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A B S T R A C T   

Cryo Electron Microscopy (Cryo-EM) is currently one of the main tools to reveal the structural information of 
biological specimens at high resolution. Despite the great development of the techniques involved to solve the 
biological structures with Cryo-EM in the last years, the reconstructed 3D maps can present lower resolution due 
to errors committed while processing the information acquired by the microscope. One of the main problems 
comes from the 3D alignment step, which is an error-prone part of the reconstruction workflow due to the very 
low signal-to-noise ratio (SNR) common in Cryo-EM imaging. In fact, as we will show in this work, it is not 
unusual to find a disagreement in the alignment parameters in approximately 20–40% of the processed images, 
when outputs of different alignment algorithms are compared. 

In this work, we present a novel method to align sets of single particle images in the 3D space, called 
DeepAlign. Our proposal is based on deep learning networks that have been successfully used in plenty of 
problems in image classification. Specifically, we propose to design several deep neural networks on a region-
alized basis to classify the particle images in sub-regions and, then, make a refinement of the 3D alignment 
parameters only inside that sub-region. We show that this method results in accurately aligned images, 
improving the Fourier shell correlation (FSC) resolution obtained with other state-of-the-art methods while 
decreasing computational time.   

1. Introduction 

Single Particle Analysis (SPA) for Cryo Electron Microscopy (Cryo- 
EM) has become one of the major tools to reveal the three-dimensional 
(3D) structure of macromolecules at high resolution, allowing to un-
derstand molecular interactions and being crucial to start understanding 
the function of biological ensembles (Nogales, 2016). When high reso-
lution is achieved in the reconstructed 3D maps, it is possible to recover 
a great amount of biological information. However, it is common to find 
3D maps or part of them with lower resolutions, which is due to errors in 
the reconstruction procedure (Henderson, 1992), among other 
problems. 

One of the most complicated steps in a common workflow to obtain a 
3D reconstructed map is the highly error-prone 3D alignment step. The 
goal of the 3D alignment is to find parameters describing orientation and 
position in a 3D sphere for every particle image. These parameters are: 

the in-plane rotation and the shift translations in both axis of the 2D 
projection, and then two angles to orient the projection in the 3D sphere 
(commonly named rotation and tilt). These five parameters completely 
define the orientation of every particle image in the 3D space. 

The 3D alignment step is affected by the very low Signal-to-Noise 
Ratio (SNR) that reduces the accuracy in the obtained alignment pa-
rameters, which results in artifacts in the reconstructed map. Moreover, 
as this step is an optimization problem in a high-dimensional space, 
common statistical approaches can easily get stuck in local minima. As 
we will demonstrate later, it is common to find a disagreement of more 
than 10◦ in the alignment parameters obtained with different alignment 
algorithms in approximately 20–40% of the particle images. 

1.1. State-of-the-art 

We can find several ways to tackle the 3D alignment in the literature, 
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(e.g. Penczek et al., 1992; Penczek et al., 1994; Scheres et al., 2005; 
Scheres et al., 2007; Scheres, 2012; Elmlund et al., 2013; Vargas et al., 
2014; Sorzano et al., 2015; Punjani et al., 2017; Sorzano et al., 2018; 
Sorzano et al., 2018). The standard approach to the 3D alignment 
problem was the so-called “Projection Matching” (Penczek et al., 1992; 
Penczek et al., 1994). Then, statistical tools as Maximum Likelihood 
(ML), Maximum a posteriori (MAP), and Bayesian prior methods started to 
be a relevant way to face the alignment problem, following in the footsteps of 
Sigworth (1998) where ML was firstly used for Cryo-EM. Scheres et al. 
(2005), Scheres et al. (2007) and Scheres (2012) presented alignment 
procedures based on ML and Bayesian reconstruction, in which the particle 
images can take all projection directions with different weights, which were 
calculated from a Bayesian prior on the distribution of noise and signal co-
efficients. This method solved the optimization problem in a greedy way, 
starting from an initial estimation of the 3D map to be reconstructed. In 
Elmlund et al. (2013) a similar optimisation probabilistic approach was 
proposed but in a non-greedy way, in which an image could be assigned to a 
subset of so-called feasible directions, using different weights calculated from 
a heuristically determined function, which could help to avoid local minima. 
Vargas et al. (2014) described also a statistical approach focused on trying 
to avoid local minima by reducing the search space using image subsets, 
randomly assigning orientations, and checking which of the assignments was 
more successful. Sorzano et al. (2015) considered the alignment problem as 
a weighted least squares optimisation based on the concept of statistical sig-
nificance, rather than a closed form optimisation of a given functional under 
a simplified set of assumptions. Novel ML implementations based on branch- 
and-bound technique, stochastic gradient descent, and GPU processing have 
gained much attention, significantly reducing the processing time (Punjani 
et al., 2017). Sorzano et al. (2018) proposed to use the statistical signifi-
cance as weight, instead of using the likelihood, and recommended an angular 
assignment in which each image receives a single angular orientation, unlike 
some previous works. Other works, (e. g., Sorzano et al., 2018), took the 
approach of generating many different volumes (preferably with different 
algorithms) and ranking the volumes according to their fit to the experimental 
data. 

Despite the availability of all these methods, current practice shows 
that, due to the previously mentioned problems, there are situations in 
which the approaches above fail to produce a satisfactory result and 
more robust techniques are still needed. 

Our method presents a new framework based on deep learning to 
manage the 3D alignment problem. Deep learning is a machine learning 
technique, derived from neural networks, able to learn from multiple 
levels of feature representation. In the last years, it has become a revo-
lutionary tool in computer vision, e.g. image classification, object 
recognition, and tracking. In Cryo-EM, deep learning is being used 
already for particle picking, or annotation of different parts in the 
reconstructed structure of proteins, (e.g. Wang et al., 2016; Li et al., 
2016; Zhu et al., 2017; Chen et al., 2017; Sanchez-Garcia et al., 2018; 
Wagner et al., 2018; Zhang et al., 2019). There are some attempts to use 
deep learning in the 3D reconstruction step, (e. g. Gupta et al., 2020; 
Zhong et al., 2019; Zhong et al., 2020. Gupta et al., 2020) used a 
generative adversarial network to learn the 3D density map whose 
projections are the most consistent with the given input particle set. 
However, this approach was not able to produce a sufficiently accurate 
3D map to resolve the biological structure. Zhong et al. (2019) and 
Zhong et al. (2020) presented one of the first successful approach for 
Cryo-EM reconstruction based on deep learning, specifically a varia-
tional autoencoder is used to find out discrete states as well as contin-
uous conformational changes. Thus, this method was able to manage 3D 
heterogeneity; however, the particle orientation needed to be previously 
determined by other technique. Therefore, to the best of our knowledge, 
our proposal is one of the first methods based on deep learning dealing 
with the 3D alignment process. 

1.2. Introduction to DeepAlign 

In this work, we present DeepAlign, a new proposal built on Con-
volutional Neural Networks (CNNs), that have revolutionized the field of 
neural networks for image processing, as they have boosted the per-
formance in a large variety of tasks. The CNNs are designed with the first 
part of convolutional layers devoted to extracting several levels of fea-
tures based on a non-linear filtering process. The second part of layers is 
dedicated to the classification itself, generating a label for the input 
image knowing the features previously calculated in the convolutional 
part of the network (more details will be given in the following section). 
Unlike common machine learning approaches, which typically use 
handcrafted filters to extract the features, CNNs have the ability to learn 
these filters on its own by means of the feature extraction layers. 

Moreover, our proposal is built on a regionalized basis. Creating only 
one network to predict the location of the particle images in the whole 
3D sphere can result in a very high-complexity network due to the dif-
ficulty of this task. Instead, we propose to divide the 3D projection 
sphere, which means the angular space of orientations in 3D, into non- 
overlapping regions and create a simpler deep neural network in each 
region to detect if the experimental image comes or not from that region, 
which can be done with high accuracy. Following this reasoning, we 
obtain so many deep neural networks as regions and, for every particle 
image, we calculate the probability of that image coming from each 
region, and select that with the highest probability. The final alignment 
parameters (rotation, tilt, and in-plane angle and shifts) are finally ob-
tained running a simplified alignment procedure based on correlation 
only in the region of interest. 

Additionally, taking into account the high disagreement that can be 
found in the alignment parameters obtained with different algorithms, 
we also propose a consensus tool. The idea is to select only those particle 
images in which the angular differences between alignment methods are 
low, so it is more likely that these images are accurately assigned. 
Building the 3D reconstructed map taking into account only those im-
ages, could avoid the appearance of artifacts and improve the obtained 
resolution. 

2. Methods 

2.1. Regionalized deep learning approach 

Our deep learning proposal relies on CNNs, which have successfully 
proved their usefulness in a variety of problems related to image 
processing. 

In a CNN, the convolutional layers are able to successfully capture 
the spatial dependencies in an image through the application of 
consecutive filters of different sizes, going from basic features, like edges 
or corners, to detailed features more specific to the problem to be solved. 
The filter kernels are the values to be learned in the training process. A 
convolution operation will be applied between image and filters to 
obtain the features present in the image. In other words, the CNN 
network can be trained to understand the characteristics of the image 
better than other approaches. 

The fully connected layers in the second part of the network is a way 
of learning a non-linear function in the feature space, weighting the 
features obtained with the previous convolutional part. The output of 
these layers are real values that will be converted into a label (or 
probability). In this way, the network classifies the input image into that 
class with the highest probability. 

Specifically, the design of our networks is as follows:  

• The size of the input layer is that of the input particle images. This 
can be downsampled to avoid memory overload and to alleviate the 
computational burden, while we try to preserve the main details of 
the images that are decisive to properly train the networks. 

A. Jiménez-Moreno et al.                                                                                                                                                                                                                      



Journal of Structural Biology 213 (2021) 107712

3

• Three convolutional layers are applied with kernel sizes adapted to 
the input (1/3, 1/10, and 1/20 of the input size, respectively). The 
number of filters is 16 for the first layer, 32 for the second, and 64 for 
the last one.  

• In between every convolutional layer, a normalization and max- 
pooling with size 2 × 2 (which will halve the input in both spatial 
dimensions) are carried out. 

• A dropout layer is included to prevent overfitting after the con-
volutional part. This layer randomly drops a fraction of input units at 

Fig. 3. A schematic representation of the training process. Every particle has an angular assignment and can be assigned to a specific region. The subset of particles 
assigned to every region will be used for training that network model. 

Fig. 2. (a) Top view of region centers shown in dots, example with regions separated 30◦. (b) Illustrative example of the labeling for a particle: the distance between 
the particle (red point) and all the region centers (for clearness just six regions are drawn, A, B, C, D, E and F) is calculated, the minimum distance give the label for 
the particle (B in this example). 

Fig. 1. Network design. For an input image of 
size 128 × 128, the first convolutional layer 
(Conv 1) is created with 16 filters of size 42 ×
42, then max pooling of size 2 ×2 is applied (MP 
1), the second convolutional layer (Conv 2) has 
32 filters of size 12 × 12, another max pooling 
layer follows (MP 2), and the last convolutional 
layer (Conv 3) has 64 filters of 6 ×6 followed by 
the last max-pooling (MP 3). The first fully 
connected layer (FC 1) has a size of 256 neurons 
and the output layer (FC 2) with one neuron will 
give us the classification probability.   
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each update during training time. In our design, that fraction is fixed 
to 0.2.  

• We used two fully connected layers, the first with 256 neurons and 
the second with just one neuron (the output layer with only one 
neuron will give us the output probability). The first fully connected 
layer uses a Rectified Linear Unit (ReLU) activation function, whilst 
the second layer uses a sigmoid.  

• The optimizer for the training process is Kingma et al. (2014) with a 
learning rate of 0.002. 

A graphical representation of the network design can be found in Fig. 1. 
CNNs identical to the one explained above, are set up to work on a 

regionalized basis. The idea of working by regions is the following: we 
need to find for every particle image the set of alignment parameters to 
place that image in the 3D sphere. However, to predict with only one 
network the whole set of parameters could be a very difficult task, 
considering the low SNR and the high probability of finding a local 
minimum in the solution space. For that reason, we decided to simplify 
the problem and divide the 3D sphere into non-overlapping smaller 
regions (an example is shown in Fig. 2(b)). For every region, a unique 
CNN is trained to give the probability of a particle image belonging to 
that region (but not the specific projection direction corresponding to 
that particle image), which is a simpler problem that can be managed 
with the low complexity CNN described above. The selected region for a 
particle image is the one with the highest output probability. The final 
alignment parameters are obtained running an alignment method based 
on correlation only in the selected region, which reduces the complexity 
burden. 

2.2. CNNs training 

To train the CNNs we need a set of particle images with the associ-
ated label of the region where the image comes from. To this end, a small 
random subset (approximately 10% of the input size) of the input par-
ticle set must be aligned with another method, (e.g., Sorzano et al., 
2018; Scheres, 2012), or (Punjani et al., 2017). Then, knowing the 
alignment parameters and using the distance to the center of regions 
(Fig. 2), the image label will be the region whose center is closer to the 
image. To train a CNN, we take the subset of images assigned to that 
region as positive labels and all the remaining ones as negative labels. 
This results in a very unbalanced number of images for every label, 
which can be problematic in the training process. Therefore, we build 
balanced sets by randomly sampling these two sets to a final equal size. 

Moreover, we use a data augmentation procedure to increase the 
power of the network to recognize particles in different in-plane 

orientations. During the data augmentation we take a training image 
(particle image) and we repeat it several times with random rotations 
and shifts in the in-plane parameters. In Fig. 3 a schematic representa-
tion of the training process is shown. 

Regarding the accuracy of the training process, although CNNs are 
known for being robust to mislabelling and we can expect good behavior 
from them (Rolnick et al., 2018), it is key to check how the error rate 
evolves during the training process. To obtain a low error rate on the 
validation set is the way to know if the training is correct. As we will 
show in the Results section, to achieve a 3D reconstruction in the mid- 
range of resolutions with, approximately, a 10% of the particle im-
ages, was enough in our test cases to get a proper training set, even in 
challenging cases with very noisy images. On the other hand, if higher 
reliability in the angular assignment of the training set is required, a 
higher percentage of images can be used to train, or a consensus before 
the training could be applied. This means, to use two different algo-
rithms to assign the angles for the training particles, selecting then the 
subset with coincident angles, which could assure us to have very ac-
curate assignments. Also, Sorzano et al. (2018) can be used to build a 
reconstruction in a particular range of resolutions, as this method has an 
option to select the target resolution and work in that range. 

2.3. Predicting image label and obtaining final alignment parameters 

Fig. 4 shows a summary of the prediction and final alignment steps. 
Once the CNNs for every 3D region are ready, prediction can be carried 
out for the whole input set of particle images. Every image is presented 
to all CNNs and the output probabilities are gathered. The region with 
the highest output probability is selected for each image. In this way, the 
algorithm locates for each image a narrow 3D region from which it likely 
comes. To find out the alignment parameters, we run an alignment 
method based on correlation; specifically, this method is a GPU version 
of the significant assignment of Xmipp, (Sorzano et al., 2015; Sorzano 
et al., 2018). This alignment is carried out in every region of interest and 
with the particle subset assigned to it. This greatly reduces the search 
space as the number of comparisons between input images and repro-
jections of the reference volume, which is the most expensive part of any 
3D angular assignment algorithm, is divided by the number of 3D 
regions. 

In some cases, several of the highest CNN output probabilities could 
have similar values, which could point out to regions where it is difficult 
to distinguish between them. To manage this situation, we give the 
option to select the number of regions to be considered per image. That 
is, several regions (those with the highest output probabilities) can be 
selected for one particle image and, then, the alignment algorithm will 

Fig. 4. A schematic representation of the prediction process.  
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be in charge of selecting the best 3D location, that could be inside any of 
the available regions. This is also a way to minimize classification errors 
by the deep learning approach, even the errors coming from the mis-
labelling in the training process (these labels come from the alignment 
parameters obtained by another method that will have some error per-
centage) will be reduced thanks to the possibility of using several re-
gions to align. Although there is a tradeoff between classification error 
rate and complexity burden to take into account. 

2.4. Complexity optimization 

The training and final alignment steps are responsible for the main 
complexity burden in our proposal. All the deep learning procedures 
included in this method are developed using Keras library (Chollet et al., 
2015) and exploit its GPU implementation. 

The training step depends on the number of regions considered (as it 
is equal to the number of CNNs) that, on its turn, depends on the region 
size and the symmetry, as only the non-symmetric part of the 3D space is 
considered. Moreover, this step is parallelized at GPU level, as training 
of every CNN is completely independent of each other. So, when several 
GPUs are available, these tasks can be divided among them. We must 
highlight that the complexity of the training per region does not depend 
on the number of input particle images, as we use data augmentation to 
keep the same training set size. The whole training step has a complexity 
that depends on the parameters of the training, e.g. number of epochs 
and batch size, that can be selected by the user, and the size of the 
training images. 

The prediction is carried out for the whole set of input particles and 
considering all the available regions, so its runtime depends on both. 
Anyway, this time is clearly lower than the one required for the training 
step. Thus, for simplicity, we decided not to parallelize it at GPU level. 

The final alignment based on correlation is also implemented in GPU 
and, as in the training step, the alignment for every region is indepen-
dent of the other ones, so it can be also additionally parallelized at GPU 
level. Thus, the alignment in every region can be executed in different 
GPUs. 

The method presented in this paper was implemented in Xmipp (de 
la Rosa-Trevín et al., 2013) and included in Scipion (de la Rosa-Trevín 
et al., 2016). 

2.5. Consensus tool 

A comparison in angular assignments between several methods is 
presented in Fig. 5. Specifically, we plot the angular differences, from 
lowest to highest, between the angles obtained for every particle image 
with Xmipp Highres (Sorzano et al., 2018) and Relion (Scheres, 2012) 
for structure T20S proteasome in part (a) of the figure, and between 

(Scheres, 2012) and DeepAlign for structure Plasmodium falciparum 80S 
ribosome in part (b). These results show that approximately 70–80% of 
images have angular assignments that differ in less than 10◦. Thus, there 
is a significant number of images in which the angular differences highly 
increases up to very high values, indicating around 20–30% of images 
cannot be accurately aligned (however, we have seen this value to go up 
to 40–50% for some datasets). Obviously, if these significant disagree-
ments are translated in wrongly assigned images, the obtained resolu-
tion for the 3D reconstructed map could be damaged. 

The consensus tool presented in this work aims to solve the previous 
problem. If we have several alignment results for every particle image, 
we can check if the different methods give similar solutions or not. In the 
case of low angular differences, there is no evidence that the particles 
come from different directions. Otherwise, when the angular differences 
are large, the probability of a wrong assignment could be significant. 
The consensus tool is in charge of discarding images for which the 
angular difference is above some user-defined threshold. Images for 
which two or more angular assignment algorithms agree in their 
orientation, are used to refine the 3D map. This procedure could 
improve the obtained resolution as we are discarding particle images 
that do not contain enough information to be properly located. 

A possible caveat of any consensus tool comes from the comparison 
using similar techniques, as they can discover similar local minimum. 
Since most of the available techniques to carry out the alignment process 
rely on ML approaches, we can expect a similar behavior among them in 
terms of accuracy. Therefore, most of the subset with the wrongly 
assigned images could have similar statistical characteristics, and the 
same holds true for the subset of well assigned images. DeepAlign is 
based on a completely different approach. Its hits and miss subset will 
have a different statistical basis, giving extra information to select the 
particle image subset that will likely be correctly aligned. 

3. Results 

In this section, we present the results obtained with DeepAlign in 
comparison with other methods in the state-of-the-art, specifically 
Xmipp Highres (Scheres, 2012), Relion (Sorzano et al., 2018) (v3.0), and 
CryoSparc (Punjani et al., 2017) (v2.14). The structures Plasmodium 
falciparum 80S ribosome (with codes 10028 in EMPIAR and 2660 in 
EMDB databases), T20S proteasome (with codes 10025 in EMPIAR and 
6287 in EMDB), and SARS-CoV-2 Spike (Melero et al., in press) have 
been used. The GPUs used were GeForce RTX 2080 Ti with 11 GB of 
memory, and the CPUs were Intel(R) Xeon(R) Silver 4114 at 2.20 GHz. 

3.1. Plasmodium falciparum 80S ribosome 

The tests with this structure were carried out with a distance of 30◦

Fig. 5. Angular differences sorted from lower to higher. (a) Xmipp Highres vs Relion for proteasome. (b) Relion vs DeepAlign for ribosome.  
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between region centers. As this structure presents no symmetry, the total 
number of regions considered was 42. The number of experimental 
images was 85,012 with a size of 300 × 300 pixels and a pixel size of 
1.34 Å/pixel. The original achieved resolution for this structure was 3.2 
Å (Wong et al., 2014). A target resolution of 10 Å was used to rescale the 
input particle images and volume, thus the image size was reduced to 
120 × 120 pixels. From this input set, we randomly took 5,000 images 
for training that were aligned with Relion and labeled according to the 
region from which they come. Data augmentation procedure generates a 
total of 10,000 images per region, applying random in-plane rotations 
and shifts to every image. Thus, in the training of a CNN we have 10,000 
positive labeled images and 410,000 negative examples, which is a very 
unbalanced set. To solve this, in every batch generated during the 
training, we maintain the same proportion of positive and negative ex-
amples. Additionally, we selected the two best regions per image, to find 
the optimal location inside them. 

The number of epochs for training the CNNs was 10, and the batch 
size was 128. The training process of a region started with a loss 
(measured with mean absolute error) near 0.9 and accuracy of 0.5 
(corresponding to random predictions), in the first epoch a loss of 0.2 
and accuracy of 0.8 were already achieved, and the training process was 
finished with a loss of 0.1 and accuracy of 0.9 on the validation set. So, 
we were able to generate a proper training set with which the network 
can learn the alignment parameters quite fast. 

The training time (without taking into account the required time by 
Relion to align the 5,000 images) per region took 20 min on average, the 
prediction step 40 min in total, and the alignment inside the two selected 
regions 1 min per region. Running the process in two GPUs, the whole 
algorithm required approximately 9 h (additional steps, such as data 
read/write and preprocessing took additional 30 min). After running a 
local refinement (using Xmipp Highres) we got a resolution of 3.8 Å. It 
must be taken into account that we started with the information of 5,000 
aligned particles as input to our method that would give rise to a very 
rough 3D map estimation of around 10 Å. Relion running also in two 
GPUs took 20 h to converge and obtained a resolution of 4.0 Å. If we run 
one more local refinement step of the DeepAlign results, we reached a 
processing time of also 20 h, the same as Relion, but the obtained res-
olution was 3.5 Å. The consensus tool was tested in this example 
comparing the alignment angles obtained with our proposal and Relion 
and selecting the particle subset with a difference between them in less 
than 5◦. This, reduced the number of particle images in approximately 
27,000 images (from 85,012 to 57,886) which is over 30%. Then, a local 
refinement using only this subset was carried out. We obtained a reso-
lution of 2.9 Å compared to the previous 3.5 Å. This result indicates that 

a lower number of images with an accurate alignment leads to better 
reconstruction than using a bigger set of particles containing misaligned 
or noisy images. The Fourier shell correlation (FSC) curves are presented 
in Fig. 6.1 

Fig. 7. Local resolution of the reconstructed 3D maps for ribosome. (a) Relion, 
(b) DeepAlign, and (c) DeepAlign consensus. 

Fig. 6. FSC curves obtained for ribosome. Relion 4.0 Å, DeepAlign 3.5 Å, and 
DeepAlign consensus 2.9 Å are compared. 

1 To measure the FSC after using Xmipp Highres or a local refinement based 
on this method, we have disabled the post-processing options of this method, 
thus we obtain FSC curves comparable to the other approaches. 
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The local resolution was also measured using Monores (Vilas et al., 
2018) and comparing the three considered approaches, obtaining the 
results presented in Fig. 7. This analysis confirms the trend of the FSC 
curves, our proposals were able to obtain better resolution in most of the 
voxels of the structure, specially improving in the inner part of the 
structure from the obtained 3.0 Å with Relion to 2.75 Å with DeepAlign 
and consensus. Some selected slices taken from the three reconstructed 
3D maps are presented in Fig. 8. 

Finally, we represent the 3D structures obtained with DeepAlign 
consensus tool in comparison with Relion in Fig. 9. (a) and (b) represent 
the whole structure where some densities started to appear in the outer 
areas of the structure that in the map obtained with Relion are lost (red 
circles in Fig. 9(b)). Parts (c) and (d) of the figure show a zoomed area on 
a helix with the deposited atomic model (PDBPDB3j7j79) fitted in it. As 
it can be seen, after the post-processing and fitting steps similar results 
are achieved with both methods. We used Refmac (Murshudov et al., 

Fig. 8. Central slices of the reconstructed 3D map for ribosome. (a) and (b) Z-axis and Y-axis with DeepAlign (3.5 Å). (c) and (d) Z-axis and Y-axis with Relion 
autorefine (4.0 Å). (e) and (f) Z-axis and Y-axis with DeepAlign consensus tool (2.9 Å). 
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2011) to refine the fitting, obtaining an average Fourier shell correlation 
of 0.45 with DeepAlign and 0.43 with Relion (note that the model only 
corresponds to one sub-unit), confirming that both methods are able to 
perform similarly. 

3.2. T20S proteasome 

This structure presents a dihedral symmetry (D7) with a size of 400 
× 400 pixels and a pixel size of 0.66 Å/pixel. The original achieved 
resolution was 2.8 Å (Campbell et al., 2015). The distance between re-
gion centers was 20◦ which generates 92 regions to cover the whole 3D 
space but only 9 were actually assigned to the asymmetric part of the 
molecule. The algorithm was configured to select the best two regions to 
find out the location for each particle. We had 26,230 experimental 
particles as input, from which only 3,000 (randomly selected) were used 
to carry out the training process. These 3,000 images were aligned and 
afterwards labeled with Xmipp Highres. With data augmentation we 
were able to generate 10,000 positive examples and 80,000 negative 
examples to train every network. These sets were balanced during the 
generation of the batches for the training, as in the previous example. 
The target resolution was 4 Å, so the image size was reduced to 197 ×
197. All the remaining steps and parameters to make the training stayed 
as in the previous example. 

On average, the training process of a region started with a loss near 
0.9 and accuracy of 0.5 (corresponding to random predictions), in the 
first epoch a loss of 0.2 and 0.85 of accuracy were achieved and, the 
training process was finished with a loss of 0.02 and an accuracy of 0.99 
on the validation set. 

In this example, the new alignment parameters obtained with 
DeepAlign and locally optimized lead to a reconstructed 3D map with a 
resolution of 2.9 Å, compared to the 3.3 Å obtained with Xmipp Highres. 

The consensus tool was run with the subset of images for which the 
angular difference was lower than 5◦. This, reduced the input set of 
particle images from 26,230 to 19,086, a 28% of reduction. After a local 
refinement, the achieved resolution was 2.7 Å. The local resolution 
analysis with Monores also showed that Xmipp Highres and our pro-
posals were able to obtain a high resolution reconstruction in most of the 
areas of the structure, but DeepAlign and the consensus tool got some 
improvements. These results prove that our method was able to find a 
slightly better solution. Figs. 10–12 show the obtained FSCs, the local 
resolution, and some slices taken from the reconstructed 3D maps. 

Xmipp Highres needed more than 2 days using 24 cores to make the 
whole alignment process. The proposed method took 30 min, on 
average, to train every region (without taking into account the time to 
firstly align 3,000 images with Xmipp Highres). Thus, using 5 GPUs 
training in parallel, DeepAlign was able to complete the training process 
in just 1 h. The prediction time took 10 min. Finally, the step to obtain 
the final alignment parameters took 4 min per region, on average, so a 
total of barely 10 min in 5 GPUs aligning in parallel. The entire process 
was done in 1 h and a half using 5 GPUs. 

The 3D maps obtained with Xmipp Highres and with DeepAlign 
consensus tool can be seen in Fig. 13. The whole 3D structures for both 
methods are presented in (a) and (b). Sharper details showed up in the 
DeepAlign reconstruction and some new densities appeared in the outer 
central part of the macromolecule (highlighted with red circles). A 
zoomed area on a pair of helices is shown in Fig. 13(c,d), showing 
slightly sharper details in the areas expected to correspond with side 
chains. In this example, there is no atomic model included in the 
deposited data, so it is not included in the analysis. 

3.3. SARS-CoV-2 Spike 

In this test case, our goal is to check if our proposal is able to achieve 
results comparable to other state-of-the-art approaches with a more 
challenging data set. We use the SARS-CoV-2 Spike data set (Melero 
et al., in press) whose characteristics are: size of 400 × 400 pixels, pixel 
size of 1.05 Å/pixel, and no symmetry. We considered a distance be-
tween regions of 30◦, which results in 42 regions, and a target resolution 
of 4 Å to rescale the input particle images and volume to a size of 314 ×
314 pixels. The data set consisted of 36,558 images, from which we 
randomly took 5,000 for the training. The alignment of the training set 
was carried out with CryoSparc. As in the previous test, data augmen-
tation was used to generate a more complete training set with 10,000 
images per region, and balanced sets were generated during the creation 
batches for the training. The remaining parameters were kept as in the 

Fig. 9. 3D reconstructed maps for ribosome. (a) and (b) Whole 3D maps 
reconstructed by Relion and DeepAlign, respectively. (c) and (d) Zoom in a 
specific helix for Relion and DeepAlign reconstructions, respectively, with the 
atomic model fitted. 

Fig. 10. FSC curves obtained for proteasome. Xmipp Highres 3.3 Å, DeepAlign 
2.9 Å, and DeepAlign consensus 2.7 Å are compared. 
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Fig. 11. Local resolution of the reconstructed 3D maps for proteasome. (a) Xmipp HighRes, (b) DeepAlign, and (c) DeepAlign consensus.  
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previous examples. 
During the training, the average loss obtained was 0.06 with an ac-

curacy of 0.94. However, there were three regions in which the loss was 
around 0.2 and the accuracy was not better than 0.8. As only three re-
gions presented this behavior, we decide to allow 5 regions per image. In 
this way, we tried to solve the slight uncertainty introduced because of 
those three regions with worse accuracy. 

We used 7 GPUs to run DeepAlign with these data. The time required 
to train one region was, on average, 9 h, so to train the 42 regions we 
needed 54 h. The prediction time was 3 h, and the final alignment 
required 20 min, on average, per region, so a total of 2 h were dedicated 
to this step. The entire process, taking into account some additional 
steps, took approximately 2 days and a half. These times are higher than 
the ones shown in the previous examples, but here we are working with 

Fig. 12. Central slices of the reconstructed 3D map for proteasome. (a) and (b) Z-axis and Y-axis with DeepAlign (2.9 Å). (c) and (d) Z-axis and Y-axis with Xmipp 
Highres (3.3 Å). (e) and (f) Z-axis and Y-axis with DeepAlign consensus tool (2.7 Å). 
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bigger and noisy images which required more time to train. 
Here, we want to compare the best results obtained after a whole 

processing using CryoSparc with the possibility of using that informa-
tion in DeepAlign to make one extra step of alignment and check if we 
are able to improve the previous solution. 

The obtained results are shown in Figs. 14–17. Fig. 14 shows the FSC 
curves obtained for the whole processing with CryoSparc, one more step 

Fig. 15. Local resolution of the reconstructed 3D maps for SARS-CoV-2 Spike. 
(a) CryoSparc, (b) DeepAlign, and (c) DeepAlign consensus. 

Fig. 13. 3D reconstructed maps for proteasome. (a) and (b) Whole 3D maps 
reconstructed by Xmipp Highres and DeepAlign, respectively. (c) and (d) Zoom 
in an area with two representative helices for Xmipp Highres and DeepAlign, 
respectively. 

Fig. 14. FSC curves obtained for SARS-CoV-2 Spike. CryoSparc 3.1 Å, Deep-
Align 2.7 Å, and DeepAlign consensus 2.4 Å are compared. 
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of DeepAlign, and the consensus tool considering both methods (using 
the subset of images in which the disagreement was less than 10◦). The 
obtained resolution values were 3.1 Å for CryoSparc, 2.7 Å for Deep-
Align, and 2.4 Å for DeepAlign consensus tool. The FSC curves were very 
similar, but it can be highlighted that DeepAlign was able to obtain a 
flatter curve in the range from 6 to 4 Å, and the fall of the curves in the 
higher frequencies is softer compared to the one obtained with Cry-
oSparc. The local resolution analysis obtained with Monores is presented 
in Fig. 15 and it shows a very similar behaviour between all the 
compared methods, but the best resolution achieved with DeepAlign for 
some voxels was lower (2.25 Å), than that of CryoSparc (3.25 Å). 

Fig. 16 and Fig. 17 show how the reconstructed map can benefit from 
using DeepAlign. 

Fig. 16 shows some particular slices of the 3D map. We can see that 
the main parts of the structure are clearly represented in the three maps. 
However, the halo surrounded the density is reduced with DeepAlign 
and even more with the consensus. This halo is mainly due to particles 
with wrong angular assignments, as several particles showing not 
concordant parts of the macromolecule could contribute to the same 

projection direction. This is an advantage of using DeepAlign, which was 
able to obtain better alignment. This is even more clear in the consensus 
results, as with this tool we selected only the subset of particle images 
where DeepAling and CryoSparc agreed in the angular assignment, 
which reduced the number of images from 36,558 to 17,207 (more than 
a 50% of reduction). 

Finally, Fig. 17 shows a 3D representation of the reconstructed maps. 
(a) and (b) parts show the whole 3D map for CryoSparc and DeepAlign 
consensus, respectively. Some areas are slightly better defined and 
sharper in the reconstruction obtained with DeepAlign, which can be 
seen in the areas surrounded by a red circle. Part (c) and (d) of the figure 
show a zoomed area where several helices are located showing similar 
level of detail, DeepAlign was able to improve in the upper part of the 
helices but generating more noise in the lower part. 

4. Conclusions 

In this work, we have presented a new method to carry out the 3D 
alignment of particle images to obtain a 3D reconstructed map. This 
work is one of the first in the field using deep learning as baseline 
technique to obtain the alignment parameters for every image. Specif-
ically, the whole 3D space is divided into small non-overlapping regions. 
In every one of them, a classifier based on CNNs is used to decide if an 
image comes from that region or not. Within the region, the final 
alignment parameters are obtained using an alignment method based on 
correlation. The CNNs have a light complexity, enough to be able to 
learn the classification problem, but keeping it as low as possible to 

Fig. 16. Central slices of the reconstructed 3D map for SARS-CoV-2 Spike. (a) 
and (b) Z-axis and Y-axis with DeepAlign (2.7 Å). (c) and (d) Z-axis and Y-axis 
with CryoSparc (3.1 Å). (e) and (f) Z-axis and Y-axis with DeepAlign consensus 
tool (2.4 Å). 

Fig. 17. 3D reconstructed maps for SARS-CoV-2 Spike. (a) and (b) Whole 3D 
maps reconstructed by CryoSparc and DeepAlign, respectively. (c) and (d) 
Zoom in a specific area showing several helices for CryoSparc and DeepAlign, 
respectively. 
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maintain low the total computational burden of the method. Moreover, 
this method is optimized to run on several GPUs, alleviating greatly the 
training time, which is the most consuming time step in the whole 
process. 

The method was tested with three structures and compared with 
several 3D alignment approaches in the literature. The experiments have 
shown that this proposal is able to obtain competitive results compared 
to that in the state-of-the-art and generates 3D reconstructed maps with 
well-defined features and resolutions. In addition, the computational 
time to use our method is quite reasonable, as the training time is 
bounded and the workload can be distributed between multiple GPUs. 

It is noteworthy that the deep learning basis of DeepAlign is different 
from the ones in other state-of-the-art approaches based on maximizing 
probability functions. We can expect that methods with different basis 
will give rise to different 3D reconstructions (different local minima in 
the solution space). DeepAlign, which is based on CNNs that have 
proven to be very robust in image processing tasks, could give us better 
angular assignments, as the results presented in this work seem to point 
out. 

We have also demonstrated the usefulness of the consensus tool, 
which selects only the particle images that were aligned with similar 
parameters by several alignment procedures. Our experiments show that 
this tool can be very useful to further improve the reconstructed 3D 
maps. The consensus tool is taking advantage of using alignment pa-
rameters obtained with methods with different basis, and this can be 
done thanks to the development of DeepAlign. 

As future work, we plan to manage 3D heterogeneity following the 
deep learning approach established in this work. Thus, we expect to be 
able to generate several 3D maps representing the different conforma-
tions present in the sample, deciding not only the alignment of the 
particle images but also the 3D class. 
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