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a b s t r a c t

Cryo-electron microscopy (cryo-EM) of frozen-hydrated preparations of isolated macromolecular com-
plexes is the method of choice to obtain the structure of complexes that cannot be easily studied by other
experimental methods due to their flexibility or large size. An increasing number of macromolecular
structures are currently being obtained at subnanometer resolution but the interpretation of structural
details in such EM-derived maps is often difficult because of noise at these high-frequency signal com-
ponents that reduces their contrast. In this paper, we show that the method for EM density-map approx-
imation using Gaussian functions can be used for denoising of single-particle EM maps of high (typically
subnanometer) resolution. We show its denoising performance using simulated and experimental EM
density maps of several complexes.

� 2016 Published by Elsevier Inc.
1. Introduction

Cryo-electron microscopy (cryo-EM) of frozen-hydrated prepa-
rations of isolated macromolecular complexes is the method of
choice to obtain the structure of complexes that cannot be easily
studied by other experimental methods, such as X-ray crystallog-
raphy (e.g., complexes with a significant degree of flexibility) or
nuclear magnetic resonance (e.g., complexes of large size) (Frank,
2006). Recent technological advances, such as the latest generation
of electron microscopes, direct electron detectors, software for
automated collection of EM images and the availability of increas-
ing computing power, combined with recent advances in image
analysis algorithms, have eased the way to subnanometer-
resolution structures for a wide range of macromolecular com-
plexes (viruses, ribosomes, membrane proteins) (Allegretti et al.,
2014; Amunts et al., 2014; Fischer et al., 2015; Gutsche et al.,
2015; Khatter et al., 2015; Liao et al., 2013; Lu et al., 2014;
Vinothkumar et al., 2014; Yu et al., 2008; Zhang et al., 2008). An
increasing number of macromolecular structures are being
obtained at resolutions better than 4.5 Å (for a review, see
(Cheng, 2015)). However, the interpretation of details of EM
density maps is often difficult as noise at these high-frequency sig-
nal components reduces the contrast that is necessary for their
identification. Thus, noise in EM-derived maps is usually reduced
by a low-pass filtering. This is sometimes done by setting Fourier
coefficients to zero beyond the resolution of the EM density map,
which may induce Gibbs oscillations causing artificial features,
but adjusting the shape of the low-pass filter to the shape of the
Fourier Shell Correlation (FSC) curve has also been proposed
(Penczek, 2010). Several other methods have been proposed for
EM map denoising, and the majority was conceived in the context
of denoising electron tomography reconstructions that usually
contain low-resolution features whose interpretation is addition-
ally hindered by strong experimental noise (Bilbao-Castro et al.,
2010; Fernandez and Li, 2003; Frangakis and Hegerl, 2001; Jiang
et al., 2003; van der Heide et al., 2007; Wei and Yin, 2010). In gen-
eral, methods developed for one type of data may be used with
other data types but their results may be suboptimal in such cases.
The reason is that each method is parametrized (a set of parame-
ters is defined and their default or recommended values are cho-
sen) so as to optimally deal with data analysis difficulties linked
to the particular experimental technique.

In this paper, we propose a denoising approach that was specif-
ically conceived to deal with single-particle EM maps of high (typ-
ically subnanometer) resolution. The key concept is to derive an
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alternative sparse density-map representation, so that coefficients
in this new space have a higher signal-to-noise ratio. To achieve it,
we model the map by a linear combination of the same type of
‘‘atoms”, more precisely, three-dimensional (3D) Gaussian func-
tions. In the function approximation terminology, these ‘‘atoms”
are referred to as basis functions. In a simplified manner, we
assume that the reconstructed density map should have the same
appearance as the density map that would be derived from the
actual structure at atomic resolution. We represent the density
map so that it appears similar to the atomic-resolution structure,
using no reference atomic model during the approximation and
using an optimized number of basis functions (Gaussian functions)
that is usually smaller than the number of voxels. Thus, the pro-
posed method is different from the method of convolving the
density-map with a Gaussian function, which is known as Gaussian
smoothing or blurring of the EM map.

The process of simplifying the density map description is usu-
ally referred to as coarse-graining of density maps and the result-
ing coarse-grain models of EM maps are also referred to as
pseudoatomic or bead models. While simplified models of EM den-
sity maps have been used for many different purposes such as
studying the topology of complexes, analysing conformational
changes, studying hydrodynamic properties of complexes, aligning
structures at different resolutions, or density-map visualization
improvement (Birmanns and Wriggers, 2007; Chacon et al., 2003;
Garcia de la Torre et al., 2001; Jimenez-Lozano et al., 2003; Jin
et al., 2014; Kawabata, 2008; Nogales-Cadenas et al., 2013;
Spiegel et al., 2015; Wriggers et al., 1998), they are here used for
a general task of denoising, as a preliminary step of many possible
data analysis workflows. More precisely, the method for EM map
coarse-graining based on the control of EM map approximation
accuracy, proposed in (Jonic and Sorzano, 2016), is here shown to
be useful for EM map denoising. To reach a given target accuracy
of EM map approximation (target approximation error), that
method adjusts the number, the position and the amplitude of
grains represented by 3D Gaussian functions of a given standard
deviation (grains are sometimes also referred to as pseudoatoms
or beads). The method may not reach the target approximation
error when using an inadequately large Gaussian-function stan-
dard deviation, but it allows overcoming this situation by suggest-
ing the user to reduce the Gaussian-function standard deviation or
increase the target approximation error (Jonic and Sorzano, 2016).
In this paper, we show that one may intentionally specify a very
small, unattainable target approximation error and keep the result-
ing approximation, which can be used to remove noise from the
original EM density map. In particular, we show how to choose
the Gaussian-function standard deviation and the target approxi-
mation error to allow denoising. We use simulated and experimen-
tal density maps of several complexes at different resolutions to
show the performance of the denoising method.
2. Methods

2.1. Coarse-graining of EM density maps

We first give a brief description of the method used here for
coarse-graining of EM density maps while its full description is
given in (Jonic and Sorzano, 2016). This coarse-graining method
uses a set of 3D Gaussian functions to approximate the original
EM density map, f ðrÞðr 2 R3Þ. The approximated map is given by

f̂ NðrÞ ¼
PN

i¼1xiKrðjjr� rijjÞ, where N is the number of Gaussian
functions, KrðrÞ is the Gaussian function with the standard devia-
tion r and maximum amplitude of 1, ri is the position of the i-th
Gaussian function, and xi > 0 is the weight (amplitude) of the i-
th Gaussian function. Given a density map, a value of r; and a
target approximation error, e, the method adjusts N, ri, and xi so

that the approximation error, e, satisfies e ¼ Efjf ðrÞ � f̂ NðrÞj=Dfg
< e; where Ef�g is the expectation operator, Df is the effective
range of values of f i.e. Df ¼ F�1ð1� aÞ � F�1ðaÞ, F�1ðxÞ is the
inverse of the cumulative distribution function of the values of f ,
and a is the statistical confidence on the effective range (typically,
a = 0.025). Note here that r is expressed in voxels throughout this
article.

The approximation error e is minimized iteratively until it
reaches e and, in optimization terminology, it is referred to as
objective function. To make this optimization process more robust
to local minima, Gaussian functions are added progressively, using
a given initial number of Gaussian functions and a given speed of
adding Gaussian functions. For the given current number of Gaus-
sian functions, their amplitudes and positions are computed by
gradient descent minimization of the approximation error. This
coarse-graining method is available in the software package Xmipp
(de la Rosa-Trevin et al., 2013; Scheres et al., 2008; Sorzano et al.,
2004) and Scipion (manuscript in preparation). The initial number
of Gaussian functions of 300 and the speed of adding Gaussian
functions of 30% usually produce good results and, thus, these val-
ues were used as default values in the available software as well as
in all experiments in this article.
2.2. Use of coarse-graining of EM maps for their denoising

As said above, the coarse-grain representation is adjusted by
minimizing the objective function until it reaches e. However, in
some cases, particularly for very small values of e (around 1%),
the objective-function minimization results in the density map
whose error of approximation of the original EM density map is
larger than e, which indicates that the objective function cannot
reach e for a given value of r. Such cases correspond to local min-
ima of the objective function that, for a given value of e, can be
escaped by reducing r because smaller values of r produce larger
numbers of Gaussian functions that, in their turn, can better
approximate fine details including noise (Jonic and Sorzano,
2016). Keeping the current approximation (based on Gaussian
functions of larger r) instead of reducing r results in smoother
density maps in which noise is less represented. Given a small
value of e such as e ¼ 1%, the question is then how to choose the
value of r to allow denoising. As we show below, we have found
that optimal results can be obtained by adjusting r (usually
between 1 and 2) to suit the original (input) density map though
r ¼ 1:5 could potentially be used as a default value that generally
produces good results.
3. Results

This section consists of three parts. In the first part, we show the
performance of the method proposed here by fully evaluating the
results of denoising of a synthetic and two EM density maps
(Experiments 1–3) in terms of their FSC correlation with a non-
filtered density map obtained from the corresponding atomic
structure. In the synthetic case, this atomic structure is the exact
ground-truth solution and, in the experimental case, it is consid-
ered to be close enough to the exact ground-truth solution. Density
maps from atomic-resolution structures were computed using a
method based on electronic-form atomic factors (Sorzano et al.,
2015). The non-filtered density maps from atomic structures are
referred to as reference density maps and were used only for the
FSC computations. More importantly, neither the reference density
map nor the corresponding atomic structure was used in the den-
sity map approximation process.
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In the case of effective noise attenuation, the correlation (FSC)
between the output and reference density maps is expected to be
higher than the correlation between the input and reference den-
sity maps over a range of frequency shells. Thus, the effective noise
attenuation is expected to result in an extension of the output-map
FSC curve to higher frequencies than the input-map FSC curve,
which was here evaluated by computing the difference between
the frequencies at which the input and output density maps have
the same correlation (FSC) with the reference density map. This
frequency shift was computed for four FSC values selected to cover
equidistantly the range [0.1, 0.7] in which the FSC could change
significantly after processing the input density map. We would like
to stress that the frequency shift was computed for the multiple
FSC values (more precisely, 0.7, 0.5, 0.3, and 0.1) to avoid reducing
the entire FSC curve to a single value that is not carrying enough
information in the denoising context that is considered in this
paper. Single FSC values are commonly used in EM in the context
of measuring the resolution of reconstructed EM density maps
(the FSC curve is computed between two so-called half-maps inde-
pendently computed from two subsets of the same set of images,
which is known as gold-standard FSC, and the resolution is
obtained as the frequency at which the FSC curve crosses a selected
threshold value). However, a single FSC value does not carry
enough information when using the FSC to evaluate, across fre-
quencies, the amount of noise that is removed from a density
map by its denoising, which is in the scope of this paper. Each of
the different FSC values is related to a different value of the spec-
tral signal-to-noise ratio (SSNR), but we are not particularly more
interested in the frequencies at which SSNR = 1 than in those at
which SSNR > 1 or SSNR < 1, as we aim at increasing the SSNR in
the entire frequency range. Indeed, it does not mean that the signal
is useless at the frequencies where SSNR < 1 but just that it is low,
and the increase of the SSNR at these frequencies may thus be ben-
eficial for the analysis of the entire signal.

Experiments 1–3 show results of the proposed method using
input density maps that were not masked. Also, FSC curves in
Experiments 1–3 were computed with no masking of density
maps. In the second part of this section (right after presenting
Experiments 1–3), we compare, in FSC terms, the results obtained
by the proposed method with those that could be obtained by
masking the input density map as well as with those that could
be obtained by several other available denoising methods. Also,
we present a potential approach for tuning the value of r, and
we show the use of a measure of signal-to-noise ratio (SNR) as
an alternative to FSC-based denoising evaluation that can be useful
when high-resolution structures close enough to the exact ground-
truth solution are unavailable. In the last part of this section, we
show that the proposed method can be used for denoising subto-
mogram average density maps of subnanometer resolution. Also,
we demonstrate that the method does denoising inside the parti-
cle, by showing an example of denoising an empty virus particle
(requiring an important denoising of the central region of the par-
ticle) and by comparing this result with the result of denoising a
full virus particle.

3.1. Experiment 1: synthetic EM density map of anthrax toxin
protective antigen

In this experiment, the input density map for the denoising
method was a synthetic EM density map computed from the
atomic structure of anthrax toxin protective antigen with the
PDB code 1ACC (Petosa et al., 1997). The atomic structure was first
converted into a density map of size 220 � 220 � 220 voxels with
the voxel size of 1 Å � 1 Å � 1 Å (reference density map). Then,
10,000 random projections of the reference density map were gen-
erated, and noise (signal-to-noise ratio of 0.1) and contrast transfer
function (a defocus between 2.1 and 2.2 lm) were applied onto the
projections to simulate EM images. Finally, the synthetic density
map was reconstructed from the simulated EM images using their
ground-truth orientations (known orientations of the generated
random projections). Note here that the reference density map is
the exact ground-truth solution in this experiment. Indeed, as
the reference map was used to compute the input map for denois-
ing, this reference map can be considered as a truly error- and
noise-free solution.

The input density map was processed with the proposed
method using r values between 1 and 2 and e ¼ 1%, which
resulted in an output density map for each value of r. FSC results
show that the reference density map correlates better with the
output density map than with the input density map for all tested
values of r. Indeed, at almost all frequencies, the FSC is larger for
the output map than for the input map i.e., the output-map FSC
curve extends more to higher frequencies than the input-map
FSC curve (Figs. 1A and S1A). In these terms, the best noise atten-
uation results were obtained for r ¼ 1:6 producing the frequency
shift of 2.7 Å, 1.5 Å, 1.2 Å, and 1.5 Å for the FSC of 0.7, 0.5, 0.3,
and 0.1, respectively (Table 1, Figs. 1A, S1A). The number of Gaus-
sian functions obtained using r ¼ 1:6 was 6280 and the corre-
sponding error of the input density map approximation was
3.08% (Table 2). An arbitrary slice extracted from the reference
map, the input map, and the output map for r ¼ 1:6 is shown in
Fig. 1B–D, respectively. The isosurface representations of these
density maps are provided in Fig. S1B–D.

It is tempting to think that the proposed denoising method
introduces just a masking-type effect onto the EM density map,
but this is not the case, which we show in a separate subsection.

3.2. Experiment 2: EM density map of 50S-ObgE

In this experiment, the EM density map of 50S ribosome sub-
unit bound to ObgE (50S-ObgE) was obtained from the EMDB data
bank and used as the input density map by the proposed denoising
method (EMDB:EMD-2605; map size: 256 � 256 � 256 voxels;
voxel size: 1.5 Å � 1.5 Å � 1.5 Å (Feng et al., 2014)). The nominal
resolution of the map is 5.5 Å, based on the gold-standard FSC with
the 0.143 FSC threshold (Feng et al., 2014). The reference density
map for evaluating the denoising results was the density map com-
puted from the corresponding atomic model (PDB:4CSU) derived
by fitting modelled and crystal structures of different parts of the
complex into the EMD-2605 map and model refinement (Feng
et al., 2014).

As in Experiment 1, the input density map was processed with
the proposed method using r values between 1 and 2 and e ¼ 1%
and, for all tested values of r, we could observe that the output-
map FSC curve extends more to higher frequencies than the
input-map FSC curve (Figs. 1E and S2A). According to the FSC com-
putations, the best denoising results were obtained for r ¼ 1:7
producing the frequency shift of 1.5 Å, 0.3 Å, 0.7 Å, and 2.7 Å for
the FSC of 0.7, 0.5, 0.3, and 0.1, respectively (Table 1, Figs. 1E and
S2A). The number of Gaussian functions produced using r ¼ 1:7
was 50,356 and the corresponding error of the input density map
approximation using these Gaussian functions was 2.29% (Table 2).
An arbitrary slice of the reference, noisy input, and denoised 1.7- r
output maps is shown in Fig. 1F–H, respectively (for isosurface rep-
resentations of these density maps, see Fig. S2B–D).

If comparing results obtained in Experiments 1 and 2, one
should consider different sources of imperfection of the input and
reference maps in these two experiments. While the input density
map in Experiment 1 is a 3D reconstruction from images at their
ground-truth orientations and the map imperfections come from
the added noise, the added contrast transfer function
effects, and the use of a finite number of images, the input-map



Fig. 1. Denoising of one synthetic and two experimental EM maps (Experiments 1–3). (A–D) Denoising of the synthetic density map of anthrax toxin protective antigen using
r = 1.6 (the optimal r regarding the FSC results shown in Fig. S1A) and e ¼ 1% i.e., the FSC of the input and output density maps with respect to the reference density map (A)
and an arbitrary slice (slice 104 along Z axis) of the reference, input, and output density maps ((B)–(D), respectively). (E–H) Denoising of the EM density map of 50S-ObgE
complex (EMDB:EMD-2605) using r = 1.7 (the optimal r regarding the FSC results shown in Fig. S2A) and e ¼ 1% i.e., the FSC of the input and output density maps with
respect to the reference density map (E) and an arbitrary slice (slice 116 along Y axis) of the reference, input, and output density maps ((F)–(H), respectively). (I–L) Denoising
of the EM density map of beta-galactosidase (EMDB:EMD-5995) using r = 1.4 (the optimal r regarding the FSC results shown in Fig. S3A) and e ¼ 1% i.e., the FSC of the input
and output density maps with respect to the reference density map (I) and an arbitrary slice (slice 144 along Y axis) of the reference, input, and output density maps ((J)–(L),
respectively). In (A), (E), (I), a reduced range of spatial frequencies is shown for a better visibility. The FSC obtained for other values ofr and the reference-, input-, and output-
map isosurface representations are provided in Figs. S1–3.

Table 1
Noise attenuation obtained by the proposed method and evaluated by measuring the output-map FSC curve shift to higher frequencies with respect to the input-map FSC curve,
for synthetic (anthrax toxin protective antigen) and experimental (EMD-2605 and EMD-5995) input density maps. The FSC curves for the input and output density maps of a
complex were computed with respect to the same reference density map of the complex (see the text for more details on reference maps). The frequencies corresponding to the
input- and output-map FSC curve values of 0.7, 0.5, 0.3, and 0.1 are shown in the first two columns of the part of the table related to each map and the differences among these
frequency pairs are shown in the third column of the same part of the table.

Fourier shell correlation Inverse spatial frequencies and differences

Synthetic density map EMD-2605 EMD-5995

Input [Å] Output [Å] Difference [Å] Input [Å] Output [Å] Difference [Å] Input [Å] Output [Å] Difference [Å]

0.7 7.6 4.9 2.7 10.4 8.9 1.5 4.3 3.8 0.5
0.5 5.9 4.4 1.5 8.9 8.6 0.3 3.9 3.4 0.5
0.3 5.2 4.0 1.2 8.7 8.0 0.7 3.5 3.0 0.5
0.1 4.7 3.2 1.5 8.5 5.8 2.7 3.1 2.0 1.1
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imperfections in Experiment 2 also come from image alignment
errors as well as other real-experiment-related imaging issues.
Also, while the reference map is the exact ground-truth solution
in Experiment 1, it is a solution close to the exact ground truth in
Experiment 2.
3.3. Experiment 3: EM density map of beta-galactosidase

In this experiment, the EM density map of beta-galactosidase
from the EMDB data bank was used as the input density map by
the proposed denoising method (EMDB:EMD-5995; map size:



Table 2
Numbers of Gaussian functions produced using different values of the Gaussian-
function standard deviation (r) and the target approximation error of the input
density map of 1%, together with the achieved approximation error using these
Gaussian functions, for synthetic (anthrax toxin protective antigen) and experimental
(EMD-2605 and EMD-5995) input density maps. The values in bold denote the
optimal solution obtained by analysing the FSC between the output and reference
density maps (see the text for more details on reference maps). The results are shown
for the optimal value of r, two smaller values than the optimal value (smaller by 0.1
and 0.2) and one larger value than the optimal value (larger by 0.1).

Standard deviation of
Gaussian functions, r

Number of
Gaussian
functions

Approximation
error [%]

Synthetic
density
map

1.7 4399 3.54
1.6 6280 3.08
1.5 8546 2.86
1.4 11,519 2.66

EMD-2605 1.8 31,046 2.68
1.7 50,356 2.29
1.6 76,748 2.01
1.5 98,666 1.84

EMD-5995 1.5 55,043 11.48
1.4 120,827 9.75
1.3 196,998 8.64
1.2 269,189 7.80
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340 � 340 � 340 voxels; voxel size: 0.64 Å � 0.64 Å � 0.64 Å
(Bartesaghi et al., 2014)). The nominal resolution of the map is
3.2 Å, based on the gold-standard FSC with the 0.143 FSC threshold
(Bartesaghi et al., 2014). The reference density map for evaluating
the denoising results was the density map computed from the cor-
responding atomic model (PDB: 3J7H) that has been derived from a
1.7-Å resolution crystal structure of the entire complex, involving
fitting of the crystal structure into the EMD-5995 map and model
refinement (Bartesaghi et al., 2014).

As in the previous experiments, the input density map was pro-
cessed with the proposed method using r values between 1 and 2
and e ¼ 1%, and we could again notice a shift to higher frequencies
of the output-map FSC curve with respect to the input-map FSC
curve for all tested values of r (Figs. 1I and S3A). According to
the FSC computations, the best denoising results were obtained
for r ¼ 1:4 producing the frequency shift of 0.5 Å, 0.5 Å, 0.5 Å,
and 1.1 Å for the FSC of 0.7, 0.5, 0.3, and 0.1, respectively (Table 1,
Figs. 1I, S3A). The number of Gaussian functions produced using
r ¼ 1:4 was 120,827 and the corresponding error of the input den-
sity map approximation using these Gaussian functions was 9.75%
(Table 2). An arbitrary slice of the reference, noisy input, and
denoised 1.4-r output maps is shown in Fig. 1J–L, respectively
(for isosurface representations of these density maps, see
Fig. S3B–D).

Experiments 2 and 3 show that the proposed method can
denoise experimental EM density maps as well as they show that
the denoising results can be evaluated based on the FSC with an
atomic reference structure if such a structure is available. Also,
they show that the input and output density-map slices can be dis-
played to visually check the denoising results (i.e., the noise atten-
uation on the output density-map slices with respect to the input
density-map slices). The exact ground-truth solution is not avail-
able in Experiments 2 and 3. Thus, the reference density map in
these experiments comes from the best available atomic model
for the given EM map, and can be considered as noise-free but
not as completely error-free. The reference density map is closer
to the exact ground-truth solution in Experiment 3 than in Exper-
iment 2 because of the higher resolution of the EM map yielding
the atomic model for Experiment 3 than for Experiment 2. Interest-
ingly enough, Experiment 2 shows that atomic models obtained
from EM maps of nominal resolution in the range 5–6 Å (gold-
standard FSC 0.143) are still reliable for evaluation of denoising
results.

3.4. Comparison with input-map masking and with several available
denoising methods

In this subsection, the best results obtained for denoising
unmasked input maps in Experiments 1–3 using the proposed
method are compared with the denoising results obtained by
masking the input density map and with the results obtained by
other publicly available denoising methods (Figs. 2, S4–9). The out-
put (density map) of the proposed method was compared with
unmasked and masked output of each of these methods. Density-
map masks adjusted to the shape of each particular complex were
created using the standard masking procedure in single particle
analysis, based on low-pass filtering, thresholding, and binariza-
tion (Frank, 2006)). The results are shown for iterative median fil-
tering (van der Heide et al., 2007), bilateral filtering (Jiang et al.,
2003), and nonlinear anisotropic diffusion filtering (Fernandez
and Li, 2003; Frangakis and Hegerl, 2001) available in Bsoft soft-
ware (programs bmedian, bbif, and bnad, respectively) (Heymann,
2001; Heymann et al., 2008) and, regarding nonlinear anisotropic
diffusion filtering, also available in TOMOAND software (programs
tomoeed and tomoand) (Fernandez and Li, 2003; Fernández et al.,
2007). While bnad proposes edge-enhancing diffusion as a default
diffusion mode and coherence-enhancing diffusion as an optional
mode, tomoeed only allows edge-enhancing diffusion and tomoand
combines the two diffusion modes. Regarding bnad, only edge-
enhancing diffusion results are shown here as those are the best
results obtained for this method with the data used in this article.
Furthermore, the methods were run using different values of their
parameters and only the best results obtained with each method
are shown here.

The FSC results in Fig. 2 show that the reference density map
correlates better with the masked input density map than with
the unmasked input density map. They also show that the refer-
ence density map correlates better with the output of the proposed
method than with the masked input density map or with the out-
put of other methods (Figs. 2A–C, S4–6), even when the output of
these methods is masked (Figs. 2D–F, S7–9). This is particularly
the case at higher frequencies i.e. a higher FSC of the output of
the proposed method is observed where the FSC of the output of
other methods (including input-map masking) is below 0.7 in the
simulated case and below 0.3 in the experimental case (Fig. 2).
One can also note that the FSC differences between the output of
the proposed method and the output of other methods (including
input-map masking) are larger in the simulated case than in the
experimental case (Fig. 2), which is interesting because the FSC-
based results evaluation should be the most correct in the simu-
lated case, taking into account that the reference density map used
for computing the FSC curves in that case is the exact ground-truth
solution.

3.5. Identifying ‘‘optimal” r based on input-map approximation error

In Experiments 1–3, we could identify the ‘‘optimal” value of r
using the FSC-based approach as we had at our disposal atomic-
resolution models that were close enough to the corresponding
exact ground-truth solutions. When this is not the case, the FSC-
based approach cannot be used, but r = 1.5 could be used in such
cases as it usually gives satisfactory results (Figs. S1A, S2A, S3A).
We refer to this value (r = 1.5) as ‘‘default” value of r. Alterna-
tively, one could chose r by analysing the actual dependence of
the final input-map approximation error on the given value of r.
More precisely, we have found interesting to compare the input-
map approximation errors achieved when reducing r and to



Fig. 2. Comparison of the FSC curves obtained by the proposed method for one synthetic and two experimental EM maps (Experiments 1–3, Fig. 1A, E, I) with the FSC curves
obtained for the output of bmedian, bbif, bnad, tomoand, and tomoeed methods. (A–C) Comparison of different methods using synthetic anthrax toxin protective antigen data
(A), experimental 50S-ObgE data (B), and experimental beta-galactosidase data (C), using non-masked output density maps obtained by bmedian, bbif, bnad, tomoand, and
tomoeed. (D–F) Comparison of different methods using synthetic anthrax toxin protective antigen data (D), experimental 50S-ObgE data (E), and experimental beta-
galactosidase data (F), using masked output density maps obtained by bmedian, bbif, bnad, tomoand, and tomoeed. The FSC curves obtained for the non-masked and masked
input density maps are also shown. Slices of the different non-masked and masked maps for the three data cases are provided in Figs. S4–9.

Table 3
Noise attenuation evaluated by measuring the signal-to-noise ratio (SNR) of the input
density map (synthetic anthrax toxin protective antigen map and experimental EMD-
2605 and EMD-5995 maps) and the SNR of the corresponding output density map
obtained by each tested method (the proposed method, bmedian, bbif, bnad,
tomoand, and tomoeed). The ratio of the SNRs of the output and input density maps
is also provided.

SNR SNRðoutputÞ=SNRðinputÞ
Synthetic
density
map

EMD-
2605

EMD-
5995

Synthetic
density
map

EMD-
2605

EMD-
5995

Input 25.7 8.2 4.2 N/A N/A N/A
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identify the r value for which the approximation error starts to
decrease slowly or for which there is an unchanged amount of
the approximation error decrease (a kind of saturation in the
decrease). A decrease in the r value produces a decrease in the
speed of the global approximation-error convergence towards the
target approximation error (Table 2). For instance, in the case of
synthetic density map, the approximation error decreases by
around 0.005 when r decreases from 1.7 to 1.6, and by around
0.002 whenr decreases from 1.6 to 1.5 or from 1.5 to 1.4 (Table 2),
which means a saturation in the decrease of the approximation
error when reducing r below the value that was identified as the
optimal value by the FSC analysis (r = 1.6). Recall here that the
recommended target approximation error of 1% was used in all
three experiments and that the approximation error achieved for
each r corresponds to a local minimum of the objective function
from which one can escape by reducing r (Jonic and Sorzano,
2016). Indeed, the decrease inr produces a larger number of Gaus-
sian functions to better approximate fine details including noise
(Table 2). Thus, stopping to decrease r below the value identified
as the optimal value by the FSC analysis suggests that this r pro-
duces the approximation where noise is optimally removed. Here,
we could show (Table 2) that this value of r can be identified as
the value for which the approximation error starts to decrease
slowly or for which there is a saturation in the decrease.
Output of the
proposed
method

138.2 34.8 13.1 5.4 4.2 3.1

Output of
bmedian

30.9 9.4 5.4 1.2 1.1 1.3

Output of bbif 60.2 13.5 6.6 2.3 1.6 1.6
Output of bnad 39.7 12.0 7.2 1.5 1.5 1.7
Output of

tomoand
27.0 8.4 4.4 1.1 1.0 1.0

Output of
tomoeed

37.4 9.9 5.5 1.5 1.2 1.3
3.6. Signal-to-noise ratio as an alternative to FSC-based denoising
evaluation

In Experiments 1–3, we could evaluate the denoising results
numerically using the FSC-based approach. When the FSC-based
approach cannot be used, an alternative could be to measure the
SNR. Here, we use the SNR definition already introduced in EM
(Bilbao-Castro et al., 2010), namely SNR = (Is�Ib)/rb, where Is and
Ib denote the average intensity in the meaningful signal region
(structure of interest) and in the unwanted signal region (noise),
respectively, and rb is the standard deviation in the noise region.
The noise region is defined as the region outside a mask suited to
the shape of the complex such as the one used in Experiments
1–3. Although the average intensity in the noise region, Ib, is small
and could be neglected in many cases, we here take it into account
by considering a general case where this may not be true (e.g.,
subtomogram average data). Table 3 summarizes the SNRs before
and after denoising by the proposed method and the other meth-
ods tested in Experiments 1–3 as well as the ratio between the
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input and output SNRs. Though the information measured by the
SNR and the FSC is not the same but related, one can notice that
the proposed method achieves the best results over all tested
methods according to both the FSC and the SNR (Fig. 2 and Table 3).
In the next two subsections, aiming at answering particular addi-
tional questions regarding the performance of the proposed
method, we only report the SNR because the particular experi-
ments described in these subsections were done using density
maps for which atomic models are either unavailable or may not
be sufficiently reliable for the purpose of denoising evaluation.
3.7. Denoising of density maps obtained by subtomogram averaging

The proposed method was specifically conceived to deal with
single-particle EM density maps. It cannot be used for denoising
2D images and it is not efficient in denoising electron tomogram
reconstructions that are large and very noisy. However, it can be
used to denoise subnanometer-resolution subtomogram averages,
as we show in this subsection. Fig. 3 shows the use of the proposed
method (withr = 0.5 and e ¼ 5%), bmedian, bbif, bnad, and tomoeed
for denoising a density map of immature HIV-1 capsid of intact
virus particles obtained by subtomogram averaging at 8.8 Å resolu-
tion (FSC 0.143; EMDB:EMD-2706; size: 140 � 140 � 140voxels,
voxel size: 2.02 Å) (Schur et al., 2015). Note that the value of e
was set larger than 1% in this case to avoid noise overfitting that
here refers to as an important noise reproduction in the approxima-
tion by Gaussian functions. The SNR of the input density map
(SNR = 7.3) was increased to SNR = 42.7 (output map) using the
proposed method, while it was increased only to 8.0, 9.4, 9.3, 7.9,
Fig. 3. Denoising of a density map of immature HIV-1 capsid in intact virus particles (E
bbif, bnad, and tomoeed methods. (A) Input density map (transparent gray) and the outp
using Chimera (Pettersen et al., 2004). (B) Another view of the overlap shown in (A). (C–H
bnad, and tomoeed ((E)–(H), respectively), cut with the same cutting plane as in (A) and sh
in (A). Note that the input density map is masked as deposited at EMDB.
and 8.4 using bmedian, bbif, bnad, tomoand, and tomoeed, respec-
tively. This means that the proposed method improved the SNR of
the input density map 5.8 times, whereas the other methods
improved it only 1.1–1.3 times.
3.8. Interior denoising

In this subsection, we show that the proposed method denoises
the interior of a complex and not only the background. For this
purpose, we show in Fig. 4 denoising of a density map of gen-
ogroup II genotype 10 norovirus virus-like particle obtained by
single-particle analysis at 10 Å resolution (FSC 0.5; EMDB: EMD-
5374; size: 250 � 250 � 250 voxels, voxel size: 2.40 Å) (Hansman
et al., 2012). This density map shows an empty particle, meaning
that there is no ‘‘signal” in the middle of the particle but only noise.
Fig. 4 clearly shows that the proposed method denoises not only
the background but also the interior of the virus. While the SNR
of the input density map is 10.4, the SNR of the map obtained by
the proposed method (using r = 1.5 and e ¼ 15%) is 30.3, which
makes an improvement of 2.9 times. These results can be com-
pared with results of denoising of a full virus particle where the
middle part of the particle is not occupied by noise but by ‘‘signal”
(meaningful information) and should thus not be suppressed by
denoising (Fig. 5). Fig. 5 shows denoising of a density map of
human rhinovirus 2 135S full particle obtained by single-particle
analysis at 8.8 Å resolution (FSC 0.5; EMDB: EMD-2109; size:
244 � 244 � 244voxels, voxel size: 1.89 Å) (Pickl-Herk et al.,
2013). In this case, the increase in the SNR obtained by the pro-
posed method (using r = 1.3 and e ¼ 5%) is from 13.6 (input
MDB:EMD-2706) by the proposed method (using r = 0.5 and e ¼ 5%) and bmedian,
ut of the proposed method (solid orange) superposed and cut with the same plane
) Input density map (C), output of the proposed method (D), output of bmedian, bbif,
own in the same orientation as in (A) but using a higher density isosurface level than



Fig. 4. Denoising of a density map of genogroup II genotype 10 norovirus virus-like particle (EMDB:EMD-5374) by the proposed method (using r = 1.5 and e ¼ 15%). (A)
Input density map (transparent gray) and the output of the proposed method (solid cyan) superposed and cut with the same plane using Chimera. (B–E) Cut of the input
density map for two different density isosurface levels, a lower one in (B) and a higher one in (C) (both higher than the isosurface level in (A)), and the corresponding cut of the
output of the proposed method ((D) and (E), respectively). (F–G) Arbitrary slice (slice 108 along Z axis) extracted from the input density map (F) and from the output of the
proposed method (G). In (B)–(E), a half of the density map, radially colored, is shown using Chimera (bluish densities are those on the medial slice or close to it that are among
the most far away from the center of the slice while less distant ones are greenish; yellowish and reddish densities correspond to the slices that are further away from the
medial slice and the most distant ones are in dark red).

Fig. 5. Denoising of a density maps of human rhinovirus 2 135S full particle obtained by single-particle analysis (EMDB:EMD-2109) by the proposed method (using r = 1.3
and e ¼ 5%). (A–D) Cut of the input density map for two different density isosurface levels, a lower one in (A) and a higher one in (B), and the corresponding cut of the output
of the proposed method ((C) and (D), respectively). (E–F) Arbitrary slice (slice 132 along Z axis) extracted from the input density map (E) and from the output of the proposed
method (F). In (A)–(D), a half of the density map, radially colored, is shown using Chimera (the same color code is used as in Fig. 4).

430 S. Jonić et al. / Journal of Structural Biology 194 (2016) 423–433
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map) to 121.4 (output map), which makes an improvement of 8.9
times. In these two data cases, as in the case of subtomogram aver-
age data shown in the previous subsection, the value of e had to be
set larger than in Experiments 1–3 to avoid noise overfitting.

4. Discussion and conclusion

In this paper, the method of representing an EM density map by
a linear combination of 3D Gaussian functions, whose positions,
amplitudes, and number are computed through an optimization
(approximation) procedure (Jonic and Sorzano, 2016), was shown
to be useful for denoising single-particle EM maps of high (typi-
cally subnanometer) resolution. This was shown by a successful
denoising of one synthetic and several experimental input density
maps without masking. The proposed method is a denoising
method, meaning that it aims at attenuating noise while preserv-
ing structural features as they are. For instance, in lower resolution
EM maps, the structural features are not fine and they will remain
so after the use of the method. Depending on the density map size
and the combination of r (the standard deviation of Gaussian
functions) and e (the target approximation error of the density
map using Gaussian functions), the method takes from a few min-
utes to a few hours to perform on a single processor of a laptop
computer, but multithreading is also allowed.

4.1. Choice of r and e

In the context of denoising, ideal values of r and e are those
that result in the complete noise removal and signal reproduction.
However, such r and e values are difficult to determine, meaning
that some noise is usually reproduced together with the signal. In
the case of higher-resolution density maps (resolutions higher than
6 Å, gold-standard FSC 0.143), we have shown that r = 1.5 and
e ¼ 1% produce satisfactory results in most cases, but r can be
additionally adjusted (for the given e value) to achieve optimal
results in terms of the FSC with an atomic model of the density
map, if such a model is available (Figs. S1A, S2A, S3A). We have also
shown an approach to adjust r that does not rely on the FSC com-
putations but produces consistent results with the FSC-based ones.
It compares the values of the input-map approximation error
achieved when reducing r to identify the r value for which the
approximation error starts to decrease slowly or the approxima-
tion error decrease starts to saturate. Note here that e ¼ 1% is a
quite small value, and as such, it may not be achieved (for the given
value of r). In the case of higher-resolution density maps, a failure
in reaching e of 1% usually means a ‘‘failure” in noise overfitting.
This was the case with the data in Experiments 1–3, where the tar-
get approximation error of 1% could not be reached and adding of
Gaussian functions to the approximation ended as soon as the
approximation error achieved the values of 3.08%, 2.29%, and
9.75%, respectively (for the given r value of 1.6, 1.7, and 1.4,
respectively). Target approximation errors smaller than 1% are
often unattainable and the resulting approximations (for the
achieved approximation error) suffer from noise overfitting. Thus,
setting the value of e to 1% is likely a good compromise for the
majority of higher-resolution density maps. In the case of lower-
resolution density maps (resolutions lower than 6 Å, gold-
standard FSC 0.143), the target approximation error of 1% is usu-
ally unreachable and this choice usually produces approximations
with noise overfitted. As we have shown, noise overfitting in such
cases can be avoided by setting e to larger values (often 5%, and in
some cases, 15%) and by readjusting the value of r around the
suggested value of 1.5 (usually slightly, but a more important read-
justment may be needed in some cases of noise such as subtomo-
gram noise).
4.2. Evaluation of denoising results

In Experiments 1–3, denoising results were evaluated quantita-
tively based on the frequency shift between the FSC curves of the
input and output density maps with respect to the reference den-
sity map, where the reference density map was derived from an
atomic-resolution structure of the complex that was available in
these three cases (Table 1). Here, we decided to examine the fre-
quency shifts of four FSC values, taken at equal distances (0.2) from
FSC = 0.1 to FSC = 0.7, which allows a more complete numerical
evaluation of the noise reduction across different frequency shells
than it would be the case if the frequency shift of a single FSC value
was used for this purpose. Though only the entire FSC curve carries
the full information and the four selected FSC values are only one
of many possible reduced representations of the entire FSC curve,
the results presented here show that the four selected values can
be considered as representative enough of the FSC curve shape
changes due to denoising (Fig. 1A, E, I).

When atomic-resolution structures are unavailable or perhaps
not enough reliable for the purpose of denoising evaluation (e.g.,
when atomic models are obtained from EM maps of resolution
lower than 6–7 Å (gold-standard FSC 0.143)), numerical evaluation
of denoising results can be done by measuring the signal-to-noise
ratio, as shown in this article. Additionally, the denoising results
can be inspected visually, by comparing the input and output
density-map slices.

4.3. Comparison with masking and with other available methods

We have shown that the denoising results cannot be repro-
duced by a simple masking of the input density map, even using
a mask suited to the shape of the complex. This suggests that the
masks remove the background noise only, whereas the method
proposed here removes noise additionally from non-background
voxels (voxels occupied by the complex). The removal of noise
from non-background voxels was illustrated by denoising two
(empty and full) virus particles (Figs. 4 and 5). We have also shown
that the proposed method provides better results than other avail-
able methods tested using the same data (Fig. 2). The majority of
these methods have been conceived for denoising raw electron
tomography images or 3D reconstructions from these images (elec-
tron tomograms). The method proposed here has been conceived
for single particle 3D applications and it is not efficient in tomo-
gram denoising, but it can be used for denoising subtomogram
averages (Fig. 3).

4.4. Avoiding local density overrepresentation or subrepresentation

The proposed denoising method approximates an input density
map by a linear combination of Gaussian functions whose number
is usually smaller than the number of voxels of the input density
map (see Table 2 for the numbers of Gaussian functions used for
different complexes and different values of r). Also, amplitudes
and locations of Gaussian functions are adjusted so as to achieve
a uniform representation of densities of the complex while avoid-
ing local overrepresentations or subrepresentations (Jonic and
Sorzano, 2016). In this respect, the proposed method is original
and has advantages. It may be tempting to think that some non-
linear transformations of the input density map such as raising
input densities to the power of 2 could produce similar results as
the method proposed here. However, such transformations pro-
duce a non-uniform representation of input densities (high inten-
sities are strongly amplified and low intensities are in a way
attenuated, which makes that some very bright voxels ‘‘appear”
and some dark voxels ‘‘disappear”), which in turn makes that the
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reference map correlates less with the map transformed using this
transformation than with the map processed using the proposed
method (results not shown).

4.5. No use of a priori knowledge

Recently, a visualization improvement of EM density maps has
been proposed using a method based on bead models (Spiegel
et al., 2015). Though the method presented here has been con-
ceived for a general task of denoising of EM maps, one may con-
sider its use also for the EM map visualization improvement. The
method proposed in (Spiegel et al., 2015) places the beads ran-
domly in the density regions that are above a certain threshold.
The coordinates of the beads are then used to place real atoms
inside the EM map (randomly assigned atom types to the beads
inside the particle boundaries defined by the density threshold
such that the atomic composition is the same as the average
atomic composition observed for proteins in the PDB database).
Thus, the method proposed in (Spiegel et al., 2015) requires some
a priori knowledge about protein structures and an estimate of the
number of atoms inside the particle boundaries defined by a den-
sity threshold. This implies that it works best for resolutions better
than 5 Å because, at lower resolutions, the boundaries of the pro-
tein are not well defined and a radial mass distribution cannot
be compared with the average one obtained from PDB structures
(Spiegel et al., 2015). In contrast to that method, the approach pro-
posed here uses no a priori knowledge about proteins or from PDB,
which allows analysing any type of macromolecular assemblies.

4.6. Basis functions

Gaussian functions are used for the purpose of approximating
the input density map (in real space) and for the purpose of build-
ing the reference density map from the atomic structure (in Fourier
space). However, the two tasks rely on completely different real-
space basis functions i.e., Gaussian functions for approximating
the input map (Jonic and Sorzano, 2016) and Low-pass filtered
Electron Atomic Scattering Factors for building the reference map
(Sorzano et al., 2015). Thus, while the ‘‘extension” of the FSC curve
for the denoised map to higher frequencies than the FSC curve for
the input map could be attributed to the denoising effect of real-
space Gaussian functions used for the input map approximation,
one cannot say that this FSC ‘‘extension” was facilitated by the
use of Fourier-space Gaussian functions for building the reference
map as the corresponding real-space basis functions are not Gaus-
sian functions (Sorzano et al., 2015).

In the future work, we plan to extend this method to use other
basis functions and evaluate the performance of different basis
functions for a detailed analysis of cryo EM maps.
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