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Coarse-Graining of Volumes for Modeling
of Structure and Dynamics in Electron
Microscopy: Algorithm to Automatically
Control Accuracy of Approximation

Slavica Jonić, Member, IEEE, and Carlos Óscar Sánchez Sorzano, Senior Member, IEEE

Abstract—Coarse-graining (or granularization) of structures
from transmission electron microscopy (EM volumes) has been
shown to be useful for a variety of structural analysis applica-
tions. Several methods perform coarse-graining of EM volumes
using hard spheres or 3D Gaussian functions but they do not
allow controlling automatically the volume approximation ac-
curacy. To tackle this problem, we recently developed such a
method. It is currently used by 3DEM Loupe web server and
HEMNMA software to study macromolecular dynamics based
on coarse-grained representations of EM volumes. In this paper,
we give a detailed description of the implemented algorithm and
fully analyze its performance, which was out of scope of our
previous papers. The performance is analyzed in a controlled
environment, in the context of studying structure and dynamics of
macromolecular complexes. We show that this technique allows
computing structures that are similar to atomic structures, by
analyzing intermediate-resolution volumes. Additionally, we show
that it allows sharpening of intermediate-resolution volumes. The
full algorithm description allows its implementation in any other
software package.
Index Terms—Coarse-graining, dynamics, electron microscopy

(EM), Gaussian functions, macromolecular complexes, modeling,
radial basis functions, structure.

I. INTRODUCTION

T HE study of macromolecular structures provides valuable
insight about the way proteins carry out their function in

the cell and how they interact with each other. Protein func-
tions are intimately linked to their structure and the analysis
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of this structure may reveal important facts about their bio-
chemical and biophysical properties. Structural information is
acquired through experimental techniques like X-ray diffrac-
tion, NuclearMagnetic Resonance (NMR) or transmission Elec-
tron Microscopy (EM). X-ray diffraction and NMR produce
high resolution structures in which the position of each atom
is known (with some uncertainty due to experimental errors)
but can be used only with crystalline matter (X-ray diffrac-
tion) or small-size systems (NMR). In contrast, EM produces
structures of low-to-medium resolution (usually in the range be-
tween 2 nm and 0.4 nm, although this paradigm has recently
changed with EM structures approaching the resolution of 0.2
nm) but allows studying large (diameter larger than 10 nm and
molecular weight sometimes of several mega-Daltons) and flex-
ible macromolecular complexes inaccessible to X-ray diffrac-
tion and NMR techniques. An EM structure contains a volu-
metric distribution of the electron density.
Reduced representations of EM density volumes with hard

spheres or 3D Gaussian functions (coarse-graining or granular-
ization of structures) have been shown to be useful for a variety
of structural analysis applications such as studying topology of
the complex [1], its conformational changes [2], [3], its hydro-
dynamic properties [4], or for aligning structures obtained at
different resolutions (e.g., fitting of X-ray diffraction or NMR
structures into EM volumes [5]). These methods represent the
density using a certain type of probability density function. The
majority of them is based on a neural network clustering ap-
proach for volume quantization and they use a reduced set of
points whose overall probability density function approximates
the density profile of the given volume (optimization of a den-
sity-weighted metric) [1], [2], [5]–[7]. The input parameters of
these methods are a desired number of granules (spheres or
Gaussian functions) or a desired maximum number of iterations
to produce the granules. Since samples are taken randomly (with
a probability distribution given by the EM density), a drawback
of these methods is that more dense regions might be oversam-
pled whereas less dense regions might be underrepresented. A
solution to overcome this drawback is to use the number of sam-
ples that is sufficiently high to guarantee an adequate represen-
tation of low density regions.
The method proposed in [8] is different from previously cited

methods as it uses expectation maximization algorithm to esti-
mate parameters of a Gaussian-Mixture-Model (GMM) type of
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the probability density function. GMM is a linear combination
of several Gaussian functions and Gaussian functions are the
granules in the volume representation. However, as the other
methods, the method proposed in [8] uses a fixed number of
granules (the desired number of granules is the input parameter).
As with other methods, allowing the user to set the final number
of granules might lead to suboptimal representations (e.g., a
too small number of granules might result in a significantly
asymmetrical representation of a symmetrical structure). As the
method in [8] has been developed for fitting multiple subunit
atomic structures into low-resolution EM volumes, it is aimed at
representing EM volumes with few large multivariate Gaussian
functions (the experiments showed in [8] deal with less than
100 Gaussian functions for large complexes such as GroEL/ES
at 0.15 nm resolution). This representation can be very useful to
analyze the relative orientation of different subunits or large do-
mains (given by their atomic structures) inside a low-resolution
EM volume of the entire macromolecular complex, as shown
in [8]. However, more and more structures are currently being
obtained by EM at much higher resolutions (between 0.4 nm
and 0.25 nm). Such high resolutions imply more precise fitting
that could be realized using much larger numbers of granules
but this would be a formidable optimization problem in [8]. An-
other solution would be to use a smaller volume approximation
error (the error between the given volume and its granules-based
approximation). The control of the volume approximation ac-
curacy also helps with the underrepresentation problem, as it
allows replacing the optimization of a nonuniformly weighted
metric by the optimization of a uniformly weighted one. How-
ever, the cited methods do not allow controlling the volume ap-
proximation accuracy.
Normal mode analysis (NMA) is another example of applica-

tion of granulated EM volumes and it is used for exploring con-
formational changes of macromolecular complexes [2]. NMA is
based onmodeling dynamics of a macromolecular complex by a
linear combination of harmonic oscillations around a minimum-
energy conformation. In EM, the obtained density volume is
considered to contain a minimum-energy conformation of the
complex. EM volumes are thus used as the reference structures
for computing normal modes but NMA requires their granu-
larization. In NMA literature, the use of a minimal number of
granules that captures the overall shape is largely accepted and
it is based on the principle that the low-frequency spectra will
be similar when using smaller and larger numbers of granules
[9], [10]. However, we have found that, in some NMA applica-
tions, the shape is not giving enough information and that more
structural details are required [11]. Indeed, in NMA applications
such as elastic projection matching using normal modes (elastic
3D-to-2D fitting), a good quality of volume projections (pro-
jections of a volume that is obtained from an elastically trans-
formed granules-based representation) is required for a precise
alignment [11]. This requires small volume approximation er-
rors meaning much larger numbers of granules than those re-
quired for other NMA applications. In elastic 3D-to-2D fitting,
structures with large numbers of granules are often required
(usually, - granules) [11].
To tackle these problems, we have developed a granulariza-

tion method for controlling the volume approximation accuracy

that can result in using very large or very small numbers of gran-
ules depending on the application of interest (NMA, fitting, etc.).
This method approximates a density volume using a collection
of radial basis functions (RBFs), with 3D Gaussian functions as
RBFs. Such functions form a set of control points that provide
information about the shape and the density distribution of the
macromolecular complex. Given a volume, a Gaussian-function
standard deviation, and a target volume approximation error, the
method adjusts the number, the position and the amplitude of the
Gaussian functions to achieve the given target approximation ac-
curacy. By making these Gaussian functions sufficiently small,
we may approximate the volume to any desired level of accu-
racy (it has been shown that Gaussians are a Riesz basis of L2
functions [12]). A combination of very small Gaussian functions
and a very small target approximation error will result in a large
number of granules (Gaussian functions), and vice versa.
The granularization method that controls the volume approx-

imation accuracy is currently used by 3DEM Loupe web server
[13] and HEMNMA software [14] to study macromolecular dy-
namics based on coarse-grained representations of EM volumes.
However, it was previously only briefly mentioned as one of the
software and web server tools. In this paper, we give a detailed
description of the implemented algorithm and fully analyze its
performance, which was out of scope of our previous papers.
The full algorithm description allows its implementation in any
other software package. Its performance is analyzed in a con-
trolled environment using data of adenylate kinase (AK) and
70S ribosome (70S). The results of the performance analysis
show some interesting properties of the method and we discuss
their potential for structural and dynamics studies of macro-
molecular complexes.

II. FROM EM VOLUME TO GAUSSIAN FUNCTIONS USING
VOLUME APPROXIMATION ERROR CONTROL

We formulate the problem in a function approximation
framework with 3D Gaussian functions as radial basis functions
(RBFs). In this way, the input volume density represented by
the function is approximated as follows:

(1)

where is the number of RBFs, is the RBF with the
width (i.e., the Gaussian function with the standard deviation
, in angstroms, and the amplitude of 1), is the position of

the RBF center, is the Euclidean distance between the
vectors and , and is the RBF weight (i.e., the ampli-
tude attributed to the Gaussian function ).
The goal is to find a RBF representation ( , , and ) so

that the representation error with RBFs, , satisfies:

(2)

where is the target volume approximation error, and is
the normalization factor describing the effective range of values
in :

(3)
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Here, is the inverse of the cumulative distribution func-
tion of the values of ; determines the statistical confidence
on the effective range; is one of the locations at which the
experimental volume density is compared to the approximated
volume density; and is the total number of the evaluation lo-
cations (voxels). Note that the error can be computed
within a mask that defines the volume region occupied by the
molecule. The advantage of using an effective range instead of
the true density range is that the effective range is insensitive to
data outliers that, in practice, are found in 3D EM reconstruc-
tions (the effective range is robust up to an outlier proportion
of ). Note that plays the role of a Type I error in the con-
struction of a confidence interval, so that typical values for
are 0.0025, 0.025, 0.05. We usually use . The choice
of does not make a practical difference for volumes without
outliers. The error represents the average relative error com-
mitted in the representation. For instance, means that
in average the function is represented with an error smaller than
1% of the effective range.
The minimization of the error in a high dimensional space

is prone to get trapped in local minima (e.g., for a fixed number
of Gaussian functions, representations with 150,000 Gaussian
functions would imply 600,000 optimization variables to de-
termine amplitudes and positions of each Gaussian function).
For this reason, we increase the number of Gaussian functions
progressively, from a given initial number of Gaussian func-
tions (referred to as the initial seeds parameter) using a given
speed of adding the Gaussian functions (referred to as the grow
seeds parameter) and concentrating every time the newly added
Gaussian functions in regions with large errors. Given the cur-
rent number of Gaussian functions , the width , and the target
error , we compute amplitudes and positions of Gaussian func-
tions using gradient descent minimization of the error . Al-
though this approach is not guaranteed to converge to the glob-
ally optimal coarse-grain representation of the input volume, we
have found that it provides rather good solutions as we show in
this article.
The pseudo-code of the algorithm is given in Fig. 1. By

analogy with atomic structures, from here on, we will refer to
the obtained coarse-grain structures as “pseudoatomic struc-
tures” and to the Gaussian functions as “pseudoatoms.” At each
iteration, a test collection of Gaussian functions is converted
into a volumetric structure that is then compared with the given
volume to minimize the volume approximation error in the
next iteration. This conversion is straight-forward and uses
(1). The algorithm stops iterating when the desired target error
is reached. Since any smooth function can be approximated
with a desired accuracy using a sufficiently small RBF width,
the method suggests decreasing the current RBF width when
it gets stuck in a local minimum wherein the target approxi-
mation error is unattainable. The algorithm will stop iterating
in this case that is tested by checking whether the number of
pseudoatoms still changes between iterations.
Some pseudoatoms are added and some are removed at each

iteration (this is also a feature of Growing Cell Structures [15]).
More precisely, the algorithm removes weak pseudoatoms
(with very small weights ) and the pseudoatoms whose
distance is below a given value ( ). We have found that

Fig. 1. Proposed algorithm for coarse-graining of EM volumes. Given of
Gaussian functions (pseudoatoms), an initial number of pseudoatoms (re-
ferred to as the initial seeds parameter), a percentage of pseudoatoms to add at
every iteration ( referred to as the grow seeds parameter), the minimum dis-
tance between pseudoatoms , and a target error , this algorithm converts
an input density volume into a set of pseudoatoms characterized by a po-
sition and a weight . Here, is the number of pseudoatoms calculated
as the percentage of the current number of pseudoatoms .

the strategy of removing these pseudoatoms allows the opti-
mization algorithm to place new pseudoatoms in the regions
that are most in need of new pseudoatoms. This also allows
adapting the pseudoatoms near the removed pseudoatoms
to better represent the local intensity in the input volume, if
necessary. For instance, the weakest pseudoatoms are the least
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contributing ones to the decrease of the approximation error
when they are in high-density areas in which a high-weight
(high-intensity) pseudoatom is already covering much of the
local intensity. Because of the positivity constraint ( ),
the regions in which the approximation has surpassed the
function ( ) cannot be recovered by the gradient
descent. For this reason, some pseudoatoms are removed in
these areas so that the gradient descent can later adapt to the
function. Finally, new pseudoatoms are added at the locations
where the approximation is worse. In the pseudo-code (Fig. 1),

means the number of pseudoatoms calculated as the
percentage of the current number of pseudoatoms . Given
the value of the grow seeds parameter (the percentage ) and
the current number of pseudoatoms ( ), pseudoatoms are
removed in each loop at most (e.g., in the loop that removes
closest pseudoatoms, no pseudoatom will be removed if
is set to a very small value). This results in removed
pseudoatoms per iteration at most (three loops in Fig. 1). The
number of added pseudoatoms per iteration is (a single
loop in Fig. 1). One can note that the number of pseudoatoms
to add is larger than the maximum number of pseudoatoms to
remove and that these numbers were set so that their ratio is
4/3. The goal is to have a ratio slightly larger than 1 so that
the approximation volume can get closer to the target volume
while slowly increasing the number of pseudoatoms.
Note that the method produces Gaussian functions of dif-

ferent amplitudes (Fig. 1) but can optionally be constrained to
produce Gaussian functions of the same amplitude.
Summarizing, themost important parameters of the algorithm

are the width of the pseudoatoms, , and the target approxima-
tion error, . The width of the pseudoatom is related to the reso-
lution of the input volume (volumes of lower resolution can be
represented with larger pseudoatoms), and it typically ranges
from 0.7–0.8 for high-resolution volumes to 2–2.5 for low-res-
olution volumes. The target approximation error is related to the
noise in the input volume. Experimental EM volumes are usu-
ally noisy. Their denoising is a delicate task as it affects struc-
tural details and can be devastating for the weakest ones. Thus,
they are rarely truly denoised. Noisy, experimental EM volumes
are approximated using larger target approximation errors (typ-
ically, ) to avoid approximating noise very accu-
rately (with many pseudoatoms), whereas clean volumes such
as appropriately denoised experimental or synthetic volumes are
approximated using smaller target approximation errors (typi-
cally, ). The rest of parameters of the algorithm
(the minimum distance between pseudoatoms , the initial
seeds parameter, and the grow seeds parameter) mostly affect
the speed of convergence of the algorithm. For instance, we usu-
ally choose to be very small ( of the voxel size), which
allows pseudoatoms to be as close as they have to be in order
to achieve the desired accuracy of the volume approximation.
So, such small values of may be only affecting the conver-
gence speed but not the maximum achievable accuracy of the
volume approximation. A too large number of initial seeds and
a too large grow seeds parameter may affect the achievable ac-
curacy of the volume approximation. As shown below, we have
found that 300 initial seeds and the grow seeds parameter of
30% generally produce good results.

Occasionally, the algorithm cannot reach the desired accu-
racy. This happens because we have required a too accurate
representation when using relatively large pseudoatoms. The
solution is either to reduce the pseudoatom width or to sacri-
fice accuracy. Alternatively, we may decide to keep the cur-
rent pseudoatom representation (even if it did not achieve the
required accuracy). In practice, we have found that this is a
useful way to remove noise from the input volume. In fact,
a non-converged pseudoatomic approximation corresponds to
the local minimum from which the standard deviation of the
Gaussian function ( ) should be made smaller if we aim at
continuing converging towards the given target approximation
error (to obtain pseudoatomic representations with many more
pseudoatoms that will well approximate finer details including
noise). If we decide to stop the iterative process (not to re-
duce ), the resulting pseudoatomic representation will contain
Gaussian functions of larger . Approximations using Gaussian
functions of larger will necessarily be smoother than those
with Gaussian functions of smaller . For noisy volumes such
as experimental EM volumes, smoother approximations usu-
ally mean volumes with less noise. This denoising possibility
is currently being further explored as the subject of a separate
research work, whereas this article shows the performance of
the method using synthetic volumes without noise (computed
by low-pass filtering of ground-truth atomic structures). More
importantly, general guidelines acquired thanks to these syn-
thetic-data experiments were used here to successfully analyze
experimental EM volumes.

III. RESULTS

In this section, we first show the effect of different granu-
larization parameters on the volume approximation. Then, we
show an application of the method in the context of exploring
dynamics of macromolecular complexes. Also, we fully eval-
uate its performance for different desired coarse-grain represen-
tations and show its potential to create pseudoatomic structures
approaching atomic structures. Finally, we show an approxima-
tion of an experimental EM volume.

A. Effect of Different Granularization Parameters on Volume
Approximation

By tuning the parameters and , the coarse-grain repre-
sentation can be varied from a representation with several tens
of pseudoatoms (e.g., for a coarse 3D-to-3D fitting where a
large complex described by an EM volume is fitted with atomic
structures of the complex subunits or large domains of subunits
[6], [8]) to a representation with several tens of thousands of
pseudoatoms (e.g., for studying conformational changes using
elastic 3D-to-2D fitting based on building fine pseudoatomic
models from EM volumes and fine estimation of conformational
motions byNMA of suchmodels [11]). For instance, to decrease
the number of pseudoatoms, larger values of or should be
used. On the contrary, to increase the number of pseudoatoms,
smaller values of or should be used. In Fig. 2, we show three
different pseudoatomic representations of the same volume. The
volume (volume size: 90 90 90 voxels; voxel size: 0.2 nm
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Fig. 2. Example of a volume and its approximations shown using volume
slices, volume isosurface representation, and the corresponding 3D pseu-
doatomic representations. (a) Several central slices of a volume obtained from
the GroEL atomic-resolution structure 1GRL. (b)-(d) Slices of the approxi-
mated volume for three different pseudoatomic representations, corresponding
to the slices shown in (a) ((b) and resulting in 101 pseu-
doatoms; (c) and resulting in 1,764 pseudoatoms; (d)
and resulting in 17,953 pseudoatoms). (e)-(g) Volumes whose slices
are shown in (b)-(d), respectively. (h) Volume whose slices are shown in (a).
(i)-(k) Isosurface representation of the original volume (transparent grey) and
its pseudoatomic representations corresponding to (b)-(d), respectively. In
(i)-(k), the pseudoatoms are shown as spheres of a radius value corresponding to
the standard deviation of the Gaussian function, and the color of pseudoatoms
corresponds to the weight (white: low weight; blue: high weight). In (e)-(k),
the same orientation is shown for all volumes and pseudoatomic structures.
The same volume isosurface is shown in (h)-(k).

0.2 nm 0.2 nm) was obtained from an atomic-resolution
GroEL structure (PDB entry: 1GRL [16]).
To compute a density volume from an atomic-resolution

structure, throughout the paper, we used a method based on
electronic-form atomic factors [17], [18], which is related to the
images recorded by the microscope [19], [20]. Fig. 2(a) shows
several central slices of the volume (its isosurface represen-
tation is shown in Fig. 2(h)). The volume was approximated
using the following three pseudoatomic representations: 1) 101
pseudoatoms for and (Fig. 2(b),(e),(i)); 2)
1,764 pseudoatoms for and (Fig. 2(c),(f),(j));
and 3) 17,953 pseudoatoms for and
(Fig. 2(d),(g),(k)). Fig. 2 shows that the best quality of slices
and isosurface representation was obtained for the volume
approximated using and , whereas the worse
quality was obtained for and . These results
clearly show that the improvement of pseudoatomic represen-
tation quality can be achieved by reducing and .

B. Application: Analysis of Macromolecular Conformational
Changes

We now show how such pseudoatomic structures can be
used to explore macromolecular conformational changes. In
this context, we use NMA. Given a structure, we compute
normal modes using a standard elastic network model as it
considers that the structure represents the minimum-energy
conformation and, thus, it does not require energy minimization
[21]. Normal modes are computed by diagonalizing a 3 N 3
N Hessian matrix of second derivatives of the potential energy,
where N is the number of nodes in the elastic network model.
Nodes are 3D point particles that are connected with springs
simulating harmonic restraints on displacements around the
minimum-energy conformation, where each node is connected
via springs only with those nodes that are within the interaction
cutoff distance, . The parameter, thus determines the
distance between nodes beyond which they do not interact. The
nodes are atoms in the case of an atomic-resolution structure.
In the case of an EM volume, nodes are a set of control points
that have to be extracted from the volume. The coordinates of
the nodes are modified to simulate the structural flexibility. For
EM volumes, here, we use the coordinates of centers of the
Gaussian functions as nodes of the elastic network model. The
diagonalization of the Hessian matrix is done by solving an
eigenvalue problem. The eigenvectors of the matrix are normal
modes and the eigenvalues are the squares of the normal-mode
frequencies. In the case of atomic structures, the value of
0.8 nm usually gives good results. In the case of pseudoatomic
structures, the interaction cut-off distance should be ad-
justed to each protein complex (its size), the structure of the
complex (its resolution), and the representation of that structure
by nodes in the elastic network model (the number of nodes). In
practice, typical pseudoatomic values are in the range 1–3
nm. They can be adjusted by applying an ad-hoc rule by which
the value of is set so that 95% of pseudoatoms interact
among each other (we have found it to work in most cases
[13]). Pseudoatomic values are usually larger than atomic

values because pseudoatomic distances are usually larger
than atomic distances (the number of pseudoatoms is usually
smaller than the number of all atoms in the complex).
Using adenylate kinase (AK) data, we now give an example

showing that quality of the pseudoatomic structures is essential
to correctly describe the conformational changes. We compute
normal modes of an atomic AK structure (atomic modes) and
normal modes of two different pseudoatomic representations of
a synthetic AK density volume (pseudoatomic modes). Then,
we compute the overlap of an AK experimentally observed
conformational change with pseudoatomic modes and with
atomic modes. The overlap between a normal mode and the ex-
perimental conformational change is computed as a normalized
inner product between two vectors, where the pseudoatomic
modes are extended to the atomic resolution by thin-plate spline
interpolation [22], [23]. The overlap will be higher for the
modes that contribute more to the conformational change than
for those that contribute less. Ideally, the overlap should be the
same for atomic and pseudoatomic modes. The same overlap
for the two types of modes would mean that pseudoatomic
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modes describe the experimentally observed conformational
change in the same way as atomic modes. This would also mean
that pseudoatomic modes reproduce perfectly atomic modes.
In practice, pseudoatomic and atomic modes are different,
and the quality of pseudoatomic modes and their overlap with
experimentally observed conformational changes will depend
on the quality of the pseudoatomic representation (determined
by and and a resulting number of pseudoatoms). Here,
we compare pseudoatomic representations of two different
qualities by analyzing the overlap of their modes with the
experimental conformational change, and by comparing these
two overlaps to the one obtained for the atomic representation.
A volume (volume size: 64 64 64 voxels; voxel size:

0.2 nm 0.2 nm 0.2 nm) was obtained from an atomic-reso-
lution structure of open-form AK (PDB entry 4AKE, containing
1,656 atoms [24]) and, then, low-pass filtered at 3 nm so that we
get a very low resolution volume (Fig. 3(a)–(c)). This low-pass
filtered volume was approximated using and ,
which resulted in a pseudoatomic representation with 367
pseudoatoms (Fig. 3(d)). A higher-quality pseudoatomic rep-
resentation of the same volume was obtained using and

, which resulted in a pseudoatomic representation
with 922 pseudoatoms (Fig. 3(e)). The difference between the
open-form and closed-form atomic AK structures was here
used as the experimentally observed conformational change.
The closed-form structure was obtained from the PDB entry
1AKE [25] and is also shown in Fig. 3(a).
Fig. 3(f) shows the overlap of the experimental conforma-

tional change with atomic modes 7–20 (ground-truth overlap)
where modes 7–20 correspond to frequencies 7–20, respec-
tively. If the conformational difference could be completely
explained by a single normal mode, the overlap of the differ-
ence with this mode would be 1 and its overlap with all other
modes would be 0. This is clearly not the case here, which
means that several modes contribute to the conformational
change. Indeed, Fig. 3(f) shows that the conformational change
is mostly contributed by mode 7 (the maximum overlap is at
mode 7). However, other prominent peaks of the overlap are
at modes 11 and 15 (Fig. 3(f)), which means that these modes
also contribute to the conformational change, though less than
mode 7.
Fig. 3(g) shows that the normal modes from the lower-quality

pseudoatomic representation overlap with the observed confor-
mational change similarly to the normalmodes from the ground-
truth atomic structure. This is an important result and we show
that it is valid for different values of between 1 nm and 2 nm.
As shown in Fig. 3(g), this pseudoatomic representation repro-
duces atomic normal modes well enough for several values
(all tested values below 1.8 nm), which means that such pseu-
doatomic representation is robust to the choice of the value of

. This is interesting when the value is set automatically
(e.g., using the mentioned rule of 95% interacting pseudoatoms)
as other values around the value set automatically could also
work.
More importantly, Fig. 3 shows that the ground-truth overlap

is more similar to the overlap obtained for the modes from the
higher-quality pseudoatomic representation than for those from
the lower-quality pseudoatomic representation. More precisely,

Fig. 3. Pseudoatomic-structure quality determining quality of approximation
of atomic normal modes. (a) Overlapped atomic-resolution structures of the
open and closed AK conformations (PDB codes: 4AKE (blue) and 1AKE (ma-
genta), respectively). (b) All-atom representation of the open AK shown in (a)
(atoms are shown as spheres of a radius corresponding to the atom radius). (c)
Synthetic volume representing the open AK conformation at the resolution of
3 nm. (d) Pseudoatomic structure from the volume shown in (c), obtained for

and (367 pseudoatoms). (e) Pseudoatomic structure from
the volume shown in (c), obtained for and (922 pseu-
doatoms). (f)-(g) Overlap of the AK conformational change observed experi-
mentally (difference between the open and closed conformations shown in (a))
with atomic modes (f) and with pseudoatomic modes of the 367-pseudoatom
structure for different values of (g). (h) Comparison of the 922-pseudoatom
and 367-pseudoatom structures by showing the overlap of their normal modes
with the experimental conformational change (the ground-truth overlap shown
in (f) is also shown here, and was used for both sets of pseu-
doatomic modes). In (d)-(e), pseudoatoms are represented by spheres using the
same size and color coding as in Fig. 2.

for the same value of ( ), the peaks of the overlap
for the atomic modes are found at the same frequencies (modes
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7, 11, and 15) as for the modes from the higher-quality pseu-
doatomic representation (Fig. 3(h)). These peaks were obtained
at slightly different frequencies for the modes from the lower-
quality pseudoatomic representation (atomic mode 15 vs pseu-
doatomic mode 16, Fig. 3(h)).
If the pseudoatomic representation quality were lowered

further, the overlap at lower frequencies (e.g., 7 and 11) would
probably be also affected, beside the overlap at higher frequen-
cies (e.g., 15). For instance, the peaks corresponding to modes
7 and 11 could move to different frequencies (examples of
such shifts for mode 7 are given in [10]) or some additional
but false peaks could appear (as in the example shown for the
structure with 367 pseudoatoms and). For other applications of
normal modes (elastic 3D-to-3D or 3D-to-2D fitting), it may be
useful to pick automatically or semi-automatically the modes
that are the most relevant to the ground-truth conformational
change, without its knowledge [11], [26]–[29]. In a separate
work, we have developed a protocol for picking such modes
[11], [14]. Though such protocols could successfully deal with
local changes in the order of normal modes, they cannot detect
false-relevant modes that may result from a lower-quality pseu-
doatomic representation. Thus, high quality of pseudoatomic
representations is generally recommended.

C. Towards Atomic Approximations: Detailed Performance
Analysis
We now show a detailed performance analysis using a large

system such as E. coli 70S ribosome. An atomic-resolution
structure of the ribosome, with 10,204 C and phosphate atoms,
referred to as 3I1OP structure (a composite of structures with
PDB codes 3I1O and 3I1P [30]) (Fig. 4(a)) was converted into
a volume (volume size: 128 128 128 voxels; voxel size:
0.3 nm 0.3 nm 0.3 nm) (Fig. 4(b)) that was then low-pass
filtered at an intermediate EM resolution of 1.5 nm (Fig. 4(c)).
Pseudoatomic structures were computed using the low-pass

filtered volume (Fig. 4(c)) and different combinations of the
values of (2, 3, and 4), (2%, 3%, and 4%), the initial
seeds parameter (10, 300, and 1,000), and the grow seeds
parameter (10%, 30%, and 50%). The algorithm performance
was compared for these different combinations of parameters
regarding the convergence of the volume approximation error
to its target value. Fig. 5 shows that and are the most
important parameters because they affect the final approxi-
mation result (Fig. 5(a)–(b)), whereas the initial seeds and
grow seeds parameters affect the speed of convergence (the
number of iterations) (Fig. 5(c)–(d)). Fig. 5 also shows that
and are tightly linked. For instance, when using ,

it is possible to achieve (Fig. 5(a)) but not smaller
such as (Fig. 5(b)). To achieve , we need to
reduce to a smaller value such as or (Fig. 5(b)).
Fig. 5 seems suggesting the use of larger initial seeds and grow
seeds parameters to obtain a faster convergence (Fig. 5(c)–(d)).
However, with some combinations of input data and parameter
settings, a too large number of initial seeds or a too large grow
seeds parameter could stop the iterations too early, which would
prevent the method from achieving (the final approximation
result would be affected in such cases). We thus recommend
the use of 300 initial seeds and the grow seeds parameter of

Fig. 4. Atomic structure of 70S ribosome, unfiltered synthetic volume, and
low-pass filtered volume that was used for different pseudoatoms representa-
tions, along with three approximated volumes. (a) Atomic structure 3I1OP. (b)
Synthetic volume from the structure shown in (a). (c) Volume shown in (b)
after a low-pass filtering at 1.5 nm. (d)-(f) Volumes produced using three pseu-
doatomic representations of the volume in (c) ( and resulting
in 1,778 pseudoatoms (d); and resulting in 2,235 pseudoatoms
(e); and resulting in 5,776 pseudoatoms (f)). The same values
of the grow seeds parameter (30%) and the initial seeds parameter (300) were
used to obtain the volumes in (d)-(f).

30% that were found to produce good results in most cases. For
instance, the use of , initial seeds, and the
grow seeds parameter of 30% produced a 2235-pseudoatom
representation of the ribosome volume (Fig. 4(c)) with the
volume approximation error of 3.98% (the error of 0.5% with
respect to target error). For the same and setting ( ,

) but a very large number of initial seeds (3000) and a
large grow seeds parameter (50%), we obtained a 3000-pseu-
doatom representation with the volume approximation error
of 3.58% (the error of 10.5% with respect to target error).
In fact, a single iteration was only performed in this second
(“pathological”) case, whereas 23 iterations were performed in
the first case. In the second case, we used a larger number of
initial seeds than the final number of pseudoatoms obtained in
the first case. The reason for this is that, in reality, we would
not know how to choose this (large) number and it could be
“blindly” set to any value.
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Fig. 5. Approximation error at each iteration until the convergence for different combinations of parameters, for the synthetic volume of 70S ribosome shown in
Fig. 4(c). (a)-(b) Use of three different values of (2, 3, and 4), the grow seeds parameter of 30%, 300 initial seeds, and (a) or (b). (c) Use of
three different values of the initial seeds parameter (10, 300, and 1000), , , and the grow seeds parameter of 30%. (d) Use of three different values
of the grow seeds parameter (10%, 30%, and 50%), , , and 300 initial seeds.

The approximation error shown in Fig. 5 was also plotted
against the number of pseudoatoms obtained at different iter-
ations. This showed a virtually identical convergence behavior
of the algorithm to the one already shown in Fig. 5, and the only
new result was that different settings of parameters produce dif-
ferent final numbers of pseudoatoms. For instance, the number
of pseudoatoms required for reaching the target approximation
error of 2% increases from 5,776 pseudoatoms to 18,050, when
reducing from 3 to 2.
As the number of pseudoatoms in the volume representa-

tion increases (as we reduce or ), the curve of the Fourier
shell correlation (FSC) between the resulting volume and the
ideal, unfiltered volume (Fig. 4(b)) extends to higher (spatial)
frequencies (Fig. 6(a)). The higher FSC at higher frequencies
means that the resolution of the resulting volume increases,
as shown in Fig. 4(d)–(f). In the example shown in Fig. 6(a),
the highest FSC at all spatial frequencies was obtained for
the 18,050-pseudoatom volume . How-
ever, this 18,050-pseudoatom FSC curve is very close to the
5,776-pseudoatom FSC curve (Fig. 6(a)). This suggests that
the representation with 5,776 pseudoatoms ( , )
is sufficient to describe this complex, though it can still be im-
proved (e.g., using smaller pseudoatoms ( )). Indeed, the
5,776-pseudoatom volume (Fig. 4(f)) looks as a good approx-
imation of the ideal, unfiltered volume (Fig. 4(b)). This result
also shows that the use of pseudoatom sizes that are similar to
the voxel size can produce a sufficiently good approximation
of the given volume ( was used in the 5,776-pseudoatom
representation while the voxel size was 3 Å 3 Å 3 Å).
Additionally, we show that can be adjusted to obtain an

optimal pseudoatomic representation in terms of the similarity

between the pseudoatomic and atomic distance histograms and
that such “reproduction” of atomic distances does not require
knowing the 3D atomic structure but the number of coarse-grain
atoms only ( and phosphate atoms in the case of ribosome).
In the example shown here, the ground-truth atomic structure
contains around 10,000 and phosphate atoms. The number
of pseudoatoms closest to 10,000 was obtained for the volume
approximation using , (13,786 pseudoatoms).
Fig. 7 shows that the histogram of pseudoatomic distances
is the most similar to the histogram of atomic distances for
this representation ( , , 13,786 pseudoatoms),
when comparing it to the representations whose number
of pseudoatoms was further away from 10,000 such as the
18,050-pseudoatom representation and the 5,776-pseudoatom
representation. Interestingly, the 13,786-pseudoatom FSC
curve is almost the same as the 18,050-pseudoatom FSC curve
(Fig. 6(b)), which means that the two corresponding volumes
are almost identical. Though reducing the size of pseudoatoms
to increase their number from 5,776 to 13,786 still improves the
representation of the complex (the corresponding FSC curves
are slightly different), this last result suggests that increasing
this number above 13,786 (by reducing the pseudoatom size
further) does not significantly change the representation. Thus,
these two complementary measures (the FSC and the distance
histogram) show that the and combination producing
the 13,786-pseudoatom representation is optimal regarding
both the volume representation quality (the FSC remains al-
most unchanged or it degrades for the and combinations
producing other pseudoatomic representations) and the “re-
production” of atomic distances (the pseudoatomic distance
histogram is more dissimilar to the atomic distance histogram
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Fig. 6. Fourier shell correlation (FSC) of the volume from the 70S ground-truth
atomic structure (Fig. 4(b)) with the volumes obtained by the proposed method,
the volumes obtained by the Situs software, and the reference volume used to
compute the pseudoatoms (Fig. 4(c)). (a) FSC for the volumes from the pseu-
doatomic structures computed using the proposed method and FSC for the ref-
erence volume. (b) FSC for the volumes from the pseudoatomic structures ob-
tained by two methods of Situs (qvol and vol2pdb), compared to the FSC for the
volumes obtained by the proposed method (the FSC for the pseudoatomic struc-
ture that is optimal in terms of the distance histogram (Fig. 7) is also shown) and
to the FSC for the reference volume. The proposed method was used with dif-
ferent and settings to obtain these different pseudoatom representations (586
pseudoatoms: , ; 1,778 pseudoatoms: , ; 2,235
pseudoatoms: , ; 5,776 pseudoatoms: , ; 13,786
pseudoatoms: , ; 18,050 pseudoatoms: , ).

for the and combinations producing other pseudoatomic
representations).
Fig. 6 also shows that the volumes computed from pseu-

doatoms are sharpened versions of the intermediate-resolution
volume that was used to compute the pseudoatoms. More
precisely, Fig. 6 shows that, at higher spatial frequencies (here,
higher than 15 Å i.e., 1.5 nm), the ideal, unfiltered volume
(Fig. 4(b)) correlates better with the volumes computed from
pseudoatoms than with the 1.5 nm resolution volume (Fig. 4(c))
that was used to compute the pseudoatoms (the FSC is closer
to 1 at the higher frequencies for the volumes computed from
pseudoatoms). This can be explained by our regularization of
the approximation problem using a prior information that is the
approximate form of the density (radially symmetric functions

Fig. 7. Histogram of pseudoatomic distances overlapped with the histo-
gram of 70S atomic distances. Different pseudoatomic-distance histograms
were obtained for different pseudoatomic representations of the reference
volume (Fig. 4(c)). The atomic-distance histogram was computed using the
ground-truth atomic structure (Fig. 4(a)).

around a discrete set of points), which allows us to recover
information that is “not in the data.” Furthermore, our choice
of Gaussian functions as radially symmetric functions allows
regulating volume sharpness by varying the standard deviation
of Gaussian functions . Indeed, a smaller value of means a
smaller support of each Gaussian function in the pseudoatomic
representation, which in turn results in a sharper density volume
from pseudoatoms.
We compared our method with the methods qvol and vol2pdb

of the current version of Situs (ver. 2.7.2) [31]. The vol2pdb
method first rescales all density values to [0,99.99] and then
places pseudoatoms at all densities that are above a cutoff den-
sity. The default value of 0.005 can be used for this cutoff or
the cutoff can be set by the user. In both cases, this method pro-
duces a huge number of pseudoatoms (we tested several cutoff
values for the 70S ribosome, which produced representations
with 100,000–400,000 pseudoatoms). As it is difficult to de-
cide which cutoff to select to describe the volume sufficiently
well, this method was used with the default cutoff density set-
ting for the comparison with other methods in this article. The
qvol method is based on vector quantization. It requires that
the user specifies a desired number of pseudoatoms. Though
the method was previously shown to work with up to 2,000
pseudoatoms [2], we were unable to use it with more than 600
pseudoatoms. In fact, the default maximum number of pseu-
doatoms in qvol is 50 and Situs allows changing this number,
by changing the corresponding parameter in situs.h and recom-
piling the software. In our work, we were able to make qvol
working by changing this parameter only up to the value of 600.
For larger values of this parameter, we were receiving a segmen-
tation error message on a machine with enough memory for all
other, currently standard EM methods (Dual Intel Xeon X5472
processor [3.00 GHz, 1600 FSB, 2 6 MB, Quad Core], 2GB
RAM per core [800 MHz ECCMemory, 8 2 GB]). Note how-
ever that the number of 600 pseudoatoms may be large enough
to produce good results in typical applications of qvol. Actually,
qvol is usually employed for a fast rigid-body fitting of atomic
structures of subunits or large subunit domains of a complex
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into its EM density volume [6], where smaller numbers of pseu-
doatoms can be used.
The volume shown in Fig. 4(c) was converted into pseu-

doatoms using qvol and vol2pdb, which produced 600 and
479,808 pseudoatoms, respectively. The same volume was
converted using the proposed method and the and values
producing 586 pseudoatoms (this was the closest number of
pseudoatoms to the one obtained by qvol and it was obtained
using and ). The obtained pseudoatomic
representations were then converted into density volumes
(the pseudoatomic representations obtained with Situs were
converted into volumes using the pdb2vol method of Situs).
The FSC of these three volumes with respect to the unfil-
tered ground-truth volume (Fig. 4(b)) are shown in Fig. 6(b).
Fig. 6(b) shows that vol2pdb produces a high-resolution
pseudoatomic representation that is comparable to the one ob-
tained with the proposed method (the 13,786-pseudoatom FSC
curve obtained by the proposed method is very similar to the
479,808-pseudoatom FSC curve obtained by vol2pdb). How-
ever, the proposed method uses 35 times fewer pseudoatoms
than vol2pdb to achieve such high-resolution representation.
A larger number of pseudoatoms usually results in a slower
analysis of the structure and a larger use of memory. For
instance, with the huge number of pseudoatoms resulting from
vol2pdb, it would be impossible to compute normal modes
(the Hessian matrix would be huge and its diagonalization
difficult). Finally, Fig. 6(b) shows that the 586-pseudoatom
volume obtained by the proposed method (Fig. 8(b)) corre-
lates with the ground-truth volume (Fig. 8(a)) better than the
600-pseudoatom volume obtained by qvol (Fig. 8(c)).

D. Experiments With Real EM Volumes
The main focus of this article is on evaluating the perfor-

mance of the proposed method by comparing its results to the
ground truth. This is the reason for the use of simulated data.
However, we have also performed the tests using experimental
EM density maps, which showed consistent results to those ob-
tained using synthetic density maps. The results of some of those
experiments are available on the 3DEM Loupe web server [13].
Actually, the 3DEM Loupe web site contains the precomputed
results for EM density maps of 70S ribosome, GroEL, ribo-
some-bound termination factor RF2, and connector of bacterio-
phage T7, and allows a web user to visualize these results and
download them.
In Fig. 8(d)–(g), we show the results of the experiment with

the real EM volume of the 70S ribosome (EMDB entry code
EMD-5262; volume size: 125 125 125 voxels; voxel size:
0.3 nm 0.3 nm 0.3 nm). This EM volume (Fig. 8(d)–(e))
was approximated using and , which resulted
in a 5913-pseudoatom volume (Fig. 8(d),(f)). The most impor-
tant result is given inFig. 8(g) and it shows that the FSC between
these two volumes falls below 0.5 at 13 Å (1.3 nm). This value
is very close to the one declared as the resolution of the EM
volume (13.2 Å [32]). As the ground-truth atomic structure is
often unavailable, the resolution of real EM volumes is usually
obtained as the value at which the FSC between two “half-vol-
umes” (reconstructed from two halves of the total set of images)
falls below 0.5. This was also the case with this EM volume

Fig. 8. Comparison of the proposed method with the qvol Situs method using
synthetic data (a)-(c) and processing of experimental data (d)-(g) of the 70S
ribosome using the proposed method. (a) Volume from the ground-truth atomic
structure (also shown in Fig. 4(b)). (b) Volume from 586 pseudoatoms obtained
by approximating the volume shown in Fig. 4(c) using the proposed method.
(c) Volume from 600 pseudoatoms obtained by approximating the volume
shown in Fig. 4(c) using qvol. (d) Overlap between the experimental EM
volume (EMDB:EMD-5262), its pseudoatomic representation obtained by the
proposed method, and the corresponding volume (EM volume: gray; approx-
imated volume: yellow; pseudoatoms: magenta). (e) EMD-5262 volume. (f)
EMD-5262 volume approximated by the proposed method. (g) Fourier shell
correlation between the volumes shown in (e) and (f).

[32]. Note however that the FSC computed in such way does not
really measure the resolution of the volume but its consistency
with other volumes that could be computed from the same set of
images. The approximated volume (Fig. 8(f)) is thus consistent
with the given EM volume (Fig. 8(e)) and with other volumes
that could be computed from the same set of images up to the
spatial resolution of 13 Å (Fig. 8(g)).

IV. DISCUSSION AND CONCLUSION
In this paper, we presented an algorithm to convert a three-di-

mensional (3D) transmission electron microscopy (EM) density
volume into a granulated model by controlling the volume ap-
proximation error. The advantage of this approach is that the
target approximation accuracy can be chosen to suit a particular
application. For instance, normal mode analysis (NMA) of ex-
perimental noisy volumes or 3D-to-3D fitting of complexes with
their subunits can be done using larger target approximation er-
rors (e.g., ), whereas NMA of clean volumes or
elastic 3D-to-2D fitting can be done using smaller target approx-
imation errors (e.g., ). By analogy with atomic-reso-
lution structures, the granulated model obtained by the proposed
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method is referred to as pseudoatomic structure. The granules
are Gaussian functions and they are referred to as pseudoatoms.
Given a volume, a pseudoatom size (Gaussian-function standard
deviation), and a target volume approximation error, the algo-
rithm adjusts the number of pseudoatoms, their position, and
their mass (amplitudes of Gaussian functions) to obtain the de-
sired quality of the volume approximation.
The quality of pseudoatomic structures for NMA was evalu-

ated by analyzing the overlap of their normal modes with an ex-
perimental conformational change. Also, this overlap was com-
pared with the one obtained between the atomic modes and
the same experimental conformational change. We showed that
the method allows constructing pseudoatomic structures whose
normal modes are highly similar to those of atomic-resolution
structures.
The method was compared with qvol and vol2pdb methods

of the Situs package [31]. Our experiments have shown that
qvol cannot handle many pseudoatoms. We showed that the
quality of the volume resulting from qvol is lower than the one
of the volume obtained by the proposed method for similar
small numbers of pseudoatoms (around 600) in the two volume
representations. Additionally, we showed that vol2pdb does not
allow defining a desired quality of the volume approximation
neither in terms of the desired number of pseudoatoms (contrary
to Situs qvol) nor in terms of the desired target approximation
error (contrary to the method proposed here). As it places pseu-
doatoms wherever the volume density is positive, the quality
of the approximated volume will be virtually the same for
any given positive-density volume. More precisely, the quality
of the approximated volume will be around the highest one
because the method produces a huge number of pseudoatoms
(10 -10 ). However, such huge numbers of pseudoatoms
cannot be used in some applications (e.g., in normal modes
computation where the diagonalization of the Hessian matrix
would be difficult with such numbers of pseudoatoms). The
proposed method can result in a volume that is similar to the
one resulting from vol2pdb (using a low desired approximation
error) but it requires at least 30 times fewer pseudoatoms to
achieve such high volume quality.
The source codes of the implemented algorithms for

volume-to-pseudoatoms and pseudoatoms-to-volume conver-
sions are available in the Xmipp software [33], [34] (the Xmipp
methods volume_to_pseudoatoms and volume_from_pdb,
respectively). On our architecture, volume_to_pseudoatoms
takes from several seconds to a few tens of minutes depending
on the volume size, the target volume approximation error, and
the standard deviation of the Gaussian functions. For example,
for the 70S volumes used in this paper, it took between 10
seconds (around 300 pseudoatoms) and 15 minutes (around
20,000 pseudoatoms). The method volume_from_pdb is run
within the method volume_to_pseudoatoms but it can also be
run separately as it is additionally available as a separate Xmipp
program (e.g., pseudoatomic structures obtained by another
software can be converted into volumes using this method). As a
separate program, volume_from_pdb takes from a few hundreds
of milliseconds to a few tens of seconds on our architecture.
The volume-to-pseudoatoms conversion can additionally be

performed with the user-friendly web application 3DEM Loupe
and the user-friendly graphical Xmipp interface of HEMNMA

[13], [14]. They also allow a computation of normal modes
and an interactive animation of pseudoatomic structures dis-
placed along normal modes. Our previous papers are focused on
the presentation of the web server and the HEMNMA method-
ology with the graphical interface. As such, they mention the
volume-to-pseudoatoms conversion method as one of the tools
that were used, without showing the details of the algorithm or
the parameter sensitivity analysis that are exclusively described
in this paper. The description of the algorithm details allows im-
plementing the method in other software packages.
The proposed method results in pseudoatomic representa-

tions that are optimal in terms of the volume approximation
error defined in (2). Additionally, by varying the Gaussian-func-
tion standard deviation, the method can reproduce atomic
distances. This means that the method can give a solution that
is additionally optimal in terms of the similarity with the atomic
structure. However, the user does not always have access to
the 3D atomic structure and, thus, cannot always check this
similarity. The presented results show that the “reproduction”
of atomic distances does not require knowing the 3D atomic
structure but only the number of coarse-grain atoms such as

and phosphate atoms. Indeed, 1D amino acid sequences
are available for most protein complexes and they can give
the information about the number of atoms in the complex.
By varying the Gaussian-function standard deviation, we can
get the number of pseudoatoms that is similar to the given
number of atoms. We showed that the pseudoatomic structure
constructed in such way has the distance histogram that is
similar to the one of the atomic structure.
Additionally, we showed that this technique allows sharp-

ening of intermediate-resolution volumes (the standard devia-
tion of Gaussian basis functions regulates the volume sharp-
ness for a given target approximation error). To produce sharp-
ening, the target approximation error and the standard devia-
tion of Gaussian basis functions did not have to be specifically
adjusted. More precisely, the FSC curves extend to higher spa-
tial frequencies than the reference FSC curve for all settings of
these two parameters that were tested here, except for the one
resulting in a very small number of pseudoatoms with respect
to the large size of the complex that was used in these tests
(70S ribosome). Such small number of pseudoatoms (around
600) was used only for a comparison with a similar representa-
tion obtained by Situs but, otherwise, it would rarely be used
with such large complexes (at least 1000–1500 pseudoatoms
would be recommended in such cases). In practice, we rarely
can really check the sharpening results because the ground-truth
structure is often unavailable. As discussed in the previous para-
graph, the 3D ground-truth structure may be unavailable but the
total number of coarse-grain atoms is often available, which al-
lows selecting the pseudoatomic representation whose number
of pseudoatoms is similar to this number. We showed that the
quality of the pseudatomic representation selected in this way
is around the best one for the given volume and it is realistic
to expect that such pseudatomic representations should produce
sharpening in general.
Too small target errors and Gaussian-function standard de-

viations would result in pseudoatomic representations with too
many details. Such settings should be avoided with noisy vol-
umes such as those obtained by EM to avoid representing noise
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too accurately. The possibility to lower the volume approxima-
tion accuracy by increasing the values of these two parameters
is currently being explored for EM volume denoising as a part
of a separate research work.
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