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6.1
Introduction

The most common definition of splines is that they are piecewise polynomials
with pieces smoothly connected together. To obtain a continuous representation
of a discrete signal in one or more dimensions, one commonly fits it with a
spline. The fit may be exact (interpolation splines) or approximate (least-squares or
smoothing splines) [1]. By increasing the spline degree, one progressively switches
from the simplest continuous representations (piecewise constant and piecewise
linear) to the traditional continuous representation characterized by a bandlimited
signal model (for the degree equal to the infinity). The traditional Shannon’s
sampling theory recommends the use of an ideal low-pass filter (antialiasing filter)
when the input signal is not bandlimited. In the spline sampling theory, the
Shannon’s antialiasing filter is replaced with another filter specified by the spline
representation of the signal [2].

The most frequently used splines are B-splines because of the computational
efficiency provided by their short support. It has been shown that B-spline basis
functions have the minimal support for a given order of approximation [3].
Cubic B-splines offer a good trade-off’ between the computational cost and the
interpolation quality [1]. Also, B-splines are the preferred basis function because
of their simple analytical form that facilitates manipulations [1]. Other interesting
properties are that they are maximally continuously differentiable and that their
derivatives can be computed recursively [1]. Thanks to the separability property
of B-splines, the operations on mullidimensional data can be performed by a
successive processing of one-dimensional (1D) data along each dimension [1].
Besides, they have multiresolution properties that make them very useful for
constructing wavelet bases and for multiscale processing [1, 4]. Because of all these
properties, many image processing applications take advantage of B-splines.

In the first part of this chapter, we present the main theoretical results about
splines which are of use in biomedical imaging applications (Section 6.2). First, we
show how interpolation is related to sampling and the posterior reconstruction of
the original signal from samples. When talking about spline interpolants, we can
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distinguish between tensor product splines and polyharmonic splines. The former
is based on the tensor product of two 1D spline functions, while the latter is based
on the use of the so-called radial basis functions. Finally, we review the multiscale
properties of splines that allow one to address problems in a coarse-to-fine fashion.
These multiscale approaches are not only faster but also usually more robust to
noise and yield smoother functionals when optimization problems are involved.
In the second part of the chapter (Section 6.3), we illustrate the applications of
splines in biomedical image processing by showing their use in rigid-body and
elastic image and volume registration.

6.2
Main Theoretical Results about Splines

In this section, we present the main results of the spline theory that are used in
biomedical imaging applications.

6.2.1
Splines as Interpolants and Basis Functions

6.2.1.1 Tensor Product Splines

The presentation of the theoretical properties of the splines is done in 1D space.
However, the extension to two-dimensional (2D) space is readily performed using
the tensor product. For instance, if ¢yp(x) is a 1D spline, the 2D tensor product
spline is defined as ¢)p(x, y) = @1n (%)@ (¥)-

The Interpolation Context Given a discrete set of measurements (%, y;), interpo-
lating is the art of “filling in the gaps” with a continuous function y = f(x) such
that we meet the constraints imposed by our measurements, that is, y; = f(x). In
biomedical imaging, our measurements are typically image values, z; = I(x;, yi),
with z; being the gray value of our image, and (x;, y;) being its location in space.
For color images, we could decompose the color into three components (red, green,
and blue; hue, saturation, and value; elc.); each one would impose a constraint
of the same kind as the one for gray values. Inlerpolating is important to know
the value of our image between known pixel values. This is useful for rotations,
Iranslations, unwarpings, demosaicking, downsampling, upsampling, and so on.

Given N measurements, we can estimate a polynomial of degree N —1 (it has
N coeflicients and, therefore, N degrees of freedom) passing through all these
measurements. In fact, this polynornial is unique and it is given by Newton’s
general interpolation formula:

fl%) = ag + a1 (x — %) + a3 (x — 2o} — 1) + -
+ay_1(% — Xp) (% — %) (% — xy_2) (6.1)
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where a, represents the divided differences defined as
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The use of polynomials for interpolation is justified because they are simple to
manipulate, differentiate, or integrate; it is also justified by a theorem of Weierstrass
that states that any continuous function on a closed interval can be approximated
uniformly to any degree of accuracy by a polynomial of a sufficient degree [5].

Regularly Spaced Interpolation: The Generalized Sampling Theorem However, poly-
nomials are not the only functions interpolating the dataset. If the x; points are
regularly distributed (x; = iT, for some integer i and a sampling rate T), then
Whittaker showed that the series

Cle) = Z yi sinc (x ;x‘) (6.3)

j=—na

also interpolates the input measurements [6] (sinc is defined as sinc(x) = %)
C(x) is called the cardinal function. Shannon (7] realized that this representation
was unique for any function whose maximum frequency is smaller than 7 Hz.
This is the famous Shannon sampling theorem which is valid for any function that
is bandlimited.

The sampling theorem can be extended to a larger space of functions: the Hilbert
space of [, functions, thatis, all functions that are square integrable in the Lebesgue
sense {”_j“"Zt = {f, f) < oo, where the inner product between two real functions is
defined as (f,g) = j”w flx)g(x)dx). The set of bandlimited functions is a subset of

L;. The sampling theorem is generally formulated in this space as

Cw) = apilx), (6.-4)
=—00
where ¢; are some coefficients that have to be computed from the y; input data,
and ¢;(x) is a shifted version of a basis function ¢(x) (@i(x) = @(x — x:)). In the
particular case of bandlimited functions, the basis function used is p(x) = sinc(F)
and the set of all bandlimited functions is spanned by the family of functions ¢;(x).
In other words, any bandlimited function can be expressed by a linear combination
of the infinite set of ¢;(x) functions as the sampling theorem shows. From now on,
we drop the argument of functions as long as there is no confusion.

Let us consider any function ¢ in L;, and the subspace V generated by its

translations with step T:

0
V=ifta= ) ) :ach (6.5)

I==00

where I, is the space of all square-summable sequences. It can be easily proved that
if a set of functions ¢; in a Hilbert space is orthonormal (i.e., (¢, ¢;) = 8i_j), then
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the projection of any function f in I, onto the subspace V is

f=Pyf = argl;;r;j\p If—¢ll = Z (foeidei (6.6)

f=—00

Note that

(6.7)

x=x

Fron = f " Fluote — xdx = Fix) % o(—2)|

that is, the inner product {f, ¢;) can be easily compuled by sampling the linear
convolution of f(x) and ¢(—x) at x = x;. In fact, the antialiasing filter used to
effectively limit the frequency of a signal before sampling corresponds exactly to
the compultation of this inner product. Note that if f is already bandlimited, then
the convolution of f(x) with ¢(—x) (whose frequency response is just a rectangle
with a maximum frequency of ﬁ) is f(x) and, thus, ¢; = y;.

The problem of using ¢{x) = sinc (ir) is that the sinc decays very slowly and
the convolutions needed for the computation of the inner product are impractical.
Thus, one might set off in search of new functions ¢ with more computationally
appealing properties. First of all, one could relax the orthonormality condition and
may ask only that the set {¢;} defines a Riesz basis, that is,

Z cigi(x)

I=—00

2

Allell, < < Bllallf, Vaeh (6.8)

L
for some constants A and B depending on ¢. Orthonormality is a special case
when A = B = 1. The left-hand side condition assures that the basis functions are
linearly independent, while the right-hand side condition assures that the norm of
[ is bounded and, therefore, the subspace V is a valid subspace of L. An important
requirement for the basis is that it is able to represent any function with any desired
level of accuracy by simply diminishing T. It can be shown that this condition can
be reformulated as the partition of unity [1] :
P

Y pm=1 Vx (6.9)

=00
i.e. the sum of all the basis functions (shifted versions of ¢) is a constant function.

The function ¢(x) = sinc (%) meets all these requirements and is, by far, the

most widely known function due to the sampling theorem, besides the fact that
it is infinitely supported, making convolutions more complicated. However, other
functions also meet these requirements. The shortest function meeting these is
the box function

1 |x <%
(%) = Bo (;) = i 5 IZI>%;{' (6.10)

which is actually the cardinal B-spline of degree 0. The cardinal B-spline of degree
n is simply obtained by convolving fy(x) with itself n times. For instance, B (%)
is the triangular function defined between —T and T, and B, (¥) is a parabolic
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Figure 6.1 B-Splines Plot of the first four B-splines (degrees
0, 1, 2, and 3). (Please find a color version of this figure on
the color plates.)

function defined between —3 T and 3 T. In general, B, (£) is an evenly symmetric,
piecewise polynomial of degree n defined for |x| < 21 T. The following equations

show the cardinal B-splines of degree 1, 2, and 3 for T = 1 (see also Figure 6.1):

=¥ e =1
2 — |xf? ) x| < 3
Pr@)=1 (M =3) F<Ixl=3 (6.12)
0 |x%| > 21
F4 2P (x -2 el <1
Bs (%) = L—|xp’ 1<|d <2 (6.13)
0 || > 2

In general, the cardinal B-spline of degree n can be expressed as

15, L fntl EIRN
ﬂn[szag(—u'*(”: )(x—(k—nz )) (6.14)

L

x x=0
0 x<0°

Cardinal B-splines are piecewise polynomials, because they can be represented
by polynomials of degree n on |x| that are different for each interval i T < |x| <
(i+ 1) T. All these functions meet the aforementioned requirements and therefore
can be used as basis functions for the representation of signals. Moreover, they
are well localized and compactly supported in real space (consequently, infinitely
supported in Fourier space), making computations in real space affordable.

The representation of signals using cardinal B-splines is intimately related to
interpolation: the use of 8, is equivalent to nearest neighbor interpolation and
the use of B; is equivalent to linear interpolation (bilinear interpolation when

where (x)} is the one-sided n-th power of x, (x)" =
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the 2D tensor product B-spline is constructed). f; has proved to be a good
compromise between computational complexity, compact support in real space,
and approximation error.

At this point, we have already shown that the sampling theorem is a particular
case of an interpolation problem and also shown how it can be generalized for 1,
functions instead of working exclusively with bandlimited functions. The question
is how to compute the representation coefficients ¢ in Eq. (6.4). We have seen a
possibility for orthonormal basis in Eq. (6.7). However, cardinal B-splines are not
orthonormal in general (only cardinal B-splines of degree 0 are orthogonal). In the
general case, the calculation of the ¢; coeficients is similar to the orthonormal case.
The only difference is that, instead of using the basis g; itself, we have to use the
dual basis ¢;:

o

f=Pyf=> (f.o0m (6.15)
The dual basis is uniquely defined by the biorthogonality condition (@, ¢j) = 8,
and it also inherits the shift invariant properly of the original basis function,
@i(x) = @(x — x). However, we slill do not have a clear way of computing the ¢'s
because we do not have a close-form formula for the dual basis. It can be proved [2]
that the Fourier transform of ¢ is given by

)
Y a4+ 2k

%) = (6.16)

where fﬁSZ) represents the continuous Fourier transform of the function f(x).
Fortunately, Unser and coworkers [8, 9] derived a very efficient way of computing
these coefficients using standard digital filters. This is actually the way of producing
these coefficients. These filters are derived in 1D. However, they are easily extended
to # D. In the case of images, these filters are run individually on each row of the
image, producing a new image of coefficients over the horizontal axis, x. Then,
they are run on each column of the new image, finally producing the coefficients
of the 2D tensor product B-spline. Once the coefficients are produced, images are
treated as if they were continuous functions, although they are stored as a discrete
set of cardinal B-spline coefficients.

Now, we may wonder if we could design a basis function based on B-splines
such that ¢; = y;. This would be an interpolating spline and we would be back to a
situation similar to the interpolation scheme presented in the sampling theorem,
Eq. (6.3). The following function is such an interpolating spline:

Pin(®) = Y qualili(x) (6.17)

i=—00

where g, [i] is the |, sequence defined as the inverse Z transform of Q;,(2) =

W, and qa(x] — '8” (%)
=—00 "
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Approximation Error: How Far are We from the Truth?  An important concept related
to the generalized sampling theorem explained above is how well it reproduces
any function f. Let us call fr the approximation with a given sampling rate T. This
problem has been studied by the approximation theory, proving that the following
three stalements are equivalent:

1) Let f be a sufficiently smooth function (f belongs to the Sobolev space W},
i.e., its L first derivatives belong to L,). Then, as T approaches 0, there exists a
constant C independent of f such that |f — fr|| < CT"||f"].

2) ‘The first I. moments of ¢ are constants, that is, Zf”_,‘ (% — %)™ @i(x) = p,y for
m=0,1,.., L—1

3)  The first L monomials can be exactly represented, that is, for each monomial x™
(m=0,1, .., L—1), thereexistconstants ¢; € I such thatx™ = Y"° __ cig(x).

An important consequence of this result is that the approximation error of
different basis functions depends mostly on their design, that is, given two
polynomials of the same degree, one of them may approach smooth functions
more quickly than the other. L is called the order of approximation and entirely
depends on the moments of ¢ or the number of monomials that can be represented.

In particular, B-splines of degree n have an order of approximation of L =n+ 1.

Another important consequence is that in order to converge to function f as T'— 0,

the basis function ¢ must have [ = 1, or in other words, that it fulfills the partition

of unity. It is well known [10] that windowed sincs (which are commonly used as

a solution to the infinite support of the sinc function) do not meet this condition.

One may also try to design the @ family such that they have order of approximation

L with a minimum support. This is how the MOMS (maximal-order interpolation

of minimal support) set of functions is designed. It turns out that these functions

are linear combinations of the cardinal B-spline of degree [ and its derivatives

Bl

The reader interested in the generalized sampling theorem and this approach to
interpolation may gain information from Refs [1, 2, 10-12].

Back to Irregular Interpolation Problems  So far, we have already introduced cardinal
B-splines, dual splines, and interpolation splines. In fact, splines are a broad family
of functions of which we have only seen those used with a regular spacing. In
general, a function S,(x) is a spline of degree n if (i} it is defined by piecewise
polynomials of degree at most n; (ii) it is of class C*', that is, it has n —1
continuous derivatives even at the points joining the different polynomial pieces
(13].

An alternative approach lo splines is based on the idea of curve interpolation and
knots instead of the idea of sampling. This other approach allows for irregularly
spaced samples in a much more direct way. Let us assume that we are interpolating
a real function in the interval [a, b] with a piecewise polynomial. We subdivide
this interval into N adjacent pieces such that each piece is defined in the interval
[%;, %:11]. The subdivision is such that xy =a, xy =b, % < %41, and [a,b] =

U:iu] [%;, %i:1]. The input samples (x;, y;) are called knots and they are fixed points
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through which the interpolated polynomial must pass. Note that knols need not to
be equally spaced in the interval [a, b]. We have to be specially careful in selecting
the interpolating polynomials such that not only the spline is continuous but also
all its derivatives up to the order of n — 1 are continuous, even at the knots where
the function on the left-hand side of the knot is defined by a certain polynomial,
and on the right-hand side it is defined by a different polynomial (see Figure 6.2).

With N + 1 knots, the spline is split into N intervals. A spline of degree n has
n+ 1 coefficients in each interval; therefore, the spline has (n+ 1)N degrees of
freedom. Let us call S;(x) the polynomial of degree n in each interval (i = 1, 2, ...N).
This spline must satisfy the following:

1) Interpolation of the knot values: 2N degrees of freedom

S1(x0) = yo
Six) = yi= Sia(w) i=12,.,N—1 (6.18)
Sn(xn) =yn

2) Continuity of the n — 1 derivatives: (n — 1)(N — 1) degrees of freedom

S () = S, (%) i=12.,N-1

A(2) 420 +
87 ) = ST 8) i=1,2.,N—-1 (6.19)
(n—1)

" Ny =" M) i=1,2,..,N—1

i i+1

However, there are still n — 1 unfixed degrees of freedom. Depending on the way
these degrees of freedom are defined, different kinds of splines are defined. For
instance, a natural spline of degree n = 3 is one of the most common cases, in
which the second derivative at the extremes is set to 0, S, () = S| (xy) = 0. There
are efficient algorithms for the solution of the resulting equation system [14].

A
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Figure 6.2 Spline interpolation with irregularly spaced sam-
ples. Example of B-spline (degree 1) interpolation of irreg-
ularly spaced samples. (Please find a color version of this
figure on the color plates.)
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The expression of the polynomial of degree n in any of the intervals [x;, x;,1) can
be recursively constructed as

- <
Sio(x) = d H=aE i

. 0. olherwise.l B (6.20)
Sig(x) = #;.Sf.r—l (%) + ﬁshl,l—l ()

where S;; is the B-spline of degree | in the interval [x;, x;.4). It is com-
mon to repeat the extremes of the knots as many times as the finally desired
spline degree. For example, the actual list of knots for degree 3 would be
(%0, X0, X0, %0, X1, X2, .o, XN—1, XN, XN, XN, Xn). Because of the repeated knots
we admit by convention in the previous formula that § = 0.

The polynomial in each one of the subintervals is of the general form

Six) = (6.21)
=0

In this expansion, we have used the fact that the set {1, x, x*, .., x"} is a

basis of the polynomials of degree n. However, this is not an orthonormal
basis, which causes numerical instabilities when solving for the a; coefficients.
Alternatively, we could have used any other basis of the polynomials of degree n,
{Po(x), Pr(x), Pafx), ... Pulx)}:

Six) =Y wPi(x) (6.22)

=0

Employing different polynomial basis gives rise to different kinds of splines:
Bernstein polynomials are used in the Bézier splines; Hermite polynomials are
used in the Hermite splines; basic splines are used in the B-splines; and so on.

6.2.1.2 Polyharmonic Splines

The extension to several dimensions can be done by the tensor product of 1D
splines as seen in the previous section, or by the specific design of the so-called
polyharmonic splines, among which the most famous is the thin-plate spline.

Let us assume that we have a set of input multivariate data points (x;, y;) we
would like to interpolate (x; € R?, y; € R). The goal would be to find a hypersurface
y = f(x) such that the surface contains the input data points.

We look for our interpolant in the Beppo-Levi space BL?/(R?), that is, the space
of all L, functions from RB? to B, such that its second derivative is also in [,. This
space is large enough lo contain a suitable interpolator. In this space, we can define
the rotationally invariant seminorm:

|V||2 Zf ii rf dx (6.23)
rd S £ 0%, 0%; e
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Duchon [15] showed that the interpolant minimizing the just introduced seminorm
in BL”/(RY) is of the form

N
0 =pu®) + Y adar(lix—xill) (6.24)
i=1
where ||x|| denotes the standard Fuclidean norm in R, N is the number of
measurements in the input data, ¢, is a set of coefficients that need to be delermined
k is any integer such that 2k > d (in fact, the approximation order is k — § [16];
therefore, on the one hand, it is interesting to choose high values of k allh()ugh.
on the other hand, these result in numerical instabilities in the determination of
the spline coefficients as is seen later; a trade-off between these two goals must be
achieved), ¢4 1 is a radial basis function, and p,,(x) is a polynomial in x of degree at
most m, which is given by m = k — [%—I The radial basis function ¢y . is

r’*dlog(r) for evend
"’d-“(")zl e L

The function ¢,; = r*log(r) is the so-called thin-plate spline in R? and the
minimization of the seminorm in B? can be understood as the minimization of
the bending energy of a thin sheet of metal that interpolates the input data points.
In R, ¢y is called the biharmonic spline and ¢ ; is called the triharmonic spline.

The interpolation equations f(x;) = y; do not fully determine the function f (note
that we have N input data points, but N coefficients ¢; for the radial basis functions
and 37 ( ) coefficients for the polynomial). In fact, the polynomial of degree m
comes ﬁ'om the fact that it is in the kernel of the seminorm and, therefore, the
addition of any polynomial of degree mis “invisible” to the seminorm minimization
(for instance, for the thin-plate spline case, m = 1, and all polynomials of degree
1 have null second derivatives). In this way, we have to impose extra conditions
which generally are

N
D Gig(x) =0 6:20)

for all polynomials g(x) of degree at most m (in the case of the thin-plate spline,
we would have to use g(x) = 1, g(x) = %y, and g(x) = x;). Lel us assume that the
sel of coefficients of the polynomial p are wrillen in vector form as p. Then, the
polyharmonic interpolation can be solved by the following equation system

(¥ 0)(3)=(3) w2

where c and y are column vectors with the ¢ coefficients and the y; measurements,
respectively. @ is the N x N system matrix corresponding to the measurements,
ie, &y = ¢dlk(||Xf - xJ'”} and P is a matrix related to some basis of polynomials up
to degree m. Let Ipl, Paisiey p;] be such a basis; then Py = p;(x;). For example, for
the thin-plate spline case, we could define p;(x) = 1, p2(x) = %1, and p(x) = x,, but
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any other basis of polynomials of degree al most 1 would do. Note that the size of
malrix Pis N x I (in the thin-plate spline, I = 3).

This equation system is usually ill-conditioned due to the nonlocal nature of the
¢ax(r) functions (they are not locally supported, instead they grow to infinity with
growing r). Moreover, the complexity of solving the equation system depends on
the number of sample points, N. Finally, the evaluation of the polyharmonic spline
involves as many operations as the input data points (although fast algorithms have
been developed for tackling this latter problem [17]). For solving the problem of the
ill-conditioning of the equation system, a localization of the polyharmonic spline
can be done. This is a process in which the noncompactly supported ¢ 4 (r) function
is substituted as a weighted sum of compactly supported functions (for instance,
B-splines). For further information on this technique the reader is referred to Refs
18, 19].

In the case of noisy data, we can relax the interpolation condition by replacing it
by a least-squares approximation condition:

f'=arg min l||f||?'+1§: fx)) 6.28

g min, N 20—t (6.28)

It can be proved [20] that the coefficients c and p are the solutions of the following
linear equation system:

d—8NAnl P\ (c\ [y =5
(75 0)()=(5) 6

One may wonder why these radial basis functions are called splines; al least,
they do not seem to fit our previous definition of piecewise polynomial functions.
The solution is a slight modification of our concept of spline (particularly, the
requirement of being piecewise). Let us consider the triharmonic (¢33 = r')
functions. It is clear thalt it is a cubic polynomial in r, and its second derivative is
continuous everywhere. Therefore, it is a cubic spline.

The reader interested in this topic is referred to Refs [16, 21, 22].

6.2.2
Splines for Multiscale Analysis

The multiscale capabilities of splines come in two different flavors: spline pyramids
and spline wavelets. Each one of these approaches exploits a different feature of
splines that makes them suitable for multiresolution analysis. Because of the space
limitations imposed for the chapter, we only describe the multiresolution spline
pyramids here. The reader interested in spline wavelets is referred to Refs [1, 23].

Spline Pyramids let us assume that we know the representation of a certain
function f(x) with B-splines of odd degree n and a sampling rate T:

=Y ciba (7 i) = (i} i (.x—e)) #n(3)

= ou(x) * By (?) (6.30)
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One may wonder how a finer representation of  would be. For this, we consider
the relationship between an odd degree B-spline and its contraction by M to a final
sampling rate ]‘1—4 [t can be shown [1] that

B, (%) = k;m B (% o k) = hurx) % By (%) (6.31)

that is, we can decompose a wide B-spline of degree n as the weighted sum of
thinner B-splines of the same degree. For any M and #n, the Z transform of the
weight sequence hy, is

My 1 (ML " .
H(z) = z o Y (6.32)

The case M =2 plays an imporlant role in the design of wavelets, and the
corresponding properly is called the 2-scale relationship. In case of B-splines of
degree 1, the two scale relationship is simply

b (%)= %ﬁl (é + 1) + B (jf) # %ﬁ'ﬂ (% = 1) (6.33)

2 3 7

and, in general, for splines of odd degree n and M = 2, we have

21 n:l k < ntl
hk:{ ("“"_ﬁi) M =75

2
(6.34)
0 |k| - n+l

Substituting the expression of the wide B-splines by the weighted sum of fine
B-splines, we obtain

Sy = ((tu {eul®)} = k), (%) % Ba (%) (6.35)
M
In other words, to obtain a finer representation of a signal, we simply have to
upsample its B-spline coefficients and convolve them with a finite weight sequence
depending on the scaling factor M and the spline degree. Note that the function
represented with splines at the finer resolution is exactly the same as the original
one. No interpolation has been performed on the way.
Crealing a coarser representation of the function f(x) is a little bit more involved
since we cannot have exactly the same function but an approximation o it:

Fld =2u) % o (17) (6.36)

and we have to devise a way of estimating the coefficients ¢ from the ¢ coefficients.
The easiest way is to look for the ¢ that minimize the [, norm of the error ”f -f H
It can be proved [24] that the solution lo this leasl-squares problem is

= 1 2n+ 2nt
e=< ((bf D Ly (e B 5 ck]), (6.37)
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with [y {-} being the downsampling operator, ¢, being the B-spline coefficients
of the function f with sampling rate T, h;. being the sequence described in Eq.
(6.34), and ;""" being the sequence b""" = B1,.1(k). Note that (b;"") ! is the
inverse of this sequence. It can be easily understood by inverting the Z transform

nl-li

of the sequence bi" 1 and then performing an inverse 7 transform. While bf s

compactly supported, (bf”“) lis not, and convolution with this sequence requires
the design of an IIR (infinite impulse response) filter [9, 25].

6.3
Splines in Biomedical Image and Volume Registration

In this section, we show two examples of the use of splines for image and volume
registration, which is one of the most challenging tasks in biomedical image
processing.

The intensity-based regisiration can be viewed in an optimization framework in
which the registration problem consists in searching for a geometric transformation
of a source image/volume that gives the image /volume that best maltches a target
image/volume, under a chosen similarity measure. The restriction of the motion
to rigid-body motion means that the distance between the points of the object is
the same in the registered source and target images /volumes. Elastic registration
is frequently employed in medical image analysis to combine data that describe
anatomy, both because biological tissues are in general not rigid and because
anatomy varies between individuals. In the intensity-based elastic registration
techniques, the solution of the registration problem is the deformation field
that warps the source image/volume so that the resulting image/volume best
malches the larget image/volume. The registration is achieved by minimizing
a cost function, which represents a combination of the cost associated with the
image/volume similarity and the cost associated with the smoothness of the
transformation (regularization term).

Many authors have proposed to use linear combinations of B-splines placed on a
regular grid to model the transformation [27-31]. The available techniques differ in
the form of employed regularization term, as well as in the employed image /volume
similarity metrics and the optimization method. They produce good results but have
a high computational cost. The computation can be accelerated using multiscale
image [volume processing, and spline pyramids provide a convenient tool for this.
Moreover, spline model can be used for all computation aspects of the registration
(image pyramid, transform, and the gradient of the optimization criterion) as
shown in Refs [4, 31, 32].

Many examples of rigid-body image registration can be found in 3D electron
microscopy |34]. Indeed, the structure of a macromolecular complex can be
computed in three dimensions from a set of parallel-beam projection images of
the same complex acquired in a microscope [34]. For the so-called single-particle
analysis, images of the sample containing thousands of copies of the same complex
are collected. Ideally, the copies have the same structure. Their orientation in the
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Figure 6.3 3D electron microscopy 3D electron microscopy.
Experimental images corresponding to three arbitrarily cho-
sen projection directions and a 3D model of the phosphory-
lase kinase 26. The arrows represent the directions of back
projection in 3D space.

3D space is random and unknown, and the position of the center of each complex
is unknown. These parameters have to be estimated before applying a method
for 3D reconstruction. Given a first guess for the 3D model, one estimates the
unknown parameters by aligning the images with the 3D model (reference model)
[30] (Figure 6.3). A new reconstruction is then computed using the images and the
estimated orientations and positions. The new model can be used as the reference
model to resume the alignment in the next iteration of the iterative refinement of
the estimated parameters [34]. It has been shown that such procedures can yield
3D models of subnanorneter resolution [26].

Anillustration of elastic image registration is given in Figure 6.4. One of the major
difficulties in the analysis of electrophoresis 2D gels is that the gels are affected by
spatial distortions due to run-time differences and dye-front deformations, which
results in images that significantly differ in the content and geometry. The method
proposed in Ref. [33] models the deformation field using B-splines, the advantage of
which is that the model can be adapted to any continuous deformation field simply
by changing the spacing between splines. The method computes quasi-invertible
deformation fields so that the source image can be mapped onto the target image
and vice versa, which helps the optimizer to reduce the chance of gelting trapped
in a local minimum and allows the simultaneous registration of any number of
images.

6.4
Conclusions

In this chapter, we reviewed spline interpolation and approximation theory by
presenting two spline families: tensor product splines and polyharmonic splines.
Also, we presented the multiscale properties of splines. Finally, we illustrated
biomedical image processing applications of splines by showing their use in
image /volume registration.
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Figure 6.4 Elastic registration of 2D gels
Elastic registration of two 2D protein gels
(source and target) using the method pro-
posed in [33]. The deformation field repre-
sents the continuous deformation required to
convert the source into the target. The com-
bined image shows the target image in the
red channel and the warped source in the
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