively

minor effect in the small animal PET. Consequently, and in order to speed up the reconstructions,

it has been as well eliminated from the model. On the other hand, in order to mantain the Poison

statistical nature of the data (Qi et al. (1998)), no pre-corrections have been done in account for the

randoms and scatter effects. The results that will be shown in the following have been thus obtained
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for a comparative purpose and should not be interpreted in absolute terms (i.e., for comparison with

other algorithms or scanners).

Algorithm parallelization

The new mixed scheme for the system matrix computation has been developed in Section 2.6 to

keep the efficient factorization as far as possible. Moreover, in Section 2.7.2 it has been shown how

the implementation of the system matrix can be accelerated using several strategies. However, the

expression in Eq (2.43) still involves costly multi-dimensional numerical integrations, that have to

be evaluated in each iteration for every LOR of the data and for every voxel of the reconstructed

volume. Consequently, any mean to improve the efficiency of the implementation will contribute to

the feasibility of the method. For this reason, a parallelized version of the MLEM algorithm has been

implemented. In this algorithm, each volume element is updated once at the end of each iteration.

The updating term is the sum of the independent correction contributions of each LOR of the data

set. Each of these contributions is obtained after the forward and backward projection operations

that require the costly computation of the system matrix. Based on this property, a parallel version

of the MLEM algorithm has been implemented to run in clusters of several processors. The whole

data set is split in data slices. Each processor deals with the calculation of only one part of the

updating term, corresponding to a slice of the data set. The parallel version has been implemented

following a dynamic scheme using the message passing interface protocol (MPI). Whenever an idle

processor is available in the cluster, it will be assigned a slice of the data to compute its correction

contribution. In this way, the workload is balanced among the processors, as those processors that

run faster will claim for their slice of data more often that those that run slower. Once each data slice

has been processed, the whole iteration updating term is computed by summing up the correction

terms estimated by each processor.
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2.8.2 Data and figures of merit

The GATE Monte Carlo simulator has been used to generate different data sets of phantom activity

distributions for the scanner described in Subsection 2.7.1:

Point sources: In order to observe how the resolution changes throughout the FOV, a subset of

dimensionless point sources with a zero background at the central transaxial plane has been

simulated. The sources were positioned 15 mm apart along the radial direction departing

from the transaxial center so that face the crystal center. The data set contained approximately

800, 000 total coincidences. Profiles have been taken through the point reconstructed images

in the axial, radial and tangential directions and the full width at half maximum (FWHM) has

been measured to determine the resolution. As stated by Moehrs et al. (2008), using point

sources with a zero background with MLEM might lead to an underestimation of the spatial

resolution. However, as has been already mentioned, this work is aimed to compare different

methodologies and not to obtain absolute measurements.

Cylindrical phantom: The resolution studies illustrate the potential gain that can be realized by

accurately modeling the data. However, this gain is only useful if it can be achieved without

large levels of noise amplification. A cylindrical phantom with a diameter of 30 mm and

length 10 mm has been simulated in order to study the noise. The cylinder uniform activity

has led to a data set of 5, 000, 000 coincidences. The standard deviation has been measured

in the reconstructed phantom and plotted as a function of the iteration number.

Since the positron range, non-collinearity, scatter and attenuation factors have been eventually

eliminated in the validation process (as stated in Section 2.7), they have not been considered in the

simulation of the already described phantoms.

2.8.3 Image quality

Three measures have definitely been taken in order to increase the accuracy of the new mixed model

with respect to previous approaches. In the following, the effect that these measures have in the
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image domain is shown:

• In Section 2.5.2 it has been concluded that the interaction of the gamma photons with the scin-

tillator, which is usually considered through the normalization procedure, should be rather

included in the system model. As shown in Section 2.5.2, when considered as a normaliza-

tion, the interaction of the photons is just accounted in the sensitivity term and not in the

forward and backward projection operations. In order to test the effect of this issue in the

image domain, the phantoms have been reconstructed using two approaches. In the first ap-

proach, the hybrid model proposed has been used both to perform the forward and backward

projections and to compute the sensitivity term. In the second approach, the system model

has been modified so that the probability of interaction is not taken into account in the for-

ward and backward projections. This has been achieved by normalizing the blurring term for

each gamma photon by its analytical probability of interaction:

∫ Lk

0
pmult(bj , γ, ϕ, θ1, θ2, l, dk)f(l)dl →

∫ Lk

0 pmult(bj , γ, ϕ, θ1, θ2, l, dk)f(l)dl

(1− e−L1)
(2.44)

for k = 1, 2. The probability of interaction is however, accounted in the system model used

for the computation of the sensitivity matrix. According to the discussion in Subsection 2.5.2,

the inclusion of the probability of interaction in the sensitivity matrix should have been done

thorough the normalization factors instead of analytically, but the aim of the study is to just

test the influence of its placement in the algorithm and not the model used to represent it.

Figures 2.15-2.17 illustrate the comparison performed between these two approaches. The

results labeled as Mixed have been obtained using the new mixed scheme and the results

labeled as Norm have been obtained using the approach that accounts for the efficiently just

in the normalization factors. The radial, tangential, axial and average resolution (as measured

by FWHM) of the reconstructed point phantoms after 20 MLEM iterations is shown at Figure

2.15. Figure 2.16 shows a region of the central transaxial slice of the reconstructions. The
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noise results are shown in Figure 2.17, measured as the standard deviation (normalized to the

mean) of the reconstructed cylindrical phantom with uniform activity.

Figure 2.15: Average, radial, tangential and axial FWHM or the
reconstructed point sources plotted against the radial
position.

(a) Mixed (b) Norm

Figure 2.16: Region of the central slice of the point sources
reconstructed after 20 MLEM iterations

• In Subsection 2.5.2 it has been demonstrated how the crystal penetration and the detector
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Figure 2.17: Normalized standard deviation of the reconstructed
cylindrical phantom plotted against the iteration number.

scatter effects vary with the geometry of the pair (i.e., the emitting point and the pair orienta-

tion) within a detector tube. As a result, it has been concluded that these effects should not be

separated from the geometric factors, as the factored schemes do. In this subsection the effect

of factorizing the geometry and the blurring has been studied in the image domain. With this

purpose, the phantoms described in Subsection 2.8.2 have been reconstructed using a fac-

tored and a non-factored scheme (both of them reduced just to include the geometrical and

blurring factors, as has been previously mentioned). The non-factored scheme is the mixed

model proposed in Section 2.6 in which the interdependence of the blurring and the geometry

is explicitly considered. In the implementation of the factored scheme, the geometrical terms

have been computed as the solid angle spanned from the voxel centers into the detector pairs.

Concerning the blurring terms pblurr, it has been already mentioned that they represent the

probability that any pair reaching a detector pair di gives place to a detection at other LOR
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d. Different approaches are followed by the factored approaches to compute these terms. In

this work, it has been chosen to represent the blurring experimented by any pair confined to

a detector tube di by the blurring of the pair that reaches the crystal centers thar define the

LOR. The reason for this choice is that, it has been observed in the experiments performed

in Subsection 2.5.2 that the KL distance between the distributions obtained for this pair and

the distributions obtained for other simulated pairs is minimum in all cases. Once the central

pair has been chosen as a reference, the same approach as in the mixed scheme has been

followed in the computation of the blurring term for this pair (i.e., Eq (2.35) has been applied

to the pair connecting the pair centers). In this way, the comparison reduces to the invariance

assumption and not to the blurring model itself.

The effect that separating the blurring from the geometry has the image domain is illustrated

in Figures 2.18-2.20. In the results labeled as Mixed, the scheme that considers the interde-

pendence between geometry and blurring has been used in the reconstructions. In the results

labeled as Fact, the scheme in which the geometrical and blurring terms are factorized has

been used. The radial, tangential, axial and average resolution (as measured by FWHM) of

the reconstructed point phantoms after 20 MLEM iterations is shown at Figure 2.18. Figure

2.19 shows a region of the central transaxial slice of the reconstructions. The noise results

are shown in Figure 2.20, measured as the standard deviation (normalized to the mean) of the

reconstructed cylindrical phantom with uniform activity.

• In Section 2.7.2 the variability of the detector scatter terms pmult(bj , γ, ϕ, θ1, θ2, l, dk) within

the pixelated crystals, which is neglected by previous approaches, has been demonstrated. In

this subsection the effect of accounting for such variability in the system model has been

studied in the image domain, and is shown in Figures 2.21-2.23.

In order to obtain these figures the simulated phantoms have been reconstructed using two

system models. In the first of them (which corresponds to the results labeled as Mult Var) ,

the dependency of the detector scatter effect on the position of interaction within the crystal is

taken into account. Consequently, the detector scatter distributions pmult(bj , γ, ϕ, θ1, θ2, l, dk)
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Figure 2.18: Average, radial, tangential and axial FWHM or the
reconstructed point sources plotted against the radial
position

(a) Mixed (b) Fact

Figure 2.19: Region of the central slice of the point sources
reconstructed after 20 MLEM iterations

have been estimated (following the procedures described in Subsection 2.7.2) from photon

interactions at different positions within the pixelated crystal. Specifically, the interaction

positions from which the distributions have been estimated were spaced 0.02 mm along the

x′ and y′ dimensions and 0.5 mm along the z′ dimensions of the crystal coordinate system

127



Figure 2.20: Normalized standard deviation of the reconstructed
cylindrical phantom plotted against the iteration number.

shown in Figure 2.11, since it has been found that these distances are enough to account for

the variability of the distributions. In the second approach (which corresponds to the results

labeled as Mult Cent), the detector scatter distributions have been estimated just from pho-

tons interacting at the center of the pixelated crystal, and used to model interactions occurring

at any other crystal position.

As for the resolution results, the radial profiles of the sources after 20 MLEM iterations

are provided in Figure 2.21, instead of the FWHM values. The profiles obtained with the

invariant scatter model (Mult Cent) show several local maxima for the source at 60 mm and

this makes the FWHM an inappropriate measure for this comparison. A region of the central

transaxial slice of the reconstructions is shown in Figure 2.22. Figure 2.23 shows the noise

results, measured as the standard deviation (normalized to the mean) of the reconstructed

cylindrical phantom with uniform activity.
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Figure 2.21: Radial profile of the reconstructed point sources.

(a) Mult Var (b) Mult Cent

Figure 2.22: Region of the central slice of the point sources
reconstructed after 20 MLEM iterations

2.8.4 Efficiency

In this section, an analysis of the computational resources needed by the new mixed model, and by

the previous approaches whose limitations it overcomes, is performed.
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Figure 2.23: Normalized standard deviation of the reconstructed
cylindrical phantom plotted against the iteration number.

Time

In the development of the new mixed scheme for the computation of the system matrix, the efficient

factored structures have been preserved in those parts of the system matrix where they do not com-

promise the accuracy of the model. However, it has been demonstrated that such restriction imposes

the joint calculation of the geometrical and blurring effects, at which the probability of interaction

of the gamma photons has been incorporated (see Section 2.6). A costly on-the-fly computation of

these terms is thus imposed. Several measures have been adopted in order to speed up the system

matrix computation (Section 2.7) and to optimize the reconstruction algorithm (Section 2.8.1). But

even after these measures, the reconstruction time is the computational challenge of the new mixed

scheme and will be therefore the focus of the analysis of its efficiency.

The reconstructions of the phantoms described in Subsection 2.8.2 show indeed that even if the
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new approach if feasible (as the images have been obtained and are shown in Subsection 2.8.3), it is

rather impractical. For the point sources (reconstructed with 156x156x156 voxels, with voxel sizes

of 0.5x0.5x0.5), the computational cost of the 20 iterations has been about 30 days on 64 Itanium

Montvale cores of 1.66 GHz. In despite of such alarming numbers, it has to be pointed out that

the implementation of the approach has been done focusing on theoretical purposes (corroborate

the predictions stated along Section 2.5) rather than in functional applications. Several measures

are proposed in chapter 4 that can significantly reduce the reconstruction times and allow the new

system matrix to be put into practice.

Storage

The only extra storage requirement that the new mixed methodology introduces with respect to

previous approaches, is the precomputation of the detector scatter terms with higher sampling pre-

cision (as discussed in in Subsection 2.7.2). However, this issue does not affect the computational

efficiency, since it has been proved that the distributions obtained in this way still fit into RAM

memory. On the other hand, the factored approaches, being based in the precomputation of the ma-

trix, have to face a rather complex storage challenge. As has been mentioned in Section 2.5, some of

the strategies followed to store the huge Geometric and Blurring matrix are well justified but others

have never been tested in the image domain. This is the case of the neglection of the blurring along

the azimuthal or axial dimensions and the use of the central transaxial plane to represent all other

rings.

Figures 2.24-2.28 illustrate the effect that these simplifications have in the reconstruction of

the phantoms described in Subsection 2.8.2. The results labeled as Fact serve as a reference and

correspond to reconstructions obtained with a factored approach in which no simplifications about

the blurring model have been made (i.e., the same approaches used to study the factorization of the

blurring in Subsection 2.8.3). In the results labeled as No ax, a factored approach has been used in

which the blurring effects have been neglected in the axial dimension (i.e., it has been considered

that the gamma pairs that reach a LOR will not give place to detections in the axial neighbours
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Figure 2.24: Average, radial, tangential and axial FWHM or the
reconstructed point sources plotted against the radial
position.

(a) Fact (b) No ax

Figure 2.25: Region of the central slice of the point sources
reconstructed after 20 MLEM iterations

of that LOR). In the results labeled as No az, the azimuthal component has been ignored (i.e., it

has been considered that the gamma pairs that reach a LOR di will not give place to detections in

neighboring LORs with different azimuthal projection angle). In both cases, the terms of pblurr

have been obtained for the central transaxial plane and applied to any other plane of the scanner.
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Figure 2.26: Radial profile or the reconstructed point sources.

(a) Fact (b) No az

Figure 2.27: Region of the central slice of the point sources
reconstructed after 20 MLEM iterations

Figures 2.24 and 2.25 show the comparison, in resolution terms, of the factored approach with

no simplifications and the factored approach ignoring the axial component. These figures show

the radial, tangential, axial and average resolution (as measured by FWHM) of the reconstructed

point phantoms after 20 MLEM iterations using both methods and a region of the central transaxial

slice of the reconstructions. In order to compare the factored approach with the scheme ignoring
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Figure 2.28: Normalized standard deviation of the reconstructed
cylindrical phantom plotted against the iteration number.

the azimuthal component of the blurring, Figure 2.26 shows the radial profile (a more appropriate

figure in this case, given the profiles obtained with the simplified scheme) of the reconstructed point

sources after 20 MLEM iterations. Figure 2.27 shows a region of the reconstruction in the central

transaxial plane. The noise results for the three methods are shown in Figure 2.28, measured as the

standard deviation (normalized to the mean) of the reconstructed cylindrical phantom with uniform

activity.
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2.9 Discussion

Iterative methods for PET reconstruction have shown to offer remarkable improvements over the

analytical approaches. The success of the iterative algorithms relies to a great extent in the accuracy

with which the detection of the gamma pairs is modeled in the so-called system matrix. Unfortu-

nately, an extensive modeling of the acquisition process is often against the computational cost of

the algorithm, in terms both of reconstruction time and of memory requirements. This trade-off be-

tween quality and performance has made the computation of the system matrix a very active subject

of research.

In this chapter, the different approaches to the system matrix computation have been classified

according to the methodologies they use. Three basic existing methodologies (experimental, MC

and analytical) exist, each of them exhibiting a different level of compromise between complexity,

accuracy and computational cost. This is the reason why those approaches that combine method-

ologies have been found to achieve higher quality reconstructions at more affordable reconstruction

times and storage requirements. Particularly appealing within this group are those approaches in

which the diverse effects involved in a PET data acquisition are separately modeled, using the

methodology more suited to the phenomena they account for. Then, the models are usually stored

as a set of independent matrices. Even if it is clearly not the most rigorous way of combining the

individual models, to date no approaches exist that can rival in quality with the factorization. Al-

though there exist a few analytical alternatives to the combination of effects, all of them overlook

important effects in order to achieve feasible reconstruction times.

In light of recent works that show how the last technological advances allow to use increasingly

complex system matrix at acceptable reconstruction times, this chapter has tackled the task of de-

veloping proper analytical alternatives to the factorization of effects. This work has given place to

several significant results, which are summarized in the following:

1. The first result obtained is Eq (2.10). This expression provides a new analytical scheme

in which the separately modeled effects are combined in a mathematically rigorous way,

since it has been obtained after a detailed tracking of the data acquisition process along
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Subsections 2.4.1-2.4.7. Unlike previous analytical approaches, the scheme in Eq. (2.10)

is commensurate with the most popular factored schemes, since it accounts for the same

effects those do. Even if, from a practical point of view, the complex model in Eq (2.10)

can be expected to slow down considerably the reconstructions, it has important theoretical

implications, as shown in the following.

2. The second result is the analysis of the schemes performed in Section 2.5. Even if certain dis-

agreement of the factorization with the real acquisition process had already been suggested,

it had never been further specified, probably due to the absence of alternative schemes with

which to be compared. The scheme in Eq (2.10) is such an alternative, and serves as a refer-

ence in the study of the weaknesses of the factorization, which has been approached in two

ways:

(a) From the point of view of the accuracy, it has been shown how the most popular fac-

tored schemes can be obtained from the analytical scheme in Eq (2.10), after certain

simplifications in the model. Then, the validity of each assumption behind the factor-

ization has been analyzed. This study has given place to the third result provided in

this chapter: the development and implementation of a new scheme that gathers the

efficiency of the factorization with the exactitude of an analytical combination of the

effects. Such compromise has been achieved by rejecting the factorization of effects

when it has been found to compromise the accuracy of the model while accepting it

otherwise:

i. The factorization of the attenuation and of the positron range has been found ac-

ceptable, under the usual circumstances of the small animal PET reconstruction

(increasingly narrower tubes of response and smaller voxels).

ii. The factorization of the detection efficiency through the normalizing matrix has

been found to be inadequate, since, as shown in Eq (2.29) it excludes the effects it

involves from the forward and backward operations. Although for certain of these
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effects the calibration seems to be the only plausible modeling, the factorization

of the scintillation efficiency (which in the end is the main factor contributing to

the general detection efficiency) has been found to be avoidable, as it responds

to a simple and widely accepted mathematical model. The reconstruction results

provided in Subsection 2.8.3 show that the effects of pulling the scintillation ef-

ficiency out of the normalization matrix are not significant in terms of resolution

(Figures 2.15 and 2.16 show similar results for the reconstructed sources regard-

less of where the efficiency is considered). On the other hand, the noise increases

slightly faster when factorizing the efficiency, as shown in Figure 2.17.

iii. Finally, it has been found that the factorization of the blurring term ignores sev-

eral geometrical dependences of the effects it encloses (noncollinearity, crystal

penetration and the detector scatter). Bearing in mind that these effects (specially

the crystal penetration and the multiscatter) are determinant resolution degrading

factors in the small animal environment, the importance of these inconsistencies

has been experimentally weighted through a set of MC simulations. The results in

Tables 2.2 and 2.3 and Figures 2.9-2.13 show that the mispositioning of events due

to the mentioned effects may vary considerably with the position and orientation

of the gamma pairs within a tube of detection. The reconstructions confirm that

the resolution is notably worsen (as shown in Figures 2.18 and 2.19) and the noise

propagation is greatly enhanced (as shown in Figure 2.20) when ignoring this is-

sue. However, the improvements in the image quality achieved by modeling the

interdependence of the blurring and the geometry, entail a considerably increase

in the reconstruction times. The times reported suggest indeed that the computa-

tional cost is the weakpoint of the new hybrid scheme. It must be noted, however,

that the time quoted has not been measured from an optimal implementation of

the algorithm, neither in terms of software code nor in terms of the execution

platform.
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(b) From the point of view of the efficiency, it has been observed that the precomputation

once and for all of the individual matrices is very advantageous in terms of reconstruc-

tion time. But on the other hand, the factored approaches are forced to rely in several

simplifications of the model in order reduce the storage resources. These simplifica-

tions have been found to be specially constraining in the modeling of the blurring (the

more memory-demanding term, given the typical scanner designs and reconstruction

FOVs) and include several assumptions about the invariance and anisotropy of the ef-

fects involved. The reconstructions of the phantoms with models under these assump-

tions show that the use of the central transaxial plane to represent all other rings and

ignoring the axial component and of the blurring lead to a slight improvement in the res-

olution results (as can be observed in Figures 2.24 and 2.25). On the other hand, ignor-

ing the azimuthal component greatly degrades the reconstruction of the point sources,

as can be observed in the results for the reconstruction sources shown in Figures 2.26

and 2.27. Moreover, all the assumptions have a negative impact in the noise properties

of the images, as shown in Figure 2.28. This means that, in pursuit of the efficiency,

the most popular factored approaches provide images of suboptimal quality (i.e., lower

than the quality that could be obtained without the mentioned assumptions, which in

turn has been demonstrated to be lower than the quality provided by the non-factored

schemes).

3. Once the new system matrix scheme has been introduced, the model of one the effects it ac-

counts for has been studied in depth. The fourth result of this chapter is a new methodology

for the estimation of the detector scatter effect using MC simulations, that allows to obtain

more accurate models than previous similar approaches. Specifically, the new methodology

accounts for the variability of the detector scatter not just as a function of the orientation

of the gamma pair, but also of the position of interaction of the photons in the crystal. The

methodology has been used to study the behavior of the detector scatter in the A-PET scan-

ner in Subsection 2.7.2, but can be extrapolated to any other scanner, allowing to account

138



for the particular detection system properties of each device. The results obtained show how

the variations in the detector scatter observed in the experiments can be added to the model

without compromising the storage requirements and how this inclusion leads to significant

improvements of the reconstructions. Ignoring this variations degrades the resolution of the

images (as shown in Figures 2.21 and 2.22) and enhances the noise propagation (as shown in

Figure 2.23).
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Chapter 3

Reconstruction for Continuous

Detectors

3.1 Introduction

The use of continuous scintillators instead of pixelated arrays provides higher spatial and energy

resolution at a lower manufacturing cost and complexity (Mendes et al. (2007)). Additionally, the

use of undivided scintillator blocks avoids the problems of light collection efficiency that are related

to fine pixelation of the crystals, which significantly increases the sensitivity of high-resolution PET

systems (Llosa et al. (2006)).

Large continuous scintillation crystals were originally introduced in PET cameras by the univer-

sity of Pennsylvania (Karp et al. (1990)). This approach was developed for use with thallium-doped

sodium iodide (Nai(TI)), since it requires a good light output. However, the low stopping power of

Nai(TI) had some disadvantages. First, a thick detector was required to obtain sufficient sensitivity,

which degraded the spatial resolution, mainly due to the large Compton scattering effect (Benlloch

et al. (2006)). Moreover, it limited the maximum countrate capability of the scanners (Muehllehner

and Karp (2006)). In addition to the limitations of the Nai(TI), the large size of the detection area of
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the used photomultiplier tubes contributed to the degradation of the intrinsic resolution (Benlloch

et al. (2006)). As a result, most of the groups ended up abandoning the use of continuous Nai(TI)

detectors in favor of discrete crystal configurations.

Recent technical developments have led to a renewed interest in the use of continuous scintil-

lators (Hun et al. (2002), Tavernier et al. (2005), Balcerzyk et al. (2009), Sánchez et al. (2012)).

First, the invention of position-sensitive photomultipliers (PM-PMTs) solved the problem of the

PMTs size (Benlloch et al. (2006)). Second, the advent of LSO and LYSO, whose high scintillation

efficiency, high cross section for 511 keV gamma rays and fast decay time achieve good spatial

localization and excellent count-rate performance (Siegel et al. (1995)).

It has been already pointed out the important role that the statistical reconstruction plays in the

quality of the PET studies. It has been mentioned as well that the success of such reconstruction

algorithms relies to a great extent on the faithfulness with which they model the PET scanning

process. The literature on statistical reconstruction focuses mainly on pixelated devices, since it

has been the prevailing technology for a long time. However, the continuous scintillator cameras

have certain peculiarities with respect to their discretized counterparts that should be accounted in

the reconstructions in order to fully exploit their advantages. In spite that many academic research

groups have resumed the use of continuous sctintillation crystals in the last years, just certain works

account for the specific features of the continuous scintillators in the reconstruction.

3.2 State of the art

There are several peculiarities of the continuous scintillators that have to be taken into account in

the data acquisition and reconstruction process if the highest quality images want to achieved.

3.2.1 Definition of the LORs

The first difference the continuous cameras introduce with respect to the pixelated devices is the

definition of the LORs. For a detector composed of small discrete crystals all interactions are
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assumed to occur at the center of individual crystals whereas in a continuous detector such restriction

does not apply. Therefore, if a pixelated design is being considered, a LOR d will be a tube defined

by a pair of discrete detectors (c1 and c2, see Figure 3.1(a)) whereas if continuous scintillators are

used, then the detector tube reduces to a single line defined by a pair of continuous positions at the

detectors (p1 and p2, see Figure 3.1(b)).

c1

c2

d

(a)

p1

p2

d

X

X

(b)

Figure 3.1: Definition of a LOR d in a pixelated (a) and in a continuous
(b) design.

Reconstruction Algorithm

The more accurate lines of response (LORs) that the continuous cameras provide can be naturally

handled by list-mode versions of the MLEM reconstruction algorithm (Reader et al. (1998), Reader

et al. (2002b), Rahmim et al. (2004)). As has been mentioned, list-mode reconstruction algorithms

modify the MLEM equations so that each LOR is considered individually instead of being grouped

in discrete detector bins:
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λnew (b) =
λold (b)
p(b, .)

N∑
n=1

p(b, d)
B∑

b=1

λold (b) p(b, d)

(3.1)

Since it allows to retain the full precision of the LORs, the list-mode MLEM algorithm represented

by Eq (3.1) is an appropriate reconstruction scheme for PET systems that make use of continuous

detectors.

System matrix

The continuous nature of the LORs still involves other important considerations. The terms p(b, d)

of the system matrix have been defined as the probability that an emission from a basis function b

is detected at certain LOR d. A LOR d in a continuous scintillator can be considered as a limit case

of a LOR in a pixelated scintillator with infinitesimal crystal size. Consequently, in the continuous

case the discrete probabilities of detection in a LOR should be thought of as the likelihood values

of a continuous statistical distribution.

The new statistical meaning of the system matrix makes many of the existing methodologies

for the system matrix computation unsuitable for reconstruction of continuous detectors data. In

principle, it rules out all previous approaches based on the experimental precomputation of the

whole system matrix, since it would not be possible to store the theoretically infinite LOR values that

make up each continuous p(b, d) distribution. A very fine sampling of the continuous distributions

of p(b, d) can be done in order to retain the maximum precision of the LOR positioning. But this

would just make more difficult the already complicated storage tasks the precomputation entails.

The continuous nature of the LORs can be fully retained by using analytical approaches that allow

the on-the-fly ad-hoc computation of the system matrix terms for each LOR registered. However,

as has been mentioned, the analytical on-the-fly approaches ignore important effects involved in

the data acquisition process, which make them an inaccurate option for either the pixelated or the

continuous detector case.
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Both the pure analytical and the pure experimental (precomputed) approaches have been dis-

carded for the system matrix computation in the continuous detectors case, due, respectively, to its

inaccuracy and to its inability to retain the continuous nature of the LORs. Under these conditions,

the use of hybrid approaches that try to combine the accuracy of the empirical and MC methods

with the efficiency of the analytical procedures (and have been throughfully studied in Section 2.2.2)

seems to be an appropriate option. However, not all the hybrid approaches are suitable to be used

for reconstruction with continuous detectors data. Just those in which the experimental part does

not involve huge precomputed components based on the discretization of the LORs d will be appro-

priate. Such models will be able to preserve the accuracy of the LORs without imposing stringent

storage requirements. Unfortunately, the factored methodology of Qi et al. (1998), which to date is

the most successful of the hybrid approaches type, does not fulfill this condition. This approach is

based on the precomputation of the geometrical and blurring matrix. The precomputation of these

matrices already poses an storage problem in the pixelated detector case, and it would be still more

challenging in its adaptation to continuous cameras. Although other hybrid approaches might fit the

requirements needed to preserve the LOR positioning to a great extent, all of them have been found

to have drawbacks in the general case (see Section 2.2), that would be inherited in their adaptation to

continuous detectors. To sum up, to date there is not a system matrix implementation that is able to

efficiently take into account the continuous nature of the LORs provided by continuous scintillators.

Sensitivity matrix

The reformulation of the system matrix terms to account for the continuous nature of the LORs

affects as well to the computation of the sensitivity matrix. The sensitivity matrix p(b, .), has been

defined for a basis function b in the FOV of a PET scanner, as the probability that a pair of gamma

photons emitted from that basis function is detected by the scanner. This probability has been

traditionally computed as the summation over the probabilities of detection in each LOR, making

use of the discrete nature of the pixelated detectors:
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0 < p(b, .) =
D∑

d=1

p(b, d) (3.2)

In the continuous detectors environment, where the terms p(b, d) are distributed over a contin-

uous distribution, the summation in Eq (3.2) should be correctly expressed as an integral. Some

authors have proposed analytical calculations of the sensitivity term (Reader et al. (1998), Levkov-

tiz et al. (2001), Soares et al. (2003)) that solve this problem. However, the rotational symmetry

assumption all these methods share is in disagreement with the polygonal shape of modern PET

scanners that use block detectors.

3.2.2 Optical photons behavior

So far, the formal differences that the use of continuous scintillators make in the statistical recon-

struction have been tackled. However, the use of continuous scintillators also makes some important

differences in the physical detection process. These differences concern mainly the behavior of the

scintillation photons. Unlike in pixelated designs, the optical photons resulting of each of the in-

teractions with the scintillator are not confined to one optically isolated crystal but propagate all

over the continuous block (Levin (2004)), as shown in Figure 3.2. As a result, additional light

losses occur due to the multiple reflections on the inside surfaces of the crystal, degrading the en-

ergy resolution. Moreover, the light distribution subtended at the PMTs is broadened and distorted,

which causes resolution degradation and compression in the image domain (Giménez et al. (2004),

Benlloch et al. (2006)).

The use of reflectors, absorbers as well as special crystal surfaces finishes, difusses and shapes

can enhance the light collection in order to minimize the losses associated with multiple reflections

and to achieve higher spatial resolution and lower compression images (Karp and Muehllehner

(1985), Giménez et al. (2004)). But even if these design features highly overcome the difficulties

associated to the absence of discrete detectors, important differences between the light collection

properties in pixelated and continuous designs still remain after the manufacturing process. In

145



PMTs

(a) Pixelated design

PMTs

(b) Continuous design

Figure 3.2: Schematic drawings of the light ray propagation for typical
pixelated and continuous camera designs. For the pixelated
design, scintillation light is confined to one crystal and
focused on one spot of the photodetecting array. For the
continuous design, the light cone subtended at the
photodetector is broaden by the reflections at the top and
sides of the single crystal.

pixelated arrays, the light response properties are approximately identical regardless of the point

within the segmented array from which the optical photons are emitted. However, in the continuous

designs the position of the light source (the position of the interaction with the scintillator) gives

place to very different reflection patterns from the sides and the back surfaces. As a result, the

light response function (LRF) can vary in shape dramatically depending on the source position

(Lewellen (2008), Miyaoka et al. (2008)). First, the LRF varies with the tangential 2D position on

the crystal. For the light sources close to the crystal side edges the reflecting light from the side

surfaces contributes to the width and tail of the LRF, as shown in Figure 3.3. The LRF changes as

well with the DOI of light source due to reflections from the top and back surfaces. Specifically, as

shown in Figure 3.3, the LRF is less spread out for positions close to the photosensor, compared to

positions far from the photosensor.
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Figure 3.3: Approximated shape of the LRF in a continuous scintillator
for a light source located at the center(a), the block side(b)
the block bottom surface(c) and the block top surface(d) of
the block.

The DOI dependence of the LRF can be an added parameter to extract and utilize to address the

parallax problem (Lewellen (2008)). Nevertheless, in the general case, the distortions in the shape

of the LRF work to degrade the positioning of the event, which has a strong effect on the intrinsic

spatial resolution achievable with a continuous detector. In order to improve the spatial resolution,
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the detector light characteristics can be compensated at either the detector level or as part of the

image reconstruction process:

1. At the detector level, apart of the already mentioned surfate treatment procedures (Giménez

et al. (2004), Karp and Muehllehner (1985)), non-linear preamplifiers (Karp and Muehllehner

(1985)) can be used to sharpen the light distribution. The positioning bias can be reduced as

well with the use of statistical estimation techniques to determine the point of interaction

in the crystal array rather than linear algorithms (Milster et al. (1985), Pouliot et al. (1991),

Tomitani et al. (1999), Miyaoka et al. (2008)). However, just a few of these models (Miyaoka

et al. (2008) and Lerche et al. (2009)) address how to model the LRF near the edge of the

detector, where mathematical modeling is very difficult. Certain works correct for the unde-

sirable border effects using position calibration methods (Benlloch et al. (2006)) and could

be used along with the incomplete statistical positioning methods.

2. As for the compensations of the light characteristics in the image reconstruction process, to

date no work has been found in which the optical photons behavior is included in the system

model in which the statistical reconstruction is based. This is likely due to the fact that,

as has been already mentioned, the pixelated crystal configurations, where the LRF is not

such an important issue, have been the most popular choice in the past decades. However,

the renewed interest by the continuous configurations in the last years makes this possibility

worth of an effort, either as an alternative or complementary to the already mentioned design,

positioning and calibration techniques.

3.3 Objectives of the Chapter

As shown in the previous section, just a few works exist that are able to take into account the

particular characteristics of the continuous scintillators in the reconstruction process and all of them

still have certain limitations. Moreover, each of the mentioned works deals just with a part of the

requirements the reconstruction for continuous scintillators imposes. However, to the best of our
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knowledge, all the specific aspects of the reconstruction for continuous detectors have never been

gathered in a single scheme. In the absence of such a reconstruction scheme, the advantages of the

continuous detectors technology are not being fully exploited. The present chapter addresses this

problem, through the achievement of the following goals along the following sections:

1. In Section 3.4, a method to compute the system matrix will be introduced that accounts for the

specific features of the continuous detector devices (discussed in Section 3.2) while fulfilling

the general accuracy and efficiency requirements every statistical reconstruction imposes.

Specifically, it will be shown that, due to its analytical and flexible nature, the new system

model introduced in Chapter 2 is specially well suited to be adapted for its use in continuous

detector reconstructions. Furthermore, it will be specified how the adaptation of the scheme

should be carried on.

2. In Section 3.5, a new method for the computation of the sensitivity matrix for the MLEM

algorithm has been developed. The new method is independent of the continuous/pixelated

nature of the scintillators, since it is not based in the sum of probabilities over the individ-

ual detectors. Moreover, unlike previous similar approaches, it is not based on a rotational

symmetry assumption.

3. The new methods developed for the system and sensitivity matrix computation have been

incorporated to an algorithm in order to test the benefits in the image domain of a reconstruc-

tion specially adapted for continuous scintillators. Section 3.6 deals with the details of the

implementation of the new methodologies whereas Section 3.7 deals with their evaluation

and validation.

3.4 System matrix for continuous scintillators

It has been concluded in Section 3.2 that, in order to reconstruct from continuous scintillators data,

statistical algorithms should make use of a system matrix that is able to fit two requirements. First,
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as has been pointed out in Subsection 3.2.1, it should be able to retain as much as possible the

continuous positioning provided by this technique. Second, it should account for the particular

behavior of the optical photons in the continuous blocks, whose consequences in the shape of the

LRF have been described in Subsection 3.2.2.

Concerning the first objective, it has been already mentioned that an hybrid scheme that com-

bines experimental and analytical methodologies giving priority to the analytical calculations while

minimizing the precomputed components should be used. Such an scheme allows to retain as much

as possible the continuous LOR nature without imposing stringent storage requirements. Unfor-

tunately, the factored model proposed by Qi et al. (1998), which to date was the most complete,

accurate and popular of the existing hybrid schemes, has been found not to be appropriate for re-

construction with continuous data, since it is based on the storage of huge precomputed factors.

Chapter 2 has dealt thoroughly with the type of hybrid system matrix schemes that combine

methodologies and, as a result, an alternative mixed scheme that is able to compete with the fac-

tored approaches has been obtained in Section 2.6. The new scheme is based on the substitution

of the separated factors by analytical expressions in those parts of the scheme where the factoriza-

tion of effects has found to be an inaccurate approach. The accuracy principle in which the new

scheme has been built has shown to lead to higher quality reconstructions than the purely factored

approaches. Moreover, and according to the previous paragraph, the priority the new scheme gives

to the analytical expressions over the precomputed components makes it to be very well suited to

retain the LOR positioning provided by continuous detectors.

Concerning the second objective, the new hybrid scheme has been conceived as a flexible frame

for the combination of the different effects that a system matrix should account for. This allows to

select which effects are incorporated into the model and the methodology with which each of these

effects is modeled. The incorporation of the optical photons related effects to the existing model

can thus expected to be an achievable task.

The new scheme proposed in Section 2.6 can be therefore thought as an appropriate scheme
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to fulfill the requirements imposed by the use of continuous scintillators in the system model es-

timation. In the following it will be shown how it can be adapted to achieve these requirements:

Subsection 3.4.1 deals with the retaining of the data precision whereas Subsection 3.4.2 deals with

the incorporation of the optical photons behavior to the model.

3.4.1 LOR positioning

In this section it will be checked to what extent the scheme proposed in Section 2.6 is able to retain

the continuous nature of the LORs provided by continuous detectors. The priority the scheme gives

to the analytical calculations that allow to retain the LOR definition, becomes specially apparent in

the expression proposed in Section 2.7:

p(b, d) = pcal(d)
N∑

j=1

∫
γ

∫
ϕ

patt(di(bj , γ, ϕ))
∫

θ1

∫
θ2

∫ L1

0
pmult(bj , γ, ϕ, θ1, θ2, d1)f(l)dl

∫ L2

0
pmult(bj , γ, ϕ, θ1, θ2, d2)f(l)dlf(θ2)f(θ1)f(ϕ, γ)dθ2dθ1dϕdγppos(b, bj)(3.3)

However, the scheme still relies on the precomputation and storage of the models for some of

the effects it accounts for. Specifically, and even if the methodology used to model each effect can

be modified, it is expected that the normalizing pcal(d), attenuation patt(di(bj , γ, ϕ)) and detector

scatter pmult(bj , γ, ϕ, θ1, θ2, l, dk) terms are experimentally computed and stored due, respectively,

to its scanner dependent, object dependent and complex nature.

The terms patt(di(bj , γ, ϕ)) contain the attenuation values for the gamma pairs (defined by

γ, ϕ) emitted from a voxel bj . Since the attenuation properties do not depend on the continuous

or pixelated nature of the scanner, the storage of the attenuation terms does not compromise the

accuracy in the positioning of the LORs.

On the other hand, the normalizing (pcal(d)) and detector scatter (pmult(bj , γ, ϕ, θ1, θ2, l, dk))

terms depend explicitly on the LOR definition d (dk k = 1, 2 stand for the two positions that define
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d). In order to store the precomputed values of these terms, the continuous variable d will have

therefore to be discretized. Consequently, the values of normalization and detector scatter won’t be,

in principle, available for every registered LOR d, but will have to be obtained by means of some

kind of interpolation.

The computation and storage of pcal(d) is not expected to have severe consequences in the

reconstructions. On the one hand, in the development of the new scheme it has been decided to

transfer the main effects this term traditionally accounted for to the system model, which has shown

to improve the quality of the results, in Section 2.8. On the other hand, being an unidimensional

function of d, a fine discretization of pcal(d) can be achieved without compromising the storage

requirements, as shown in Benlloch et al. (2006).

The discretization of d in the detector scatter terms pmult(bj , γ, ϕ, θ1, θ2, l, dk) is more chal-

lenging. On the one hand, the multiple interactions are known to be an important image degrading

effect in the small animal field, and any issue involved on their estimation has to be carefully con-

sidered. On the other hand, the precomputation and storage of a five dimensional function poses a

more complex storage problem. In the general pixelated case, these terms have been precomputed

as a set of discrete probability distributions of d. Each of the distributions corresponds to a different

combination of bj , γ, ϕ, θ1 and θ2, and computes the probability that an event whose first inter-

action with the scintillator is defined by these four parametres is finally positioned at the discrete

crystal d. Each distribution has been obtained by generating with a MC simulator a large number

of photons interacting at the defined position and obtaining normalized histograms of the recorded

detections. Since in the case of continuous scintillators, the positions d are continuous variables, the

discrete probability distributions should be restated as continuous probability distributions. For that

reason, instead of estimating them by histogramming the recordered positions, a more appropriate

estimation based on a smoothing normal kernel (Bowman and Azzalini (1997)) is proposed. The

number of points at which the estimated continuous distributions are evaluated to be stored will

determine the level of discretization of d. The minimum level of discretization of d will be imposed

by the sampling rate necessary to preserve the information of the distributions. The maximum level
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of discretization will be imposed by the RAM memory available to store each distribution, which

in turn, will depend on the memory resources and on the number of distributions that have to be

stored. This number can be minimized, by studying the variability with bj , γ, ϕ, θ1 and θ2 of the

distributions, as has been done in the general pixelated case (see Subsection 2.7.2)

The previous paragraph summarizes the guidelines that are proposed to compute the detector

scatter terms in the case of continuous scintillators. These guidelines constitute the only modifica-

tion introduced in the system matrix computation with respect to the general pixelated case, which

corroborates the adequacy of the chosen scheme for its adaptation to continuous scintillators recon-

struction. In Section 3.6 it will be shown how these guidelines are applied to the discretization and

storage of the detector scatter distributions for a specific continuous detectors scanner.

3.4.2 Optical photons

The first step to incorporate the light related effects to the scheme in Eq (3.3) is to locate the emission

of optical photons in the data acquisition process this equation models. As depicted by Figure 3.4,

each interaction associated with a gamma photon can be modeled as one of the sources with spheri-

cally symmetric distributions of sctintillation light whose behavior has been described in Subsection

3.2.2.

There exist several analytical models for the estimation of the light distribution each source

gives place to (Aykac et al. (2003), Levin (2004)). An attempt could be made to use these models to

describe the behavior of the optical photons generated in the crystal, but this approach would pose

a complex challenge. According to the scheme of Figure 3.4, one different light distribution should

be modeled for each possible interaction. Such an approach would require a prediction of every

possible interaction with the crystal for each incident photon. The use of analytical optical models

would just thus increase the complexity of the already unworkable problem of analytically modeling

the multiple interactions (for which it has already been chosen a MC approach). Consequently, this

option has been discarded.

On the other hand, the MC simulator (GATE) used to generate the detector scatter distributions,
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PMTs

1st Interaction

2nd Interaction

3rd Interaction

Figure 3.4: A gamma photon entering the detector gives place to a
complex and unpredictable pattern of multiple interactions,
each of which becomes a source of optical photons, whose
behavior in the continuous scintillators has to be modeled.

can be used to accurately generate and track optical photons. The optical photon tracking capabili-

ties of GATE have been switched off in the estimation of the detector scatter for pixelated detectors

(in Section 2.7), since they increase dramatically the simulation time and the optical photons are

known to be a minor issue for this kind of devices. However, in the case of continuous scintillators,

where the light effects are known to play an important role, switching on the optical photons genera-

tion during the detector scatter estimation allows to include their effect in a very advantageous way.

On the one hand, it does not involve an increase in the complexity of the system matrix computation.
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The procedure for the computation and storage of the detector scatter distributions needs to be re-

peated anyway for each scanner, in order to account for its particular characteristics. The activation

of the optical photons just involves an increase in the simulation times, but the simulations have to

be run just once and for all before the beginning of the reconstruction process. On the other hand,

being the optical photons model precomputed and stored along with the pmult(bj , γ, ϕ, θ1, θ2, l, dk)

terms, its inclusion in the scheme may affect the memory requirements, but not the reconstruction

time, which has been shown to be the weak point of this particular system matrix scheme. In Section

3.6, further details on how to include the optical photons in the simulations and its consequences on

the estimation of the detector scatter terms will be given for a specific device.

3.5 Sensitivity matrix for continuous scintillators

As has been pointed out in Section 3.2, due to the continuous nature of the LORs in the undivided

detector devices, the sensitivity matrix can’t be computed as the sum of individual probabilities of

detection over every LOR of the scanner. In the following, an analytical method is introduced to

compute the sensitivity matrix of PET scanners, which is not based on the continuous or pixelated

nature of the detectors and can be, therefore, used for both types of devices. Furthermore, unlike

previous analytical developments of this type, the following development does not assume rotational

symmetry. A detailed discussion of the experimental importance of this factor is given in Subsection

3.6.3.

The sensitivity term p(b, .) stands for the probability that a pair of gamma photons emitted from

a basis function b in the FOV of a PET scanner gives place to a coincidence event. In order to provide

a methodology that is valid for any type and size of basis function, the calculation will be performed

for a single emitting point r0, and referred to as p(r0, .). As has been shown in Subsection 2.4.1, the

results obtained for a single emitting point can be easily extended to the general case of any basis

function by means of integration over its domain.

The development is valid for both static rings and rotating geometries, although it will start
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considering the basic scanner consisting of just two parallel planar detector heads (which can be

either continuous or pixelated) whose dimensions and coordinate axes are shown in Figure 3.5.

W

L

Figure 3.5: Dimensions and coordinate axes of the two parallel detector
heads for which the methodology for the sensitivity matrix
computation will be developed.

Let ϕ and γ be the polar and azimuthal angles, respectively, that define the orientation of a

gamma pair emitted from a point r0. If we assume an uniform distribution of the emissions over

the sphere (i.e., the joint probability density function of ϕ and γ is f(ϕ, γ) = cos ϕ
2π ), the probability

that an emission from a point r0 of coordinates (x0,y0, z0) in any plane Πγ parallel to the z-axis

(as shown in Figure 3.6) intersects both of the planar detector heads can be computed as:
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p(r0, Πγ) =
∫ βϕ(r0,γ)

αϕ(r0,γ)

cos ϕ

2π
dϕ (3.4)

As can be observed in Figure 3.6, the integration limits αϕ(r0, γ) and βϕ(r0, γ) are the max-

imum detectable angles from r0 within the plane Πϕ. Closed-form expressions for αϕ(r0, γ) and

βϕ(r0, γ) are given in Appendix C.

Even if a photon intersects a detector it may not interact with it. The detection efficiency of

the scintillator material (the most important factor at this regard), quantified through its physical

attenuation constant, µ0, will be considered. The probability of detecting a pair of gamma photons

that intersect the left and right detectors with lengths L1(r0, ϕ, γ) and L2(r0, ϕ, γ) respectively can

be approximated by:

p(r0, ϕ, γ) = (1− eµ0L1(r0,ϕ,γ))(1− eµ0L2(r0,ϕ,γ)) (3.5)

The probability of detecting an emission from a point r0 in any plane Πγ is:

p(r0, Πγ) =
∫ βϕ(r0,γ)

αϕ(r0,γ)

cos ϕ

2π
p(r0, ϕ, γ)dϕ (3.6)

The expression for the probability of detection of any pair of photons emitted from r0 in the

case of the basic two parallel detector heads can be obtained by integrating p(r0, Πϕ) over all the

planes Πϕ detectable by the detector heads:

p(r0) =
∫ βγ(r0)

αγ(r0)
p(r0, Πϕ)dγ (3.7)

The range of detectable planes is defined again by the angle seen by the point r0 into the detector
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x0 = tan x - γ (y – y0)
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Figure 3.6: Geometrical characterization of the range of detectable
emissions from the point r0 within the plane Πϕ. ϕ is the
angle formed by the plane parallel to the z-axis Πϕ and the
plane x = x0. The angles αϕ(r0, γ) and βϕ(r0, γ) define the
maximum and minimum detectable LORs within the plane
Πϕ. The dashed line is the intersection of z = z0 and Πϕ

planes. The reference axis used is supposed to be centered
with respect to the planar detectors but for space reasons are
shown at the right-down corner of the figure.

heads, now in the xy plane, as shown in Figure 3.7. Appendix C provides analytical expressions for

the angular limits αγ(r0) and βγ(r0).
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Figure 3.7: Geometrical characterization of the range of detectable
emissions from the point r0 within the plane xy. The angles
αγ(r0) and βγ(r0) define the maximum and minimum
detectable LORs within the plane xy.

The previous development can be applied, using simple rotation operations, to detector heads in

angular positions different from the ones shown in Figure 3.5, either with both heads rotated by an

angle around the z axis or with each of the heads rotated by a different angle around the z axis. In

the following, p(r0, Φ1, Φ2), will stand for the probability that a pair of photons emitted from r0 is

detected by two detector heads in positions given by rotation angles of Φ1 and Φ2 around the z axis

(as shown in Figure 3.8).
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Figure 3.8: Geometrical characterization of the angular positions of the
detector heads in a rotating device

The sensitivity matrix for the general case of scanners composed by partial or full rings of

detector heads either static or in rotation can be obtained as a composition of p(r0, Φ1, Φ2) terms. In

a scanner in which the detector heads can be situated at N different angular positions ang1...angN ,

the probability of detection of an emission from r0 would be:

p(r0, .) =
angN∑

Φ1=ang1

angN∑
Φ2=ang1

p(r0, Φ1, Φ2)ppos(Φ1, Φ2)pcoinc(Φ1, Φ2) (3.8)

where ppos(Φ1, Φ2) is the probability that the dual heads are situated at the angular positions Φ1, Φ2.

For static PET scanners, ppos(Φ1, Φ2) = 1, whereas for rotating scanners, assuming that the detector
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heads spend the same amount of time in each position ppos(Φ1, Φ2) = 1/N . pcoinc(Φ1, Φ2) equals

1 if coincidences are allowed for the pair of detectors situated at Φ1, Φ2 and 0 if such coincidences

are not allowed.

3.6 Implementation

In the previous sections, it has been figured out how to adapt the computation of the system models

used by the statistical algorithms to the requirements imposed by the use of continuous scintilla-

tors. This section deals with the details of the implementation of the system (Subsection 3.6.2) and

sensitivity (Subsection 3.6.3) matrices for a commercially available continuous scintillator camera,

whose basic features are detailed in Subsection 3.6.1.

3.6.1 PET camera

The continuous scintillators camera with which the new system and sensitivity models have been

evaluated is the Albira small animal positron emission tomograph. As shown in Figure 3.9, this to-

mograph utilizes eight trapezoidal lutetium-yttrium orthosilicate (LYSO) crystals of 9.8 mm thick-

ness with the face towards the center of the FOV measuring 40x40 mm and the face towards the

readout system measuring 50x50 mm, (although in the simulations rectangular 40x40 mm heads

have been considered). The separation between the opposite detectors is 110.78 mm. Further spec-

ifications can be found in Balcerzyk et al. (2009) and Sánchez et al. (2012).

3.6.2 Implementation of the system matrix

In Section 3.4, it has been discussed why the new scheme for the system matrix computation intro-

duced in Chapter 2 is specially appropriate to be used for continuous scintillator data reconstruction.

Then, it has been concluded that the adaptation of this scheme to the continuous scintillators con-

straints involves several changes, all of them concerning the calculation and storage of the detector

scatter model (the pmult(bj , γ, ϕ, θ1, θ2, l, dk) terms in Eq (3.3)). In this section, it will be shown
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Figure 3.9: Schematic of the Albira PET scanner

how the pmult(bj , γ, ϕ, θ1, θ2, l, dk) terms have been calculated and stored for the Albira PET scan-

ner, following the guidelines given in Section 3.4.

Simulation of optical photons

One of the novelties introduced in the precomputation of the detector scatter terms, is that the

generation and tracking of optical photons has to be switched on in the MC simulator used to

estimate them.

Being the treatment of the crystals a factor that strongly determines the behavior of the optical

photons, many parameters are needed to correctly characterize the materials and surfaces of the
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scintillators for the optical simulations. In many cases it is not trivial how to match the simulated

parametres to the detector properties (Giménez et al. (2004)), which, in turn, are difficult to pre-

cise unless a deep knowledge of the manufacturing process is owned. The process of accurately

modeling the surface properties in the MC simulations is actually a very complex problem out of

the scope of this work. In order to remove possible mismatches between the system model and the

real data acquisition process due to an unprecise characterization of the surfaces, the evaluation of

the new approach will be carried on just with reconstructions from data simulated with the same

parameters used to estimate the system models. A typical configuration (Giménez et al. (2004)) has

been chosen in which the crystal has all the surfaces finely ground and the photon-incident surface

and the sides are painted black with a reflection factor of 0 (i.e., they absorb the 100% of the light).

Storage of the detector scatter distributions

Once the MC optical parametres have been settled, the behavior of the simulated detector scatter

functions pmult(bj , γ, ϕ, θ1, θ2, l, dk) has to be studied in order to optimize the storage resources.

As has been pointed out in Section 2.7 for a pixelated scanner case, this kind of analysis may

seem a complex task when carried out for a seven-dimensional function, but it can be simpli-

fied if the detector scatter terms are correctly interpreted. As has been repeatedly mentioned,

pmult(bj , γ, ϕ, θ1, θ2, l, dk) stands for the probability that a photon emitted from a point r that be-

longs to bj (as stated in Subsection 2.5.2, if the bj are assumed to be a small voxels, the specific r

considered doesn’t make a difference) that propagates along the direction defined by γ, ϕ, θ1 and θ2

and interacts with the scintillator after traveling a distance l within it, gives place to a detection in a

crystal dk. This means that for each combination of bj , γ, ϕ, θ1 and θ1, a statistical distribution of dk

has to be estimated (now as a continuous density function, instead of as a normalized histogram, as

pointed out in Subsection 3.4.1). The variability among distributions obtained for different bj , γ, ϕ,

θ1 and θ1 can be measured using the KL divergence, and will determine the number of distributions

that need to be stored. Then, the sampling rate needed to discretize the continuous variable dk in

each distribution will determine how many points have to be stored for each distribution. This step
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constitutes another added requirement with respect to the pixelated detectors, where the number of

values that make up each distribution is fixed by the discrete nature of the positions d.

According to these requirements, the procedure of computation and storage of the detector

scatter terms will be performed as following. First, the detector scatter distributions will be obtained

with a very fine sampling of d. The oversampled distributions will be used to study its variability

with bj , γ, ϕ, θ1 and θ1. Using a large number of points improves the reliability of the comparisons

among distributions, and do not pose a problem of storage resources, since rapid RAM access to

the data is not needed in this part of the process, and distributions can be stored in disk. Once it

has been determined how many distributions have to be estimated and for which values of bj , γ, ϕ,

θ1 and θ1, the number of points with which each of them is finally stored will be set. This number

will be obtained as a compromise between the minimum that guarantees a correct sampling of the

distributions and the maximum allowed by the RAM memory resources. This effort to maximize

the precision with which the variable d is sampled is in agreement with the objective of retaining as

much as possible the continuous nature of the LORs.

In the following, it will be shown how this procedure has been carried out, using the GATE

Monte Carlo simulator, on one of the detector blocks of the Albira PET scanner. The results can

be extrapolated to the rest of the detectors. Concerning the variability of the distributions with

r, γ, ϕ, θ, as stated in Section 2.7, if the depth-independence is accepted, what these five variables

define is the position and orientation of the first interaction of a photon that enters the scintilla-

tor. The pmult(bj , γ, ϕ, θ1, θ2, l, dk) can thus be restated as a function of these two factors, as

pmult((x′, y′, z′), γ′, ϕ′, dk), where (x′, y′, z′) are the coordinates of the position of the interac-

tion in the continuous block coordinate system (see Figure 3.10) and γ′, ϕ′ are the azimuthal and

polar angles that define the angle of incidence. Moreover, based on the way the positioning network

works, the terms pmult((x′, y′, z′), γ′, ϕ′, dk) can be decomposed in two orthogonal components

pmult((x′, y′, z′), γ′, ϕ′, dkx) and pmult((x′, y′, z′), γ′, ϕ′, dky), where dkx and dky are respectively,

the tangential and axial components of dk in the block reference system. Next, it will be shown how

the variability of the tangential component of the distributions, pmult((x′, y′, z′), γ′, ϕ′, dkx), with
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the parametres x′, y′, z′, γ′, ϕ′ has been estimated. The results have been found to apply to the axial

component pmult((x′, y′, z′), γ′, ϕ′, dky) by simple orthogonal rotation of the distributions.

r
X

l
φ, γ,θ1,θ2

(a)

φ’, γ’ z’

y’x’

(b)

Figure 3.10: Position of the first interaction as a function of r, γ, ϕ, θ, l
(subfigure a) and as a function of x′, y′, z′, γ′, ϕ′ (subfigure
b)

Figure 3.11 shows the experimental setup used to measure the variability of the distributions

pmult((x′, y′, z′), γ′, ϕ′, dkx) with the DOI (i.e., coordinate z′ being z′ = 0 the crystal center) of the

first interaction in the crystal block. A 511 keV gamma-ray beam normally incident to the detector

has been generated from a point source placed in the center of the FOV. One million of emissions

were simulated and the events generated were positioned using a centroid approach, recording each

event along with the positions (x′, y′, z′) of all the interactions that went before it. Then, the de-

tections have been classified according to the DOI (z′ component) of the first interaction that gave

place to them. The positions of the detections associated to each DOI constitute the sample used to

estimate pmult((x′, y′, z′), γ′, ϕ′, dkx) for that DOI. A normal kernel smoother has been used to esti-

mate the continuous distributions, that have been evaluated at 40, 000 points covering the 40mm of

detector width (giving place to an interval sampling of 0.001). Table 3.1 shows the KL divergences
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among distributions obtained for interactions separated 2mm in the z′ direction.

The results show great differences among distributions corresponding to different DOIs. Specif-

ically, the KL values are much higher that the values obtained for identical DOI differences in the

case of pixelated crystals (see Table 2.11). This is due to the added effect of the optical photons

in the continuous scintillators, which as stated in Subsection 3.2.2, give place to LRFs that get nar-

rower as the interaction occurs close to the PMTs. This effect can be clearly observed in Figure

3.12, in which the distributions compared in Table 3.1 have been plotted.

In order to study the variability along the tangential direction x′, a collection of point sources in

the central transaxial plane located 3mm apart in the x′ direction covering half of the block (block

symmetry has been assumed) have been simulated (Figure 3.13 shows two of these sources). Again,

one million of 511 keV gamma photons normally incident to the detector have been generated from

each source. The position distributions for the events whose first interaction took place at a fixed

DOI (the crystal center, at z′ = 0, as shown in Figure 3.13) have been estimated using the same

procedure as in the previous DOI study. The resulting distributions can be observed in Figure 3.14.

Since each distribution covers a different asymmetric range relative to the distribution center

(the position of the first interaction), the KL divergence has not been found to be an appropriated

measure in this case. However, by visual inspection, important distortions in the shape of the distri-

butions can be appreciated as the first interaction occurs closer to the detector edge. This means that

the distribution obtained for the interaction at the central tangential position (x′ = 0mm) can be ap-

plied, by simple translation, to photons interacting close to the center, but specific distributions have

to be calculated for interactions occurring close to the border. Specifically, after further checks, the

point x′ = 8mm has been found to be the threshold beyond which the border effect is noticeable.

The variablity of the distributions with the photon orientation has been studied for the azimuthal

angle γ′, since it is the angular component involved in the tangential positioning, but the results can

be applied to the axial orientation. Several beams have been generated in the central transaxial

plane with their photons entering the crystals at different γ′ (being γ′ = 0 equal to perpendicular

incidence) but all of them transversing the center of the crystal, as shown in Figure 3.15. The
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pmult(x’,y’,z1,φ’,γ’,dkx)

pmult(x’,y’,z2,φ’,γ’,dkx)

Figure 3.11: Experimental setup to compute the variability of the
detector scatter distributions as a function of the doi (z′

position, being z′ = 0 the crystal center) of the interaction
in the crystal

z’(mm) -4.0 -2.0 0.0 2.0 4.0
-4.0 0.0000 0.0719 0.5560 1.9969 120.7
-2.0 0.0668 0.0000 0.2179 1.3549 104.6
0.0 0.4332 0.1837 0.0000 0.5305 74.29
2.0 1.2614 0.8822 0.3639 0.0000 33.81
4.0 3.2651 2.8456 2.1159 1.2006 0.0000

Table 3.1 Variability of the detector scatter distributions with the DOI
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Figure 3.12: Detector scatter distributions for photons interacting at
different DOIs

distributions for events with first interaction at this point (i.e., the position x′ = 0 mm, z′ = 0 mm

in the crystal system), have been obtained following the same procedures as in the previous tests.

Table 3.2 shows the KL divergences among these distributions. The differences due to the photon

orientation are rather smaller than the differences due to the DOI of the first interaction shown in

Table 3.1. It can be indeed observed in Figure 3.16 how the distributions obtained for the different

beam orientations are almost identical.

On the basis of the previous experiments, it has been decided to account for the variability

of the detector scatter distributions with the position of the interaction in the crystal, but not with

the orientation of the photon leading to that interaction. Then, further tests have been performed to

determine the final number of distributions that have to be stored. For each DOI z′, a distribution has

to be computed for the tangential center of the block (x′ = 0) and its neighborhood (the red crosses

in Figure 3.17), and from the threshold fixed at x′ = 8mm to the edge of the block at x′ = 20mm,
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Figure 3.13: Experimental setup to compute the variability of the
detector scatter distributions as a function of the x′

position of the interaction in the crystal

the distributions affected by the border effect have to be individually estimated (the blue crosses in

Figure 3.17). A separation of 1mm between the border distributions has been found to be enough

to account for their differences. As a result, a total of 13 distributions have to be computed for each

DOI. Then, it has been determined that, in the DOI (z) direction, the minimum separation between

interactions that gives place to different distributions is 0.1mm. Being the radial dimension of the

scanner 9.8mm, this means that 98 collections of 13 tangential distributions have to be computed,

which makes a total of 1274 pmult((x′, y′, z′), γ′, ϕ′, dkx) distributions. Since, as previously stated,

these distributions can be rotated to be used as axial distributions pmult((x′, y′, z′), γ′, ϕ′, dky), 1274
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Figure 3.14: Detector scatter distributions for photons interacting at
different tangential coordinates.

is the total number of distributions that have to be stored.

Once the total number of distributions has been calculated, it has to be determined the number

of points at which each one will be finally evaluated and stored. In each of the distributions, the

continuous variable dkx that has to be sampled covers a range of 40mm, defined by the detector

dimensions. However, 98 of the distributions (those corresponding to those centred in the tangential

center of the block) are symmetric, and just a half of the range has to be stored. Assuming that the

same uniform interval δx′ will be used to discretize all the distributions, a total of 1176 ∗ 40mm +

98 ∗ 20mm = 49000mm of dkx have to be sampled at intervals δx′. A thorough study of the

distribution properties reveals that a sampling value of δx′ = 0.2mm is enough to represent all of

them. The total number of points that have to be stored is therefore 49000
0.2 = 245000. Assuming that

the points can be recorded as 4 bytes floating numbers, the storage requirements needed to allocate

the detector scatter distributions are in the order of 1MB, which is much less than the current RAM
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Figure 3.15: Experimental setup to compute the variability of the
detector scatter distributions as a function of the angular
orientation of the photon leading to the first interaction
with the crystal

γ′ (deg) -40 -20 0.0 20 40
-40 0.0000 0.0069 0.0105 0.0142 0.0187
-20 0.0067 0.0000 0.0107 0.0161 0.0139
0.0 0.0088 0.0094 0.0000 0.0072 0.0066
20 0.0139 0.0161 0.0086 0.0000 0.0067
40 0.0187 0.0142 0.0083 0.0069 0.0000

Table 3.2 Variability of the distributions with the angular orientation
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Figure 3.16: Detector scatter distributions for photons entering the
detector with different angle of incidence

amount of ordinary industry-standard computers.

3.6.3 Implementation of the sensitivity matrix

The analytical scheme that has been developed in Section 3.5 to compute the sensitivity matrix has

been adapted for the small animal Albira PET. The integrals in Eq (3.5) have been numerically

estimated for several regions of the FOV of the scanner. Then, two important aspects of the new

methodology have been evaluated. First, since the method developed is new (i.e., not based in

previous approaches), its reliability and accuracy have to be checked. The Monte Carlo simulator

GATE has been used to validate the mathematical model and its implementation. Second, being the

main novelty of the new method that it does not assume cylindrical symmetry, it will be checked to

what extent this issue is important.
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Figure 3.17: Layout of the detector scatter distributions for a generic
continuous crystal. Each cross marks the interacting
position for which a distribution should be computed. The
final number of distributions resulting for the Albira PET
scanner dimensions is provided in the text. (Drawings are
not to scale).

Validation

The sensitivity terms p(r0, .) have been computed using both the new methodology and GATE for

two collections of points: the points along a circumference in the central transaxial plane (plane

xy in Figure 3.6) placed in the center of the scanner and a grid of points in the yz plane. For

both experiments, the normalized root-mean-square error (NRMSE) between both methods is in the
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order of 10−3. With regard to the computational time, for the yx plane simulations, one million of

gamma-pair emissions from 120 different point sources have been simulated using the Monte Carlo

method. The execution time for GATE was around 500 hours whereas the results achieved by means

of the analytical method have been obtained in less than 40 seconds in the same computer.

It can be thus concluded that, within the limitations of the Monte Carlo simulations, the new

analytical method provides the same results, but noise-free and at a small fraction of the computa-

tional cost. The computational time is not an issue in the calculation of the sensitivity term since

it has to be computed just once and for all before the reconstruction process, but the speed in the

calculations can be an advantage when the sensitivity has to be repeatedly computed due to changes

in the camera configuration, the reconstructed FOV, the type and size of the basis functions, etc. In

this regard, the method developed could be thought as an excellent tool for the design and evaluation

of PET cameras and algorithms.

Rotational symmetry

In order to check the rotational symmetry assumption, Figure 3.18 plots the sensitivity terms com-

puted by means of the proposed analytical method along 90 degrees (note that the normalizing term

must be periodic with a periodicity no greater than 45 degrees, since this is the rotational step be-

tween consecutive detector blocks) of different radius circumferences in the central transaxial plane

centered in the z-axis. A simple look at this plot shows that the sensitivity terms computed along

a circumference centered in this axis is not a constant, and therefore it can be concluded that the

cylindrical symmetry condition is not always fulfilled. To better illustrate this fact, the percentages

of variation (computed as the ratio of the peak-to-peak difference to the mean value) of the normal-

izing term along some of these circumferences have been computed, and fluctuations over a 17% of

variation have been found.

The periodical behavior in the sensitivity that can be observed in Figure 3.18 is caused by the

block configuration of the scanner (the angular distance between two consecutive peaks corresponds

to the angular step between two consecutive blocks). This means that the cylindrical symmetry
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Figure 3.18: Sensitivity along sectors of 90 degrees of circumferences
of different radius in the central transaxial plane (xy).

assumption can be appropriate for the case of scanners in which the detector heads rotate continuosly

around the z-axis, and it can even be reasonable for the case of stepped rotation in very small angular

steps. However, as the angular step between detector heads, either static or in rotation, gets larger,

this assumption can give rise to important inaccuracies in the computation of the sensitivity term.

This statement can be corroborated through a set simulations for one of the commercially available

small animal PET systems, the YAP-PET (Del Guerra et al. (2006)). The YAP-PET is a rotating

planar detector PET scanner whose computer controlled rotation allows to perform rotation angular

steps of 0.7, 1.4, 2.8, 5.6, 11.2, 22.5, 45 and 90 degrees. Figure 3.19 shows, for the configurations

with the highest rotation steps, the values of fluctuation of the sensitivity (computed by means of

the analytical method proposed here) along a circumference in the central transaxial plane as a

function of its radius. As has been pointed out before, the percentage of variation gets more and

more important as the rotation angle increases, reaching values of more than 300% in the 90 degrees
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case.

Figure 3.19: Fluctuation of the sensitivity along a circumference as a
function of its radius for the different rotation
configurations (rotation angular steps of 11.2, 22.5, 45 and
90 degrees ) of the YAP-PET scanner. The variation
reaches values of more than 300% for the 90 degrees
rotation case

3.7 Evaluation

In this section, it will be studied to what extent the quality of the reconstructions from continuous

scintillators data can be improved with the use of the new models that have been developed. Subsec-

tion 3.7.1 shows how the system and sensitivity matrix implemented for the Albira PET scanner in
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Section 3.6 have been incorporated to a reconstruction algorithm in order to be evaluated from dif-

ferent points of view. Subsection 3.7.2 describes the sets of data along with the figures of merit that

will be used to evaluate the reconstructions, that will be finally shown and analyzed in Subsection

3.7.3.

3.7.1 Reconstruction algorithm

The system and sensitivity matrix computed as described in Section 3.6 have been incorporated to

the list-mode version of the MLEM reconstruction algorithm. As stated in Section 3.2, the list-

mode version is specially suited to reconstruction for continuous scintillators data, since it allows to

preserve the whole positioning precision of the LORs. Moreover, in order to preserver the Poison

statistical nature of the data, no pre-corrections have been done. The parallelized version of the

algorithm described in Section 2.8 has been used in order to accelerate the reconstruction process.

Concerning the incorporation of the system matrix to the reconstruction scheme, it has to be

noted that the modifications performed to account for the specific features of the continuous scintil-

lators, affect just the computation of the detector scatter terms. In order to speed up the evaluation

of the novelties of the model, the whole system matrix scheme in Eq (3.1) has been simplified to ac-

count just for the detector scatter effect along with the geometrical and crystal penetration factors,

from which, as has been demonstrated in the previous chapter, it should not be separated. Since

important effects of the data acquisition process have been ignored in this mathematical model, the

reconstructions obtained have a comparative purpose, and their quality should not to be judged in

absolute terms.

Concerning the sensitivity matrix, the reliability of new methodology introduced in Section 3.5

for its computation has been tested by direct comparison with MC simulations in Subsection 3.6.3.

The differences of the new analytical method with respect to previous similar approaches have been

as well checked. Since the new methodology has been sufficiently evaluated, it has not been tested

in the image domain but has been used to precompute the sensitivity matrix at the beginning of the

reconstruction and then incorporated to the algorithm.
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3.7.2 Data and figures of merit

As has been stated in Subsection 3.6.2, all the data used to test the new approaches for the system

and sensitivity matrix computation will be simulated with the GATE Monte Carlo simulator. The

following data sets of phantom activity distributions for the Albira scanner described in Subsection

3.6.1 have been generated:

1. Point sources: With the purpose of measuring the resolution throughout the FOV, a subset

of dimensionless point sources has been simulated at the central transaxial plane in different

radial positions facing the block center. The corresponding data set contained approximately

800, 000 total coincidences. Profiles have been taken through the point reconstructed images

in the axial, radial and tangential directions and the FWHM has been measured to determine

the resolution.

2. Cylindrical phantom: Once the resolution studies illustrate the potential gain that can be

realized by accurately modeling the PET process, a cylindrical phantom with a diameter of 30

mm and length 10 mm has been simulated in order to study the levels of noise amplification

achieved. The cylinder uniform activity has led to a data set of 5, 000, 000 coincidences. The

standard deviation has been measured in the reconstructed phantom and plotted as a function

of the iteration number.

3.7.3 Reconstructions

Once the scheme has been simplified to focus on the evaluation of the detector scatter, as men-

tioned in 3.7.1, reconstructions of the simulated phantoms have been obtained with three dif-

ferent detector scatter models. First, the distributions pmult(bj , γ, ϕ, θ1, θ2, l, dk) as obtained

in Subsection 3.6.2 have been used to calculate the system matrix during the reconstructions.

In the following, these distributions will be referred to as pmult ref (bj , γ, ϕ, θ1, θ2, l, dk).

Then, additional reconstructions have been obtained using two simplified models of detector
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scatter. Each of these models ignores one of the guidelines that have been followed to account

for the continuous scintillators features in the estimation of the pmult ref (bj , γ, ϕ, θ1, θ2, l, dk)

distributions:

• In order to account for the continuous nature of the LORs, the detector scatter terms,

pmult ref (bj , γ, ϕ, θ1, θ2, l, dk), have been estimated as continuous distributions of dk

using a kernel smoothing function and then discretized using the maximum preci-

sion allowed by the storage resources. In order to evaluate whether the methodol-

ogy and precision used to estimate the detector scatter makes a difference with re-

spect to those used in the general pixelated case, the distributions of the first simplified

model have been estimated as discrete histograms of d, with 1 mm (the average size

of discrete crystals) bins. In the following, these distributions will be referred to as

pmult LOR(bj , γ, ϕ, θ1, θ2, l, dk),

• In order to account for the particular behavior of the scintillation light in continuous

crystals, the generation and tracking of optical photons have been activated in the

simulations used to estimate the pmult ref (bj , γ, ϕ, θ1, θ2, l, dk) terms. As has been

observed in Figures 3.12 and 3.14, the added effect of the optical photons is that im-

portant differences are found in the shape of the detector scatter distributions as the

position of the first interaction with the crystal (defined by the x′, y′, z′ coordinates in

Figure 3.10b) changes. In order to evaluate whether taking into account such differ-

ences makes a difference in the reconstructions, the second simplified model uses an

invariant detector scatter distribution, independent of the point of interaction. Specifi-

cally, the distribution corresponding the center of the crystal (i.e., the interaction point

x = 0, y = 0, z = 0) has been used. In the following, this distribution will be referred

to as pmult INV (bj , γ, ϕ, θ1, θ2, l, dk).

Figures 3.20-3.22 illustrate the comparison performed between the three mentioned approaches.

The results are labeled as ref, LOR and INV, according to the detector scatter model that has
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Figure 3.20: Average, radial, tangential and axial FWHM or the
reconstructed point sources plotted against the radial
position using the new scheme for reconstruction with
continuous detectors (results labeled as ref ) and an
approach in which the LORs have to be binned to discrete
positions (results labeled as LOR).

been used in the reconstructions. The radial, tangential, axial and average resolution (as mea-

sured by FWHM) of the reconstructed point phantoms after 20 MLEM iterations is shown

in Figure 3.20 in order to compare the resolution properties of the reconstructions using the

ref and LOR models. Figure 3.21 compares in the same way the resolution achieved using

the ref and INV models. The noise tests are shown in Figure 3.22, measured as the standard

deviation (normalized to the mean) of the reconstructed cylindrical phantom with uniform

activity.
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Figure 3.21: Average, radial, tangential and axial FWHM or the
reconstructed point sources plotted against the radial
position using the new scheme for reconstruction with
continuous detectors (results labeled as ref ) and an
approach in which the LRF variations are not accounted
for (results labeled as INV).

3.8 Discussion

Several technical developments have led to a comeback of the continuous scintillators in the

last years. Some important differences exist, in terms both of equipment and of the data

formation process, between the resurgent continuous detector scanners and the prevailing

pixelated devices. On the one hand, these differences translate into certain advantages of the

continuous detectors over their pixelated counterparts. On the other hand, if the peculiarities

of the continuous detectors are not incorporated to the system model used in the statistical

reconstructions, these advantages won’t be fully exploited. In this chapter, it has been studied
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Figure 3.22: Normalized standard deviation of the reconstructed
cylindrical phantom plotted against the iteration number.

how some of the specific features of the continuous scintillators can be accounted for in the

statistical reconstructions and to what extent this can improve the quality of the images:

(a) One of the distinguishing features of the continuous detector devices is that the posi-

tions defining the LORs are not associated to the centers of individual crystals. Group-

ing the continuous LORs in discrete bins to suit to the existing reconstruction methods

for pixelated cameras involves, therefore, a waste of accuracy. To avoid this issue, a

list-mode version of the algorithm is needed along with an appropriate system matrix.

As discussed in Section 3.2, such system model should maximize the analytical calcu-

lations in order to keep as much as possible the original LORs while minimizing the

experimental estimations so that the data rebining they involve can be finely done with-

out high storage requirements. The new system matrix scheme introduced in Chapter
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2 (Eq (2.10)) meets these requirements (indeed the original motivation leading to the

development of this scheme has been the search for an appropriate continuous detec-

tors model, as discussed in Motivation and Objectives). The first result in this chapter

has been to adapt the system matrix scheme in Eq (2.10) so that it keeps as much as

possible the original positions of the LORs provided by the continuous detectors. It

has been shown in Subsection 3.4.1 how this adaptation involves just modifications in

the methodology used to estimate the detector scatter. The histogramming of events

has been substituted by a kernel smoothing estimation, to account for the continuous

nature of the LORs, followed by a careful discretization of the data, based on a com-

promise between precision and storage. In Section 3.6 it has been demonstrated how

to carry out this procedure in the estimation of the detector scatter of the Albira PET

scanner and then, in Section 3.7, it has been shown how its use increases the resolution

(as shown in Figure 3.20) while reducing the noise propagation (as shown in Figure

3.22) of the reconstructions.

(b) Another differentiating feature of the continuous scintillators is that, in the absence of

the isolation provided by the pixelated crystals, the light is not channeled and can prop-

agate over the continuous block. This translates into LRFs that can vary remarkably

depending on the position of the light source within the scintillator. The second result

in this chapter is the incorporation of this effect to the system matrix by activating the

optical photons in the MC simulations used to model the detector scatter. As has been

discussed in Subsection 3.4.2, this is the best way to account for the scintillation light,

since it is intrinsically related to the multiple interactions (each interaction with the

scintillator behaves as a light source). Moreover, this measure just affects the existing

system model in terms of the simulation time of the detector scatter distributions, which

is performed just once and for all. The effect of incorporating the optical photons to

the detector scatter model can be observed in the results shown in Section 3.6, for the

simulations carried out for the Albira PET scanner. Strong variations in the detector
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scatter behavior as the position of the first interaction in the crystal varies can be ob-

served in Figures 3.12 and 3.14. Moreover, the KL divergences among detector scatter

distributions obtained at different DOIs shown in Table 3.2 are remarkably different

than their counterparts in a pixelated scanner (Table 2.5 in Chapter 2). A significant

improvement in the resolution of the reconstructions is achieved with the incorporation

of the optical phenomena (as shown in Figure 3.21) with lower noise levels (as shown

in Figure 3.22).

(c) Finally, in the continuous detector case, the sensitivity term can’t be computed accord-

ing to Eq (3.2), as it is based on the discrete nature of the detectors. The third re-

sult in this chapter is the development of an analytical methodology for the sensitivity

computation, which, unlike previous similar approaches, is not based on a cylindrical

symmetry assumption. The results obtained with the new method show that, within the

limitations of the Monte Carlo simulations, the new analytical method provides similar

results at a small fraction of the computational cost. Moreover, the results obtained

shown in Figures 3.18 and 3.19 confirm that in many cases the cameras do not present

exact cylindrical symmetry.
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Chapter 4

Conclusions and Future Work

Conclussions

Chapters 2 and 3 have dealt with the two aims set out at the beginning of this thesis. First,

Chapter 2 has addressed the exploitation of analytical methodologies for the calculation of the

system matrix, now that the technological advances in computing allow using increasingly

higher complex models. Then, in Chapter 3 the results of Chapter 2 have been adapted and

combined with new results to develop a system model that suits the specific requirements of

the resurgent continuous detectors devices. The main results of this work can be summarized

as follows:

• A new system matrix scheme has been developed that gathers the efficiency of the

successful factored approaches with the (so far unexploited) precision of the analytical

methodologies. The new approach has been obtained after a thorough study of the

faithfulness with which both approaches depict the data formation process, using a

criterion of maximum accuracy at lower computational cost.
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• A new procedure for the detector scatter estimation using Monte Carlo simulations

has been developed. Unlike previous approaches, the new method accounts for the

variability of the detector scatter within the scintillators, whose importance has been

experimentally demonstrated in this work. The new procedure is crucial in order to

take fully advantage of the new system matrix scheme, and any other scheme based on

modeling the individual effects with the most appropriate methodology and the maxi-

mum accuracy.

• For the first time, a statistical reconstruction has been fully adapted to continuous de-

tectors, in order to optimize the performance of this type of devices. Two different

issues of the list-mode statistical algorithms have been addressed with this purpose:

– Concerning the system matrix, the new approach developed, described in the two

previous points, has been shown to be highly appropriate for use with continuous

detectors. The properties of accuracy and flexibility in which it is based allow to

improve the quality of the reconstructions by incorporating two important features

of the continuous detector devices to the statistical model:

∗ The definition of the lines of response (LORs), that in the continuous blocks

is not determined by the discrete positions of individual crystals. It has been

demonstrated how, unlike previous approaches based on the precomputation

of the matrix, the analytical nature of the new scheme allows to retain the

original data without demanding high storage resources, just by slightly re-

defining the detector scatter estimation procedure.

∗ The behavior of the optical photons in the continuous blocks, which causes

the light response function (LRF) to change with the position of the source

within the crystal. This effect has been incorporated just by activating the

simulation of optical photons in the detector scatter simulations. This adds

further refinement to the model and, therefore, quality to the reconstructions,

at the only prize of increasing the time of the detector scatter precomputation.
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– Concerning the sensitivity matrix, a new method for its computation has been

introduced that is not based in the discrete nature of the detectors. Unlike previous

similar approaches, the new method does not rely on the azimuthal symmetry of

the scanners, an assumption whose inaccuracy for rotating planar devices has been

experimentally demonstrated in this work.

Future work

There are several lines of research arising from this work which should be pursued:

• Concerning the new system matrix scheme, although its development has been based

on both accuracy and efficiency principles, its implementation and use have focused

on proving the improvements achieved in the images (which was the aim or this work)

rather than on practical purposes. Once the benefits of the new model in the reconstruc-

tions have been demonstrated, the times reported have to be reduced in order to make

it workable. Several measures are suggested that can decrease the reconstruction times

to the level of the feasibility:

– More efficient implementations of the system matrix can surely be achieved. Even

if several strategies have already been applied to speed up its computation, there

are still other advanced tactics for attacking code optimization (profiling, register

allocation, disassembling, using CPU/platform specific features etc) that have not

been explored yet.

– More efficient numerical integration techniques can be used to calculate Eq (2.40).

For example, Moehrs et al. (2008) show that the Gaussian integration gives bet-

ter results compared to equally spaced integration points (trapezoidal integration,

used in this work), allowing to reduce the number of points used in the numerical

estimations.
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– The research centers in which the PET experiments are performed own greater

clusters with more powerful computers than the one used to measure the recon-

struction times in this work. For example, it has been estimated that the recon-

struction of the point sources phantom described in Subsection 2.8.2 could be

reduced from the reported 30 days to 5 days, using the Crunchy cluster of the

Spanish National Center for Biotechnology (CNB-CSIC)(28 nodes, each with 8

cores with 2.83GHz Intel(R) Xeon(R) processors)

– A block iterative method can be used to accelerate the reconstructions. These

approaches are significantly faster than the MLEM algorithm (Vardi et al. (1985)),

since they do not use all the data at each iteration. The MLEM has been the

reconstruction scheme used in this work, in order to remove from the comparison

among system models the convergence issues related to the block methods. But

once the comparison has shown the advantages of the new method for the system

matrix computation, it can be incorporated to a faster algorithm. For example,

the ordered-subset version of the MLEM (OSEM) (Hudson and Larkin (1994))

produces images of similar quality than MLEM in a fraction of the time on the

order of the number of subsets in which the data are splitted.

– Further reductions on reconstruction time can be achieved by resorting to multires-

olution schemes (Ranganath et al. (1988), Raheja and Dhawan (2000)). Since the

hybrid model in Eq (2.40) allows for the size of the basis function to be changed

between iterations, the number of voxels of the FOV can be set to a low value

during the first stages of reconstruction, when only the low frequencies (gross de-

tails) of the image are recovered and then it may be increased as the high frequency

components begin to appear.

– Finally, the emergent field of the GPU implementations, that has demonstrated

to accelerate significatively other reconstructions (Herraiz et al. (2011), Pratx and

Levin (2011)) could be exploited in order to improve the current efficiency.
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Once the reconstruction times have been reduced, reconstructions from complex mea-

sured data should be obtained, in which the noncollinearity, attenuation and normal-

ization factors, that have not been considered in the reconstructions performed in this

work, are accounted too. This would allow to measure the performance of the new

method in absolute terms and not just with comparison purposes, as has been done in

this work.

• Concerning the new detector scatter modeling, although the experiments performed

to estimate the distributions have been based on real scanners features, there are sev-

eral realistic aspects related to the detection and processing of the multiple interactions

(photomultipliers layout and features, positioning algorithms, the already mentioned

surface treatment in continuous scintillators...) that have not been matched in the sim-

ulations. Such a specific modeling requires expert knowledge both of the devices and

of the simulation tools that is out of the scope of this work. Here it wanted to be shown

how a proper detector scatter estimation, that has been traditionally discarded, can im-

prove significantly the quality of the reconstructions. Once this issue has been tested

with simulated phantoms (for which the experiments performed do match the data ac-

quisition process) and the procedure to account for it has been established, its use with

real measured data, would require expert simulations for each specific scanner.
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Appendix A

Angular integration limits for the

system matrix

In this Appendix, it will be shown how to compute the value of the integration limits for

ϕ and γ in Eq (2.3). It has been pointed out in Subsection 2.4.3 that these variables define

the orientation of the gamma pairs emitted from the point r and that the integration interval

should include just those pairs that reach the detectors in a certain neighbourhood of the LOR

d. Although the extent of the neighbourhood depends on the specific characteristics of the

device (Stickel and Cherry (2005)) and has to be estimated for each camera (Iriarte et al.

(2009) shows a procedure to undertake this task), it will be generically represented as shown

in Figure A.1 by rectangles of dimensions zmax, xmax in the axial and tangential direction

respectively, centred in the points p1 and p2 that define the LOR d in the detectors. The

integration limits of Eq (2.3) will be computed as the angles spanned by r into the rectangles.

The range covered by the polar angle γ will be considered first. As shown in Figure A.2, the

angle of view of the point r with coordinates xp, yp, zp in the axial direction of the rectangle
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Figure A.1: Geometrical characterization of the neighbourhood of the
LOR d. The angles defining the pairs that reach the
detectors within the red rectangles are those that have to be
considered in the integration

is defined by the points A, B,C, D, whose coordinates are:

A = (x1 + (
S

2
+ yp) tan γ, y1, z1 + zmax) (A.1)

B = (x1 + (
S

2
+ yp) tan γ, y1, z1 − zmax) (A.2)

C = (x2 − (
S

2
− yp) tan γ, y2, z2 − zmax) (A.3)

D = (x2 − (
S

2
− yp) tan γ, y2, z2 + zmax (A.4)
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Figure A.2: The angles of view from point r into the neighbourhood of
LOR d, αϕ , βϕ, are defined by the points A,B,C,D,E and F.

In order to integrate only lines that fully lie within detector limits, the z coordinate of these

points must be restricted to±W/2 (see the definition of the block dimensions in Figure A.1):

if |z1 + zmax| >
W

2
then A = (x1 + (

S

2
+ yp) tan γ, y1,

W

2
) (A.5)

if |z1 − zmax| >
W

2
then B = (x1 + (

S

2
+ yp) tan γ, y1, −W

2
) (A.6)

if |z2 + zmax| >
W

2
then D = (x2 − (

S

2
− yp) tan γ, y2,

W

2
) (A.7)

if |z2 − zmax| >
W

2
then C = (x2 − (

S

2
− yp) tan γ, y2, −W

2
) (A.8)
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The angles seen by r into the detector heads restricted to the rectangle are (see Figure A.2)

are:

αϕ1 = B̂rE (A.9)

βϕ1 = ÂrE (A.10)

αϕ2 = D̂rF (A.11)

βϕ2 = ĈrF (A.12)

Points E and F are the ends of the segment resulting from the intersection of the plane z = zp

with the rectangle given by ABCD. The analytical expressions for E and F are:

E = (x1, y1, zp) (A.13)

F = (x2, y2, zp) (A.14)

Finally, integration angles αϕ , βϕ in the axial direction will be given by:

αϕ = min(αϕ1, αϕ2) (A.15)

βϕ = min(βϕ1, βϕ2) (A.16)

Similar reasoning follows for the computation of the azimultal limits in the tangential plane,

now based on the scheme shown in Figure A.3. The limits of the neighbourhood imposed by

xmax are given by points A′, B′, C ′, D′:
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Figure A.3: The angles of view from point r into the neighbourhood of
LOR d, αϕ , βϕ, are defined by the points A’,B’,C’,D’,E’
and F’.

A′ = (x1 + xmax, y1, z1) (A.17)

B′ = (x1 − xmax, y1, z1) (A.18)

C ′ = (x2 + xmax, y2, z2) (A.19)

D′ = (x2 − xmax, y2, z2) (A.20)
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but

if |x1 + xmax| > L
2 then A′ = (−L

2 , y1, z1) (A.21)

if |x1 − xmax| > L
2 then B′ = (L

2 , y1, z1) (A.22)

if |x2 + xmax| > L
2 then D′ = (−L

2 , y2, z2) (A.23)

if |x2 − xmax| > L
2 then C ′ = (L

2 , y2, z2) (A.24)

The angles of view from r into detector heads within this limits, are (see Figure A.3):

αγ1 = Ê′rB′ (A.25)

βγ1 = Â′rE′ (A.26)

αγ2 = D̂′rF ′ (A.27)

βγ2 = Ĉ ′rF ′ (A.28)

where E′ and F ′ are the ends of the intersection of the plane x = xp with the rectangle given

by A′B′C ′D′:

E′ = (xp, y1, z1) (A.29)

F ′ = (xp, y2, z2) (A.30)

The integration limits in tangential direction are:

αγ = min(αγ1, αγ2) (A.31)

βγ = min(βγ1, βγ2) (A.32)
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Appendix B

Spatial orientation of the photons

In this Appendix, it will be shown how to compute the spatial orientation of the photons of a

gamma pair, given by the angles ϕ, γ, θ1 and θ2, defined in Subsections 2.4.3 and 2.4.4. As

stated in Subsection 2.4.3, ϕ and γ define the polar and azimuthal angles of the gamma pair

if it were perfectly collinear. In that case, both photons would share its spatial orientation,

whose unitary vector in cartesian coordinates is:


sin ϕ cos γ

sin ϕ sin γ

cos ϕ


The effect of the non-collinearity makes each of the photons have a different spatial orienta-

tion. The new unitary vectors associated to each of the photons can be obtained by applying

three dimensional rotation matrices to the original unitary vector. Following a z-y-z con-

vention, the Euler angles defining the rotation of the vectors are given by (θ, θ2, 0), being

θ = π−θ1)
2 for the photon labeled p1 in Figure B.1 and θ = π+θ1)

2 for the photon labeled p2.
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Figure B.1: Non-collinearity. The spatial orientation of the photons of
the pair, p1 and p2 can be calculated from ϕ, γ, θ1 and θ2.

The resulting rotating matrices (for the corresponding θ angles previously defined) are:


cos θ cos θ2 cos θ sin θ2 − sin θ

− sin θ2 cosθ2 0

sin θ cos θ2 sin θ sin θ2 cos θ
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And its aplication to the original vector in Eq (B.1) leads to the new unitary vectors:


cos θ cos θ2 sin ϕ cos γ + cos θ sin θ2 sin ϕ sin γ − sin θ cos ϕ

− sin θ2 sin ϕ cos γ + cos θ2 sin ϕ sin γ

sin θ cos θ2 sin ϕ cos γ + sin θ sin θ2 sin ϕ sin γ + cos θ cos ϕ
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Appendix C

Integration limits for the sensitivity

matrix

In this Appendix, it will be shown how to compute the integration limits involved in the new

methodology for the sensitivity matrix computation developed in Section 3.5.

The angular limits, αϕ(r0, γ) and βϕ(r0, γ), of the integral in Eq (3.4) will be computed first.

The angles of view from the point r0 of coordinates (x0, y0,z0) into each detector within the

plane Πγ(see Figure C.1) are:

αϕ1(r0, γ) = D̂r0F (C.1)

βϕ1(r0, γ) = F̂r0C (C.2)

αϕ2(r0, γ) = Êr0B (C.3)

βϕ2(r0, γ) = Âr0E (C.4)

According to the dimensions shown in Figure C.1, the analytical expressions for the points

203



X

x0 = tan x - γ (y – y0)

r0

S

W

(y

βφ1

αφ2

L

A

E

B

D

F

C

αφ1

H

βφ2

Figure C.1: Geometrical characterization of the range angles of view
from point r0 into the detector heads within the plane Πγ

A, B, C, D,E and F are:

A = (x0 − (
S

2
+ y0) tan γ,−S

2
,
W

2
) (C.5)

B = (x0 − (
S

2
+ y0) tan γ,−S

2
,−W

2
) (C.6)

C = (x0 + (
S

2
− y0) tan γ,

S

2
,−W

2
) (C.7)

D = (x0 + (
S

2
− y0) tan γ,

S

2
,
W

2
) (C.8)
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E = (x0 − (
S

2
+ y0) tan γ,−S

2
,−z0) (C.9)

F = (x0 − (
S

2
+ y0) tan γ,

S

2
, z0) (C.10)

The total area of detectable lines emitted by r0 in the plane Πγ is limited by αϕ(r0, γ) and

βϕ(r0, γ):

αϕ(r0, γ) = min(αϕ1(r0, γ), αϕ2(r0, γ)) (C.11)

βϕ(r0, γ) = min(βϕ1(r0, γ), βϕ2(r0, γ)) (C.12)

Next, an analytical derivation of the terms αγ(r0) and β(r0) of Eq( 3.5) will be obtained. The

expressions for the angle values seen by the point r0 in the XY plane (as shown in Figure

C.2) for the left right side detector are:

αγ1(r0) = arctan

(
L
2 + x0

S
2 − y0

)
(C.13)

βγ1(r0) = arctan

(
L
2 − x0

S
2 − y0

)
(C.14)

and for the left side detector:

αγ2(r0) = arctan

(
L
2 − x0

S
2 − y0

)
(C.15)

βγ2(r0) = arctan

(
L
2 + x0

S
2 + y0

)
(C.16)
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Figure C.2: Geometrical characterization of the range angles of view
from point r0 into the detector heads within the plane XY

The total area of detectable lines emitted by r0 in the plane XYγ is limited byαγ(r0) and

βγ(r0):

αγ(r0) = min(αγ1(r0), αγ2(r0)) (C.17)

βγ(r0) = min(βγ1(r0), βγ2(r0)) (C.18)
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Nomenclature

BCU: Biocomputing Unit

BGO: Bismuth Germinate

CNB: National Center for Biotechnology

DOI: Depth of Interaction

FBP: Filtered Back Projection

FORE: Fourier rebinning

FOV: Field of View

FWHM: Full Width at Half Maximum

GATE: GEANT4 Application for Tomographic Emission

GPU: Graphics Processing Unit

GSO: Gadolinium Oxyorthosilicate

KKK: Karush-Kuhn-Tucker

KL: Kullback-Leibler

LOR: Line of Response

LYSO: Lutetium-Yttrium Orthosilicate

LRF: Light Response Function
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LSO: Lutetium Oxyorthosilicate

MAP: Maximum a Posteriori

MC: Monte Carlo

MLEM: Maximum Likelihood Expectation Maximization

MPI: Message Passing Interface

Nai(TI): thallium-doped sodium iodide

NIST: National Institute of Standard Technology

NRMSE: Normalized Root-Mean-Square Error

OSEM: Ordered Subsets Expectation Maximization

PET: Position Emission Tomography

PMT: Photomultiplier

PS-PMT: Position Sensitive Multipliers

RAMLA: Row Action Maximum Likelihood Algorithm

RMS: Root Mean Square

SAGE: Space Alternating Generalized Expectation Maximization

SNR: Signal-to-Noise Ratio

SPECT: Single-Photon Emission Computed Tomography

SSRB: Single Slice Rebinning

WLS: Weighted Least Squares
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