
6 

Splines in Biomedical Image Processing 
S/al'icaJonic and Carlos Oscar Sanchez Sorzano 

6.1 
Introduction 

'nlC most comlnon definition of splines is Illal they arc piecewise polynomials 
with pie<:cs smoothly conne<led together. To obtain a continllous representation 
of a discrete signal in one or more dimensions, one commonly filS it with a 
spline. The fit may be exact (interpolation splines) or approximate (least -squares or 
smootlling splines) [1 J. l3y increasing the spline degree, one progressively switches 
from the simplest continuous representations (piecewise constant alld piecewise 
linear) 10 UIC traditional continuous representation characterized by a bandlimited 
signal model (for the degree equal \0 the infinity). T'he traditional Shannon's 
sampling theory recommends the use of an ideallow·pass filter (antialiasing filt er) 
when the input signal is not batldlimited . In the spline sampling thcory, thc 
Shannon's antialiasing filter is replaced with another filter speci fied by the spline 
representation of the signal [21. 

'111e most frequently used splines are B·splines because of the computational 
efficiency provided by their short support It has been shown that B,spline basis 
fUllctions have the minimal support for a given order of approximation [3]. 
Cubic B·splines offer a good trade-off be tween the computational cost and tIle 
interpolation quality ]1 1. Also, 13·splincs are the preferred basis function because 
of their simple analytical form that f<lcilitat es manipulations [1] . Other interesting 
properlies are that they are maximally continuously differentiable and that their 
derivatives can be computed rccursively [1]. 111anks to the separability property 
of B·splines, the operations on multidimensional data ca n be performed by a 
successive processing of one-dirnensional (1 D) data along each dirnension [1 1. 
Besides. they have multi resolution properties that make them very useful for 
cOllStructing wavelet bases and for multiscale processing ]1. 41. Because of all these 
properties. many image process ing applications lake advantage of B.splines. 

In the first part of this chapter, we present the main theoretical results about 
splines which arc of use in biomedical imaging applications (Section 6.2). First. we 
show how interpolatjon is related 10 sampling and the posterior reconstruction of 
the original Signal from samples. When talking about spline interpolanls. we can 
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distinguish between tensor product splines and polyharmorlic splines. The former 
is based on t.he tensor product of two 11) spline functions, while Ihe latter is based 
on the usc of the so-called radial basis functions. Finally, we review tile JTlulliscale 
properties of splines that allow one to address problems in a coarse-to·fine fashion. 
·11)ese JTlultiscale approaches arc not only faster but also usually more robust to 
noise and yield smoother functionals wher! optimization problems are imolved. 
In tile second part of the chapter (Section 6.3), we illustrate Ihe applications of 
splines in biomedical image processing by showing their use in rigid. body and 
elastic image and volume registration. 

6.2 
Main Theoretical Results about Splines 

In this section, we present the main results of the spline theory that are used in 
biomedical imaging applications. 

6.2.1 
Splines as Interpolants and Basis Functions 

6.2.1.1 Tensor Product Splines 
TIle presentation of the theoretical properties of t.he splines is done in 1 D space. 
However, the extension to two·dimensional (2D) space is readily performed using 
th(~ tensor product. For instance, if ip1O(X) is a I D spline, the 2D t.ensor product 
spline is defined as IPlD(X, y) = rpw(x)rp1D(y). 

The Interpolation Context Given a discrete set of measurements (:te;, y;), interpo­
lating is the art of "filling in the gaps" with a continuous function y = [(x) such 
that we meet the constraints imposed by our measurements, that is, Yi = [(x;). In 
biomedical imaging, our measurements arc typically image values, Zi = I(:te;, Vj), 
with z; being the gray value of our image, alld (:te;, V;) being its location in space. 
For color images, we could decompose the color into three components (red, green, 
and blue; hue, S:lturation, and value; etc.); each one would impose a constraint 
of the same kind as the one for gray values. Interpolating is important to know 
the value of our image Uctween known pixel values. ·l1lis is useful for rotations, 
lIanslations, unwarpings, demosaicking, downsampling, upsampling, and so on. 

Given N measurements, we can estimate a polynomial of degree N - 1 (it has 
N coefficients and, therefore, N degrees of freedom) passing through all these 
measurements. In fact, this polynomial is unique and it is given by Newtoll's 
general interpolalion formula: 

f(X) = ao + al(x - Xo) + a2(x - Xo)(x - xtl +. 
+aN_I(x - Xo)(x - xd···(x - XN_2) (6.1) 
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where II " represents the divided differences defined as 
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TIle use of polynomials for interpolation is justified because they are simple to 
manipulate, differentiate, or integrate; it is also justified bya theorcmofWeierstrass 
that states that any continuous function on a closed interval can be approximated 
unifornlly to any degree of accuracy by it polynomial of it sufficient degree [S]. 

Regularly Spaced Interpolation: The Generalized Sampling Theorem However, poly­
nomials are not the only functions interpolating the dataset. If the Xj points arc 
regularly distributed (Xj = iT, for some integer i and a sampling rate '1) , then 
W1lill.aker showed that the series 

00 ( ) 
x - X · 

("(x) =.L Yi sinc ~ 
,~ 

(,.3) 

also interpolates the input measurements [6] (sinc is defined as sinc(x) = ,; ~:xi). 
C(x) is called t.he wrdinal fimction. Shannon [7J realizl>J that this representation 
was unique for any fUnction whose maximum frequency is smaller than l~ Hz. 
'nlis is the famous Shannon sampliflg theorem which is valid for any function tllat 
is bandlimited. 

'Ille sampling theorem can be extended to a larger space offunctions: the Hilbert 
space of L2 functions, tllat is, all functions that arc square integrable in the Lebesgue 
sense (Ivr = if, J) < 00, where the inner product between two real fUJ)ctions is 
defined as if,g) = f~cof(x)g(x)dx). -Ille set of band limited functions is a subset of 
L2_ TIle sampling Iheorem is generally formulated in this space as 

00 

Cix) ~ I: ,_,(x). ((, .4) 

;"'-00 

where c; are some coefficients that have to be computed from the Yi input data, 
and ip;(x) is a shifted version of a basis function rp( x) (rpj(x) = rp(x - x;)). In the 
particular case ofbandlimitl'(] functions, the basis function used is 'P(x) = sinc(1) 
and the set 0[;111 bandlimiteJ functions is spanned by the family of fUllctions rpj(x). 
In other words, any bandlimited function can be expressed by a linear combination 
of the infinite set of 'P;(x) functions as the sampling theorem shows. From now on, 
we drop tile argument offunctions as long as there is no confusion. 

Let us consider any function ip in L2, and Ihe subspace V generated by its 
translations with slep T: 

v ~ lflX) ~,~ ' .. ,(x), ~ E "I (6.5) 

where 12 is the space of all s'luare-summable sequences. II can be eaSily proved Ihat 
if a set of functions I{!; in a Hilbert space is orthonormal (I.e., l'Pj, rpj) = Si-j), then 
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the projet:tion oLmy runctionf in Ll on to the suuspace V is 

~ 

j = Pvf = argmin [r - g~ = L (J,I{!;)'Pi 
g" V , .. ~ (66) 

Note that 

(j,'Pi) = ! : f(X)'P(X - Xj)dx = J(x) '" 'P(-X)I"-,,,"i (6.7) 

that is, the inner proouct if. 'P,) can he easily computed by sampling the linear 
convolution or f(x) and 'P(-x) at x = Xj. In ract, the antialiasing filter used to 
effectively limit the rrequency or a signal berore sampling corresponds exactly to 
the computation or this inner pnxluct. Note that ir f is already bandlimited, then 
the convolution or f(x) witll 'P(-x) (whose rrequency rCSlxJJ1se is just a rectangle 
with a maximum rrequency or &) isf(x) and, thus, Ci = Yi. 

111e problem or using qJlx) = sine (f) is that the sine decays very slowly and 
the convolutions needed ror the computation or the inner product are impractical. 
TIlliS, one might set off in search or new runctions qJ with more computati01lally 
appealing properties. First or all. one could relax the orthonormality co1ldition and 
may ask only that the set ('Pi) defines a Riesz basis, that is, 

AIle;lI fl ::: II t e;IPi(x) 11
2 

::: BIIe;!I;l "Ie; E 12 

1= --00 L2 

(6.8) 

ror some constants A and B depending on qJ. OrthonoTlnality is a special case 
when A = B = 1. The len·hand side condition assures that the hasis rUll(\iollS are 
lincarly irldcpendent, while the right-hand side condition assures that the norm or 
f is bounded and, thcrerorc, the subspace V is a valid subspace or L2. An important 
requirement ror the basis is that it is able to represent any runction with any desired 
level or accuracy by simply diminishing T. It can be shown that this c01ldition can 
be rerormulated as the partition orunity [1]: 

~ 

L 'P'( x) = I "Ix 
i=--oo 

(6.9) 

i.e. the sum orallthe basis runctions (shined versions or 'PI is a constant runction. 
111e runction qJ{x) = sine (1) meets all ulese requirements and is, by rar, the 

most widely know1l runetioll due to the sampling theorem, besides ule ract Ulat 
it is infinitely supported. making convolutions more complicated. However, other 
runctions also meet these requirements. The shortest runction meeting these is 
the hox rllT1ction 

Ixi < f 
Ixl > t (610) 

which is ,l(tually lhe cardinal ll-spli1le or degTl"e O. The cardi1lal 13.spline or degree 
/I is simply obtained by convolving fJo(x) with itselr n times. For instance, fJl (t) 
is the triangular runction defined between -T and T, and fJ2 (t) is a parabolic 
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Figure 6.1 B·Splines Plot of the first four B-splines (degrees 
0, I, 2, and 3). (Please find a color version of this figure on 
the color plates.) 
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fUllction defined between -~T and 1 T. In general, /3" (,.) is an evenly symJlletric. 
piecewise polynomial of degree n defined for Ix l < n~l T. -111(' following equations 

show the cardinal11-splincs of degree 1, 2. and 3 for T = 1 (see also Figure (,.1): 

~, (x)~ I 
~, (x)~ I 

Ixl ::: 1 
Ixl > 1 

~ -lxl2 Ixl ::: t 
, ( ' )' I jxl- i 1 < Ixl d , - , 

o Ixl > t 

t + t Ixl2 (Ixl - 2) 
! (2 - lx l)3 

o 

Ixl::: 1 

1 < Ixl ::: 2 
Ixl > 2 

In general. the cardinal l3.spline of degree n can be expressed as 

1 "+, ( + ') ( ( + , ))" ,B,,(x) = 11! L (-l)1; 11 k x - k - T + 
,~ 

where (x) ~ is the one·sided rHh JXlwer of x, (xr+ ~ I xn %::: 0 . o % < 0 

(6.11) 

(6.12) 

(6.13) 

(6.14) 

Cardinal B-splines arc piecewise JXllynomials, because they call IX' represented 
by polynomials of degree 11 on Ix l that arc different for each interval iT::: Ixl <: 

(i + 1) T. A11 these fUllctions meet the aforementioned requirements and therefore 
can be used as basis f1lnctions for the representation of signals. Moreover, they 
are well localized and compactly supJXlrted in real space (consequently, infinitely 
supported in Fourier space), makillg computations in real space affordable. 

'111e representatioll of signals using cardinal [3.splines is intimately related 10 
illterpolation: the use of fJo is equivalent to nearest neighbor interpolation and 
the use of fJ, is equivalent to linear interpolation (bilinear interJXllation when 
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the 2]) tensor product l3·spline is constructed). fh lias proved to be a good 
compromise between computational complexity. compact sup]Xlrt in real space, 
,Hid approximation error. 

At this pOint, we have already shown that the sampling theorcm is a particular 
case of an interpolation problem and also shown how il can be generalized for Lz 
functions instead of working exclusively witll bandlimited functioJlS. "111e question 
is how to compute the representation coefficients c; in Eq. (6.4). We have seen a 
]Xlssibility for orthonormal basis in Eq. (6.7). However. cardinal ll.splines are not 
orthonormal in general (only cardinal l3·splines of degree 0 are orthogonal). I n the 
generdl case, the calculation of tIle c; coefficiellts is similar to the orthonormal case, 
"111e only difference is that, instead of using tile basis tp; itself. we have to use the 
dual basis ,pi: 

00 

f ~ IV ~ L If, .,)0, (6, IS) 
~~ 

111e dual basis is uniquely defined by the biorthogonality condition (,pi, rpj) = 8j _ j 
and it also inherits the shift invariant property of the original basis function, 
<jl;(x) = ,p(x - x;). However, we still do not have a clear way of computing the c;'s 
occause we do Jlotllave a close· form formula for the dual basis. It can be proved [21 
thaI the Fourier transform of,p is given by 

(6,16) 

where [uQ) represents the continuous Fourier trallsform of tIle functioll J(x). 
Fortunately, Unser and coworkers [8, 91 derived a very efficient way of computing 
these coefficients using standard digital filters. '111is is actually the way of producing 
these coefficients. 'll1ese filters are derived ill 1 D. However, they are easily extellded 
1011 D. In the case of images, these filters are TIln individually on each row of the 
imab'C, producing a new imab'C of coefficients over the horizolltal axis, x. 111en, 
they are run on each column of the new image, finally producing t.he coefficients 
of the 2D tellsor product Jl·spline. Once the coefficients arc produced, images are 
treated as if they were continuous functions, although they are stored as a discrete 
set of cardinal B·spline coefficients. 

Now, we may wonder if we could design a basis function based on l3.splincs 
such t.hat C; = Yi. 'nlis would be an interpobting spline alld we would be back to a 
situation similar to the inter]Xllation scheme presented in the sampling theorem, 
Eq. (6.3). 11H! following function is SUdl an interpolating spline: 

00 

'finl(X) = L Qinl[llrp;(x) (6,17) 
;=-00 

where qjndil is the Iz sequence defined as the inverse Z transform or Q;ndz) = 
n':: 1 I;,andrp(x) =.B,,(~). 

~=-oo ~kTj% 
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Appro:x: imation Error: How Far are We &om the Truth? An important concept related 
to the generalized sa mpling theorem explained above is how well it reproduces 
any functionj. Let us callh the approximation witll a given samplirlg rate T. '111is 
problem lias been studied by tbe approximation theory, proving that the following 
thrcc statements arc equivalent: 

1) Letf be a sufficiently smooth function if belongs to the Soholev space wf, 
Lc_, its L first derivatives belong to ( 2). lllen, as T approaches 0, there ex:ists a 
constant C independent off such tbat IV - h~ ::: crL Ilfl L1 11 _ 

2) '111e first I. moments of tp arc constants, that is, L~-oo (x - X;)"'tpj( x) = /1 ", for 
m = 0, 1, ... , L - l. 

3) -l1le first L monomials can be exactly represented. tllat is, for each monomial x'" 
(m = 0, I, ... , I. - 1 j, there exist constants Cj E lz such that x'" = L~----(lO Cjtpj(x). 

An important consequence of this result is that the approximation crror of 
different basis functions depends mostly on their deSign, that is, given two 
polynomials of the same de~,'ree, one of Ulem may approach smooth functions 
more quickly tban the other. L is called the order of approximation and entirely 
dependsoTi the moments of tp or the numbe r of monomials that can be represented. 
In particular, B-splines of degree n Ilave an order of approximation of L = n+ \. 
Anot.her important consequence is thai in order to converge to functionf as T ...... 0, 
tbe basis function tp lIlust have L ::: 1, or in other words, that it fulfills the partition 
of unity. It is well known [to] that windowed sincs (which are commonly used as 
a solution to the infinite support of the sinc function) do not meet this condition. 
One may also try to design the rp family such that they have orderofapproximatlon 
I. with a minimum support. '111is is how the MOMS (maximal-order interpolation 
of minimal support) set of functions is designed. 1\ turns Ollt that these functions 
are linear combinations of the cardinal U-spline of degrcc L and its derivatives 
[3[. 

111e reader interested in the gencralized sampling theorem and this approach to 
interpolation may gain information from Refs [1, 2, 10- 121. 

Back to Irregular Interpolation Problems So far, we have already introduced cardinal 
D-splines, dual splines, and inte.rpolation splines, In fact, splines are a broad family 
or functions of which we have only seen those used with a regular spac.ing. In 
general, a function S .. (x) is a spline of degree n if (i) it is defined by piecewise 
polynomials of degree at most 11; (ii) it is of class C"- l, that is, it has n - I 
continuolls derivatives everl at the points joining the different polynomial pieces 
[13[. 

An alternative approach to splines is based on the idea of curve interpolation and 
knots instead of the idea of sampling. '111is other approach allows for irregularly 
spaced samples in a much more direct way. Let us assume that we are interpolating 
a real function in the. interval la , b[ with a piecewise polynomial. We subdivide 
this interval into N adjacent pieces sudl that each piece is defined in the interval 
lXi, x;+1 1·11Ie subdivision is such that Xo= II, xN = b, Xi < Xi+l, and ]a,b] = 
U~~l lx;, Xj+l [' TIle input samples (X;, Vi) are called knots and they are flxed points 
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througll which the interpolated polynomial must pass. Note that knots nt..'Cd not to 
be (!(lually spaced in the interval [a. b[. We have to be specially careful in selecting 
the interpolating polynomials slIch tllat 1I0t only tbe spline is continuous but also 
all its derivatives up to the order of n - I are continuous, evell at the knots where 
the function 0 11 the left-hand side of the knot is defllled by a certaill polynomial, 
and on the right -hand side it is defined by a different polynomial (see Figure 6.2). 

With N + 1 knots, the spline is split into N intervals. A spline of degree n has 
11 + 1 coeffidents in each interval; therefore, the spline has (n + I )N degrees of 
freedom. Let us call $j(x) the polynomial of degree n ill eac\1 interval (i = I. 2 . ... N). 

TIlis spline must satisfy the following: 

I) Interpolation of the knot values: 2N deJ,,'Tees offreedolll 

5t(X{l) = yo 

5,(x;) = y, = 5,+1 (Xi) i = L2, ... ,N - l 

5N(XN) = YN 

2) Continuity of the n - 1 deri va tives: (n - I )(N - I) degrees of freedom 

~Il ~ lJ 
I (x;J = i+1 (x;) i = 1,2, .... N- I 

si21 
(x;) = sl2 1 (Xi ) i = 1, 2 . ... ,N- I 

,,<- " ,,<"-" , (Xi) = ;+1 (x,) i = 1, 2. .. .. N - I 

(6.18) 

(6.19) 

However. there are s t.ill n - 1 unflxed degrees of freedom. Depending on the way 
these degrees of freedom arc defined, different kinds of splines are defined . For 
instance, a natural spline of dC!,,'Tee /I = 3 is one of the most comillon cases, in 
whic\1 the second derivati ve at the extremes is set to 0, sfJ (Xo) = sfJ (XN) = O. 'Illere 
are effi cient algorithms for the solu1ion of the resulting equation system [14). 

Yo 
s, s, 

y 

x, 

Figure 6.2 Spline interpolation with irregularly spaced s~m · 

pies. Example of B·spline (degree 1) interpo lat ion of irreg· 
ularly spaced sa mples. (P lease fin d a color version of this 
fi gure on the color plates.) 

y, 
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' [11e expression of the polynomial of degree 11 in anyofthe intervals Ix;. X;+I) can 
be recursively constmcted as 

(
I X; < X ,::: X;+1 

Sjo(x) = . 0 otherwise 
S () "'- "; c. (I "i+I+I - "5 () 

iJ x = ";+1-"> "",1-1 x + "1+1+ 1 ~i 1+1)-1 X 

(6.20) 

where 5i.1 is the B·spline of degree I in the interval lx;, X;+l). It is com­
mon to repeat the extremes of the knots as many times as the finally desired 
spline degree. For example. the actual list of knots for degree 3 would be 
(Xo. X(l. X{I, Xo. Xl, Xz • ... , XN_ lo XN. XN. XN. xNI· Because of the repeated knots 
we admit by convention in the previous formula that a = O. 

TIle polynomial in each one of the subintervals is of the general form 

" 
5,(x) ~ I: .,od (6.21) 

1= 0 

In this expansion. we have used the fact that the set 11. x . ,;z., .... x~ 1 is a 
hasis of the polynomials of degree n. However. this is not an orthonormal 
basis, which causes numerical instabilities when solving for the iiI coefficients. 
Alternatively. we could have used any other basis of the polynomials of deb 'Tee n. 
I Po(x). PJ(x). I'z(x), .... p~(xlI: 

" 
5i (x) = L:a,PJ(X) 

1=0 

(6.22) 

Employing ditTerent polynomial hasis gives rise to ditTerent kinds of splines: 
Bernstein polynomials are used in the Bczier splines; Hermite polynomials arc 
used in the Hermite splines: basic splines are used in the B.splines; and so on. 

6.2.1.2 Polyharmonic Splines 
'111e extellsion to several dimensiolls can be done by tIle tensor product of 11) 
splines as seen in the previous section, or hy the specific design of the so-called 
JXllyharmonic splines. among which the most famous is the thin-plate spline. 

Let us assume that we have a set of input multivariate data points (X;, Yi) we 
would like to interpolate (Xi € )Rd, Yi € JR). '111e goal would be to find a hypersurface 
Y = I(x) such that the surface contains the input data JXlints. 

We look for our interpolant in the Beppo.Levi space BL(2) (IRd). that is, the space 
of all Ll functions from JRd to JR, such that its second derivative is also in '-2. '[1lis 
space is large enough to contain a suitable interpolator. In this space. we can define 
the rotationally invariant semi norm: 

(6.23) 
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Duchon [IS] showed that the interpolant minimizing the just introduced semi norm 
in B L(21 (lRd) is of the form 

, 
fi x) = Pm(X) + L c;¢d ,~( I ] x - Xi ]I) (6,24) 

;= 1 

where I]xl] denotes the standard Euclidean noml in lRd, N is the nUJTlber of 
measurements in the input data, C; is a set of coeO'lcients that need to be determined, 
i: is any integer SUcll thaI2i: > u (in fa cl, the approximation order is k - ~ [16]; 
therefore, on the one hand, it is interesting to choose high values of k although, 
on the other hand, these result ill numerical instabilities in the determination of 
the spline coeffi cients as is sccnlater; a trade-off between tllese two goals must IX' 
achieved), ¢d, • is a radial basis function, and Pm(x) is a polynomial in x of degree at 

llIost m, which is given by m = i: - r n. ' [1le radial basis function (/>d. ~ is 

I r2l:- d log(r) 
¢d):(r) = 1 ,.t:k-d 

for even u 
for odd u (6.25) 

TIle fUTlction "'2,2 = ,.t: log(r) is the so-<:alled thin -plate spline in JR.l and the 
minimization of Ihe seminoTllI in JR.! can be understood as the minimization of 
the bellding energy ofa thin sheet of metal that interpolates the input data points. 
In JR. ), (h2 is called the biharmonic spline and 4>3,3 is called the trihannonic spline. 

TIle interpolation equations fi x;) = Yi do not fully determine the functionf (note 
that we have N input data points, but N coellicients c; for the radial basis functions 

and .L:;=o (;) coefficients for the polynomial). In fact, the polynomial of degree m 
comes from the fa ct that it is in the ke.rnel of the semi norm and, therefore, the 
addition of any polynomial of del,'Tee m is "invisible" to the senlinorm minimi7 ... 1tion 
(for instance, for the thin-plate spline case, m = I, and all polynomials ofdegn.'e 
1 have null second derivatives) . In this way, we. have to impose extra conditions 
which generally are 

, 
L eql',) ~ O (6.26) 
;=1 

for all polynomials q(x) of degree at most m (in the case of the thin·plate spline, 
we would have to use q(x) = 1, q(x) = Xl , and q(x) = X2)' Lctus assumc that the 
set of coeffi cients of the polynomial p are written in vector form as p. '111en, the 
polyharrnonic interpolatioll can be solved by the following equation system 

(627) 

where c and yare colulTm vectors with the C; coeffici ents and the Yj measurements, 
respectively. ¢ is the N x N system matrix corresponding to the measurements, 
i.e., ¢~. = "'d .• ( II Xi - Xj II ) and P is a matrix related to some basi s of polynomials up 
to degree m. Let lpl , Pl , .. . ,pl) be SUdl a basis; then P~' = pj(x; ). For example, for 
the thin-plate spline case, we could define P1 (X) = 1. P2(X) = Xl , and PJ(x) = xz, but 
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any otller basis of polynomials of degree at most I would do. Notc that the size of 
matrix Pis N x I (in the thin-plate spline, I = 3). 

TIlis equation system is usually ill·conditioned due \0 the nonlocal nature of the 
tPd.k(r) functions (they are not locally supported, instead they grow to infinity with 
growing r). Moreover, the complexity of solving the equation system depends on 
the number of sample points, N. Finally, the evaluation of the polyhannonic spline 
involves as many operations as the input data points (although fast algorithms have 
been developed for tackling this latter problem [17)). For solving the problem of the 
ill-conditioning of the equation system, a locali,..ation of the polyharmonic spline 
can be done. TIlis is a process in which tIle noncompactly supported tPd ,j;(r) function 
is substinlled as a weighted sum of compactly supported functions (for instance, 
13·splines). For further information on this technique the reader is referred to Refs 
[18, 19]. 

In the case of noisy data, we can rel,lx the interpolation condition by replacing it 
by a least-squares approximation conditiou: 

I N 
f' ~ "g m;n ' Ilff + - L (y, - fI' ,))' 

f EBd 2)\Rd) N 0':1 
(6.28) 

11 call be proved [20] that the coefficients c and p are the solutions of the followillg 
linear ('(juation system: 

(6.29) 

One may wonder wily these radial basis functions are called splines; at least, 
they do II Ot seem to fit our previous definition ofpiccewise polynomial functions. 
·l1le solution is a slight modification of our concept of spline (particularly, the 
requirement of being piecewise). Let us consider the trihannonic (tPu = ( 3) 

functions. It is clear that it is a cubic polynomial in r, and its second derivative is 
continuous everywhere. ·l1lercforc, it is a cubic spline. 

'111e reader interested in this topic is referred to Refs [J(), 21, 22]. 

6.2.2 
Splines for Multiscale Analysis 

·\1le multiscale capabilities of splines come in two diffcrent navors: spline pyramids 
and spline wavelets. Each one of these approaches exploits a different feahire of 
splines that makes them suitable for multiresolution analysis. Because of the space 
limitations imposed for the chapter, we only describe tIle muitiresoilltion spline 
pyramids here. The reader interested in spline wavelets is referred to Refs [1, 23]. 

Spline Pyramids Let us assume lhat we know the representation or a certain 
rllnctionf(x) with B-splines or odd degree /I and a sampling rate T: 

I(x) ~ I ',Po (~-;) ~ Ct"(X-0) .pom 

=CU(X)*.Bn(~) (6.30) 
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One may wonder how a finer representation off would be. For this, we considcr 
the relationship betwecn an odd degree B·spline and its contraction by M to a final 
sampli ng rate ii. It (.1n be shown [I] tllal 

16.31 ) 

that is, we call decompose a wide U-spline of degrcc 11 as the weighted sllm of 
thinner B-splincs of the same degree. For any M and 11, the Z transform of the 
weight sequence hk is 

1M l)(~+ll I , - 1 M )"H 
H(z) = z 1 M" (~ z-m 16.32) 

'nle case M = 2 plays an important role in the design of wavelets, and the 
corresponding property is caned the 2-scale relationship. III case of li·splines of 
deI,'Tcc I, the two scale relationship is simply 

16.33) 

alld. in general. for splines of odd deI,'Tcc 11 and M = 2, we have 

h" = H~ ~ 
1 
r( "H) Ikl.:: $ 

o Ikl > n~l 
(6.34) 

Substituting the expression of the wide B-splines by the weighted sum of fine 
ll-splil1es, we obtain 

fix) = ((tM ICu(x)1 *' h)u (x)) * 13" (.£) (6.35) 

In other words, to obtai n a finer representation of a signal, wc simply have to 
upsample its Ii-spline codncients and convolve them with a flllite weight sequence 
depending on the scaling factor M alld the spline degree. Note that the function 
represented with splilles at thc filler resolution is exactly the same as the original 
one. No interpolation has been performed on the way. 

Creating a coarser representation of the fUllction fix) is a little bit more illvolved 
since we canllot have exactly the same function but all approximation to it: 

fix) = cu(x) * fi" (:r) (6.36) 

alld we have to devise a way of estimating the coeOidents c from the c coeOidenlS. 

The easiest way is to look for the c that minimize the Ll 110rm of the error Iv -fll. 
It can be proved [24] thai the solution to this least-squares problem is 

(6.37) 
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with J..M { I being the downsampJing operator, c~ ocing the B-spline coefTicients 
of the function f with sampling rate T, h. being the sequence described in Eq. 
(6.341, and b~n+ l being the sequence b~n+ l = fJZn+l(k). Note that (b~n+ lrl is the 
inverse of this sequence. I t can be easily understood by inverting the Z transform 
of the sequence b;n+l and then performing an inverse Z transform. While b~n+ l is 

compactly supported, (bin+l) -1 is not, and convolution wit.h this sequence requires 
the design of an 11 R (infinite impulse responsel filter II)_ 2S J. 

6.3 
Splines in Bio medical Image a nd Volume Registratio n 

In this section, we show two examples of the use of splines for image and volume 
registration, which is one of the most challenging tasks in biomedical image 
processing. 

The intensity.based registration can be viewed in an optimization framework in 
which the registration problem consists in searching fora geometric transformation 
of a source image/volume I.hat gives the image/volume that best matches a target 
image/volume. under a chosen similarity measure. ·Ilie restriction of tile motion 
to rigid-body motion means that the distance between the points of the object is 
the same in the registered source and tarb'Ct images/volumes. Elastic registration 
is frequently employed in medical image analySiS to combine data that describe 
anatomy. both because biological tissues arc in b'Cneral not rigid and because 
anatomy varies between individuals. In the intensity-based elastic regist.ration 
techniques, the solution of the registration problem is the deformation field 
that warps the source image/volume so that the resulting image/volume best 
matches the target image/volume. ·l1le regist.ration is achieved by minimizing 
a cost function, which represents a combination of tbe cost associated with the 
image/volume similarity and the cost associated with the smoothness of the 
transformation (regularization term). 

Many authors have proposed to use linear combinations of B-splines placed on a 
reb'lllar grid to model the transformation J27-31]. TIle available K'Cilniques differ in 
the forlll of employed regularization term, as well as in the employed illlage/volume 
sirnilarity metrics and the optimization method. ·l1iey produce good results but have 
a high computational cost. ·nie computation can be accelerated using lIlultiscale 
image/volume processing. and spline pyramids provide a convenient tool for this. 
Moreover. spline model can be used for all computation aspects of the registrdtion 
(image pyramid, transform. alld the b'Tadienl of the optimi7..ation criterion) as 
shown in Refs [4, 31, 32[. 

Many examples of rigid-body image registration can be found in 30 electron 
microscopy [34]. Indeed. the structure of a macromolecular complex can be 
computed in three dimensions from a set of paralld -beam projection images of 
the same complex acquired in a microscope [34]. For the so-called single.partide 
analysis, images of the sample containing thousands of copies oftlle same complex 
are collected. Ideally. the copies have the sallle structure. TIleir orientation in the 
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Figure 6.3 3D electron microscopy 3D electron microscopy. 
Experimental images corresponding to three arbitrari ly cho· 
sel1 projection directions and a 3D model of the phosphory· 
lase kinase 26. The arrows represent the directions of back 
projection in 3D space. 

3D space is random and unknown, and the position of the center of each complex 
is unknown. 'nlese parameters have to be estimated before applying a method 
for 3]) reCOllstmction. Given a first guess for the 3]) model, one estimates the 
unknown parameters by aligrting the images with the 3 D model (reference model) 
[30[ (Figure 6.3). A new reconstruction is then computed using the images and the 
estimated orientations and positions. 'nle new model can be used as the reference 
model to resume the alignment in the next iteration of the iterative refinement of 
the estimated parameters [341. It has been shown that such procedures can yield 
3]) models of subnanometer resolution [26J. 

An illusrT,rtion of elastic image registration is given in Figure 6.4. One of the major 
difficulLies in the analysis of electrophoresis 2D gels is that the gels are aITcrted by 
spatial distortions due to run·lime difTerences and dye. front deformations, which 
results in images that Significantly difTer in the content and geometry. 111e method 
proposed in ncr. [33] models the defonnation field using B-splines. the advantage of 
whicll is that the model can be adapted to any continuous deformation field simply 
by changing the spacing between splines. The method computes quaSi-invertible 
deformation fields so that the source image ca n be mappl:.'Ii onto the target image 
and vice versa. which helps the optimi;r.er to reduce the chance of gelling trapped 
in a local minimum and allows the simultaneous registTation of any number of 
images. 

,.4 
Conclusions 

In tIlis chapter, we reviewed spline interpolation and approximation theory by 

presenHng two spline families: tensor product splines and polyhannonic splines. 
Also. we presented tIle multi scale properties of splines. Finally, we illustrated 
biomedical image processing applications of splines by showing their use in 
image/volume registration. 
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Figure 6.4 Elast ic registra tion of 2D gels 
Elastic regist ration of two 2D protein gels 
(source al1d target) us ing the method pro· 
posed in [33). The defo rmat ion fie ld repre· 
sents t he cont inuous deformat ion required to 
cOl1vert the source il1to the target. The com· 
bined image shows the target image in the 
red channel and the warped source in t he 
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