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1.1

Introduction

The most common definition of splines is that they are piecewise polynomials with
pieces smoothly connected together. To obtain a continuous representation of a discrete
signal in one or more dimensions, one commonly fits it with a spline. The fit may
be exact (interpolation splines) or approximate (least-squares or smoothing splines)
[1]. By increasing the spline degree, one progressively switches from the simplest
continuous representations (piecewise constant and piecewise linear) to the traditional
continuous representation characterized by a band-limited signal model (for the degree
equal to the infinity). The traditional Shannon’s sampling theory recommends the use
of an ideal low-pass filter (anti-aliasing filter) when the input signal is not band-limited.
In the spline sampling theory, the Shannon’s anti-aliasing filter is replaced with another
filter specified by the spline representation of the signal [2].

The most frequently used are B-splines because of the computational efficiency pro-
vided by their short support. It has been shown that B-spline basis functions have
the minimal support for a given order of approximation [3]. Cubic B-splines offer a
good trade-off between the computational cost and the interpolation quality [1]. Also,
B-splines are the preferred basis function because of their simple analytical form that
facilitates manipulations [1]. Other interesting properties are that they are maximally
continuously differentiable and that their derivatives can be computed recursively [1].
Thanks to the separability property of B-splines, the operations on multidimensional
data can be performed by a successive processing of one-dimensional (1D) data along
each dimension [1]. Besides, they have multiresolution properties that make them very
useful for constructing wavelet bases and for multi-scale processing [4, 1]. Because of
all these properties, many image processing applications take advantage of B-splines.

In the first part of this chapter, we present the main theoretical results and theorems
about splines which are of use in biomedical imaging applications (Section 1.2). Basi-
cally, splines are used as interpolants, basis functions, for the construction of smooth
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1 Splines for bioimaging

curves and surfaces, and in multiscale analysis. In Section 1.2.1, we show how interpo-
lation is related to sampling and the posterior reconstruction of the original signal from
samples. When talking about spline interpolants, we can distinguish between tensor
product splines and polyharmonic splines. The former is based on the tensor product
of two 1D spline functions, while the latter is based on the use of the so-called radial
basis functions. The interpolation theory explains the behavior of splines for the con-
struction of smooth curves and surfaces. However, the traditional formulation of the
problem in computer graphics can help gaining more insight into the spline properties.
In Section 1.2.2, we thus briefly review the construction of such smooth curves and
surfaces, which is very much used in biomedical imaging for visualization of volumes
as well as for the calculation of trajectories and surfaces of interest within a given vol-
ume. Finally, we review the multiscale properties of splines that allow the definition
of spline pyramids and spline wavelets (Section 1.2.3). Both constructions allow to
address problems in a coarse-to-fine fashion. These multiscale approaches are not only
faster but they are usually more robust to noise and yield smoother functionals when
optimization problems are involved.

In the second part of the chapter (Section 1.3), we review the main applications
of splines in biomedical image processing, such as geometric image transformations
(1.3.1), rigid-body and elastic image registration (1.3.2 and 1.3.3, respectively), con-
tour and shape modelling (1.3.4), and motion reconstruction (1.3.5).

1.2

Main theoretical results about splines

In this section, we present the main achievements of the spline theory that are used in
biomedical imaging applications.

1.2.1

Splines as interpolants and basis functions

1.2.1.1 Tensor product splines

The presentation of the theoretical properties of the splines will be done in 1D space.
However, the extension to two-dimensional (2D) space is readily performed using the
tensor product. For instance, if ϕ1D(x) is a 1D spline, the 2D tensor product spline is
defined as ϕ2D(x, y) = ϕ1D(x)ϕ1D(y).

The interpolation context

Given a discrete set of measurements (xi, yi), interpolating is the art of “filling in the
gaps” with a continuous function y = f(x) such that we meet the constraints imposed
by our measurements, i.e., yi = f(xi). In biomedical imaging our measurements
are typically image values, zi = I(xi, yi), being zi the gray value of our image, and
(xi, yi) its location in space. For color images, we could decompose the color into
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three components (red, green and blue; hue, saturation and value; etc.), each one would
impose a constraint of the same kind as the one for gray values. Interpolating is im-
portant to know the value of our image between known pixel values. This is useful for
rotations, translations, unwarpings, demosaicking, downsampling, upsampling, etc.

Given, N measurements, we can estimate a polynomial of degree N − 1 (it has
N coefficients and, therefore, N degrees of freedom) passing through all these mea-
surements. In fact, this polynomial is unique and it is given by Newton’s general
interpolation formula:

f(x) = a0+a1(x−x0)+a2(x−x0)(x−x1)+...+aN−1(x−x0)(x−x1)...(x−xN−2),

(1.1)
where an represents the divided differences defined as

a0 = y0

an =
n∑
i=0

yi
n∏
j=0
j �=i

(xi−xj)
(1.2)

The use of polynomials for interpolation is justified not only because they are simple
to manipulate, differentiate, or integrate but it is also justified by a theorem by Weier-
strass stating that any continuous function on a closed interval can be approximated
uniformly to any degree of accuracy by a polynomial of a sufficient degree [5].

Regularly spaced interpolation: the generalized sampling theorem

However, polynomials are not the only functions interpolating the dataset. If the xi
points are regularly distributed (xi = iT , for some integer i and a sampling rate T ),
then Whittaker showed that the series

C(x) =
∞∑

i=−∞
yisinc

(x− xi
T

)
(1.3)

also interpolates the input measurements [6] (sinc is defined in as sinc(x) = sin(πx)
πx

).
C(x) is called the cardinal function. Shannon [7] realized that this representation was
unique for any function whose maximum frequency is smaller than 1

2T
Hz. This is the

famous Shannon sampling theorem which is valid for any function that is bandlimited.
The sampling theorem can be extended to a larger space of functions: the Hilbert

space of L2 functions, i.e., all functions that are square integrable in the Lebesgue
sense (‖f‖2 = 〈f, f〉 < ∞, where the inner product between two real functions is
defined as 〈f, g〉 =

∫∞
−∞ f(x)g(x)dx). The set of bandlimited functions is a subset of

L2. The sampling theorem is generally formulated in this space as

C(x) =
∞∑

i=−∞
ciϕi(x), (1.4)

where ci are some coefficients that have to be computed from the yi input data, and
ϕi(x) is a shifted version of a basis function ϕ(x) (ϕi(x) = ϕ(x−xi)). In the particular
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case of bandlimited functions, the basis function used is ϕ(x) = sinc(x
T

) and the set of
all bandlimited functions is spanned by the family of functions ϕi(x). In other words,
any bandlimited function can be expressed by a linear combination of the infinite set
of ϕi(x) functions as the sampling theorem shows. From now on, we will drop the
argument of functions as long as there cannot be confusion.

Let us consider any function ϕ in L2, and the subspace V generated by its transla-
tions with step T

V =

{
f(x) =

∞∑
i=−∞

ciϕi(x) : ci ∈ l2

}
, (1.5)

where l2 is the space of all square summable sequences. It can be easily proved that if
a set of functions ϕi in a Hilbert space is orthonormal (i.e. 〈ϕi, ϕj〉 = δi−j), then the
projection of any function f in L2 onto the subspace V is

f̃ = PV f = arg min
g∈V

‖f − g‖ =

∞∑
i=−∞

〈f, ϕi〉ϕi (1.6)

Note that

〈f, ϕi〉 =

∫ ∞

−∞
f(x)ϕ(x− xi)dx = f(x) ∗ ϕ(−x)|x=xi

, (1.7)

i.e., the inner product 〈f, ϕi〉 can be easily computed by sampling at x = xi the linear
convolution of f(x) and ϕ(−x). In fact, the antialiasing filter used to effectively limit
the frequency of a signal before sampling corresponds exactly to the computation of
this inner product. Note that if f is already bandlimited, then the convolution of f(x)

with ϕ(−x) (whose frequency response is just a rectangle with maximum frequency
1

2T
) is f(x) and, thus, ci = yi.

The problem of using ϕ(x) = sinc
(
x
T

)
is that the sinc decays very slowly and the

convolutions needed for the computation of the inner product are impractical. Thus,
one might set off in search of new functions ϕ with more computationally appealing
properties. First of all, one could relax the orthonormality condition and may ask only
that the set {ϕi} defines a Riesz basis, i.e.,

A ‖ci‖2
l2

≤
∥∥∥∥∥

∞∑
i=−∞

ciϕi(x)

∥∥∥∥∥
2

L2

≤ B ‖ci‖2
l2

∀ci ∈ l2 (1.8)

for some constants A and B depending on ϕ. Orthonormality is a special case when
A = B = 1. The left condition assures that the basis functions are linearly indepen-
dent, while the right condition assures that the norm of f is bounded and, therefore,
the subspace V is a valid subspace of L2. An important requirement for the basis is
that it is able to represent any function with any desired level of accuracy by simply
diminishing T . It can be shown that this condition can be reformulated as the partition
of unity [1]

∞∑
i=−∞

ϕi(x) = 1 ∀x, (1.9)
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Fig. 1.1 Plot of the first four B-splines (degrees 0,1,2, and 3)

i.e. the sum of all the basis functions (shifted versions of ϕ) is a constant function.
The function ϕ(x) = sinc

(
x
T

)
meets all these requirements and is, by far, the most

widely known function due to the sampling theorem, beside the fact that it is infinitely
supported making convolutions more complicated. However, other functions also meet
these requirements. The shortest function meeting them is the box function

ϕ(x) = β0

( x
T

)
=

{
1 |x| < T

2

0 |x| > T
2

, (1.10)

which is actually the cardinal B-spline of degree 0. The cardinal B-spline of degree
n is simply obtained by convolving β0(x) with itself n times. For instance, β1

(
x
T

)
is

the triangular function defined between −T and T , and β2
(
x
T

)
is a parabolic function

defined between −3
2
T and 3

2
T . In general, βn

(
x
T

)
is an evenly-symmetric, piecewise

polynomial of degree n defined for |x| < n+1
2
T . The following equations show the

cardinal B-splines of degree 1, 2 and 3 for T = 1 (see also Fig. 1.1):

β1(x) =

{
1 − |x| |x| ≤ 1

0 |x| > 1
, (1.11)

β2 (x) =

⎧⎪⎨⎪⎩
3
4
− |x|2 |x| ≤ 1

2
1
2

(|x| − 3
2

)2 1
2
< |x| ≤ 3

2

0 |x| > 3
2

, (1.12)

β3 (x) =

⎧⎪⎨⎪⎩
2
3

+ 1
2
|x|2 (|x| − 2) |x| ≤ 1

1
6

(2 − |x|)3 1 < |x| ≤ 2

0 |x| > 2

, (1.13)

In general, the cardinal B-spline of degree n can be expressed as

βn(x) =
1

n!

n+1∑
k=0

(−1)k
(
n+ 1

k

)(
x−

(
k − n+ 1

2

))n
+

, (1.14)

where (x)n+ is the one-sided n-th power of x, (x)n+ =

{
xn x ≥ 0

0 x < 0
.
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Cardinal B-splines are piecewise polynomials because they can be represented by
polynomials of degree n on |x| that are different for each interval i T ≤ |x| < (i+1) T .
All these functions meet the aforementioned requirements and therefore can be used as
basis functions for the representation of signals. Moreover, they are well localized and
compactly supported in real space (consequently, infinitely supported in Fourier space)
making computations in real space affordable.

The representation of signals using cardinal B-splines is intimately related to inter-
polation: the use of β0 is equivalent to nearest neighbor interpolation, the use of β1 is
equivalent to linear interpolation (bilinear interpolation when the 2D tensor product B-
spline is constructed). β3 has proved to be a good compromise between computational
complexity, compact support in real space, and approximation error.

At this point, we have already shown that the sampling theorem is a particular case
of an interpolation problem and how it can be generalized for L2 functions instead of
working exclusively with band-limited functions. The question is how to compute the
representation coefficients ci in Eq. (1.4). We have seen a possibility for orthonormal
basis in Eq. (1.7). However, cardinal B-splines are not orthonormal in general (only
cardinal B-splines of degree 0 are orthogonal). In the general case, the calculation of
the ci coefficients is similar to the orthonormal case. The only difference is that instead
of using the basis ϕi itself, we have to use the dual basis ϕ̃i

f̃ = PV f =
∞∑

i=−∞
〈f, ϕ̃i〉ϕi. (1.15)

The dual basis is uniquely defined by the biorthogonality condition 〈ϕ̃i, ϕj〉 = δi−j
and it also inherits the shift invariant property of the original basis function, ϕ̃i(x) =

ϕ̃(x − xi). However, we still do not have a clear way of computing the ci’s because
we do not have a close-form formula for the dual basis. It can be proved [2] that the
Fourier transform of ϕ̃ is given by

̂̃ϕ(jΩ) =
ϕ̂(jΩ)

∞∑
k=−∞

|ϕ̂(j(Ω + 2πk))|2
, (1.16)

where f̂(jΩ) represents the continuous Fourier transform of the function f(x). For-
tunately, Unser and coworkers [8, 9] derived a very efficient way of computing these
coefficients using standard digital filters. This is actually the way of producing these
coefficients. These filters are derived in 1D. However, they are easily extended to nD.
In the case of images, these filters are run individually on each row of the image, pro-
ducing a new image of coefficients over the horizontal axis, x. Then, they are run on
each column of the new image finally producing the coefficients of the 2D tensor prod-
uct B-spline. Once the coefficients are produced, images are treated as if they were
continuous functions, although they are stored as a discrete set of cardinal B-spline
coefficients.

Now, one may wonder if we could design a basis function based on B-splines such
that ci = yi. This would be an interpolating spline and we would be back to a situation
similar to the interpolation scheme presented in the sampling theorem, Eq. (1.3). The
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following function is such an interpolating spline

ϕint(x) =
∞∑

i=−∞
qint[i]ϕi(x), (1.17)

where qint[i] is the l2 sequence defined as the inverse Z transform of Qint(z) =
1

∞∑
k=−∞

ϕ(kT )z−k
, and ϕ(x) = βn

(
x
T

)
.

Approximation error: How far are we from the truth?

An important concept related to the generalized sampling theorem explained above is
how well it reproduces any function f . Let us call fT the approximation with a given
sampling rate T . This problem has been studied by the approximation theory proving
that the following three statements are equivalent:

1. Let f be a sufficiently smooth function (f belongs to the Sobolev space WL
2 ,

i.e., its L first derivatives belong to L2). Then, as T approaches 0, there exists

a constant C independent of f such that ‖f − fT ‖ ≤ CTL
∥∥∥f (L)

∥∥∥.
2. The first L moments of ϕ are constants, i.e.,

∞∑
i=−∞

(x− xi)
mϕi(x) = μm for

m = 0, 1, ..., L− 1.

3. The first L monomials can be exactly represented, i.e., for each monomial
xm (m = 0, 1, ..., L − 1), there exist constants ci ∈ l2 such that xm =

∞∑
i=−∞

ciϕi(x).

An important consequence of this result is that the approximation error of different
basis functions depends mostly on its design, i.e., given two polynomials of the same
degree, one of them may approach smooth functions more quickly than the other. L
is called the order of approximation and entirely depends on the moments of ϕ or the
number of monomials that can be represented. In particular, B-splines of degree n
have an order of approximation of L = n + 1. Another important consequence is
that in order to converge to function f as T → 0, the basis function ϕ must have
L ≥ 1, or what is the same, that it fulfills the partition of unity. It is well known [10]
that windowed sincs (which are commonly used as a solution to the infinite support
of the sinc function) do not meet this condition. One may also try to design the ϕ
family such that they have order of approximation L with a minimum support. This
is how the MOMS (Maximal-Order interpolation of Minimal Support) set of functions
is designed. It turns out that these functions are linear combinations of the cardinal
B-spline of degree L and its derivatives [3].

The reader interested in the generalized sampling theorem and this approach to in-
terpolation may expand this information in [11, 10, 12, 1, 2].
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Fig. 1.2 Example of B-spline (degree 1) interpolation of irregularly spaced samples

Back to irregular interpolation problems

So far, we have already introduced cardinal B-splines, dual splines, and interpolation
splines. In fact, splines is a broad family of functions of which we have only seen those
used with a regular spacing. In general, a function Sn(x) is a spline of degree n if: 1)
it is defined by piecewise polynomials of degree at most n; 2) it is of class Cn−1, i.e.,
it has n− 1 continuous derivatives even at the points joining the different polynomial
pieces [13].

An alternative approach to splines is based on the idea of curve interpolation and
knots instead of on the idea of sampling. This other approach allows for irregularly
spaced samples in a much more direct way. Let us assume that we are interpolating
a real function in the interval [a, b] with a piecewise polynomial. We subdivide this
interval in N adjacent pieces such that each piece is defined in the interval [xi, xi+1].

The subdivision is such that x0 = a, xN = b, xi < xi+1 and [a, b] =
N−1⋃
i=0

[xi, xi+1].

The input samples (xi, yi) are called knots and they are fixed points through which the
interpolated polynomial must pass. Note that knots need not to be equally spaced in the
interval [a, b]. We have to be specially careful to select the interpolating polynomials
such that not only the spline itself is continuous, but all its derivatives up to order
n− 1 are also continuous, even at the knots where the function at the left of the knot is
defined by a certain polynomial, and at the right of the knot by a different polynomial
(see Fig. 1.2).

With N +1 knots, the spline is split into N intervals. A spline of degree n has n+1

coefficients in each interval, therefore the spline has (n+1)N degrees of freedom. Let
us call Si(x) the polynomial of degree n in each interval (i = 1, 2, ...N ). This spline
must satisfy:

– Interpolation of the knot values: 2N degrees of freedom

S1(x0) = y0
Si(xi) = yi = Si+1(xi) i = 1, 2, ..., N − 1

SN(xN ) = yN

(1.18)
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– Continuity of the n− 1 derivatives: (n− 1)(N − 1) degrees of freedom

S
(1)
i (xi) = S

(1)
i+1(xi) i = 1, 2, ..., N − 1

S
(2)
i (xi) = S

(2)
i+1(xi) i = 1, 2, ..., N − 1

...

S
(n−1)
i (xi) = S

(n−1)
i+1 (xi) i = 1, 2, ..., N − 1

(1.19)

However, there are still n−1 unfixed degrees of freedom. The way of choosing these
degrees of freedom defines different kinds of splines. For instance, a natural spline of
degree n = 3 is one of the most common cases, in which, the second derivative at the
extremes is set to 0, S(2)

i (x0) = S
(2)
i (xN) = 0. There are efficient algorithms for the

solution of the resulting equation system [14].
The expression of the polynomial of degree n in any of the intervals [xi, xi+1) can

be recursively constructed as

Si,0(x) =

{
1 xi < x ≤ xi+1

0 otherwise

Si,l(x) = x−xi
xi+l−xi

Si,l−1(x) +
xi+l+1−x
xi+l+1−xi

Si+1,l−1(x),

(1.20)

where Si,l is the B-spline of degree l in the interval [xi, xi+1). It is common use to
repeat the extremes of the knots as many times as the finally desired spline degree. For
example, the actual list of knots for degree 3 would be {x0, x0, x0, x0, x1, x2, ..., xN−1, xN , xN , xN , xN}.
Because of the repeated knots we admit by convention in the previous formula that
0
0

= 0.
The polynomial in each one of the subintervals is of the general form

Si(x) =
n∑
l=0

alx
l. (1.21)

In this expansion we have used the fact that the set
{
1, x, x2, ..., xn

}
is a basis of the

polynomials of degree n. However, this is not an orthonormal basis, which causes nu-
merical instabilities when solving for the al coefficients. Alternatively, we could have
used any other basis of the polynomials of degree n, {P0(x), P1(x), P2(x), ..., Pn(x)}

Si(x) =

n∑
l=0

alPl(x). (1.22)

Employing different polynomial basis gives rise to different kinds of splines: Bern-
stein polynomials are used in the Bézier splines; Hermite polynomials in the Hermite
splines; basis splines in the B-splines; etc. This idea is further explored in Section
1.2.2.

Generalized splines

We have already seen that splines are piecewise polynomials. They can be seen as
linear combination of basis functions which, in their turn, are Green functions of a
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differential operator. Let us consider splines of degree 0. These are piecewise constant
functions that can be formulated as

S0(x) =
∞∑

i=−∞
aiu(x− xi) (1.23)

where u(x) is the Heaviside’s step function. The step function is the causal Green
function of the first derivative operator D (i.e., D {u} = δ). This implies that the first
derivative of splines of degree 0 is of the form

D{S0}(x) =
∞∑

i=−∞
aiδ(x− xi). (1.24)

Splines of degree 1 can be seen as the linear combination of shifted versions of the
Green function of the second derivative operator (D2). In general, splines of degree
n are a linear combination of shifted versions of the Green function of the (n + 1)-th
derivative operator (Dn+1).

Nowadays, there is much interest in the variational formulation of imaging problems
(denoising, impainting, regularization of functionals, etc.; for more details on the varia-
tional approach, the reader is referred to Chapter 24 in this same book). The variational
formulation relies on the definition of a differential operator L. Generalized splines are
splines specially designed for a specific differential operator. In other words, S(x) is a
L-spline if

L{S}(x) =
∞∑

i=−∞
aiδ(x− xi). (1.25)

In this way, L-splines span a space which is specially well suited for the problem at
hand. In particular, they have been proved useful for the regularization of approxima-
tion problems and the estimation of fractal processes. The reader interested in this kind
of splines is referred to [15, 16].

1.2.1.2 Polyharmonic splines

The extension to several dimensions can be done by the tensor product of 1D splines
as seen in the previous section, or by the specific design of the so-called polyharmonic
splines, among which the most famous is the thin-plate spline.

Let us assume that we have a set of input multivariate data points (xi, yi) we would
like to interpolate (xi ∈ R

d, yi ∈ R). The goal would be finding a hypersurface
y = f(x) such that the surface contains the input data points.

We will look for our interpolant in the Beppo-Levi space BL(2)(Rd), i.e., the space
of all L2 functions from R

d to R such that its second derivative is also in L2. This
space is large enough to contain a suitable interpolator. In this space we can define the
rotationally invariant seminorm

‖f‖2 =

∫
Rd

d∑
η=1

d∑
ξ=1

∂2f

∂xη∂xξ
dx (1.26)
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Duchon [17] showed that the interpolant minimizing the just introduced seminorm
in BL(2)(Rd) is of the form

f(x) = pm(x) +
N∑
i=1

ciφd,k(‖x − xi‖), (1.27)

where ‖x‖ denotes the standard Euclidean norm in R
d, N is the number of measure-

ments in the input data, ci is a set of coefficients to determine, k is any integer number
such that 2k > d (in fact, the approximation order is k − d

2
[18], therefore, from one

hand it is interesting choosing high values of k although on the other hand these re-
sult in numerical instabilities in the determination of the spline coefficients as will be
seen later; a trade-off between these two goals must be achieved), φd,k is a radial basis
function, and pm(x) is polynomial in x of degree at most m being m = k −⌈ d

2

⌉
. The

radial basis function φd,k is

φd,k(r) =

{
r2k−d log(r) for d even

r2k−d for d odd
(1.28)

The function φ2,2 = r2 log(r) is the so-called thin-plate spline in R
2 and the mini-

mization of the seminorm in R
2 can be understood as the minimization of the bending

energy of a thin sheet of metal that interpolates the input data points. In R
3, φ3,2 is

called the biharmonic spline, and φ3,3 the triharmonic spline.
The interpolation equations f(xi) = yi do not fully determine the function f (note

that we have N input data points, but N coefficients ci for the radial basis functions

and
m∑
p=0

(
d
p

)
coefficients for the polynomial). In fact, the polynomial of degreem comes

from the fact that it is in the kernel of the seminorm and, therefore, the addition of any
polynomial of degree m is “invisible” to the seminorm minimization (for instance, for
the thin-plate spline case, m = 1, and all polynomials of degree 1 have null second
derivatives). In this way, we have to impose extra conditions which generally are

N∑
i=1

ciq(xi) = 0 (1.29)

for all polynomials q(x) of degree at most m (in the case of the thin-plate spline,
we would have to use q(x) = 1, q(x) = x1, q(x) = x2). Let us assume that the
set of coefficients of the polynomial p are written in vector form as p. Then, the
polyharmonic interpolation can be solved by the following equation system(

Φ P

Pt 0

)(
c

p

)
=

(
y

0

)
, (1.30)

where c and y are column vectors with the ci coefficients and the yi measurements,
respectively. Φ is the N ×N system matrix corresponding to the measurements, i.e.,
Φij = φd,k(‖xi − xj‖) and P is a matrix related to some basis of polynomials up to
degree m. Let {p1, p2, ..., pl} be such a basis, then Pij = pj(xi). For example, for



1 Splines for bioimaging

the thin-plate spline case we could define p1(x) = 1, p2(x) = x1, and p3(x) = x2;
but any other basis of polynomials of degree at most 1 would do. Note that the size of
matrix P is N × l (in the thin-plate spline, l = 3).

This equation system is usually ill-conditioned due to the non-local nature of the
φd,k(r) functions (they are not locally supported, instead they grow to infinity with
growing r). Moreover, the complexity of solving the equation system depends on
the number of sample points, N . Finally, the evaluation of the polyharmonic spline
involves as many operations as input data points (although fast algorithms have been
developed for tackling this latter problem [19]). For solving the problem of the ill-
conditioning of the equation system, a localization of the polyharmonic spline can
be done. This is a process in which the non-compactly supported φd,k(r) function
is substituted as a weighted sum of compactly supported functions (for instance, B-
splines). For further information on this technique the reader is referred to [20, 21].

In case of noisy data we can relax the condition of passing through all data points
and substitute this constraint by a least-squares minimization:

f∗ = arg min
f∈BL(2)(Rd)

λ ‖f‖2 +
1

N

N∑
i=1

(yi − f(xi))
2 (1.31)

It can be proved [22] that the coefficients c and p are the solution of the following
linear equation system(

Φ − 8NλπI P

Pt 0

)(
c

p

)
=

(
y

0

)
, (1.32)

One may wonder why these radial basis functions are called splines, at least, they do
not seem to fit our previous definition of piecewise polynomial functions. The solution
is a slight modification of our concept of spline (particularly, the requirement of being
piecewise). Let us consider the triharmonic (φ3,3 = r3) functions. It is clear that it is a
cubic polynomial in r, and its second derivative is continuous everywhere. Therefore,
it is a cubic spline.

The reader interested in this topic may expand this information in [18, 23, 24]

1.2.2

Splines for smooth curves and surfaces

One of the main applications of splines is in the design of smooth curves and surfaces.
For this application, one can use the already known interpolation and approximation
properties of splines. However, the language and formulation used for the construction
of curves and surfaces provide extra insight into the properties of splines. For this
reason we will make in this chapter a quick review of the use of splines for this purpose.

Parametric curves and surfaces

Without loss of generality we can define a parametric curve in the three-dimensional
(3D) space as an explicit function C(u) = (x(u), y(u), z(u)) depending on some
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parameter u in the range [0, 1]. In the same way, we could define a parametric surface
as S(u, v) = (x(u, v), y(u, v), z(u, v)) with (u, v) ∈ [0, 1]2. Let us first consider the
construction of curves and at the end we will extend the corresponding concepts to
surfaces.

Functions x(u), y(u) and z(u) are too general and do not lead to standardized com-
puter implementations. It would be better if these functions could be expressed as a
linear combination of some basis functions in such a way that

C(u) =

N∑
i=0

aifi(u), (1.33)

where ai is a 3D vector of coefficients ai = (aix, aiy, aiz) and fi(u) (i = 0, 1, ..., N )
is a set of basis functions.

A natural choice for the fi functions would seem to be the power basis (1, u, u2, ..., uN ).
These would naturally give the Taylor expansion of the functions x(u), y(u) and z(u).

C(u) =

⎛⎜⎜⎜⎜⎜⎜⎝

N∑
i=0

aixu
i

N∑
i=0

aiyu
i

N∑
i=0

aizu
i

⎞⎟⎟⎟⎟⎟⎟⎠ (1.34)

However, this choice has a number of disadvantages: first, the ai coefficients convey
very little insight about the curve itself, they are simply suitable coefficients for the
expansion; second, the evaluation of the power basis is prone to round-off errors, spe-
cially for high order basis. To partially avoid these problems, one could use Bézier’s
method. Instead of using the power basis, he used the Bernstein polynomials

C(u) =
N∑
i=0

piBi,N (u). (1.35)

Now the pi coefficients have a geometrical meaning, they are points in space “attract-
ing” the curve toward themselves (Fig. 1.3). They are called control points. Moreover
p0 is the first point of the curve (C(0) = p0) and pN is the last one (C(1) = pN ).
Bernstein polynomials span the same space as the power basis and, therefore, are math-
ematically equivalent to them. The N-th degree Bernstein polynomial Bi,N is defined
as

Bi,N (u) =
N !

i!(N − i)!
ui(1 − u)N−i (1.36)

Curves defined by a single polynomial in the whole interval [0, 1], as Bézier curves,
still have a number of shortcomings: first, when the number of control points N is
high, the order of the polynomial is also high (which we already saw that yields nu-
merically unstable algorithms); second, although control points mostly influence the
curve in its vicinity, they participate in the whole curve and control exercised through
control points is not sufficiently local. As a solution to this problem, cardinal B-splines
have been proposed (they were already introduced for irregular interpolation (1.20)).
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Fig. 1.3 Example of Bézier curve with three control points

Cardinal B-splines span the space of polynomials of some fixed degree n. They are
compactly supported and, thus, they avoid numerical instabilities and the local control
problem previously described. Segments between control points define the interpola-
tion intervals of the B-spline. The n-th degree B-spline curve is

C(u) =

N∑
i=0

piSi,n(u). (1.37)

We could combine two interesting ideas of Bézier and B-spline curves. Bézier intro-
duces the idea that control points are “attractors” (although they cannot directly control
the attraction strength) while B-splines provide numerically stable and local functions
(and control the attraction strength through the B-spline degree). Non-uniform rational
B-splines (NURBS) take the best of both worlds

C(u) =
N∑
i=0

piRi,n(u). (1.38)

Each control point attracts the curve with a weight wi and these weights give the
NURBS function (which is not a polynomial):

Ri,n(u) =
wiSi,n(u)
N∑
j=0

wjSj,n(u)

, (1.39)

because of the B-spline in the numerator, NURBS are compactly supported. By in-
creasing wi, we can decrease the distance between the curve and pi.

Note that, in general, none of these parametric representations of curves (Bézier,
B-spline, NURBS) are interpolating, i.e., control points pi do not belong to the curve
(except p0 and pN ). How close the curve is from the control points can be controlled in
B-spline curves by increasing the degree of the B-spline (p). In NURBS, it is controlled
by both n and wi.

B-spline surfaces of degree n are usually defined through the tensor product of two
n-th degree B-spline curves (Fig. 1.4)

S(u, v) =
N∑
i=0

M∑
j=0

pijSi,n(u)Sj,n(v). (1.40)
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Fig. 1.4 Example of B-spline surface

An interesting property of the tensor product surfaces is that if we fix any of the two
variables, say v = v0, then the remaining function is a B-spline curve

S(u, v0) =
N∑
i=0

(
M∑
j=0

pijSj,n(v0)

)
Si,n(u). (1.41)

Construction and properties of curves and surfaces using splines

The construction of a B-spline curve needs the definition of the knots ui delimiting
the interpolation intervals (each knot is associated to a given control point). Note that
u0 = 0 and uN = 1. As already indicated it is customary to repeat the first and last
knots n+ 1 times so that the set of knots become:

U = {u0, ..., u0︸ ︷︷ ︸
n+1 times

, u1, u2, ..., uN−1, uN , ..., uN︸ ︷︷ ︸
n+1 times

} (1.42)

The first and last knots are not the only ones that can be repeated, any ui in the sequence
can be repeated. However, increasing the multiplicity of a control point decreases
the derivability of the B-spline curve at that point. B-spline curves are of class C∞
(continuous and all its derivatives continuous) everywhere except at the knots. At the
knots, they are of class Cn−k (i.e., they are continuous and have n − k continuous
derivatives), where n is the B-spline degree and k is the multiplicity of the knot. By
repeating a point n times, the curve isC0 at that knot and interpolates the corresponding
control point (if all points are repeated n times, then we are simply joining the control
points with straight lines).

Simply by using B-splines as basis functions, B-spline curves and surfaces enjoy a
number of useful properties:

– Locality: Outside the interval [ui, ui+n+1), Si,n(u) = 0. This fact guarantees
numerical stability in the evaluation of the curve values. Conversely, in a given



1 Splines for bioimaging

interval [ui, ui+1), there are at most n + 1 B-splines different from 0, which
establishes the basis for computationally efficient algorithms to evaluate the
curve value. Another way of considering this property is that as one moves
along the curve, at each knot, one of the past B-splines switches off (the basis
function n knots ago no longer affects the curve shape) and a new B-spline
switches on.

– Partition of unity: For any interval [ui, ui+1),
i∑

j=i−n
Sj,n(u) = 1. This means

that we can approximate any C2 curve as closely as desired as long as we pro-
vide sufficient control points.

– Spatial bounds: B-spline curves and surfaces are contained within the convex
hull of the control points.

1.2.3

Splines for multiscale analysis

The multiscale capabilities of splines come in two different flavors: spline pyramids
and spline wavelets. Each one of these approaches exploit a different feature of splines
that make them suitable for multiresolution analysis. The reader interested in this topic
may get more details in [1].

1.2.3.1 Spline pyramids

Let us assume that we know the representation of a certain function f(x) with B-splines
of odd degree n and a sampling rate T

f(x) =
∞∑

i=−∞
ciβn

(
x
T
− i
)

=

( ∞∑
i=−∞

ciδ (x− i)

)
∗ βn

(
x
T

)
= c�(x) ∗ βn

(
x
T

)
.

(1.43)
One may wonder how a finer representation of f would be. For this we consider

the relationship between an odd degree B-spline and its contraction by M to a final
sampling rate T

M
. It can be shown [1] that

βn
( x
T

)
=

∞∑
k=−∞

hkβn

(
x
T
M

− k

)
= h�(x) ∗ βn

(
x
T
M

)
(1.44)

i.e., we can decompose a wide B-spline of degree n as the weighted sum of thinner B-
splines of the same degree. For any M and n, the Z transform of the weight sequence
hk is

H(z) = z
(M−1)(n+1)

2
1

Mn

(
M−1∑
m=0

z−m
)n+1

(1.45)

The caseM = 2 plays an important role in the design of wavelets, and the correspond-
ing property is called the 2-scale relationship. In case of B-splines of degree 1, the two
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scale relationship is simply

β1

( x
T

)
=

1

2
β1

(
x
T
2

+ 1

)
+ β1

(
x
T
2

)
+

1

2
β1

(
x
T
2

− 1

)
(1.46)

and, in general, for splines of odd degree n and M = 2 we have

hk =

{
2−n( n+1

k+ n+1
2

) |k| ≤ n+1
2

0 |k| > n+1
2

(1.47)

Substituting the expression of the wide B-splines by the weighted sum of fine B-
splines, we obtain

f(x) =
(
(↑M {c�(x)} ∗ h)� (x)

) ∗ βn( x
T
M

)
(1.48)

That is, to obtain a finer representation of a signal we simply have to upsample its B-
spline coefficients and convolve them with a finite weight sequence depending on the
scaling factor M and the spline degree. Note that the function represented with splines
at the finer resolution is exactly the same as the original one. No interpolation has been
performed on the way.

Creating a coarser representation of the function f(x) is a little bit more involved
since we cannot have exactly the same function but an approximation to it

f̃(x) = c̃�(x) ∗ βn
( x

MT

)
, (1.49)

and we have to devise a way of estimating the coefficients c̃ from the c coefficients.

The easiest way is to look for the c̃ that minimize the L2 norm of the error
∥∥∥f − f̃

∥∥∥. It

can be proved [25] that the solution to this least-squares problem is

c̃ =
1

2

((
b2n+1
k

)−1 ∗ ↓M
{
hk ∗ b2n+1

k ∗ ck
})

, (1.50)

being ↓M {·} the downsampling operator, ck the B-spline coefficients of the function
f with sampling rate T , hk the sequence described in Eq. (1.47), and b2n+1

k the se-
quence b2n+1

k = β2n+1(k). Note that
(
b2n+1
k

)−1
is the inverse of this sequence. It

can be easily understood by inverting the Z transform of the sequence b2n+1
k and then

performing an inverse Z transform. While b2n+1
k is compactly supported,

(
b2n+1
k

)−1
is

not and convolution with this sequence requires the design of an IIR (Infinite Impulse
Response) filter [9, 26].

1.2.3.2 Spline wavelets

A quick review on wavelets

Wavelets are basis functions to expand our function f(x)

f(x) =

∞∑
s=−∞

∞∑
i=−∞

csiψsi(x). (1.51)
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i is our standard location parameter (our basis function ψsi will be located at samples
xi), while s is a new parameter controlling the sampling rate and the size of the basis
function

ψsi(x) =
1√
Ts
ψ

(
x− xi
Ts

)
. (1.52)

Function ψ is called the mother wavelet, while the basis functions ψsi are called child
wavelets. Positive s values result in child wavelets finer than the mother wavelet, while
negative s values result in child wavelets wider than the mother wavelet. Typically,
Ts = 2s and xi = iTs. In this way, we see that our function is decomposed as a
weighted combination of functions at the same scale as the mother wavelet (s = 0)
and located at the integer samples xi = i, plus a weighted combination of functions
twice wider than the mother wavelet (s = 1) and located at samples xi = 2i, plus a
weighted combination of functions four times wider than the mother wavelet (s = 2)
and located at samples xi = 22i, and so on. On the other side, we have a weighted sum
of functions twice thinner than the mother wavelet (s = −1) and located at samples
x = i

2
, and so on.

The question now is which are the requirements on the mother wavelet to be able to
approximate functions in L2(R). The answer is that a mother wavelet must fulfill the
admissibility and regularity conditions. The admissibility condition is∫ ∞

−∞

|ψ̂(jΩ)|2
|Ω| dΩ <∞, (1.53)

where ψ̂(jΩ) is the continuous Fourier transform of the mother wavelet. This condi-
tion implies that ψ̂(0) = 0 and, therefore, the mother wavelet behaves as a band-pass
like filter and has zero average over x, i.e., the mother wavelet must oscillate in real
space and this is where the name wavelet is coming from, it behaves as a wave. The
regularity condition is related to the approximation order, i.e., how well can a wavelet
decomposition represent a given signal. We saw in Eq. (1.15) that the projection on the
space spanned by the wavelets ψsi is performed through the inner product between the
dual wavelet and the function to be represented. Let us expand f in its Taylor series
(for simplicity of notation around 0, although it could have been done around any point
and the conclusions would be the same)

f =
∞∑

s=−∞

∞∑
i=−∞

〈
f(0) + f (1)(0)x+ ...+ f(n)(0)

n!
xn +O(xn+1), ψ̃si

〉
ψsi

=
∞∑

s=−∞

∞∑
i=−∞

(
f(0)

〈
1, ψ̃si

〉
+ f (1)(0)

〈
x, ψ̃si

〉
+ ...

+ f(n)(0)
n!

〈
xn, ψ̃si

〉
+
〈
O(xn+1), ψ̃si

〉)
ψsi

=
∞∑

s=−∞

∞∑
i=−∞

(
f(0)

〈
1, ψ̃0i

〉
Ts + f (1)(0)

〈
x, ψ̃0i

〉
T 2
s + ...

+ f(n)(0)
n!

〈
xn, ψ̃0i

〉
Tn+1
s +

〈
O(xn+1), ψ̃0i

〉
Tn+2
s

)
ψsi

(1.54)
Because of the admissibility criterion and the relationship between a wavelet and its

dual (1.16), the average of the dual is also zero (
〈
1, ψ̃si

〉
= 0). If we design the wavelet
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so that its dual has n vanishing moments (
〈
x, ψ̃si

〉
= ... =

〈
xn, ψ̃si

〉
= 0), then the

wavelet coefficients csi decrease as Tn+2
s . This is related to the approximation order

[27] (the error between the reconstructed function, Eq. (1.51), and the desired function
is as small as possible) and the number of null moments of the wavelet designed is
called the number of vanishing moments.

Designing good wavelets involve having good approximation properties, and yield-
ing efficient algorithms for the analysis (computation of the csi coefficients) and syn-
thesis (reconstruction of the signal through Eq. (1.51)). Splines are involved in wavelet
analysis in two ways: first, we can explicitly design mother wavelets that incorporate
some spline; second, it can be shown that all other mother wavelets can be decomposed
as the convolution of a spline (responsible for a good number of appealing properties of
wavelets) and a distribution. Before getting into these two topics let us further describe
the wavelet decomposition by the introduction of the scaling function.

Let us rewrite Eq. (1.51) as

f(x) =
∞∑

s=−∞
ds(x), (1.55)

where ds(x) represents the inner sum. Mother wavelets must have zero average over
x, this means that they are high pass filters and, therefore, ds(x) can be understood as
the details at level s. In this way, Eq. (1.51) can be reinterpreted as the superposition
of details at different levels s. We could split the wavelet transform, Eq. (1.51), in two
sums

f(x) =

S−1∑
s=−∞

ds(x) +
∞∑
s=S

ds(x) =

S−1∑
s=−∞

ds(x) + fS(x) (1.56)

The details at a given scale S cover a certain bandpass region in frequency space. The
details at scale S + 1 use wider wavelet basis and, therefore, cover another bandpass
region of lower frequency than at scale S. Adding the details at scales S + 2, S + 3,
..., ∞ really covers the whole low frequency spectrum up to scale S. Thus, we can
interpret this equation as the decomposition of f(x) as a lowpass approximation fS(x)

plus the superposition of all details finer than those at scale S. We could define a
function ϕS such that it implements the lowpass filter needed to produce fS such that

fS =
∞∑

i=−∞
〈f, ϕ̃Si〉ϕSi. (1.57)

For S = 1, ϕ1 (or simply ϕ) is called the scaling function and plays a central role
in wavelet theory since it gives rise to a very efficient implementation of the wavelet
decomposition based on filter banks [28]. It can be shown [27] that the admissibility
criterion of the mother wavelet can be translated into three criteria that the scaling
factor must meet:

– Riesz basis: the scaling function must be a Riesz basis, i.e., there must be two
real constants 0 < A ≤ B <∞ such that

A ≤
∞∑

k=−∞
|ϕ̂(j(Ω + 2πk))|2 ≤ B. (1.58)
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– Two-scale relationship: there must exist a sequence hi ∈ l2 allowing to express
dilations of the scaling function

ϕ
(x

2

)
= 2h�(x) 
 ϕ(x). (1.59)

This property is key to have multiresolution analysis and its equation is some-
times called the dilation equation. Scaling functions must be solutions of this
equation.

– Partition of unity: the sum of the scaling function at the integer points must add
up to 1

∞∑
i=−∞

ϕ(x− i) = 1 (1.60)

This property is key to have a dense representation in L2 as finer and finer
details are added, i.e., to reduce the representation error as much as desired
when s→ −∞.

An important relationship between mother wavelets and the scaling function is that
the mother wavelet can be uniquely determined by a sequence gi ∈ l2 such that [27]

ψ
(x

2

)
= 2g�(x) 
 ϕ(x). (1.61)

This equation is called the wavelet equation and it is important because it allows to
define wavelets by simply choosing a scaling function (how to compute the gi sequence
will be shown later when talking about filter banks). Therefore, from the knowledge of
the scaling function we can construct automatically the corresponding mother wavelet
(used for synthesis) and the two corresponding dual functions for analysis (the dual
scaling function and the dual mother wavelet). In the orthogonal case, the dual scaling
function is equal to the scaling function, and the dual mother wavelet is equal to the
mother wavelet.

The design of wavelets is intimately related to the concept of perfect reconstruction
in filter banks. In fact in the subsequent sections we will make use of the notation
usually used in filter banks for showing the relationship between splines and wavelets.
Let us first quickly review the main results of filter banks related to our purpose.

Consider the filter bank shown in Fig. 1.5. Usually, H0(z) is a discrete lowpass
filter, andH1(z) is a discrete highpass filter. They are called the analysis filters and may
overlap in frequency, causing thus some aliasing after downsampling. This aliasing has
to be compensated by the synthesis filtersG0(z) andG1(z). The perfect reconstruction
condition is achieved if after the decomposition and reconstruction of the signal we
have x̃[n] = x[n− n0] where n0 is some delay (when processing images, it is usually
preferred to set n0 = 0). It can be proved [28][Chap.4] that to achieve this goal, it is a
necessary and sufficient condition to have

H0(z)G0(z) +H1(z)G1(z) = 2

H0(−z)G0(z) +H1(−z)G1(z) = 0
(1.62)



1.2 Main theoretical results about splines

Fig. 1.5 Filter bank example with a downsampling of 2 (as it is
commonly used in wavelet theory). The dashed lines represents
where the signal is transmitted, compressed, etc. For perfect
reconstruction we will assume that there is no loss in the
transmission of the signal.

The first equation takes care of the distortion through the filterbank, while the second
equation takes care of alias cancellation. An easy way to fulfill the second equation
is by setting G0(z) = H1(−z) and G1(z) = −H0(−z). In this way, we only have
to design two filters (G0 and H0, for instance) instead of four (H0, H1, G0 and G1).
With this constraint for the reconstruction filters, and defining P (z) = H0(z)G0(z),
the non-distortion condition can be rewritten as [28][Chap.4]

P (z) + P (−z) = 2. (1.63)

The connection between wavelets and filter banks is that the sequences hi and gi
needed for the dilation and wavelet equations are precisely the impulse responses of
the digital filters G0(z) and G1(z), respectively. G0 is called the refinement filter.
The impulse responses of H0 and H1 yield the corresponding sequences for the dual
scaling function and the dual mother wavelet. Knowing G0 permits us to establish the
equation the scaling function must fulfill, Eq. (1.59), however we still have to solve it.
It can be proved [28][Chap.6] that the Fourier transform of the scaling function is

ϕ̂(jΩ) =

∞∏
k=1

H
(
e
j Ω
2k

)
(1.64)

where H(ejω) is the Fourier transform of the discrete sequence hi in Eq. (1.59).
An important result from wavelet theory is that if the filter bank is to be used for a

wavelet decomposition, then P (z) can be factorized as

P (z) =

(
1 + z−1

2

)N
Q(z), (1.65)

where Q(z) is a distribution and
(

1+z−1

2

)N
is the Z transform of the sequence of

samples at integer values of the causal B-spline of degree N − 1. In fact, many of the
interesting wavelet properties, as will be seen later, come from the fact that they have
B-splines in their design.

Summarizing, the design of a wavelet is as follows: choose a Q(z) such that P (z)

fulfills Eq. (1.63); then split the factors of P (z) (see Eq. (1.65)) into H0(z) andG0(z);
finally, use the alias cancellation constraint to find H1(z) and G1(z). If these filters are
designed to be linear phase, the corresponding scaling functions and mother wavelets
are symmetric and antisymmetric, respectively.
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So far we have discussed the so-called biorthogonal filter banks. This name is re-
lated to the use of a basis function for synthesis and its dual for analysis. Orthogonal
filter banks (and orthogonal) basis functions are a particular case of the biorthogonal
ones in which the analysis and synthesis functions (filters in the case of filter banks)
are the same (note that in the case of filter banks they can only be the same filter if
P (z) is centered around n = 0). Orthonormal filter banks are a special case of orthog-
onal filter banks in which the impulse response of the filters involved have unit energy
(conversely, the norm of the corresponding orthonormal basis functions is 1).

Orthonormality of the wavelets can also be expressed in Fourier space and doing
this helps to build orthonormal wavelets. Let ai be the inner products among shifted
versions of the scaling function, i.e., ai = 〈ϕ(x), ϕ(x− i)〉. Obviously, the orthonor-
mality condition is ai = δi (i.e., zero for all i except i = 0 for which it is 1). Let A(z)

be the Z transform of the sequence ai and A(ejω) its Fourier transform. The orthonor-
mality condition is then A(z) = 1 and A(ejω) = 1. It can be proved [28][Chap.6]
that if ϕ is not an orthonormal scaling function, then the following scaling function is
orthonormal

ϕ̂orth(jΩ) =
ϕ̂(jΩ)√
A(ejΩ)

. (1.66)

Interesting wavelet properties can be obtained through a correct design of P (z)

[29][Chap.35]. For instance: if p[n] (the inverse Z transform of P (z)) is obtained
through the autocorrelation of a sequence r[n], then the corresponding wavelet is or-
thogonal; if P (z) is a linear phase system, and it is decomposed into two linear phase
systemsH0 andG0, then the scaling and wavelet functions are symmetric and antisym-
metric, respectively. If P (z) is FIR (Finite Impulse Response) filter, and H0 and G0

are also FIR filters, then the corresponding scaling and wavelet functions are compactly
supported.

Wavelets based on splines

There are a number of wavelets explicitly based on splines. We will categorize them
according to their orthogonality properties:

– Biorthogonal spline wavelets: The simplest approach to wavelet design with
splines is to consider the scaling function to be a B-spline of degree N . Then,

G0(z) =
(

1+z−1

2

)N
. H0 must be of the form H0(z) =

(
1+z−1

2

)N′
Q(z). A

natural choice is to select Q(z) to be a polynomial of degree q > N − 2 (this
is needed to have at least a zero at z = −1 [28][Chap.7]). The coefficients of
the Q(z) polynomial are determined through the non-distortion equation, Eq.
(1.63). This design has a number of drawbacks. Note that the scaling function
(a B-spline) is not orthogonal to integer shifted versions of itself. The scaling
function is not orthogonal, neither, to its wavelet function which complicates,
in part, the mathematics of the decomposition. Due to this biorthogonality we
have different filters for analysis (dual filters) and synthesis. Finally, the space
spanned by the scaling function (all B-splines of degree at most N) is not the
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same as the space spanned by the dual scaling function (which is not even de-
fined in terms of splines). On the other hand, it has an important advantage: the
analysis and synthesis filters are FIR what makes them very convenient.

– Semiorthogonal spline wavelets: Assume thatG0 is defined as in the biorthog-
onal case. If we want the scaling function and its mother wavelet to be or-
thogonal (which simplifies the expansion since we can consider the space of
functions to be a direct sum of the spaces spanned by the scaling function, and
the spaces spanned by the wavelets at different scales), then we can construct
the highpass filter G1 as G1(z) = −z1−2NG0(z)A(−z−1) (H0 and H1 are
computed through the perfect reconstruction equations). Doing this we achieve
orthogonality between the scaling function and its mother wavelet. Wavelets at
different scales are also orthogonal (however, wavelets at a given scale are not
orthogonal with shifted versions of themselves). The scaling function and its
dual scaling function are neither orthogonal nor the same, but the space spanned
by both functions is the same [28][Chap.7]. The price paid for these advantages
is the appearance of IIR filters on the analysis side.

– Orthogonal spline wavelets: If we orthogonalize the scaling function using
Eq. (1.66), then we obtain orthogonal scaling and wavelet functions. Now we
have the same analysis and synthesis filters and spaces at the cost of having IIR
filters in both operations. These orthogonalized spline wavelets are also known
as Battle-Lemarie wavelets.

A notable property of these families of wavelets is that all of them, for a given order
N , seem to have the best approximation properties among all wavelet families if the
expansion is truncated at a given scale [30].

The previous wavelets were based on a scaling function with a factor of the form(
1+z−1

2

)N
which we attributed to the Z transform of the sequence bk = βN−1

+ (k),

i.e., samples at the integer values of the causal B-spline of degree N − 1. In this
construction, N must be an integer number and the Fourier transform of the B-spline
(as continuous function) is

β̂N−1
+ (jΩ) =

(
1 − e−jΩ

jΩ

)N
. (1.67)

Causal fractional B-splines are defined in Fourier space as [30]

β̂α−1
+ (jΩ) =

(
1 − e−jΩ

jΩ

)α
, (1.68)

where α is any real number (not necessarily integer) larger than -1. For non-integer val-
ues of α the B-spline is no longer compactly supported. Fractional B-splines generate
valid scaling functions as long as α > −1

2
and have a fractional approximation order

α. Causal fractional B-splines can also be symmetrized yielding a generalization of
the centered B-splines of integer degree [30]. It is well known that B-splines of degree
N can reproduce any polynomial of degree N . A remarkable property of fractional
B-splines of degree α (N − 1 < α < N) is that they can also reproduce polynomials
of degree N , i.e., they can reproduce polynomials of a degree slightly larger than α.
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Properties of spline wavelets

Wavelets are useful for representing functions because they are dense in L2(R), i.e.,
they can approximate any arbitrary function in L2(R) by adding finer and finer details.
Moreover, the number of coefficients significantly different from zero can be made
small by increasing the approximation order. It is known that the approximation order
of the wavelet is related to the number of vanishing moments [27]. In this section we
will show that many of these properties of wavelets are due to the degree of the B-
spline present in its scaling function. The reader interested in this topic is referred to
[27].

It can be proved [27] that a function ϕ is an admissible scaling function if and only if
it can be decomposed as a causal fractional B-spline (α > −1

2
) and a stable tempered

distribution:
ϕ = βα−1

+ ∗ ϕ0. (1.69)

A tempered distribution is a generalization of functions to “generalized functions”
such as Dirac’s delta, Heaviside’s step function, and any linear combination of them.
A tempered distribution ϕ0 is stable if |ϕ̂0(jΩ)| is bounded (for instance, the Fourier
transform of Dirac’s delta is bounded but the Fourier transform of Heaviside’s step
function is not). Alternatively, one could also show [27] that the refinement filterG0(z)

associated to the scaling function can be decomposed as

G0(z) =

(
1 + z−1

2

)α
G′

0(z). (1.70)

For integer α, the corresponding B-spline is compactly supported and gives raise to
a FIR filter. If α is not integer, then the corresponding B-spline is not compactly
supported and its associated filter is IIR.

In the previous section we already discussed that fractional B-splines of degree α
(N − 1 < α < N) can reproduce polynomials of degree N . This property is preserved
through convolution [27] so that the scaling function can also reproduce polynomials
of degree N .

Under the previous decomposition of the scaling function, it can also be proved [27]
that the dual mother wavelet (the one used for analysis) has N +1 vanishing moments,
i.e., the fact that the wavelet coefficients decay very fast over scales is purely due to
the B-spline contained in its scaling function. The approximation order of the wavelet
decomposition is α. The same decomposition could be done on the dual scaling func-
tion ϕ̃ = βα̃−1

+ ∗ ϕ̃0 meaning that the synthesis wavelet has Ñ + 1 (Ñ − 1 < α̃ < Ñ)
vanishing moments.

It can also be shown [27] that the analysis wavelet practically behaves as a α-th order
differentiator, i.e., φ̂(jΩ) ∝ (jΩ)α as Ω → 0. More specifically,〈

f(x), ψ̃(x− xi)
〉

= ∂α{φ ∗ f}(xi), (1.71)

i.e., the wavelet coefficients are the derivative of order α of a smoothed version of f ,
evaluated at the point xi. The smoothing kernel is defined by its Fourier transform

φ̂(jΩ) =
̂̃ψ∗

(jΩ)
(jΩ)α . Note that because of the smoothing, the differentiation process is
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more robust with respect to noise. Moreover, the α-th order derivative of the scaling
function is in L2(R) (i.e., the scaling function belongs to the Sobolev space of order
α).

One may wonder what is, then, the role of the distributional part of the scaling func-
tion, G′

0(z). It is mainly responsible of the orthogonalization and localization prop-
erties of the wavelet decomposition. A careful design of the distributional part of the
scaling functions allows to have FIR filters in the analysis side, the synthesis side or
both. Furthermore, fractional B-splines are not orthogonal, the distributional part is
the one in charge of providing the necessary orthogonality properties of the scaling
function and its corresponding wavelets.

1.3

Main applications of splines for biomedical imaging

1.3.1

Geometric image/volume transformations

Geometric image transformations such as resizing, rotation and translation are com-
mon operations in image processing. In medical imaging, there are three typical appli-
cations of image resizing: re-slicing to compensate for the fact that the resolution of
the 3D data is often anisotropic (i.e., the within-slice resolution of CT or MR data is
typically finer than the across-slice resolution), image zooming for focusing on details
for diagnostic purposes, and image pyramids for multi-scale processing (e.g., many
iterative image processing algorithms can be applied in a coarse-to-fine fashion, which
reduces the computation time and also tends to improve robustness [4]). The so-called
rigid-body transformation is described by a combination of rotation and translation. It
is commonly used in the so-called rigid-body intensity-based image registration tech-
niques (Section 1.3.2). A general affine geometric transformation covers any com-
bination of translation, rotation around any center, skewing, shearing, mirroring, and
scaling. Its typical application is in elastic image registration (Section 1.3.3).

When no image/volume size reduction is required, the geometric transformations
are often implemented by standard spline interpolation. The simplest methods are
nearest-neighbour and bilinear interpolation. The piecewise constant model generates
noticeable blocking artefacts, while the bilinear one tends to lose details through im-
age blurring. Better interpolation performance is achieved by switching to higher order
spline interpolation, such as cubic B-spline interpolation, which offers a good trade-off
between the computational cost and the interpolation quality [4]. For image/volume
size reductions, interpolation is not entirely suitable because of potential aliasing prob-
lems [31]. The standard remedy is to apply some kind of low-pass filtering prior to
re-sampling. An alternative is to obtain the best solution in the least-squares sense to
reduce aliasing artefacts [31]. A method that allows resizing images/volumes with ar-
bitrary scaling factors (not necessarily powers of two) by computing oblique or orthog-
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Fig. 1.6 3D electron microscopy. Experimental images
corresponding to three arbitrarily chosen projection directions and
a 3D model of the Phosphorylase Kinase [37]. The arrows
represent the directions of back-projection in 3D space.

onal projections (least-squares approximations) for splines of any degree was proposed
in [32].

1.3.2

Rigid-body image/volume registration

The intensity-based registration can be viewed in an optimization framework in which
the registration problem consists in searching for a geometric transformation of a
source image/volume that gives the image/volume that best matches a target image/volume,
under a chosen similarity measure. The restriction of the motion to rigid-body motion
means that the distance between the points of the object is the same in the registered
source and target images/volumes. Two typical biomedical applications of the rigid-
body image/volume registration are computer-assisted orthopaedic surgery [33] and
3D electron microscopy [34]. A problem of a particular interest for both applications
is the registration (alignment) of a 3D model to a set of 2D projection images, which
requires a rigid-body transformation of the volume for the computation of projections
[35].

In computer-assisted orthopaedic surgery, the need arises to visualize intra-operatively
the position of surgical tools on preoperative 3D CT patient data [33]. A solution to the
problem of integration of the CT into the intra-operative procedure is to align the CT
with a set of intra-operatively acquired cone-beam X-ray images of the same patient
[36].

In 3D electron microscopy, the structure of a macromolecular complex can be com-
puted in three dimensions from a set of parallel-beam projection images of the same
complex acquired in a microscope [34]. For the so-called single-particle analysis, im-
ages of the sample containing thousands of copies of the same complex are collected.
Ideally, the copies have the same structure. Their orientation in the 3D space is random
and unknown, and the position of the center of each complex is unknown. These pa-
rameters have to be estimated before applying a method for 3D reconstruction. Given
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Fig. 1.7 Elastic registration of two 2D protein gels (source and
target) using the method [39]. The deformation field represents
the continuous deformation required to convert the source into the
target. The combined image shows the target image in the red
channel and the warped source in the green channel. Note that
there are red spots (proteins expressed in the target image and not
expressed in the source image), green spots (just the opposite),
and yellow spots (proteins equally expressed in both images).

a first guess for the 3D model, one estimates the unknown parameters by aligning the
images with the 3D model (reference model) [38] (Fig. 1.6). A new reconstruction is
then computed using the images and the estimated orientations and positions. The new
model can be used as the reference model to resume the alignment in the next iteration
of the iterative refinement of the estimated parameters [34]. It has been shown that
such procedures can yield 3D models of sub-nanometer resolution [37].

1.3.3

Elastic image/volume registration

Elastic registration is frequently employed in medical image analysis to combine data
which describe anatomy, both because biological tissues are in general not rigid and be-
cause anatomy varies between individuals. Various techniques have been developed for
intensity-based registration, as well as for matching surfaces, curves, or landmarks in
two images or two volumes [40, 41]. In the intensity-based techniques, the solution of
the registration problem is the deformation field that warps the source image/volume
so that the resulting image/volume best matches the target one. The registration is
achieved by minimizing a cost function, which represents a combination of the cost as-
sociated with the image/volume similarity and the cost associated with the smoothness
of the transformation (regularization term).
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Many authors have proposed to use linear combinations of B-splines placed on a reg-
ular grid to model the deformation field [42, 43, 44]. The available techniques differ
in the form of employed regularization term, as well as in the employed image/volume
similarity metrics and the optimization method. The approaches that model the defor-
mation field with a linear combination of cubic B-splines produce good results but have
a high computational cost. The computation can be accelerated using multi-scale im-
age/volume processing, and spline pyramids provide a convenient tool for this. More-
over, spline model can be used for all computation aspects of the registration: image
pyramid, geometric transform, and the gradient of the optimization criterion [4, 36].

An illustration of elastic image registration is given in Fig. 1.7. One of the major
difficulties in the analysis of electrophoresis 2D gels is that the gels are affected by
spatial distortions due to run-time differences and dye-front deformations, which re-
sults in images that differ significantly in the content and in the geometry. The method
proposed in [39] models the deformation field using B-splines, whose advantage is
that the model can be adapted to any continuous deformation field simply by changing
the spacing between splines [39]. The method computes quasi-invertible deformation
fields so that the source image can be mapped onto the target image and vice versa,
which helps the optimizer to reduce the chance of getting trapped in a local minimum
and allows the simultaneous registration of any number of images [39].

1.3.4

Contour and shape modelling

Shape analysis is required in many biomedical imaging applications. B-splines are well
suited to the contour and surface modelling. For example, NURBS geometries, based
on B-spline basis functions, are ideal for modelling anatomical shapes that cannot eas-
ily be reduced to analytical forms such as straight lines, ellipses, or spheres, and have
long been the industry standard for computer-aided modelling of free-form geometries
[45]. NURBS are thus used in computational musculoskeletal models, which are 3D
graphics-based models that accurately simulate the anatomical architecture and/or the
biomechanical behaviour of muscles, tendons, ligaments, cartilage and bones, with
applications ranging from pathological diagnosis to surgical planning [45].

Another issue is also the determination of location, orientation and size of filamen-
tous or spherical bright structures in images. These problems arise in segmentation and
characterization of biological cell images, analysis of vessel distributions in medical
images, and detection of DNA filaments in electron micrograph images. The evalua-
tion of low order moments is a standard method for shape analysis. Since moments
are integral-based features, they are robust against noise. Furthermore, low order mo-
ments have a direct geometrical interpretation. The method described in [46] uses
local weighted geometric moments that are computed from an image within a slid-
ing window, at multiple scales and with B-splines as window functions. B-splines
are well-suited window functions because they are positive, symmetric, separable, and
nearly isotropic, in addition to being refinable [46]. Besides feature extraction, these
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Fig. 1.8 Echocardiograms with superimposed motion information
after infarction. (a) Estimated velocity field during systole. (b)
Color-coded radial velocity during systole. (c) Velocity field during
diastole. (d) Color-coded radial velocity during diastole. Regions
with abnormal wall motion (dyskinesia) are highlighted by red
arrows. The principal axes of inertia of the ROI are indicated by
dotted lines. Reprinted, with permission, from [50], c© 2005 IEEE.

local moments can be used in many algorithms of sliding-window type, such as noise
reduction and optical-flow estimation [46].

Let us also mention "snakes" that are standard tools for extracting deformable con-
tours in images. A snake is an energy minimization spline segment with external and
internal forces [47]. It simulates an elastic material that can dynamically conform to
local image features. The internal forces constrain the rigidity of the curve and, thus,
have regularization function. In the case of B-spline snakes, the smoothness of the
curve can be alternatively controlled by adapting the scale of the basis functions [48].
An example of using spline snakes is the estimation of the cell boundary in the multi-
parameter fluorescence imaging for automatic phenotyping of multiple cell types [49].

1.3.5

Motion reconstruction

Non-rigid motion analysis is an important issue in medical image analysis. The basic
problem involves the estimation/reconstruction of a dense motion of the elastic mate-
rial from sparse measurements of that motion, using some form of elastic splines (e.g.,
thin-plate spline, snakes). For instance, several approaches have been proposed for au-
tomated computer-based analysis to quantify heart motion from 2D echocardiographic
sequences. One approach consists of segmenting and tracking myocardial borders us-
ing active contours or active appearance models [47, 51]. However, motion information
is only obtained for myocardial borders which are often poorly defined. A different ap-
proach is to estimate motion for the entire image content using so-called optical flow
methods [52]. A popular optical flow algorithm is the Lucas-Kanade method, which
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estimates the motion locally, assuming that the velocity field is constant within a win-
dow [53].

The parameters of the local motion model can be estimated in the weighted least-
squares sense inside a sliding spatio-temporal B-spline window [50]. To account for
typical heart motions, such as contraction/expansion and shear, the method analyzes the
images locally by using a local affine model for the velocity in space and a linear model
in time (Fig. 1.8). Robustness and spatial adaptability is achieved by estimating the
model parameters at multiple scales within a coarse-to-fine multiresolution framework.
To increase computational efficiency, a wavelet-like algorithm is used for computing B-
spline-weighted inner products and moments at dyadic scales [50]. Since the estimated
velocity data itself is not of direct use, it has to be processed and visualized properly
to facilitate the diagnosis. In order to focus on the relevant regions of the heart, the
motion information should only be displayed inside a user-defined region of interest
(ROI) that typically corresponds to the myocardium. In order to follow the movement
of the myocardium, the ROI contour should be automatically tracked in time using
the estimated velocity field. In the method [50], robustness of the tracking process is
achieved using a spline representation of the ROI contours that is fitted in the least-
squares sense to the estimated motion field.

1.4

Conclusions

In this chapter, we presented the main theoretical achievements concerning splines and
their main applications in biomedical image and volume processing. We reviewed
spline interpolation and approximation theory by presenting two spline families: ten-
sor product splines and polyharmonic splines. We dicussed the traditional computer-
graphics curve/surface formulation and the advantages of using it in image processing.
Also, we presented the multiscale properties of splines that allow the definition of
spline pyramids and spline wavelets. Finally, we showed applications of splines in
geometric transformations, alignment, contour and shape modelling, and motion esti-
mation.
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