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A B S T R A C T   

Electron tomography is an imaging technique that allows for the elucidation of three-dimensional structural information of biological specimens in a very general 
context, including cellular in situ observations. The approach starts by collecting a set of images at different projection directions by tilting the specimen stage inside 
the microscope. Therefore, a crucial preliminary step is to precisely define the acquisition geometry by aligning all the tilt images to a common reference. Errors 
introduced in this step will lead to the appearance of artifacts in the tomographic reconstruction, rendering them unsuitable for the sample study. Focusing on 
fiducial-based acquisition strategies, this work proposes a deep-learning algorithm to detect misalignment artifacts in tomographic reconstructions by analyzing the 
characteristics of these fiducial markers in the tomogram. In addition, we propose an algorithm designed to detect fiducial markers in the tomogram with which to 
feed the classification algorithm in case the alignment algorithm does not provide the location of the markers. This open-source software is available as part of the 
Xmipp software package inside of the Scipion framework, and also through the command-line in the standalone version of Xmipp.   

1. Introduction 

Elucidation of three-dimensional (3D) structural information of 
biological specimens is one of the greatest assets of modern biology. 
Gathering structural and functional information helps scientists to un
derstand the underlying organization of the different elements in the 
sample. Cryogenic electron tomography (cryo-ET) is an advanced im
aging technique extensively employed in investigating biological com
plexes, enabling the study of the three-dimensional structure of various 
types of samples ranging from cellular environments to purified com
plexes. The technique involves freezing the specimen in its native hy
drated state and imaging it using a Transmission Electron Microscope 
(TEM) under cryogenic conditions. Cryo-ET has become an essential tool 
for studying the structure and function of macromolecular complexes in 
situ, such as the machinery of cells and viruses, and has enabled re
searchers to gain unprecedented insights into biological processes at the 
molecular level. It has applications in various fields, including structural 
biology, virology, cell biology, and drug discovery (Robertson et al., 
2020; Van Drie and Tong, 2022). 

Electron tomography is based on the determination of three- 
dimensional structural information through the combination of projec
tive images of the sample. A series of 2D projection images of the 
specimen are acquired at different viewing angles by tilting the spec
imen inside the TEM. The projective information in the series of images 

is computationally combined to reconstruct a three-dimensional vol
ume, allowing for the visualization and analysis of the specimen’s in
ternal structures in full 3D. However, to combine the projective 
information accurately in three-dimensional space, it is imperative to 
correct for the sample’s relative movements between images and esti
mate their acquisition orientation. 

To make the alignment easier, high-contrast fiducial markers, such as 
colloidal gold particles, are frequently spread over the specimen to aid in 
correcting or compensating for any geometric distortions. By tracking 
the nanoparticles as the specimen is tilted, the precise orientation of the 
tilt axis can be established, and the 2D images can be aligned accord
ingly. Several approaches have been developed for the automatic 
detection and tracking of fiducial markers or other suitable landmarks 
along the tilt series to solve the geometry of the tilt series (Sorzano et al., 
2009; Mastronarde and Held, 2017; Fernandez et al., 2018; Fernandez 
and Li, 2021; Seifer and Elbaum, 2022; Sorzano et al., 2020). Other 
approaches do not rely on the presence of trackable points to calculate 
the sample motion correction (Castano-Diez et al., 2010; Noble and 
Stagg, 2015). They are based on the successive matching of projections 
from partial reconstruction to align the tilt series (Zheng et al., 2022). 
The main focus of this work pertains to samples containing fiducial 
markers. 

Once the geometry of the tilt series is solved, the tomographic 
reconstruction may be calculated. There are different reconstruction 
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methods with different underlying algorithms. Although the different 
approaches induce different characteristics in the final reconstruction, 
the eventual presence of misalignment errors always translates into 
reconstruction artifacts. Reconstruction methods can be classified into 
two families: direct methods and series expansion algorithms (Sorzano 
et al., 2017). Weighted Back Projection (WBP) (Radermacher et al., 
1992) dominates the first group. In the second group, ART (algebraic 
reconstruction techniques) (Gordon et al., 1970), SIRT (simultaneous 
iterative reconstruction techniques) (Gilbert, 1972), or SART (simulta
neous algebraic reconstruction techniques) (Andersen and Kak, 1984) 
are the most used. In this work, the method of preference for tomogram 
reconstruction is WBP because of its light computational requirements 
and popularity in the field. 

Traditionally, scientists have relied on heuristic techniques to iden
tify these artifacts. These methods typically involve visually inspecting 
the aligned tilt series, the tomogram, or performing various operations 
on them (such as filtering or projecting in different directions) to detect 
potential misalignment artifacts. Instead, this paper presents a deep- 
learning approach that automatically identifies misalignment with no 
needed intervention from the scientist. Our algorithm relies on studying 
the fiducials contained in the sample and the possible presence of arti
facts due to misalignment. Therefore, to assess the quality of the align
ment, we first need to locate these high-contrast regions within the 
tomogram. Fortunately, in many cases where a fiducial-based alignment 
is performed, the location of these fiducials is already defined during the 
alignment step. This process typically involves tracking individual gold 
beads throughout the tilt series. Consequently, the 3D location of the 
gold beads within the tomogram is directly known from the image 
alignment. 

However, there are situations in which the fiducials 3D location is 
not available, either because the algorithm used for the alignment does 
not provide this information or because it is not available for the user. 
For those cases, we provide an additional algorithm to locate fiducials 
within the tomogram. 

In summary, we address the need to automatically assess the per
formance of any tilt series alignment, whether it is fiducial-based or not. 
Thus, the task of manual inspection of the alignment results is avoided, 
which is both a tedious and error-prone process as it depends on the 
user’s skill to identify artifacts in the tomogram. The algorithm pre
sented in this work is an open-source tool that has been implemented in 
Xmipp (de la Rosa-Trevín et al., Nov 2013; Strelak et al., 2021) and it is 
accessible through its command-line interface. It is also accessible 
through the Scipion workflow engine (de la Rosa-Trevin et al., 2016), 
within its tomography environment ScipionTomo (Jimenez de la Mor
ena et al., 2022). 

2. Methods 

This section presents our proposal of a neural network-based 
approach that will analyze and classify a set of fiducials present in the 
tomogram to measure the quality of the alignment performed over the 
tilt series. We introduce the neural network design, the training pipe
lines, and the tomogram classification strategies based on individual 
misalignment scoring of each fiducial. Additionally, we also provide an 
algorithmic approach to detect these fiducial markers in case this in
formation is not available from the alignment step. 

2.1. Classification of subtomograms 

In the presented work, neural networks are used to classify each 
subtomogram based on the presence of misaligned artifacts. We have 
trained two neural networks with identical architecture. The first is 
trained to detect strong misalignment, while the second is trained to 
detect weak misalignment. It must be noted that the misalignment 
patterns that these two networks have to learn are completely different. 
In case of strong misalignment, the artifacts are easily discernible to the 
bare eye. However, in case of weak misalignment, the artifacts are very 
subtle, to the extent that even a trained researcher may find it chal
lenging to determine whether a tomogram suffers from a slight 
misalignment. In this context, the classification error rate of the second 
network should be expected to be larger than that of the first one. 

The input to our networks is a collection of small subtomograms 
centered around fiducial markers in the tomograms. The location of 
these markers may come from the 3D landmarks calculated by the tilt 
series alignment algorithm, the 3D coordinates extracted by the algo
rithm in the previous section, or both. We have standardized the input to 
our neural network to fit each fiducial in a box size of 32 × 32 × 32 
voxels. Depending on its size, the extraction sampling rate is adjusted so 
that it provides an appropriate scope of the marker, including the po
tential misalignment artifact generated around it. As is common in 
neural networks, we normalize each subtomogram to have a mean of 
zero and a standard deviation of one. 

The network output ranges from 0 to 1 depending on the network’s 
belief that the input subtomogram is correctly aligned (1) or presents 
some degree of misalignment (0). 

The architecture of the two networks is shown in Fig. 1. The network 
design consists of four convolutional layers with a rectified linear unit 
activation (ReLu), maximum pooling, and batch normalization applied 
at each step. This is followed by a fully connected layer of 512 neurons 
with a dropout of 20%. Finally, a sigmoid activation function follows the 
last layer. This design involves 110.897 parameters (110.641 of them 
are trainable). 

We have used the EMPIAR-10064 (Khoshouei et al., 2017), EMPIAR- 
10164 (Schur et al., 2016), EMPIAR-10364 (Burt et al., 2020), and, 

Fig. 1. Structure of the neural network for misalignment detection from fiducial markers.  
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EMPIAR-10453 (Turoňová et al., 2020) collections of tomograms to 
train both networks. These datasets comprise 302 tilt series in total that 
have been automatically aligned using IMOD inside Scipion. We have 
manually labeled the degree of misalignment of each alignment with the 
following result among all datasets: strong misalignment (61), weak 
misalignment (59), and properly aligned (182). The distribution of the 
tilt series for each dataset between each group is summarized in Table 1. 
All the datasets follow a similar acquisition pattern; each of them ac
quired with a tilting from − 60◦ to 60◦ but composed of 41 images for 
datasets EMPIAR-10453 and EMPIAR-10164, and composed of 61 im
ages for datasets EMPIAR-10064 and EMPIAR-10364. 

We classified the tilt series by visual inspection of the tilt image, not 
relying on the reconstructed tomograms for classification. In this in
spection, we search for relative movements of the images along the se
ries or a miscalculation of the tilt axis. To settle whether the 
misalignment is strong or weak, we look at whether the miscalculation 
in the alignment is minor (a few pixels) or more pronounced. In this 
regard, this classification is more accurate as small errors introduced in 
the alignment can be easily detected in the tilt series. Still, they are 
hardly noticeable in the tomogram. 

The authors consider that the strength of misalignment artifacts is 
neglectable to the network compared to the possible effects of contrast 
transfer function (CTF) or dose correction to the data. Nonetheless, these 
calculations have been considered also in the training dataset with the 
purpose of making the network more robust to differences in the pre
processing of the input data. Thus, for each dataset, we have generated 
for each reconstructed tomogram its counterparts by applying CTF, dose 
correction, and a combination of both. This has not been possible for the 
EMPIAR-10064 dataset, since no dose information is provided (only CTF 
correction considered). This is also useful to increase the training 
dataset. In the case of dose information is available, it implies quadru
plicating the available amount of data (only duplicating in case it is not). 

Then, for each dataset with different preprocessing steps, we 
extracted the coordinates corresponding to the fiducial markers pro
vided by the IMOD tilt series alignment algorithm (in total, across all 
datasets, there were 10482 from the strongly misaligned subset, 3758 
from the weakly misaligned, and 3476 from the aligned one). Addi
tionally, we extracted the coordinates provided by the fiducial marker 
detection algorithm (in total, across all datasets, there were 20773 from 
the strongly misaligned subset, 5071 from the weakly misaligned, and 
3022 from the aligned one). The distribution of extracted subtomograms 
obtained from each dataset and group can be observed in Table 1. 

As can be observed, there is an imbalance in the number of elements 
in each training set. To address this issue, a dynamic training system has 
been implemented, ensuring a constant proportionality among the 
different groups that input the network in each training round. 

We have extended the training dataset incorporating synthetically 
generated misaligned tomograms to train the first network. These mis
aligned tomograms were generated by individually manipulating the 
alignment parameters of 84 tilt series that had previously been correctly 
classified as aligned by the network. For this alignment manipulation, 
the alignment parameters have been distorted with different kinds of 

alignment errors with varying strengths. Assuming that the tilt axis is Y, 
the misalignment patterns that we have simulated are:  

• Bananas: a constant offset in X added to all images in the series. 
• Twisters: a constant offset in the in-plane rotation added to all im

ages in the series.  
• Birds: an incremental displacement in the Y direction. 

Fig. 2 shows an example of each one of these artifacts. For the 
network training, a total of 4921 subtomograms presenting bananas, 
3462 presenting birds, and 4105 presenting twisters, have been added to 
the training dataset. 

The first network is trained to detect those subtomograms extracted 
from tomograms reconstructed from tilt series that exhibit strong 
misalignment or an artificially simulated one. The second network is 
trained to separate the weakly misaligned subtomograms from those 
correctly aligned. To take advantage of the knowledge acquired by the 
first network, we initialized the weights of the second network with the 
weights of the first one. 

Table 1 
Distribution of tilt series and subtomograms obtained from each training dataset, including its distribution in different groups depending on the alignment group, the 
source of the subtomogram coordinates, and, inside this, the preprocessing performed in each of them.     

From alignment From PHC 

Dataset Alignment TS Raw Dose CTF Dose + CTF Raw Dose CTF Dose + CTF 

10064 Aligned 2 7 0 7 0 8 0 8 0  
Weak 2 17 0 17 0 12 0 11 0 

10164 Aligned 32 351 351 351 351 1352 1250 1287 1251  
Weak 11 114 114 114 114 472 485 467 487 

10364 Aligned 18 261 261 261 261 837 855 735 755 
10453 Aligned 130 2015 2015 1995 1995 1626 2126 2034 2024  

Weak 46 817 817 817 817 567 892 839 839  
Strong 61 869 869 869 869 874 769 676 703  

Fig. 2. Slices of the same fiducial marker reconstruction under different mis
alignments. The left column shows the XZ-plane, the center column the XY- 
plane, and the right column the YZ-plane. The first row presents bananas (in
cremental shift in X), the second line presents twisters (rotation of the tilt axis), 
and the last row birds (incremental shift in Y direction). 
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2.2. Classification of tomograms 

The neural networks of the previous section tell us whether a given 
subtomogram presents any degree of misalignment. However, we 
cannot judge a tomogram based on a single subtomogram. Instead, we 
should use all the fiducial markers identified in it. Two different alter
native approaches are proposed. The first and recommended one is the 
calculation of the mean of the set of scores obtained from every sub
tomogram. Then, a tomogram is classified as misaligned or not based on 
whether its average score is below a given threshold. The second 
approach employs a voting system in which a tomogram is classified as 
misaligned if most subtomograms are classified as such, and vice versa. 

The suggested threshold for the first network (strong misalignment) 
is 0.5. A suitable threshold for the second network is more difficult to 
find. 0.5 is possible but may be too strict or too loose depending on the 
dataset. For this reason, we let the user have the possibility of providing 
a different threshold. Also, a specific threshold may not be specified, 
leading to the evaluation of the tomogram based on the average score 
derived from the subtomograms it contains. Sorting by this average 
score, the user may decide later which tomograms to keep. This classi
fication workflow is depicted in Fig. 3. 

2.3. Location of fiducial markers 

In case the location of the fiducial markers is not available, we 
propose a tool for detecting these markers in the tomographic recon
struction. Properly localizing fiducial markers in the tomogram is a key 
step in detecting alignment errors. A miscalculation of their position in 
the sample leads to an inaccurate assessment of the alignment quality of 
the extracted subtomograms, since the network relies on the presence or 
not of misalignment artifacts related to high Signal-to-Noise-Ratio (SNR) 
features (the fiducials). 

This algorithm consists of several steps presented in the next para
graphs. One of our concerns with this algorithm was its execution time 
and memory consumption, as it has to deal with tomograms, which 

normally require lots of memory. For this reason, many steps are per
formed on 2D slices of the tomogram, which serve our detection purpose 
and, at the same time, largely increase the algorithm efficiency.  

1. Tomogram preprocessing. We perform a moving average of 5 slices 
across the tomogram’s Z direction to increase the SNR and reinforce 
the markers consistently along several slices, as fiducial markers are. 
Then, within each slice, a bandpass filter with raised cosine falloff 
centered at the frequency corresponding to the diameter of the gold 
beads (where the associated frequency is 1/D, being D the diameter 
of the gold bead) is applied. Finally, we apply a 2D Laplacian filter.  

2. 2D fiducial markers location. We start by identifying dark outliers in 
the preprocessed 2D slices. Outliers are those pixels whose intensity 
z-score is below a given value (in our experiments, 3). The intensity 
z-score is defined as the difference between the pixel intensity value 
and the slice mean, divided by the standard deviation of the slice. 
The outlier detection results in a binary slice with value 1 where the 
outlier dark pixels are located. We compute the connected compo
nents of this binary image and remove those objects whose size is 
smaller than a given threshold (normally computed as a fraction of 
the fiducial marker diameter) and whose circularity is below a given 
threshold (in our examples, 0.75). We calculate circularity as the 
ratio between the object area and the area of the minimum circle that 
contains the object.  

3. 3D fiducial markers location. In this step, we combine the 2D objects 
detected in the previous step into separated 3D objects. To do so, 
each 2D object in each slice votes for the overlapping 2D objects in 
adjacent slices. Non-voted objects are removed. The voting process is 
iteratively repeated until no object is removed. The center of mass of 
the remaining objects are candidates to be the center of a fiducial 
marker. 

These centers are further refined by looking at the intensities in the 
tomogram. Let us refer as Vi(r) to the subtomogram of size 2D ×

2D × 2D extracted around the i-th center of mass. We look for the 
coordinate displacement Δri that maximizes the correlation between 

Fig. 3. Workflow for tomogram alignment classification.  
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Vi(r) and Vi( − r). This displaced coordinate is the center of the most 
point-symmetric object in that area. This coordinate should corre
spond to the center of the fiducial marker.  

4. Quality filters. We may apply any of the quality filters described 
below:  

• Removal of duplicates. Those coordinates whose distance is 
smaller than a given threshold (in our experiment, 1.5D) are 
considered to belong to the same object and are substituted with 
their average. 

• Removal of non-symmetric objects. We may remove the co
ordinates of objects whose correlation between Vi(r) and Vi( − r) is 
smaller than a given threshold (in our experiments, 0.1).  

• Removal of outlier objects. For each object, we calculate the radial 
profile of Vi(r), compute the average radial profile of all objects, 
and remove those coordinates whose radial profile has a Mahala
nobis distance to the average profile larger than a given threshold 
(in our experiments, 2). 

Table 2 
Smallest misalignment detected in at least 90% of the subtomograms.  

Artifact Confidence Misalignment 

Bananas 98.81% 79 Å 
Twisters 97.6% 2 degrees 
Birds 98.77% [-27, 27] Å  

Fig. 4. Histogram distributions of the misalignment scores retrieved by both networks. The alignment algorithm provides the coordinates of the studied markers. The 
first row corresponds to the scores obtained by the first network (strong misalignment) and the second row to the second network (weak misalignment). Left, central, 
and right columns correspond to strongly misaligned, weakly misaligned, and aligned datasets respectively. 

Fig. 5. Histogram distributions of the misalignment scores retrieved by both networks. The fiducial marker location algorithm provides the coordinates of the studied 
markers. The first row corresponds to the scores obtained by the first network (strong misalignment) and the last one to the second network (weak misalignment). 
Left, central, and right columns correspond to strongly misaligned, weakly misaligned, and aligned datasets respectively. The fiducial marker location algorithm 
provides the coordinates of the studied markers. 
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A relaxed mode has been implemented so that, in case none of the 
coordinates survive these quality filters, none of them is removed from 
the final output. This avoids an empty output when the quality filters are 
too strict or the data quality too poor. 

Generally, there is a trade-off between the quantity and quality of 
detected objects. On the one hand, having a larger number of objects 
provides a stronger base for decision-making in the tomogram, as it 
increases the amount of evidence available. On the other hand, it is 
crucial to maintain a low false positive rate in object detection. This 
ensures that the study of the quality of the alignment of each of these 
objects can be reliably made and is not performed over spurious objects 
in the tomogram. 

3. Results 

This section presents the results of the different algorithms described 
in this work. 

3.1. Algorithm calibration 

In this section, we estimate the misalignment detection limits of our 
algorithm. To do so, we simulate bananas, twisters, and birds of different 
strengths. We start from the set of correctly aligned tilt series, see Sec
tion 2.1, and add small offsets to the different alignment parameters. We 
used the Scipion protocol tomo - misalign tilt series for this 
purpose. We keep reducing the offset until we find the minimum 
misalignment parameter for which the first neural network can still 
detect at least 90% of the tomograms as misaligned. The network is fed 
only with the fiducial detected by the marker location algorithm on the 
misaligned tomograms. Table 2 shows the results including confidence 
for the minimum offset, and Fig. 2 is an example of the gold beads under 
these minimal deformations. Note that smaller misalignments may still 
be detected, although not 90% of the time. 

3.2. Experimental data: subtomogram scoring 

We now evaluate the two networks on the subtomograms extracted 
from the three types of tomograms: strongly misaligned, weakly mis
aligned, and correctly aligned. The score histograms are presented in 
Fig. 4 and Fig. 5, in case the location of the subtomograms is provided by 
the alignment algorithm or automatically detected. The score ranges 
from 0 to 1, where low score indicates a subtomogram from a misaligned 
tomogram, while a high score indicates a subtomogram from a correctly 
aligned one. 

The first network, the one detecting strong misalignment, is rather 
binary and its behavior is equivalent independently of the source of the 
data (fiducials from the alignment or the fiducial marker location al
gorithm). For this network, the subtomograms clearly belong to one of 
the two categories (strongly misaligned or correctly aligned, even if 
there is some weak misalignment). As expected, almost all the strongly 
misaligned subtomograms are detected by the first network and not 
input to the second. The output of the second network is much more 
continuous, with many scores between 0 and 1, revealing that this 
second classification task is much more difficult. Observing the score 
histograms, a clear bias is evident in the aligned set of subtomograms, 
indicating that the network is able to detect features that are only pre
sent in this group. This bias is still clear in the weakly misaligned group, 
although it is less prominent when the source of the coordinates is the 
alignment algorithm rather than the marker location algorithm. The 
score distributions are qualitatively different so that the network is able 
to differentiate between both groups, with an F1 score of 0.77 when 
subtomogram coordinates are provided by the alignment and 0.85 if 
provided by the marker location algorithm, both cases using a threshold 
of 0.5. 

3.3. Experimental data: tomogram classification 

We finally evaluate the tomogram classification workflow in Fig. 3. 
In our experiment, the classification based on the average score is more 
robust than using the voting system (results not shown). Still, the voting 
system is available if the user is interested in possible comparisons. A 
threshold for both strong and weak misalignment networks of 0.5 has 
been used, meaning that we do not bias the request of evidence to 
resolve the alignment quality. 

Tables 3 and 4 show the confusion matrices for the experimental 
dataset, depending on the source of coordinates (provided by the tilt 
series alignment or automatically detected by the fiducial markers 
location algorithm). The algorithm is very robust in detecting strongly 
misaligned tomograms in the dataset, classifying most of them as 
strongly or weakly misaligned. The percentage of misclassified tomo
grams presenting strong misalignment is 1.63% if coordinates come 
from the tilt series alignment and 1.72% if they come from the auto
matically detected markers. The percentage of tomograms properly 
classified as aligned is 88.46% if coordinates come from the tilt series 
alignment and 91.21% if they come from the automatically detected 
markers, and also, as a positive note, none of them have been classified 
as strongly misaligned. 

These results also show that the performance of the weak misalign
ment is not as reliable as that of the strong misalignment classification. 
This result was expected because some weakly misaligned tilt series can 
be recognized at the tilt series level but not at the tomographic 
reconstruction. 

3.4. Location of fiducial markers 

The behavior of the fiducial maker location algorithm is presented in 
this section. Fig. 6 shows the algorithm’s results in locating high- 
contrast objects in the tomogram. It shows the outcomes for three 
types of tomograms: aligned, weakly misaligned, and strongly mis
aligned tomograms. 

To study the performance of this algorithm, 10 tomograms from each 
group have been manually inspected. In the case of the strongly mis
aligned tomograms, it has been ensured that the relaxed mode has not 
been executed to prevent any contamination of the dataset. 

As expected, the performance of the location of fiducial markers 
depends on the quality of the tilt series alignment: the better the 
alignment, the better the location of these coordinates will be, especially 
considering the presence of strong misalignment. The number of fiducial 
markers located by the algorithm compared to the ones used to solve the 

Table 3 
Confusion matrix comparing the ground truth from the tilt series and the clas
sification obtained by the deep neural classification from the fiducial marker 
coordinates obtained from the tilt series alignment.  

From alignment Predicted  
Aligned Weak misalignment Strong misalignment  

Real Aligned 161 21 0  
Weak misalignment 26 33 0  
Strong misalignment 1 4 56  

Table 4 
Confusion matrix comparing the ground truth from the tilt series and the clas
sification obtained by the deep neural classification from the automatically 
detected fiducial markers.  

From PHC Predicted  
Aligned Weak misalignment Strong misalignment  

Real Aligned 166 16 0  
Weak misalignment 20 39 0  
Strong misalignment 1 5 52  
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alignment is 41.25% for the strongly misaligned subset, 81.07% for the 
weakly misaligned, and 68.18% for the aligned one. 

This behavior is not necessarily detrimental to misalignment detec
tion. In fact, if the tilt series is misaligned, it will cause the detection of 
poorly resolved markers that can be easily detected by the neural 
network as indicators of misalignment. The number of markers for a 
misaligned tomogram is normally low. There are two main reasons for 
this: firstly, they go undetected due to a lower SNR; and secondly, even if 
some markers are detected, most of them are removed due to a lack of 
correlation with their mirror. 

The performance of the location of fiducial markers is acceptable, 
especially in the case of not strongly misaligned tomograms. The num
ber of detected gold beads is sufficiently high, with a low false positive 
detection rate of 6.06% for the strongly misaligned subset, 0% for the 
weakly misaligned, and 0.83% for the aligned one. We have also 
observed that in the case of misalignment, the automatically detected 
fiducial markers provide more valuable information to estimate the 
misalignment than the 3D coordinates obtained by the tilt series align
ment algorithm. The reason is that, as a result of misalignment, the 3D 
coordinates from the tilt series alignment tend to be inaccurately placed 
in the tomogram. 

In the case of strong misalignment, most objects found do not pass 
through the quality filters. In this case, it might be advantageous to run 
the algorithm in a relaxed mode in order not to remove them by any 
filter and use them as the input to the neural networks. 

4. Discussion and conclusions 

This paper introduces a new tool for automatically detecting 
misalignment errors in cryo-electron tomographic reconstructions. Just 
as it has been happening in single particle analysis in cryo-electron 
microscopy, the use of automatic tools in tomography is gaining popu
larity among users. This is particularly prevalent in the initial stages of 
the workflow, especially when considering the steps previous to the 
tomographic reconstruction. There are two main reasons for this trend: 
first, automatic tools for pre-processing, alignment, CTF estimation, and 
reconstruction have significantly improved in terms of their robustness, 
yielding higher-quality results with no need for scientist interaction; 
second, high-throughput acquisition systems and streaming processing 
are also becoming a reality in tomography. Thus, the availability of 
automatic tools for detecting misalignment errors is a key step in 
developing robust pipelines for data processing in tomography, espe
cially considering that the reconstructed tomogram is the starting point 
for many subsequent analysis steps. 

Analyzing the strong misalignment detection, it can be observed that 

the algorithm performs slightly better when the source of the co
ordinates is the alignment algorithm. This behavior is expected since 
these coordinates are the ones the tilt series alignment algorithm relies 
on when solving the alignment of the acquisition geometry. Addition
ally, in cases where the alignment errors are so severe that no structure is 
recognized in the reconstruction, the marker location algorithm cannot 
identify any structure with sufficient contrast. As a result, tomograms 
are not classified due to the lack of coordinates. 

On the other hand, in weak misalignment detection, the opposite 
behavior is observed, with a slight overperformance of the algorithm 
when the source of the coordinates is the marker location algorithm 
itself. The authors believe that this behavior can be explained because 
the alignment algorithm imposes the limitation that markers used for 
alignment must be present in all tilt images (or visible at zero degrees of 

Fig. 6. Comparison of the high-contrast objects automatically found in three different tomograms: aligned (left), weakly misaligned (center), and strongly misaligned 
(right). The color code is: green (found by tilt series alignment but not automatically), blue (found as a high-contrast feature but not by the tilt series alignment), and 
red (found by both). 

Fig. 7. Slices of fiducial markers that exemplify the three different tomogram 
sets. The left column shows the XZ-plane, the center column the XY-plane, and 
the right column the YZ-plane. The first row presents a marker from the 
strongly misaligned set; the second row presents one from the weakly mis
aligned set, and the last row from the aligned set. 
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tilting). Consequently, fiducials located by the marker location algo
rithm might be reconstructed from regions of the tomogram where a 
lower number of tilt images contribute to the reconstruction, illumi
nating weak misalignment errors that appear only in a few images. Also, 
fiducials that are located in regions of the tomogram far from the tilt axis 
typically present artifacted reconstructions, which might be another 
reason for this behavior. 

Nevertheless, as mentioned in the methods section, not all alignment 
algorithms use fiducial markers to calculate the alignment or report 
their three-dimensional coordinates. For this reason, it is necessary to 
provide automatic tools to work with this other kind of tomograms. 

The most challenging problem encountered has been the detection of 
weak misalignment errors. During the reconstruction process, it is 
important to note that the combination of projective information onto 
the third-dimensional space does not ensure that small displacements of 
some tilt series lead to detectable artifacts in the final tomographic 
reconstruction. Thus, it is not expected that misalignments detected over 
the aligned tilt series can also be detected in the tomographic recon
struction, especially the more subtle ones. We illustrate this problem in 
Fig. 7, showing three gold beads from the three different sets, where it is 
possible to visualize the subtle difference between aligned and weakly 
misaligned fiducial markers. The difference between the weakly mis
aligned and correctly aligned fiducials is small, and the neural network 
finds it hard to distinguish them. 

To check if two human experts can distinguish them, two different 
scientists have driven a second classification round, but only inspecting 
the tomogram in this case. Each scientist has generated two sets, split
ting the original set of tomograms into aligned and misaligned. When 
comparing these classifications, it can be observed from the confusion 
matrix that they present a consistency of 95.36%. When comparing the 
classification of both scientists with the deep-neural network algorithm, 
it is observed that for both of them, the accuracy of their estimation is 
respectively 94.51% and 95.78%. These results are obtained considering 
as aligned the union of the aligned and weakly misaligned sets from the 
deep-neural network. With this, the authors exemplified how, even from 
trained scientists, detecting subtle movements in the tilt series might be 
unrecognized in the tomographic reconstruction. The results from this 
comparison are summarized in Table 5. 

Another core feature of this work consists of its automatic behavior. 
With the growing popularity of automatic image processing methods 
and high-throughput acquisition systems in the field, the automatic 
detection of artifactual reconstructions is a critical step in the cryo-ET 
processing pipeline. The developed work ensures this detection, 
without the need for the manual intervention of the user. 

It is interesting to comment, as a potential application, on the op
portunity that this software brings to study local alignment errors. Since 
the alignment score is reported for each gold bead individually, it is 
possible to compare the alignment quality between different regions in 
the tomographic reconstruction. Although it requires a certain consis
tency in local alignment errors along the series in the same region of the 

sample and a homogeneous and numerous enough distribution of gold 
beads, the authors find it an interesting research path for future work. 

In this work, we have presented one automatic algorithm for the 
localization of fiducial markers in a tomographic reconstruction and 
another one for the assessment of the misalignment of the reconstructed 
tomogram. These artifactual reconstructions should be identified and 
discarded to ensure reliable further processing. Alternatively, the 
alignment quality might be improved by realigning automatically 
setting different parameters, using a different algorithm, or even by 
manual adjustment. 
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Martínez, M. Harastani, S. Jonić, J. Filipovic, R. Marabini, J.M. Carazo, and C.O.S. 
Sorzano, ”Advances in xmipp for cryo–electron microscopy: From xmipp to scipion,” 
Molecules, vol. 26, no. 20, 2021. 
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User guide

In this section, we present a simplified user guide to use the software presented
in this work. This guide includes both available sources available to the user:
Xmipp standalone command-line mode, and the implementation of this sofware
in the Scipion framework.

0.1 Xmipp standalone

To work with the presented tools in the standalone version it is only necessary
to have installed the Xmipp software package. Through the command line, the
user has access to the full functionality of this software.

To execute the high contrast peaker through the command line it is enough to
execute the xmipp image peak high contrast program followed by the options
summed up in 1. This is an example command for the execution of this program:

xmipp image peak high contrast program --vol tomo1.mrc -o outputCoords.xmd

--boxSize 32 --fiducialSize 80 --sdThr 2 --mirrorCorrelationThr 0.2

--mahalanobisDistanceThr 2 --numberSampSlices 400 --numberOfCoordinatesThr

10 --samplingRate 18.92 --relaxedModeThr 3

To execute the misalignment detection program through the command line
it is enough to execute the xmipp deep misalignment detection followed by
the options summed up in 2. This is an example command for the execution of
this program:

xmipp deep misalignment detection --modelPick 0 --subtomoFilePath

subtomoCoords.xmd --misaliThr 0.45

1



Parameter Description Default
vol File path to input volume

o
File path to output coordinates
file

samplingRate
Sampling rate of the input
tomogram (A/px)

fiducialSize
Size of the fiducial markers in
Angstroms (A)

100

boxSize Box size of the peaked fiducials 32

numberSampSlices
Number of sampling slices to
calculate the threshold value

10

sdThr
Number of STD away the mean to
consider that a pixel has an outlier value

5

numberOfCoordinatesThr
Minimum number of points attracted to
a coordinate

10

mirrorCorrelationThr
Minimum correlation of a coordinate
with its mirror

0.1

mahalanobisDistanceThr Minimum Mahalanobis distance 2

relaxedModeThr
Minimum number of peaked coordinates
to disable a filter

3

Table 1: Table of parameters from the peak high contrast algorithm

0.2 Scipion framework

To work with the presented tools inside the scipion framework it is necessary
to have installed both the Xmipp and the Scipion software packages. This is
procedure is simplified since the installation of Xmipp is triggered when in-
stalling Scipion. Since this is a simplified tutorial, the input information for the
presented workflow is the already reconstructed tomograms. Nonetheless, more
extended documentation and tutorials about tomography data processing can
be found at the Scipion documentation landing page:

https://scipion-em.github.io/docs/release-3.0.0/docs/user/tomography-tutorials.html
In particular the ”Tomogram Reconstruction” explains to the user how to

obtain a set of reconstructed tomograms from a set of raw tilt-series. The
first step is to import the tomograms into a Scipion project (using the tomo -

import tomograms). In figure 3 it is shown an example of this protocol from
for its execution. The output of this protocol consists of a set of tomograms
with which it is possible to start the processing.

Once the tomograms are correctly imported into the Scipion project, it is
possible to run the peak high contrast algorithm through the Scipion protocol
xmipptomo - peak high contrast. In figure 3 it is shown an example of this
protocol from for its execution. The output of this protocol is a set of three-
dimensional coordinates assigned to each tomogram from the set. The number of
peaked coordinates is reported in the summary section and it can be visualized
with the available viewers offered by Scipion.
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Parameter Description

modelPick

choose model for weak misalignment estimation. Strict
model (0) is picked in order to avoid false positives. In
case loose (1) model is chosen, less good aligned
tomograms are lost. As a tradeoff, the number of false
positives will increase.

subtomoFilePath
file path of the xmd file containing the coordinates of the
extracted subtomos. This is the output got when
extracting with xmipp tomo extract subtomograms.

misaliThr

Threshold to settle if a tomogram presents weak or
strong misalignment. If this value is not provided two
output set of tomograms are generated, those discarded
which present strong misalignment and those which do
not. If this value is provided the second group of
tomograms is split into two, using this threshold to
settle if the tomograms present or not a weak misalignment.

misalignmentCriteriaVotes

Define criteria used for making a decision on the
presence of misalignment on the tomogram based on
the individual scores of each subtomogram. If this
option is not provided (default) the mean of this score
is calculated. If provided a voting system based on if
each subtomo score is closer to 0 o 1 is implented

Table 2: Table of parameters from the deep misalignment detection algorithm

Figure 1: Import tomograms protocol form, including the views of its three
slices.
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Figure 2: Peak high contrast protocol form.
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Finally, once the fiducial markers are located in the tomogram, the degree
of misalignment presented by the tomograms can be studied. The misalignment
detection protocol is run through the Scipion protocol xmipptomo - detect

misalignment form fiducials. In figure 3 it is shown an example of this
protocol from for its execution. The distribution of strong and weak misaligned,
and aligned tomograms is reported in the summary section along with the whole
set of fiducial markers subtomograms used for the tomogram classification. This
set of subtomograms includes the alignment scores provided by the deep neural
networks from the algorithm. Figure 4 it is shown a capture of the summary
reported by the detect misalignment protocol, including all kinds of possible
outputs.

Figure 3: Detect misalignment protocol form.

Figure 4: Detect misalignment output summary.
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