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Abstract— Several technical developments have led to a
comeback of the continuous scintillators in positron emission
tomography (PET). Important differences exist between the
resurgent continuous scintillators and the prevailing pixelated
devices, which can translate into certain advantages of the
former over the latter. However, if the peculiarities of the
continuous scintillators are not considered in the iterative
reconstruction in which the measured data is converted to
images, these advantages will not be fully exploited. In this
paper, we review which those peculiarities are and how they
have been considered in the literature of PET reconstruction. In
light of this review, we propose a new method to compute one
of the key elements of the iterative schemes, the system matrix.
Specifically, we substitute the traditional Gaussian approach to
the so-called uncertainty term by a more general Monte Carlo
estimation, and account for the effect of the optical photons,
which cannot be neglected in continuous-scintillators devices.
Finally, we gather in a single scheme all the elements of the
iterative reconstruction that have been individually reformu-
lated, in this or previous works, for continuous scintillators,
providing the first reconstruction framework fully adapted to
this type of detectors. The preliminary images obtained for
a commercially available PET scanner show the benefits of
adjusting the reconstruction to the nature of the scintillators.

I. INTRODUCTION

The use of continuous scintillators instead of pixelated
arrays as gamma photon detectors in Positron Emission To-
mography (PET) provides higher sensitivity and spatial and
energy resolution at lower cost and complexity [1],[2]. The
continuous scintillators were introduced as PET detectors in
1990 [3]. The disadvantages associated to the use of thallium-
doped sodium iodide Nai(TI) (needed to produce high light
output), resulted in most of the groups abandoning the use
of continuous detectors in favor of discrete configurations
[4]. However, the advent of new materials along with other
technical developments in the PET detection systems [4],
have led to a renewed interest in continuous scintillators [5],
[4], [6]. The reconstruction step, in which a mathematical
algorithm converts the data provided by a PET camera to
tomographic images, plays a key role in the PET studies.
The most popular reconstruction schemes, the so-called
iterative algorithms, use detailed models of the PET detection
process. Although researchers have lately resumed the use of
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continuous sctintillators, their specific features have not yet
been adequately incorporated to the iterative algorithms.

II. OBJECTIVES AND STRUCTURE

This work provides a framework for the reconstruction of
continuous scintillators PET data. First, in sections III and
VI we introduce the two issues that should be considered
in the reconstruction for continuous scintillators and review
how these issues have been considered in the literature.
Then, we propose measures to overcome the two weak
points that have been found in previous approaches. In
Section V we show how to improve the computation of the
uncertainty term of the system matrix. In Section VI, we
show how to incorporate the effect of the optical photons
to the model. The implementation of the proposed measures
is illustrated in Section VII for a commercial scanner. A
continuous scintillators dedicated reconstruction scheme is
used to obtain and evaluate images in Section VIII.

III. LORS DEFINITION IN CONTINUOUS SCINTILLATORS

The first difference that continuous scintillators introduce
with respect to their pixelated counterparts is the definition
of the so-called lines of response (LORs), that join the
detector positions in which the two gamma photons resulting
from the characteristic PET positron-electron annihilation are
located. In pixelated designs, a LOR d is a tube defined
by two discrete detectors (c1 and c2 in Figure 1(a)). In
continuous scintillators, the tube reduces to a line defined by
two continuous positions in the detectors (p1 and p2 in Figure
1(b)). The list-mode versions of the iterative algorithms
[7] modify the traditional equations for LORs binned in
discrete detectors to consider each LOR individually, and
permit to retain the full precision of the continuous-defined
LORs. But the continuous nature of the LORs involves other
considerations. The iterative algorithms use the so-called
system matrix, whose terms p(b, d) stand for the probability
that a positron emitted within a basis function b is detected at
a LOR d. Most of the existing methodologies computes the
system matrix terms as discrete probabilities of detection in
a LOR. [8] and [9] consider the possible continuous nature
of the scintillators and reformulate the discrete probabilities
as likelihood values of a continuous probability distribution.
They compute the system matrix through an integral scheme
that models the geometry of the gamma pairs emission, the
penetration of the photons in the detectors, and what is
referred to as “uncertainty in the detection” and expressed as
p(d|d′). This term stands for the likelihood that a coincidence
taking place in a LOR d′, is positioned in a different LOR
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d, with both LORs defined in a continuous domain. For the
two first effects, well-established models are used: a uniform
distribution of the emission directions, and an exponential
distribution for the length the photon crosses the scintillator
before interacting with it. For the uncertainty in the detection,
in the absence of an accepted model, a Gaussian distribution
is chosen. However, the Gaussian behavior of the uncertainty
has been neither demonstrated nor guaranteed. The misposi-
tioning of the coincidences arises from complex phenomena
(mainly multiple Compton interactions) and depends on
factors (detector dimensions, materials and configurations)
that vary largely among the different devices. A more specific
modeling for the p(d|d′) terms should thus be imposed. The
reformulation of the system matrix for continuous-defined
LORs also affects to the so-called sensitivity matrix, whose
terms p(b, .) stand for the probability that a pair of gamma
photons emitted from a basis function b are detected. This
probability has traditionally been computed as a discrete
summation over the probabilities of detection in each LOR,
but alternative methods for its computation for continuous
scintillators have been developed (see [9] and the references
therein).
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Fig. 1. Definition of LORs in pixelated (a) and continuous (b) scintillators.

IV. OPTICAL PHOTONS IN CONTINUOUS SCINTILLATORS

The formal differences that the use of continuous scintil-
lators make in the iterative reconstruction have been tackled
so far. However, the use of continuous scintillators also
makes important differences in the physical detection pro-
cess, which concern the behavior of the optical photons that
result from each of the interactions associated to a gamma
photon. In pixelated detectors, these photons are confined to
one optically isolated array and the light response properties
are approximately identical regardless of the point within the
segmented array from which the optical photons are emitted.
However, in the continuous scintillators, the optical photons
can propagate all over the continuous block and the shape
of the light response function (LRF) can vary dramatically
depending on the light source position. First, the LRF varies
with the tangential 2D position on the crystal. For light
sources close to the crystal side edges the reflecting light
from the side surfaces contributes to the width and tail of the
LRF (Figure 2a). The LRF changes as well with the depth of
the light source within the crystal due to reflections from the
top and back surfaces. Specifically, the LRF is less spread
out for positions close to the detection system (Figure 2b).
The distortions in the shape of the LRF degrade the intrinsic

spatial resolution of continuous detector devices. Although
these distortions have been partially compensated during the
detector manufacturing process [4],[10],[11],[12], no work
has been found in which these techniques are complemented
with the inclusion of the optical photons behavior in the
system model. This is likely due to the fact that the pixelated
scintillators, where the LRF is not such an important issue,
have been the most popular technology in the past decades.
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Fig. 2. Approximated LRFs in a continuous scintillator.

V. COMPUTATION OF THE UNCERTAINTY TERM

We propose to substitute the Gaussian approximation ([8],
[9]) by a device-specific estimation of the p(d|d′) terms using
the GATE Monte Carlo (MC) simulator [13]. A MC estima-
tion of analogous uncertainty terms for pixelated detectors
is followed in [14] by simulating a coincidence in a discrete
LOR d′ a statistically reasonable number of times and
histogramming the recorded positions in the discrete LOR
positions d of the device. The resulting histograms, normal-
ized for area 1, result in a collection of discrete distributions
that are stored to be used at reconstruction time. We suggest
to modify this procedure for continuous-defined LORs. First,
we restate the discrete probability distributions as continuous
distributions, substituting the histogramming by a smoothing
normal kernel-based estimation [15], followed by a careful
discretization of the resulting distributions. Details on this
procedure are given in Section VII.

VI. INCORPORATION OF THE OPTICAL PHOTONS EFFECT

A gamma photon can undergo multiple interactions in
the scintillator, each of which becomes a source of optical
photons. Analytical models for these light sources exist
[16],[17], but incorporating them to the system matrix is a
great challenge. One light distribution has to be modeled for
each interaction, which requires a foresight of the complex
and unpredictable pattern of multiple interactions associated
to each photon. Alternatively, we propose to use the GATE
capabilities (which are usually switched off when simulating
pixelated detectors) to generate and track optical photons. In
Section VII we show how the simulation of the optical pho-
tons during the estimation of the uncertainty terms permits
the inclusion of their effect in a very advantageous way.

VII. IMPLEMENTATION

This section illustrates the MC estimation of the un-
certainty terms p(d|d′) for the Albira PET scanner [6].
The process of characterizing the materials and surfaces of
the scintillations before the simulations (two factors that
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strongly determine the behavior of optical photons) is a
complex problem out of the scope of this work and thus
a typical configuration [10] has been chosen. In order to
remove possible mismatches between the simulated and the
real data acquisition process, the evaluation of the new
approach will be carried on just with reconstructions from
data simulated with the same parameters used to obtain the
system model. Although it would be interesting to study
possible mismatches with real data, it is out of the scope
of this paper and is left as future work. The estimation of
the uncertainty terms p(d|d′) as continuous density functions
is performed in two steps. First, the distributions are obtained
with a very fine sampling of d′ and d. In other words,
a high number of distributions (corresponding to a high
number of simulated LORs d′) containing a large number of
positions d are obtained. In the second step, the oversampled
distributions are studied to perform a decimation of the d
and d′ variables consistent with a proper sampling. Using a
large number of points improves the reliability of the study,
and does not pose a problem of storage, since rapid RAM
access to data is not needed before the reconstructions, and
the distributions can be stored in disk at this point.

A. MC Estimation of the p(d|d′) distributions

We assume that, as in [8] and [9], p(d|d′) can be split
as p(d|d′) = p(p1|p′1)p(p2|p′2), p′1, p′2 and p1, p2 being the
pairs of points defining d′ and d (as in Figure 1). In this
way, the estimation of p(d|d′) reduces to the computation
of p(p|p′), which stands for the probability that a photon
interacting at a position p′ is positioned at p. A collection of
p(p|p′) has been obtained, corresponding to the simulation
of p′s at different depths and tangential positions in the
scintillator. This permits accounting for the effect of the LRF
variation along these dimensions, which, as previoulsy stated,
is remarkable in continuous scintillators. Moreover, as in
[14], the angular dimension is considered (i.e for each p′, dif-
ferent angular orientations of the incident photon have been
simulated). Switching on the optical capabilities of GATE
increases considerably the simulation time (seven weeks for
this work), but these simulations are run just once and for
all before the reconstructions. Figures 3a, b and c show a
illustrative sample of the distributions obtained using the
MC simulations and the normal kernel smoother for different
depths (z being the depth of interaction), tangential positions
(x being the tangential distance to the crystal center) and
orientations (gamma being the angular deviation from the
normal incidence), respectively. δx stands for the location
where each event is positioned. For the sake of space, just
one of the two tangential dimensions and one of the angular
dimensions are considered (the components located in the
transaxial plane, but the results apply to the axial compo-
nents). As can be observed, the distributions get narrower as
p′ gets closer to the detection system. Moreover, important
distortions are appreciated in the shape of the distributions
as p′ is closer to the detector edge. Both observations are
in accordance with the change in shape in the LRFs shown
in Figure 2. However, no remarkable differences among the

distributions due to the photon orientation are appreciated.
The Lilliefors’s test (used to check the hypothesis that data
come from a normally distributed population) has been run
for the positions recorded in each of the experiments. For the
border distributions, the result indicates that the hypothesis
can be rejected at a significance 5% level.

(a) (b)

(c)
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98 distributions
(symmetrical)

…
…
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Fig. 3. p(p|p′) distributions for different depths (a), tangential positions
(b) and incidence angles (c). Layout of p′ in a detector (not to scale) (d).

B. Discretization of the p(p|p′) distributions

First, it has been determined the number of distributions
to be stored (i.e the discretization of p′). As suggested
by Figures 3a,b,c, the variability of the distributions with
the position of p′ has to be considered, but the incidence
angle can be ignored. The distributions for p′s at the central
tangential position (red crosses in Figure 3) can be applied,
by simple translation, to positions close to the center, but
12 specific distributions have to be used as p′ approaches
the side border (blue crosses in Figure 3). This number has
been obtained measuring the distance between probability
densities with the Kullback-Leibler (KL) divergence. The
minimum separation among distributions has been chosen
so that the KL among consecutive distributions is above a
threshold, which has been computed using the well-known
emission-distance independence [18] of the distributions (i.e
by comparing the distributions obtained for photons with
same interacting position and incidence angle but generated
at different distances from the scintillator). As for the depth,
using the same procedure the minimum separation between
p′s has been estimated to be 0.1mm for the total detector
thickness of 9.8mm. This gives place to 98(1+12) = 1, 274
total p(p|p′) distributions (which rotated apply to the axial
dimension). Second, an effort has been made to maximize
the precision with which p is sampled, in agreement with the
objective of retaining as much as possible the continuous na-
ture of the positioning. A thorough study of the distributions
reveals that a sampling value of δp = 0.2mm is accurate
enough. In each distribution, p covers a range of 40mm
(the tangential dimension), but for the 98 central symmetric
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distributions just half of the points have to be stored. With
these number of distributions and points by distribution, a
total number of 245, 000 values have to be allocated, which
fit easily in the current RAM of standard computers. This
avoids costly disk access during the reconstructions and thus
do not compromise the reconstruction time.

VIII. RECONSTRUCTIONS

The system and sensitivity matrix computed as in [9] have
been incorporated to a list-mode reconstruction algorithm.
In order to evaluate the improvements introduced, the un-
certainty term of the system matrix has been implemented
using three approaches. First, the terms p(d|d′) have been
estimated as described in Section VII and will be referred
to as pREF (d|d′). Second, in order to evaluate if adapting
the MC approach of [14] from pixelated to continuous
crystals (using the kernel smoothing and subsequent thought-
ful discretization) has any benefit, the distributions have
been estimated as normalized histograms, with d′ and d
discretized in 1 mm steps (the average size of discrete
crystals) and will be referred to as pLOR(d|d′). Finally, it will
be checked if modeling the optical photons has any effect
on the reconstructions. As can be observed in Figure 3, the
changing LRFs resulting from the complex reflection patterns
of the scintillation light, translate into important differences
in the shape of the uncertainty distributions. In order to check
if taking into account these differences is worth, the third
approach uses a single invariant distribution (corresponding
to the center of the crystal) which will be referred to
as pINV (d|d′). Two sets of phantom activity distributions
for the Albira scanner have been simulated with GATE.
First, with the purpose of measuring the resolution, 800, 000
coincidences from a data set of point sources at the central
transaxial plane in different radial positions facing the scintil-
lators center has been generated. Second, in order to study the
levels of noise amplification, 5, 000, 000 coincidences from
a unicorm cylinder have been obtained. Figures 4a,b and c
show the radial, tangential, and axial resolution (as measured
by FWHM) of the reconstructed points after 20 iterations.
Figure 4d shows the image roughness (IR) (which measures
the pixel to pixel variability in the image) vs the number
of iterations of the reconstructed cylindrical phantom. As
can be observed, the use of a kernel smoothing followed
by a careful discretization of the p(d|d′) terms increases
the resolution while reducing the noise propagation of the
images compared with the histogramming of events. On the
other hand, a significant improvement in the resolution of
the reconstructions is achieved with the incorporation of the
optical phenomena, with lower noise levels.
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