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Resumen

La Microscopía Electrónica Criogénica, tambíen conocido por su acrónimo anglicano,
CryoEM, se ha convertido en una técnica relevante para obtener imágenes de alta
resolución de muestras biológicas tales como las proteínas. Uno de los desafíos clave
en CryoEM es la heterogeneidad de las muestras, que se relaciona con que un solo
conjunto de datos puede contener múltiples conformaciones o composiciones de las
muestras. Esto es especialmente un problema, ya que la mayoría de los algoritmos de
procesamiento de imágenes de Análisis de Partículas Aisladas (SPA), se basan en la
suposición de que todas las proyecciones se originan a partir de la misma estructura
3D.

La clasificación 3D es un proceso esencial para abordar este problema. Durante el
proceso de clasificación 3D, las proyecciones se categorizan según la estructura de la
que emanan, de modo que una vez segregadas, el supuesto de homogeneidad es válido.
En este trabajo, proponemos un novedoso método de clasificación 3D que aprovecha
algoritmos gráficos para mejorar la precisión y eficiencia de implementaciones del estado
del arte.

La mayoría de estas implementaciones modernas son víctimas del problema del ses-
go de la solución inicial, un problema bien documentado en la literatura científica. En
esencia, estas implementaciones refinan de forma iterativa una solución inicial generada
aleatoriamente, corriendo el riesgo de caer en mínimos locales. El método propuesto,
proporciona de manera determinista una solución inicial donde las clases están separa-
das al máximo, de modo que las iteraciones posteriores están sesgados hacia la solución
correcta. Además, se necesita de un menor número de estas iteraciones hasta converger,
lo que disminuye el tiempo total de ejecución.

Para validar la eficacia de este enfoque, se han eligido varios conjuntos de datos expe-
rimentales y se han realizado meticulosas pruebas con ellas. Además, se han realizado
estos mismos experimentos con soluciones del estado del arte, permitiendonos obtener
comparaciones cualitativas. De hecho, los resultados obtenidos respaldan consistente-
mente las afirmaciones anteriores.

En resumen, en este trabajo presentamos un nuevo enque a la clasificación 3D que
demuestra resultados superiores, tanto en términos de rendimiento como de calidad.
Creemos que estos avances en la clasificación 3D pueden generar mejores procesos de
procesamiento de imágenes para SPA, aumentando la productividad de los biólogos
estructurales.

Palabras clave: CryoEM, Análisis de Partículas Aisladas, Clasificación 3D, Teoría de grafos



Abstract

Cryogenic Electron Microscopy (CryoEM) has emerged as a powerful technique for
high-resolution imaging of biological samples such as proteins. One of the key chal-
lenges in CryoEM is the heterogeneity of the samples, meaning that a single dataset
may contain multiple conformations or compositions of the specimens. This is specially
a problem, as most of the Single Particle Analysis (SPA) image processing algorithms
rely on the assumption that all projections originate from the same 3D structure.

3D classification is an essential process to address this issue. During the process of 3D
classification, projections are labeled according to the structure they originate from,
such that once segregated, the homogeneity assumption holds true. In this thesis, we
propose a novel 3D classification method that leverages graph algorithms to enhance
the accuracy and efficiency of state-of-the-art implementations.

Most of these modern implementations fall victim of the initial solution bias problem,
a well documented issue in the scientific literature. In essence, these implementations
iteratively refine a randomly generated initial solution, running the risk of falling into
local minimas.

The method proposed here deterministically provides an initial solution where classes
are maximally separated, so that subsequent iterations are biased towards the cor-
rect solution. In addition, fewer of these iterations are necessary until convergence,
decreasing the overall execution time.

To validate the effectiveness of this approach, several experimental datasets were care-
fully chosen and employed in comprehensive testing. Moreover, we have performed the
same tests with state-of-the-art solutions, aiming to qualitatively assess the benefits of
out approach. In fact, results consistently supported the former assertions.

To sum up, in this work we present a new 3D classification algorithm that has proven
to obtain superior results, both in terms of quality and performance. We believe that
these leaps in 3D classification can incur in better image processing pipelines for SPA,
increasing the productivity of structural biologists.

Keywords: CryoEM, Single Particle Analysis, 3D classification, graph theory
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1. Introduction and objectives

Cryogenic Electron Microscopy (CryoEM) is a novel imaging technique that involves Trans-
mission Electron Microscopes (TEMs) to analyze frozen samples. Differing from conven-
tional optical microscopes, TEMs employ an electron beam instead of light, enabling them
to capture of images at significantly higher resolutions. Consequently, CryoEM has gained
popularity for analyzing biological molecules such as proteins and viruses[1]. In this regard,
Single Particle Analysis (SPA) constitutes a set image acquisition and processing techniques
that facilitates such a task. In this process, a significant amount of two-dimensional images
are utilized to elucidate the three-dimensional structure of the specimen under study.

However, TEMs subject the sample to very extreme conditions, such as near perfect vacuum
and high-energy electrons. Thus, the sample is frozen before entering the microscope. This
helps to maintain it intact when exposed to such environment. The sample freezing is
performed in a matter of milliseconds, in a process known as plunge-freezing. This process
avoids the formation of ice crystals, which would diffract the electron beam. This technique
was awarded with the 2017 Nobel Prize in Chemistry[1][2].

In SPA, thousands of samples are spread on a copper or gold grid, each of them holding
a random orientation. Individually referred to as “particles”, a extensive amount of 2D
projections can be used to mathematically infer the 3D structure of the specimen[3]. This
process is hindered by many artifacts such as the poor Signal to Noise Ratio (SNR) present
in CryoEM images, which is in the order of 1/100, this is, noise is much more prominent
than the actual signal.

The mathematical models used for reconstruction assume that all projections originate from
the same 3D structure. Nevertheless, this does not hold true in many real world cases. In
instances where a dataset comprises diverse structures, known as heterogeneous, projections
must be categorized based on their corresponding structures, which are unknown. This
procedure, known as 3D classification, forms the central theme of this thesis.

This End of Masters Thesis is the author’s second work on CryoEM. Previously, on July 2023,
he presented a work on fast image alignment algorithms[5]. Although this project shares
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the context (CryoEM) with the previous one, the actual problem is completely different.
Nevertheless, some introductory sections were borrowed from the preceding publication.

This project was conducted within the Biocomputing Unit (BCU) research group, situated
at the Centro Nacional de Biotecnología (CNB) under the Consejo Superior de Investiga-
ciones Científicas (CSIC). This research group is actively involved in the development of
two software suites related to CryoEM, namely Xmipp and Scipion. Xmipp focuses on im-
plementing image processing algorithms, while Scipion serves as a framework facilitating
seamless interoperability among cutting-edge image processing suites. Consequently, the
software developed in this project is incorporated into Xmipp and integrated into Scipion.

1.1 Heterogeneity in CryoEM and 3D
classification

Many datasets obtained through CryoEM demonstrate heterogeneity, indicating that a single
3D structure cannot be attributed to the acquisition. Two potential reasons account for this
diversity. Firstly, the studied specimen might exhibit flexibility, resulting in projections
originating from distinct protein states. This phenomenon is referred as conformational
heterogeneity. Secondly, the images may involve a drug binding experiment, with some
projections feature a small attached drug while others do not. This last case is known as
compositional heterogeneity.

(a) Image acquisition (b) Reconstruction
Images obtained from: [4]

Figure 1.1: SPA image acquisition and structure reconstruction
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Regardless of the heterogeneity type, 2D projections need to be categorized according to the
3D structure they belong to, so that each of the classes can be used to reconstruct a disctinct
volume homogeneously. This projection classification problem is known as 3D classification.
The main difficulty of this process is that the actual variations in the structures are not
known. In other words, images need to be segregated according to a criteria that it is not
known yet, implying that the partition must be data-driven. This is further hampered by
the fact that variations between structures are very subtle and the signal to noise ratio in
the data is extremely low. The process is illustrated in Figure 1.2.

Nevertheless, the 3D classification step is provided with some ancillary parameter estima-
tions. For instance, the projection parameters have been estimated by the previous steps in
the image processing pipeline. With these parameters, a mixture of the unknown structures
can be reconstructed, known as “consensus volume”.

1.2 Objectives
Most of the state-of-the-art 3D classification solutions take an iterative approach through
Expectation Maximisation (EM). On each iteration, particle projections are compared to
multiple structures to find the best fit. Then, these structures are reconstructed with the
particles that have been assigned to them.

However, these algorithms need to be provided with a initial solution, which is typically
randomly generated. At the same time, it is very well documented that this initial solution
will introduce a bias to the EM algorithm[6][7]. This is attributed to the fact that the EM
tends to converge to a local minima around the initial solution[8]. Given the random nature
of the initial solution, there is a risk that the algorithm may fail to converge to the correct
solution.

Moreover, the EM iterations are computationally very expensive, as they involve many image
to volume comparisons. As a consequence, the 3D classification algorithms also take a long
time to complete.

On this thesis we intend to develop a novel 3D classification method that swiftly provides a
solid initial solution. This has two implications: Firstly, subsequent EM iterations will be
biased towards the correct solution. Secondly, due to the quality of the initial solution, less
EM iterations are necessary until convergence, reducing the total time required for the 3D
classification process.

This algorithm has direct implications in the field of structural biology, as researches will be
able to obtain quicker and more reliable outcomes from their experiments. This in turn has
direct implications on the pace of drug and vaccine discoveries.
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Unknown

3D classification

Microscope

Reconstruction

Figure 1.2: Example of a 3D classification
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1.3 Structure of the document
The thesis is organized into seven chapters. The first chapter, Introduction and objectives,
lays the groundwork by providing an overview of the 3D classification problem, pointing out
its complexities and challenges. Following this, the second chapter, Single Particle Analysis,
presents a high-level look at the image processing pipeline employed in SPA, setting the stage
for subsequent discussions. In the third chapter, State of the art, various methods for tackling
the 3D classification problem are examined, highlighting their strengths and limitations. The
fourth chapter, Implementation, delves into the specific approach adopted to address the
problem, offering a detailed description of the methodology employed. Chapter five, Results,
follows providing a meticulous account of the experiments conducted and their corresponding
outcomes. The document then progresses to the sixth chapter, Conclusions, where findings
are synthesized, and implications are discussed. Finally, in the seventh chapter, Future work,
potential avenues for further research and development are explored.





2. Single Particle Analysis

SPA refers to a CryoEM technique that allows to obtain models of proteins at almost atomic
resolution. Although it has been around for decades, recent technological leaps have led to
an increase in interest from users and researchers. This technique involves everything from
the sample preparation to the final image processing, including the image acquisition at the
microscope[9]. However, this chapter will focus on explaining the image processing part of
the workflow.

The essence of SPA lies on rapidly freezing thousands of specimens in a thin film of ice. In
this way, each specimen will be held in place with the random orientation it had before it
was frozen. At this point, the sample is scanned by a TEM, obtaining 2D projections of the
specimens. These projections can be thought of as a shadow of the electron density of the
sample. Using advanced image processing techniques, this collection of projections can be
used to reconstruct the 3D electron density map of the specimen under study. Nevertheless,
the reconstruction process involves several challenges, as the input images have very poor
SNR and other artefacts.

The studied sample is prepared on a copper of gold grid, which is inserted into the EM
chamber. Each of spot of the sample can only be exposed to the electron beam for a limited
amount of time before degradation occurs. Recent leaps in sensor technology have sped up
the required exposition time for the sensors, enabling them to capture multiple frames of
the sample before degrading it. The set of frames captured from a given spot is known as
movie. These movies serve as the starting point of the SPA image processing workflow. This
workflow is summarised in the Figure 2.1 and it will be detailed hereafter.
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Figure 2.1: SPA workflow
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2.1 SPA image processing steps
Movie alignment
In the movie alignment stage all the frames of a movie are averaged into a single image
known as micrograph. This helps to increase the SNR, as the uncorrelated part of the noise
tends to cancel out across images. Note that the noise induced by the vitreous ice is the
same for all the frames of a given movie so it will not be removed when averaging frames.

The frames contained in a movie are in chronological order. As a result, the last images have
a higher electron dose than the first ones, which translates into a more severe deterioration
of their atomic structure Moreover, this deterioration has a higher influence in the higher
frequencies of the image. These facts need to be taken into account when combining all the
images, in such a way that the high frequencies of the last images have less weight[3].

Additionally, the electron beam positioning system drifts between frames and the sample
tends to bend, which tends to produce optical flow between frames. Consequently, the
frames are not aligned to one another. This needs to be fixed before attempting to average
the frames, as otherwise the resulting micrograph would loose resolution.

CTF estimation
TEMs do not have a planar frequency response. Instead, they “colour” the images in fre-
quency space that causes a characteristic Power Spectral Density (PSD) pattern known as
Thon rings. This transfer function has a sinusoidal appearance, with decreasing periodicity
and a overall tendency to attenuate higher frequencies[3]. In addition, the rings may have
elliptical shape, being wider in some axis. This is known as astigmatism. A example of a
TEM Contrast Transfer Function (CTF) is shown in the Figure 2.2.

This CTF is different for each micrograph and it needs to be known by later steps. Moreover,
it can be used to assess the quality of the micrographs[3]. The characterisation of the CTF
is accomplished by calculating the PSD of the micrograph and fitting a template onto it.

Particle picking
In the context of SPA, the term particle refers to the individual projections of the specimen
under study. As stated earlier, a micrograph may contain many particles. Particle picking
consists in pin-pointing individual particles in a micrograph. This enables extracting them
to individual images in order to continue with the processing. This used to be a manual task
for biologists, but recent leaps in Machine Learining (ML) have enabled the possibility of
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(a) Micrograph with 0.5µm
defocus

(b) Micrograph with 1.0µm
defocus

(c) Micrograph with astigma-
tism

(d) Micrograph PSD with
0.5µm defocus

(e) Micrograph PSD with
1.0µm defocus

(f) Micrograph PSD with
astigmatism

Images obtained from: [3]
Figure 2.2: CTF examples

using supervised ML algorithms to automate this process. An example of a picking is shown
in the Figure 2.3

2D Classification
2D classification consists in comparing particles to one another and clustering similar ones.
These comparisons take into consideration in-plane transforms (rotations and shifts) of the
particles. Therefore, clusters are invariant to translation and rotation. These clusters are
averaged so that the highly correlated parts of the particles remain intact, while uncorrelated
parts -noise- are attenuated, potentially increasing the SNR. Moreover, as many micrographs
with unique CTFs are used, the missing information in the zeros of the CTF tends to cancel
out. A example of this process is illustrated in the Figure 2.4.

These 2D classes have many applications. For instance, their averages can be used as a
feedback to re-enforce the picking algorithm. Additionally, the lack of clusters can be used
as an evidence of preferential orientations of the specimen. Similarly, poorly detailed clusters
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(a) Original micrograph (b) Picked micrograph

Figure 2.3: Example of a picked micrograph

may indicate that particles belonging to them are invalid. Last but not least, these 2D classes
may be used as input for downstream steps.

Image obtained from: [4]
Figure 2.4: Example of 2D classification

Ab-initio map reconstruction
3D reconstruction is usually a Stochastic Gradient Descent (SGD) algorithm which itera-
tively improves a 3D electron density map of the protein under study. Therefore, choosing
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a good starting point is important to improve the performance of the SGD algorithm and
avoid local minimums as much as possible. This starting point is known as the initial model.
As the gradient descent starts at this volume, the final result will be heavily biased by it[10].

The problem of obtaining a initial volume lies in deducing a 3D volume from a set of 2D
projections that were done across unknown directions. There is a large set of approaches
to address this problem. Some approaches perform a random angular assignments and then
start the gradient descent from it. Some other algorithms rely on correlating a vast amount
of random reconstructions[11]. Finally, there are some novel approaches that make use of
unsupervised ML methods to learn a map from the particles[12].

3D Classification
Until this point we have assumed that all particles belong to the same structure. However,
this is not true in many cases, as proteins may be flexible or they might have a ligand
attached to them. Figure 2.5 exhibits a protein with conformational heterogeneity due to a
drug binding. If this specimen was to be captured, some particles would contain the part
highlighted in orange and some others would not.

(a) Front view (b) Side view
Images obtained from: [13]

Figure 2.5: 30S ribosome with a binding

3D classification consists in clustering particles based on the structure they belong to. Ob-
viously, when the input data has no conformational heterogeneity, this step is skipped.

Usually, the differences between the considered variations of the structure are very subtle,
so this is not an algorithmically easy task. Some software packages perform this task in the
refinement step, in a process known as multi-reference refinement.
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Refinement
The refinement step is used to obtain a high resolution 3D electron density map of the
protein under study. As stated earlier, sometimes more than one map may be desired.

Most of the state-of-the art packages perform the following refinement cycle repeatedly. In
essence, the algorithm tries to maximise the compatibility between the reconstructed volume
and the experimental data. For that, it attempts to reproduce the experimental data from
the reconstructed volume. This cycle is displayed in the Figure 2.6.

1. Project the current volume(s) from different angles to obtain a projection gallery.

2. For each experimental image find the most similar image in the gallery and assign its
projection angle. Note that in-plane transformations (rotations and translations) need
to be taken into account. Most of the existing solutions differ in this step, as many
similarity metrics and exploration patterns can be used.

3. Reconstruct the volume(s) with the angular assigned experimental images.

4. Repeat steps 1 to 3 using the newly obtained volume. The algorithm should converge
to a local minima[10]. When the loop stops producing significant changes or a desired
resolution is achieved, the cycle should be stopped.

Angular
assignment

Projection matching
Volume projection Volume reconstruction

Diagram figures from: [14]
Figure 2.6: Typical refinement cycle

Nowadays, most implementations make use of the Fourier Central Slice theorem to perform
steps 1 and 3. This theorem states that projecting a N -dimensional function to N − 1
dimensions and then taking its Fourier Transform (FT) is equivalent to computing the N -
dimensional FT and then extracting the central hyperplane normal to the projection direc-
tion. This equivalence is shown in the Figure 2.7. Most reconstruction algorithms leverage
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Image obtained from: [14]
Figure 2.7: Fourier Slice Theorem illustration for 3D

this fact by filling 3D Fourier space with appropriately oriented 2D FTs of the particles and
then taking its Inverse Fourier Transform (IFT).

In essence, using the Figure 2.7 as an example, our goal is to obtain the 3D volume in
real space (top left image), but the microscope provides a collection of 2D projections of it
(lower left image). Although the direct approach would be the back-projection, following
the Fourier path leads to faster results. This speed improvement is largely due to the Fast
Fourier Transform (FFT) algorithm.

Model building
The final step in SPA consists in deducing the atomic structure of the protein under study.
This is a labour intensive task where a biologist needs to fit an amino acid sequence into the
newly reconstructed 3D electron density map. A example of this process is displayed in the
Figure 2.8

2.2 Summary of SPA
The complexity of the SPA image processing can not be overstated. The starting point is
a vast amount of data representing thousands of random projections of the specimen under
study. This data is heavily contaminated with various sources of noise and other artefacts.
Moreover, most of the parameters, including the projection directions, are unknown. Many
times we can not even affirm that all projections belong to the same structure. All these
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(a) 3D electron density map (b) Solved structure
Images obtained from: [15]

Figure 2.8: Example of model building

unknowns need to be estimated from the data before attempting to perform a reconstruction.
At the end, the atomic model of the protein can be deduced from this reconstruction.

However, the effort required to obtain these atomic models is highly justified. These models
give researchers a lot of knowledge and power to develop new drugs and vaccines.
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3.1 SPA image processing software packages
SPA has significantly increased its popularity in the last decades. As a consequence, several
image processing packages have arisen. All of them chase similar ambitions: Obtain accu-
rate high resolution maps in the least amount of time possible. Most of the state-of-the-art
CryoEM image processing packages have converged into the same image processing pipeline.
This pipeline follows a conventional structure, although it is somewhat malleable. The dif-
ference between packages lies on the algorithmic approach they use to accomplish individual
tasks of the pipeline. Usually, each package is only proficient in a handful of steps. In fact,
some packages do not implement the whole pipeline and rely on others to be able to process
from beginning to end.

Traditional software packages in the context of SPA are Spider[16], Imagic, Eman[17], Cis-
tem[18], Relion[19] and Xmipp[20]. In 2016 the introduction of CryoSPARC[21] was disrup-
tive due to its significant performance improvements. Closely related to this, Scipion[22] is
a platform that enables end users to easily interoperate between different image processing
packages.

One of the recent leaps in the context of CryoEM has been the usage of hardware accelerators
such as Graphics Processing Units (GPUs) to significantly reduce processing times. Although
GPUs are only well suited for highly parallelizable operations, in those cases, the computation
time is reduced by several orders of magnitude. Indeed, this has been one of the main factors
leading to the recent growth of CryoEM.

Xmipp
Xmipp is an image processing package aimed at obtaining 3D electron density maps of
biological samples. It is developed at the BCU group at the CNB-CSIC research centre.
It was introduced in 1996, although it has taken many major overhauls since then. Even
though its primary focus is on SPA, it has diversified to many other microscopy techniques
such as Cryogenic Electron Tomography (CryoET) and random conical tilt[20].
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Currently, it is on its third major version, which gets a minor version bump-up every 4
months. It has been mostly implemented in the C++ programming language, but it includes
parts written in Python and Java. Xmipp offers methods for all steps in the SPA image
processing pipeline, being proficient at movie alignment (Flexalign)[23], particle picking, 2D
classification and 3D refinement.

Xmipp developers have ported many crucial programs to run on GPU accelerators, signifi-
cantly decreasing overall computation times. This has been achieved using Compute Unified
Device Architecture (CUDA), a GPU computing platform commercialised by NVIDIA Cor-
poration.

Scipion
As mentioned earlier, Scipion does not implement any image processing algorithms. Instead,
it provides a common scaffolding to integrate image processing packages though plugins. This
enables end users to easily build SPA image processing workflows using the strengths of each
processing package. Moreover, it provides methods to consensuate the outputs of multiple
programs, further increasing the quality of the results. In fact, the benefits of Scipion have
been extended to other domains such as Virtual Drug Screening[24] or CryoET[25].

In the context of SPA, all widespread image processing tools have been integrated into
Scipion. As shown in the Figure 3.1, usage statistics prove that users do have different
preferences for each step of the processing workflow. For instance, 3D classification is almost
always done with Relion, whilst particle picking is primarily done though Xmipp. This
manifests the need for such a software, as manually inter-operating between packages is
a very time consuming and error prone process. At the same time, being locked-in with
a particular package leads to suboptimal results, as that particular package may waver in
some steps.

Scipion is highly modular, as it can be extended with plugins. These plugins are usually
related to the integration of a image processing suite, such as Relion or Cryosparc. As of
2024, there are more than a 100 plugins available for Scipion. A plugin provides a set of
protocols, which can can be seen as a “steps” in the image processing workflow. Then, the
user can easily build its own workflow, freely choosing the procedure used for each stage.
What is more, the user may repeat the same step using different protocols and consensuate
their outputs. Therefore, Scipion not only integrates alien algorithms, but it also provides
some added value to the results.

Many of the current Scipion developments focus on implementing streaming workflows, where
all the other benefits stated earlier still apply. Moreover, there is some innovation related to
the automated control of the microscope from the image processing software. This control
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feedback loop enables microscope operation with little human intervention, significantly
reducing costs.

3.2 3D classification in SPA
One of the key challenges in CryoEM is the heterogeneity of biological samples, where mul-
tiple conformations or compositions may coexist within a single dataset. 3D classification
emerges as a crucial strategy to address this challenge.

Unlike 2D classification, which clusters particles based on their similarity, 3D classification
leverages the 3D nature of the data to classify particles according to the structure they orig-
inate from. However, this is not a trivial task, since these structural variations are unknown.
Consequently, particles must be categorized according to a criteria that is hidden. Addition-
ally, the data poses a very low SNR, which is in the order of 1/100, further complicating the
task[14].

More often than not, 3D classification is executed after a 3D refinement. This means that
particles have their orientations estimated. Similarly, a volume reconstruction comes implicit
with these angular estimations. Due to the fact that a single volume was reconstructed from a
presumably heterogeneous dataset, it will show features from multiple states. Therefore, this
volume is named as “consensus volume”. Usually, structural features that remain invariant
across states can be reconstructed at high resolution, but non consistent regions will be
significantly degraded[26].

This suggests that heterogeneity information is local. Thus, 3D classification is usually
performed in a focused manner. To do so, 3D classification algorithms can be provided with
a 3D mask that selects a Region of Interest (ROI) on which the classification focuses. If the
ROI is unknown, the whole protein is can be selected.

Regarding the algorithmic implementation of the state-of-the-art solutions, these usually
take an iterative EM approach to the problem. However, several alternatives have arised in
the last decade. These approaches will be detailed hereafter.

Expectation Maximization algorithms
EM is an iterative method to find a local estimate for an unknown parameter of an statistical
model[27]. When EM is used for 3D classification in CryoEM, on each iteration, each particle
is compared to a set of volumes to find the likelihoods of having been projected from each
one of them (expectation). Then, these volumes are reconstructed with the most likely
particles (maximisation). These newly reconstructed volumes are used as reference for the
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next iteration. Successive iterations of this process are expected to reinforce distinctive
features on each of the volumes[21].

In spite of this, an initial solution is required for the first iteration of the algorithm. It’s
important to recognize that EM algorithms to converge to a local solution[27], implying that
the convergence is influenced by the chosen initial solution[6][7]. Therefore, the selection of
the starting point plays a crucial role in the outcome of the EM algorithm. At the same
time, many existing algorithms depend on randomness to generate these initial solutions,
ultimately leading to highly non-deterministic results.

For instance, as stated in Relion’s 2016 paper on the topic of 3D classification, “Unsu-
pervised classification is achieved by initializing multireference refinements from a single,
low-resolution consensus model and assigning a random class to each particle in the first
iteration”[28]. Similarly, Cryosparc offers “simple” initialisation which is equivalent to the
previous one.

Another common pitfall of the EM algorithms is the so called “Attraction problem”, which
relates to a class gathering increasingly more elements on each iteration[6][29]. This can be
attributed to many factors, but in the context of CryoEM it is usually provoked by a class
that has slightly better SNR than the other classes. Then, this class will correlate better
with many elements[30][7], albeit these are not being correctly classified. This in turn will
lead to more particles being averaged on that class, further increasing it’s SNR[31].

In general, EM based 3D classification requires a prior knowledge of the number of classes
in the dataset[7]. This information is not always available to the user, specially when the
protein is flexible and the concept of class does not exist (instead there is a continuum of
states). Nevertheless, there are numerous approaches that circumvent this limitation such
as performing hierarchical 3D classifications[29][32].

3D Variance Analysis
3D variance analysis takes advantage of many reconstructions from randomly selected subsets
in the data. Then, these random reconstructions are compared using variability analysis
techniques such as Principal Component Analysis (PCA) so that varying regions can be
recognized[33]. Usually, 3D variance analysis is used as a method to obtain a initial solution
for subsequent EM interactions.

Contrary to the EM approaches, 3D variance analysis does not require a prior knowledge
about the number of classes, as these can be inferred from the densities in the latent space[7].
Nevertheless, many hyper-parameters such as the number of particles per reconstruction,
the number of random reconstructions and latent space dimensionality need to be chosen in
advance.
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A widespread implementation of this approach is in Cryosparc, which offers a PCA initial-
ization before performing online EM iterations[21]. This PCA approach is also available in
the split volumes protocol from Xmipp[23].

Flexibility analysis
Until this point, we have coped with conformational heterogeneity by classifying the par-
ticles in numerous discrete classes. This method reconstructs various states from particle
images under the assumption that there is a defined number of discrete conformational states
explored by the specimen. While this approach has proven successful in many cases, these
discrete states limit the information that can be extracted regarding the actual motion of
the protein. As a consequence, recent leaps in hardware and software have allowed to extract
this motion information from individual particles[34].

Indeed, this is a very novel field in the field of CryoEM and several unique approaches have
arised in the last few years. Although the particular implementations vary greatly, they all
converge by the fact that they are based on Deep Neural Networks (DNNs)[35].

Nevertheless flexibility analysis is not a substitute for 3D classification, as it relies on the
fact that atomic mass remains invariant across states. For obvious reasons, this does not
hold true for compositional heterogeneity, where a compound may or may not be present.
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In this project we aim to develop a novel method for determining a reliable initial 3D
classification. Doing so, many of the inconveniences related to the current EM and 3D
variations analysis approaches are avoided. The algorithm detailed on this chapter provides
a high quality initial solution to the subsequent EM iterations. Doing so, the EM algorithm’s
convergence will be biased towards the correct solution, avoiding local minima and attraction
problem. This increased quality of the initial solution also implies that fewer EM iterations
are demanded, which in conjunction with the computational efficiency of the algorithm,
allows for a significant speed up on the 3D classification process. Lastly, very few hyper-
parameters are required to be tuned to achieve correct results.

4.1 Initial partition algorithm
The 3D classification problem is specially challenging due to the fact that images need to
be classified according to unknown structures. Once these structures have been partially
discovered, 3D classification becomes much easier, as particles can be considered to belong
to their most similar 3D structure by the means of projection matching.

In this section we aim to describe a new approach that can be used to discover initial
solutions without any prior knowledge, except for the 3D alignment of the particles, which
implicitly come associated to a consensus volume. A consensus volume is a volume that has
been reconstructed with all the particles, disregarding any possible heterogeneity. Thus, it
is expected that it expresses a mixture of features from the underlying structures.

Our initial 3D classification approach leverages the fact that particles projected from similar
directions should resemble to one another. Thus, grouping particles by their projection angle,
should enable us to perform a image classification in 2D. Then, using graph theory, we can
relate neighbouring groups, leading to a global classification. An overview of this process is
displayed in Figure 4.1.

In this early stage, we will ignore the presence of the CTF and assume that images have
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Heterogeneous dataset

Angular grouping

Group classification

Synchronization

Reconstruction

Global classification

Figure 4.1: Overview of the initial 3D classification algorithm
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their CTFs corrected.

Projection grouping
As a first step, our algorithm groups neighbouring projections, as they are considered to be
similar enough and only differ in the structural feature we are interested in. These groups
are overlapping, this is, a particle may belong to multiple groups. Indeed, for reasons that
will be detailed later, some amount of overlap is mandatory. A example of such a grouping
is illustrated in Figure 4.2.

(a) Projection sphere divided in overlapping cones (b) Cone spacing criteria

Figure 4.2: Particle grouping with cones

Each of these groups has a representative projection direction, which will be named as
ri ∈ S2, where S2 is the unit sphere in R3. These direction vectors are artificially generated
in such a way that they are quasi equally spaced in the unit sphere. These points can be
limited to a hemisphere, as projections emanating from antipodes are equivalent, except for
a mirror transformation. Additionally, if the protein under study poses symmetry, this can
be accounted to further reduce the directions to the unit cell of the corresponding symmetry
group.

Regarding the particles themselves, their projection direction is usually represented by a
triplet of Euler angles: (θ, ϕ, ψ)j. The physiscal meaning of these Euler angles is represented
in Figure 4.3. However, for our purposes, it becomes more handy to represent projection
directions of the experimental images with unit vectors γj ∈ S2. The Euler angles can be
easily converted to vector notation using the expression (4.1). Note that in this conversion the
ψ parameter of the Euler angles is discarded, as this does not participate in the projection
direction definition. Instead, it is used to define the in-plane rotation as, represented in
Figure 4.3.
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γj =


sin(ϕj) · cos(θj)
sin(ϕj) · sin(θj)

cos(ϕj)

 (4.1)

Figure 4.3: Representation of the Euler angle convention used in CryoEM

At this point, the grouping of projections becomes trivial: A particle is considered to be on
a group only if the angle between its projection direction and the representative direction of
the group is smaller than some arbitrary threshold θmax:

Gi = {j : acos(⟨ri,γj⟩) ≤ θmax} (4.2)

θmax defines the aperture of the cones used for grouping. Thus, it is important to use a
value low enough such that the variability induced by the projection direction is negligible
compared to the actual variability in the structure. In our experience, a value of 7.5◦ provides
good results. Similarly, the number of groups needs to be sufficient so that these cones
overlap. To do so, we are selecting the number of groups so that they are spaced on average
by ∆θ ≈ θmax as shown in Figure 4.2.

Classification of neighbouring projections
In the previous step we have classified images according to their projection direction. At
this point, our intention is to classify the images from each group into two classes that are
maximally dissimilar. This process will be applied for each directional group.
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Image alignment
Before attempting any classification, images need to be aligned to one another. To do so, we
will leverage the 3D alignment estimation provided by the preceding steps in the SPA image
processing pipeline. The three possible in-plane transformations are represented in Figure
4.4.

Figure 4.4: In-plane transformation of the particles

First, the center offset of the particles accounted by displacing them by their shift estimate
(δx, δy) in the opposite direction. This ensures that the particle is centered in the image
frame.

Secondly, the in-plane rotation of the particles is corrected. To do so, the Euler angle
estimates are converted to quaternion space. Quaternions are a four-dimensional extension
of complex numbers, commonly utilized to represent rotations in three-dimensional space.
Quaternions can also be represented by a vector-scalar pair Q = (v, w) = (u · sinα, cosα),
this is, a rotation of α angular units around an unitary axis u. Note that v = u ·sinα relates
to the complex part of the quaternion, whilst w = cosα involves its scalar component.

The Euler angles can be converted to quaternions using the Equation (4.3). Note that
unlike the projection direction γj , the in plane rotation ψ is considered when computing the
quaternion representation of the Euler angles.
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We will use this vector-scalar representation to project the quaternion onto the ri axis using
the expression (4.4). This expression was derived from the twist-swing[36] decomposition,
which describes a quaternion with two components: a rotation around a certain axis and
the residual part. In this case, we are only interested in the rotation around the projection
direction.

ψ̂ = atan2(⟨vj , ri⟩, w) (4.4)

Note that the ψ component of the Euler angles also expresses the in-plane rotation. However,
due to the fact that we are combining images with (slightly) different projection angles, ψ̂
leads to a more precise in-plane alignment.

In practice, both of the alignment operations (rotation and shift) are performed at once with
an affine matrix transformation. This matrix is shown in Equation (4.5). Note that the shift
is applied before the rotation, so the rotation is also applied to the shift vector.

M =


cos ψ̂ − sin ψ̂ 0
sin ψ̂ cos ψ̂ 0

0 0 1

 ·


1 0 δx

0 1 δy

0 0 1

 =


cos ψ̂ − sin ψ̂ cos ψ̂ · δx − sin ψ̂ · δy

sin ψ̂ cos ψ̂ sin ψ̂ · δx + cos ψ̂ · δy

0 0 1

 (4.5)

Image classification
Once all the particles of a directional group are aligned to one another, a classification is
attempted. To do so, we have used PCA, a popular dimensionality reduction technique[37].
In short terms, PCA describes a set of multidimensional points in an orthogonal basis where
its components are not correlated. Moreover, components of the basis are ordered by the
variance they capture[38].

On our approach, we consider a lexicographically ordered version of the image (pixels layed
out as a 1D vector), so that PCA can be applied to them. This ordering is performed withing
a mask, so that the classification can focused on a ROI. This mask is generated by projecting
the input 3D mask in the reference direction.

This PCA procedure is applied in each group to an aligned stack of particles as shown in Fig-
ure 4.5. Assuming that the primary source of variability across images is the heterogeneity,
the first eigen-image will be representative of this heterogeneity.

In our implementation, we use pytorch[39] to perform the PCA analysis and obtain the first
eigen-image. Then, the eigen-image can be used as a projection basis for the images. This
allows to order particles according to their projection value. Indeed, this can be interpreted
as an interpolation weight between two classes that are maximally dissimilar, C+ and C−.
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ρi = ⟨u1,xi⟩ (4.6)

where u1 is the first principal component (largest eigenvalue) and xi is the vector represen-
tation of a particle.

We will assume that PCA projection values of follow Gaussian distributions C+ ∼ N (µ+, σ
2
+)

and C− ∼ N (µ−, σ
2
−). Thus, using the projection values we can attempt a classification by

fitting a Gaussian Mixture Model (GMM) of two components to their histogram. A GMM
is a probabilistic model that represents the probability distribution of a dataset as a mixture
of multiple Gaussian distributions.

To avoid numerical stability issues, we enforce the same variance for both GMM compo-
nents (σ2

+ = σ2
−). Consequently, each component of the GMM can be used to estimate the

likelihood of their corresponding class. An example of such a fitting is displayed in Figure
4.6.

Computing the log likelihood ratio of the components, we can rank particles according to
the class they most likely belong to. In other words, log likelihood ratio’s sign determines
which of the classes is more probable, while its magnitude reflects the certainty. This ratio
is also plotted in Figure 4.6.

log Λ(ρ) = log L(C+ | ρ)
L(C− | ρ) (4.7)

We will name the log likelihood ratio of a given particle as λi:

λi = log Λ(ρi) (4.8)

Image stack

Mask

PCA

1st Eigen-image
Figure 4.5: Eigen-image computation process
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Directional class synchronization
In the previous step we have established two classes for each of the directional groups. It
is expected that these classifications have been performed according to the heterogeneity
we are interested in. However, this does not mean that classes match across groups. In
fact, PCA has two equally valid solutions for each axis, which are opposite to one another.
Similarly, the GMM fitting is arbitrary. Thus, class ordering is not deterministic. In other
words, C+ in one group may correspond to C− in another group and vice versa.

Consequently, a synchronization of classes across directional groups is required. That is why
cones need to overlap. Doing so, we can make use of common particles to evaluate if a given
pair of adjacent groups have equal or opposite classifications.

The first step to perform this synchronisation is to find the common particles by computing
the set intersection of adjacent groups:

Iij = Gi ∩Gj (4.9)

The dot product of the log likelihood ratios of common particles in each group can be used
as a similarity metric to compare their classifications. Positive values indicate that the
classifications are aligned. Accordingly, negative values point that the classes are swapped.
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wij =
∑

p∈Iij

λip · λjp (4.10)

At this point we want to maximize the compatibility of all directions by flipping the classifi-
cations of a given set of groups. This swapping of classes translates into applying a negative
sign to all their log likelihood ratios. According to the expression (4.10), this would also
result in the application of this negative sign to all the weights related to these groups.

Thus, we can express our synchronization problem as the quadratic binary optimisation
problem posed in equation (4.11). This is, we want to maximise the total compatibility by
flipping some classifications.

max
σ

f(σ) =
∑
i,j

wij · σi · σj = σTWσ

subject to
σi ∈ {−1,+1} ⇔ σ2

i = 1

(4.11)

where the sign of σi relates to a group being swapped or not.

Analogy with magnetic dipoles
Although this optimisation problem may look naive, it is not trivial to solve, as it cannot be
approached with Lagrange multipliers. Similar cases to this problem also appear in nature,
as is the case of the Hamiltonian of the Ising Model[8].

The Ising Model describes the behaviour of a network of magnetic dipoles where these may
freely flip their polarity. The Hamiltonian of the model represents the energy of the system[8].
As in many cases in nature, the energy of a system tends to be minimal, and the Ising Model
is not an exception to this rule. Thus, the Ising Model will be on a stable state only if its
Hamiltonian is minimal. The expression for Hamiltonian of the Ising Model without external
interactions is provided hereafter:

H(σ) = −
∑
i,j

Jij · σi · σj

σi ∈ {−1,+1}
(4.12)

where Jij represents the magnetic interaction between each pair of dipoles. When Jij > 0 the
interaction is ferromagnetic (magnet polarities to align) and when Jij < 0 the interaction is
anti-ferromagnetic (magnet polarities tend to oppose). σi represents the spin of each of the
magnetic dipoles in the system. This will help us establish a classification-magnet metaphor.
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Except for the minus sign, the expression (4.12) is equal to our objective function detailed
in (4.11). Indeed, due to this duality, the minimisation of the energy in the Ising Model
corresponds to the maximisation of our objective function. Therefore, solutions to the Ising
Model also serve as solutions for our problem.

One of the most common ways to approach the Ising Model problem is by finding the
maximum cut of the graph defined by the weighted adjacency matrix A = −J , which in
our case corresponds to the similarity matrix W . Once the graph has been bi-partitioned
using the maximum cut criteria, magnets (or classes) of one partition are flipped to minimize
energy (or maximize compatibility)[8].

An example of a graph of direction similarities is detailed in Figure 4.7, where the edge colours
represent the similarity metric between adjacent directions. The vertices are positioned in
γi, so that the graph appears to be embedded in the projection sphere.

Figure 4.7: Graph embedded on the projection sphere

Graph maximum cut algorithm using SDP
Until this point we have only shifted our optimisation problem into other domains, without
giving any concrete solution to it. Nevertheless, we have reasoned that our problem directly
maps to the graph maximum cut problem.
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A graph cut is a partition of the graph into two disjoint sets of vertices (no edges connecting
the two subsets). Thus, the the graph cut size is the sum of the edges that need to be removed
to obtain a disjoint bi-partition. Considering the former definition, the graph maximum cut
is defined as “A cut whose size is at least the size of any other cut”[40]. However, similar
to the previous analogies, this problem is not easy to solve, as it is deemed NP-Hard[41].
Luckily, numerous heuristic approaches exist that provide reasonably bounded solutions.

In our case, we have decided to use an approach based on Semi Definite Programming (SDP).
SDP is a mathematical optimization technique that extends linear programming to solve
optimization problems involving symmetric matrices, offering powerful tools for addressing
a wide range of real-world optimization challenges. Using a SDP approximation to solve the
graph maximum cut problem is guaranteed to find a solution that is at least 87% accurate
while also being computationally efficient[42].

The SDP approach involves relaxing σi ∈ {−1,+1} to xi ∈ SN−1 where SN−1 is the unit
sphere in RN . This allows us to define the matrix X of pairwise dot products:

Xij = ⟨xi,xj⟩ ⇔ X = Y · Y T (4.13)

where

Y =
[
x1 x2 . . . xN

]
(4.14)

Due to the commutative property of the inner product, we can deduce that X must be
symmetric. Moreover, all its diagonal values must be 1, as these involve the dot product of
a unit vector with itself. Last but not least, given the fact that X can be expressed as the
outer product of a matrix Y with itself, X is also guaranteed to be positive semi-definite:

xT (Y Y T )x = (Y T x)T (Y T x) = ∥Y T x∥2 ≥ 0 ∀x (4.15)

Considering all these constraints, we can pose the SDP problem shown in Equation (4.16).
The greatest benefit of this formulation is that there are SDP solvers that run in polynomial
time (as opposed to the binary optimisation problem which was NP-Hard).
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min
X

f(X) =
∑
i,j

aijXij

subject to
X = XT

Xii = 1
X ⪰ 0

(4.16)

In our implementation, we use cvxpy[43][44] package to solve this SDP problem. To get
back the values of xi from X we use matrix square root function (Y = X

1
2 ) available in

scipy[45]. Finally, we undo the relaxation to extract σi from xi[42]:

σi = sign(⟨v,xi⟩) (4.17)

where v is a random vector in SN−1.

Global classification
As a final step, we combine the information gathered from all the 2D classifications to
obtain a 3D classification of the particles. To do so, once all the 2D classifications have been
synchronized to one another, all the log likelihood ratios of a given particle are averaged
(remember that a particle may belong to several directional groups). Recalling that the sign
of the log likelihood ratio represents the class, this sign is used to assign the 3D class of the
particle.

After bi-partitioning the particle set according to their 3D class, a volume is homogeneously
reconstructed for each of the 3D classes. This is done though the xmipp_reconstruct_fourier
program, which was already implemented in the Xmipp suite[46].

4.2 Software architecture
In the previous section we described the algorithmic implementation of the 3D classification
method. In this section we aim to explain how the code was structured to approach this
task. Most of the code was developed as a Scipion protocol, although some specific tasks
were delegated to separate programs.
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0

Figure 4.8: Global classification

Scipion protocol
Scipion is a CryoEM image processing platform that integrates many widespread image
processing packages through plugins. Each plugin consists of a collection of programs known
as protocols. Usually, protocols can be seen as high-level steps of an image processing
pipeline. Indeed, a 3D classification can be considered as a protocol. In this project, we
have implemented our program as a Scipion protocol named as split volume inside the
Xmipp plugin.

Typically, a Scipion protocol defines a set of input parameters which are displayed in the
Graphical User Interface (GUI) when launching the protocol. The most relevant parameters
of our protocol are listed hereafter:

• Input particles: The particles analyzed during execution

• Input mask (optional): A binary mask defining the ROI on which the classification
focuses. If not provided, an spherical mask is automatically generated
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• Symmetry group: If the protein under study exhibits a particular symmetry, this
can be specified here to reduce projection directions.

• Resize (optional): Controls if the particles are down sampled to a particular size. If
not provided, particles are not resized.

• Angular sampling: Average spacing between angular groups. Defaults to 7.5 degrees.

Once the protocol is launched, it executes a series of operations known as steps. In the case
of our protocol, these steps are linear, meaning that they are executed sequentially. The
heavy operations are usually delegated to standalone programs, whilst the straightforward
operations are implemented inside the protocol steps. The most relevant steps from our
protocol are detailed here:

1. Convert input: The input is converted to an appropriate format for our processing.
If downsampling is selected, this downsampling occurs here.

2. Angular neighborhood: Groups particles according to their projection directions.
To do so, the existing xmipp_angular_neighbourhood program is used.

3. Classify directions step: Each group is classified into two classes as dissimilar as
possible. This is achieved with a newly created ad-hoc program named as
xmipp_aligned_2d_classification, which will be detailed in the next section.

4. Build graph: Compares neighbouring classifications to build a graph with their sim-
ilarities.

5. Graph optimization: The maximum cut of the graph is computed so that classifi-
cations can be synchronized. xmipp_graph_max_cut program was created to perform
this task.

6. Partition: Once the classifications are synchronized, their log likelihood ratios are
averaged and individual particles are classified according to their sign.

7. Reconstruction: Each of the classes is used to produce a volume using the already
existing xmipp_reconstruct_fourier program.

8. Create output: Classes are converted to Scipion format.

At the end, the Scipion protocol produces a set of classes and a set of volumes representing
the classes. These objects may be used as input for another protocol that requires them,
like for instance, a subsequent Relion 3D classification.
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Viewer
Scipion protocol viewers are small GUIs that show detailed information about the protocol’s
execution. Therefore, a protocol viewer was also implemented for this algorithm for diagnose
purposes. This viewer is able to present two visualizations related to its execution.

Firstly, directions can be interactively analyzed to ensure that heterogeneity is being cap-
tured. To do so, a histogram of the PCA projection values is presented alongside the GMM
fitting. By dragging the yellow line, the user can visualize the heterogeneous state repre-
sented by the projection value. A snapshot of this representation is shown in Figure 4.9.
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Figure 4.9: Snapshot of the classification viewer

The other visualization involves a graph relating adjacent directions. This graph is embedded
on a 3D sphere, which represents the projection directions. The edges of the graph are
coloured so that they represent the weight attributed to it. This representation is displayed
in Figure 4.10. Note that this graph is also interactive, the user may drag the cursor to
change the viewing angle.

Auxiliary programs
As mentioned earlier, computationally intensive operations were segregated from the protocol
logic into their own programs. Then, these programs are invoked by the protocol. This
separation benefits cluster users, as programs invoked by Scipion protocols can be dispatched
to queue engines such as Slurm. In addition, it helps distinguishing the general control logic
from the algorithmic nuances.
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Aligned 2D classification
This program receives a set of images with their corresponding 3D alignment parameters
and a reference direction. Then, it aligns the images to the reference projection direction
and computes their PCA. These PCA projection values can be used to evaluate the class of
each particle. We use pytorch to transform the images and compute the PCA.

Note that in our implementation we fit a GMM model to these PCA projection values. This
fitting is performed by the protocol itself and not the classification program.

Graph max cut
Another computationally demanding task is the graph maximum cut. As mentioned in the
previous section, we translate the maximum cut problem into a semi-definite programming
program, which is solved by cvxpy. This program precisely does this translation. It takes
a potentially sparse matrix representing the adjacency matrix of a graph and it converts
it into a semi-definite programming problem. Once solved, it outputs a two sets of indices
expressing the vertices corresponding to each of the partitions of the graph.

1.00
0.75

0.50
0.25

0.00
0.25

0.50
0.75

1.00
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1

2

3

4

5

6

7

8

9

10

11

12
13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44
45

46

47

48

49
50

5152

53

54
55

56

57

58

59

60

61

62

63

64

65 66

67 68
69

70
71

800

600

400

200

0

200

400

600

800

E
d

g
e
 w

e
ig

h
ts

Figure 4.10: Snapshot of the 3D graph viewer



5. Results

This chapter aims to evaluate the algorithm described in this project. The assessment will
involve the utilization of multiple datasets to demonstrate its robustness across varying
scenarios. Subsequently, a comparative analysis will be conducted, comparing the algorithm
against well established state-of-the-art solutions.

5.1 Test datasets
In the algorithm’s assessment, three carefully chosen CryoEM datasets have been used. The
datasets reflect various conditions that can be found in reality, so that the comparisons
shown here are transcendental. One the datasets exhibits compositional heterogeneity, while
the other two are highly flexible. In such a way, we intend to assess the performance in both
heterogeneity scenarios.

We have preferred to use publicly available datasets from Electron Microscopy Public Image
Archive (EMPIAR), so that the results detailed here can be replicated. Nevertheless we have
also used a in-house acquisition that is not public yet (although it is expected to become
public soon).

TRPV-5
The Transient Receptor Potential Vanilloid 5 (TRPV-5) protein is an ion channel, which
plays a crucial role in the regulation of calcium homeostasis within various tissues and cells.
This sort of channels are widely distributed in mammalian organisms and are involved in
sensory perception, cell signaling, and the maintenance of cellular ionic balance. TRPV-5 is
primarily expressed in the renal tubules, where it participates in the reabsorption of calcium
ions. The protein’s significance in renal physiology underscores its role in maintaining sys-
temic calcium levels, ultimately impacting bone health, neuromuscular function, and overall
mineral homeostasis.

Research on TRPV-5 has gained significance in recent years, focusing on its structural fea-
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tures, functional properties, and the signaling pathways it engages in. Understanding the
molecular behaviour of TRPV-5 provides a basis for developing targeted therapies for disor-
ders related to calcium deregulation.

We have decided to mix two EMPIAR entries where one of them comes from an experiment
where calmodulin was added in-vitro (EMPIAR-10253) and potentially binds to two N and
C lobes. The other experiment comes from a mutant in a clean buffer, although it had
potential to bind endogenous calmodulin (EMPIAR-10256). Unlike the first experiment, the
mutation on the TRPV-5 from the second experiment disables the calmodulin binding in
the C lobe. Therefore, the difference between the two datasets lies around the binding site
in the C lobe[32][47]. These lobes are highlighted in Figure 5.1.

Image obtained from: [47]
Figure 5.1: TRPV-5 reconstruction

A similar classification experiment was proposed in the “Data-driven determination of num-
ber of discrete conformations in single-particle cryo-EM” paper. As stated by its authors,
“These datasets are challenging because the extra density corresponding to calmodulin is
very small and breaks the symmetry of the complex making accurate particle alignments
critical to achieve a successful separation”[32].

The two datasets used in these tests are the EMPIAR-10253[48] and the EMPIAR-10256[49][47].
In conjunction, they sum 166, 611 particles, from which 60% originate from the mutant ex-
periment, and the other 40% originate from the in-vitro experiment. These particles have
a size of 256 × 256px2 and they were acquired with a sampling rate of 1.06Å/px. As two
datasets were mixed, it is not fair to consider their alignments, as these were estimated in
isolation. Thus, all the particles were re-refined to re-estimate the alignment parameters in
heterogenous conditions using CryoSPARC’s non-uniform refinement[21]. A sample of the
particles of these datasets is showcased in Figure 5.2.
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Figure 5.2: Sample of the TRPV-5 particles

Pre-cathalytic spliceosome
The pre-cathalytic spliceosome is a critical component in the process of RNA splicing. RNA
splicing is a fundamental cellular mechanism that involves the removal of introns (non-
coding regions) from precursor messenger RNA (pre-mRNA) and the joining of exons (coding
regions) to generate mature mRNA. The spliceosome is a large and dynamic molecular
machine responsible for orchestrating this process.

Understanding the functions of the pre-catalytic spliceosome is crucial for unraveling the
molecular mechanisms that govern RNA splicing, which plays an important role in gene
expression and cellular function. Researchers investigate these processes to gain insights
into various genetic and cellular disorders, as abnormalities in splicing can lead to diseases.

This molecular machine is highly flexible, meaning that it exhibits continuous heterogeneity.
Indeed, it contains two independent regions with flexibility, which will be analyzed separately.
In these analysis we aim to observe multiple stable states on those regions. In particular,
we will focus our analysis on the SF3b and helicase regions detailed in Figure 5.3, which are
the most flexible ones.

We have conducted our tests on this macro-molecule using the publicly available a pub-
lic dataset from the EMPIAR repository, precisely the EMPIAR-10180[51] dataset. This
dataset is commonly used as a baseline to assess and evaluate flexibility analysis algo-
rithms[26][50][34]. Due to this continuous heterogeneity, the our aim is to observe the most
common states. The EMPIAR-10180 dataset is provided as a set of 327, 490 aligned par-
ticles of size 320 × 320px2 at a sampling rate of 1.699Å. Additionally, the authors of the
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Image obtained from: [50]
Figure 5.3: Pre-cathalytic spliceosome reconstruction

dataset also provide masks enclosing the ROIs of each of the flexible regions. A sample of
the particles of this dataset is displayed in Figure 5.4.

Figure 5.4: Sample of the spliceosome particles



5.2 Experiments 43

HER-2
The HER-2 protein, also known as human epidermal growth factor receptor 2, is a crucial
molecule in the context of cell growth, division, and differentiation. HER-2 is particularly
remarkable for its involvement in cancer biology, as its overexpression or amplification has
been identified in a variety of malignancies, most notably breast cancer. When HER-2 is
overexpressed, it can lead to uncontrolled cell proliferation, increased survival, and enhanced
invasive properties, contributing to the aggressive nature of certain cancer types.

Figure 5.5: HER-2 reconstruction

In the results detailed on this chapter, we have experimented with a in-house dataset which
was previously processed by Dr. Marcos Gragera Cabezudo. This dataset is comprised of
352, 500 aligned particles of size 200 × 200px2 acquired with a sampling rate of 1.3Å/px. A
sample of these particles is shown in Figure 5.6. Similarly to the pre-cathalytic spliceosome,
HER-2 also exhibits flexibility. In particular, it is comprised of two sub-units that are flexibly
connected. Thus, by performing a 3D classification on it, we aim to observe multiple states.

5.2 Experiments
Using the previously described datasets we have conducted an exhaustive evaluation of
our 3D classification method. This evaluation involved a comprehensive comparison with
widespread state-of-the-art solutions, specifically Relion[19] and CryoSPARC[21]. To ensure
a fair comparison, we have conducted tests under conditions as similar as possible. Due
to our limitation of only being able to categorize into two classes, we have enforced this
condition on all tests.

To be more specific, Relion has been tested with its default execution parameters, which
implies that 25 EM iterations will be performed by it. Similarly, CryoSPARC will be tested
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Figure 5.6: Sample of the HER-2 particles

both with “simple” (random) initialization and “PCA” initialization, leaving the rest of
the parameters with their default values. In addition, our graph based approach will be
executed with its default parameters. Lastly, a combination of our classification method
with 2 Relion EM iterations will be assessed. The results are presented on a dataset basis, so
that information needed for comparisons can be easily gathered. Nevertheless, performance
results are presented jointly.

Due to a lack of ground truth, we will qualitatively evaluate the results by comparing the
reconstructed classes. To do so, we will present representative slices from the reconstructions
side by side, highlighting the difference. Similarly, resolution measurements are not suitable
for assessing classification quality, as this depends greatly on the number of particles used
for reconstruction.

Last but not least, computation time is measured, so that the performance alignment of each
of the implementations can be added to the balance. The tests were conducted on a work-
station with stable ambient conditions, so that performance measurements can be compared
across executions. This workstation features dual Intel Xeon X5647 Central Processing Units
(CPUs) and a NVIDIA Titan X GPU.

TRPV-5
As mentioned in the introduction of this dataset, it consists of a mixture of two separate
experiments, one of which contains a mutation that disables calmodulin from binding at a
particular spot. In this test we will try to identify this position using our own approach.
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Unluckily, neither Relion nor CryoSPARC converged with this dataset, regardless of the
configuration used in the execution. We suspect that they suffered attraction, as almost
all particles ended in a single class. This attraction theory is supported by the evidence
shown in Figure 5.7, which plots the class distribution across EM iterations of the Relion
3D classification. Therefore, we are not able to provide a comparison for this experiment.
Nevertheless, we have measured their execution times for later comparison.
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Figure 5.7: Class distribution across Relion’s EM iterations with the TRPV-5 dataset

In spite of this, our algorithm successfully provided the correct solution. This is showcased
in Figure 5.8 which represents a XY slice centered around the C lobe. In the binding site,
there is a noticeable density difference between classes 1 and 2. What is more, when 2 Relion
3D classification iterations are applied after our 3D classification, this difference in density
is further amplified. After these two iterations we have observed that the separation stops
improving.

The results obtained with this dataset are particularly interesting because Relion by itself
was not able to converge. However, when provided with our initial solution, it managed to
converge in just 2 iterations.

Pre-cathalytic spliceosome
The next analyzed dataset will be the Pre-cathalytic spliceosome. As introduced later, this
protein is comprised of multiple flexible areas, which will be explored separately. To do so,
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we will use the provided masks to focus the classification on the region we are interested in.

When focusing our classification on the helicase part of the spliceosome, we observed inferior
results when using our graph based algorithm standalone. However, when combined with
Relion, it managed to obtain qualitatively similar results to CryoSPARC or standalone
Relion. In addition, as discussed later, this combined approach run faster than the rest.

Similarly, when focusing the classification on the SF3b part of the protein, the separation
with our approach is not as clear as in the rest of the cases. However, once again, two
additional iterations of Relion are sufficient to achieve qualitatively similar results while
remaining faster than the other approaches.

HER-2
The last assessed dataset is HER-2. As shown in Figure 5.11, all of the algorithms were
able to find the same conformational variations, which relate to the upper sub-unit flexing
side by side. Qualitatively it is not easy to judge which one provides better results. In
fact, approximately 78.72% of the images were categorized stably across all classifications
(including ours), indicating that classifiers mostly agree on their classifications. Possibly,
the other 21.27% belongs to intermediate states, so that they can not be easily attributed
to one of the extreme classes.

Performance
Regarding the performance of our algorithm, Figure 5.12 shows that it is consistently faster
than other solutions. Even when factoring the additional Relion iterations, it can keep
pace with CryoSPARC, even surpassing it with certain datasets. The difference is specially
notable with the standalone Relion executions, as these are not GPU accelerated.

Regardless of the algorithm used, it is remarkable that the execution time varies greatly
across datasets. Indeed, we have used two different time scales when representing the execu-
tion times in Figure 5.12, as processing the spliceosome was much slower. This is probably
related to the fact that particles of this dataset are the largest ones. In addition, its amount
of particles is also substantial, only being surpassed by the HER-2 dataset.
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(a) Class 1 reconstruction of our
classification algorithm

(b) Class 2 reconstruction of our
classification algorithm

(c) Class 1 of reconstruction of
our classification algorithm and
2 subsequent Relion iterations

(d) Class 2 reconstruction of
our classification algorithm and
2 subsequent Relion iterations

Figure 5.8: Slice 127 of the reconstructed volumes of TRPV-5 after classification
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(a) Consensus (b) Relion (c) CryoSPARC (simple)

(d) CryoSPARC (PCA) (e) Graph-based (f) Graph-based + Relion

Figure 5.9: Classification experiments with the spliceosome dataset focusing on the helicase
subunit
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(a) Consensus (b) Relion (c) CryoSPARC (simple)

(d) CryoSPARC (PCA) (e) Graph-based (f) Graph-based + Relion

Figure 5.10: Classification experiments with the spliceosome dataset focusing on the SF3b
subunit
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(a) Consensus (b) Relion (c) CryoSPARC (simple)

(d) CryoSPARC (PCA) (e) Graph-based (f) Graph-based + Relion

Figure 5.11: Classification experiments with the HER-2 dataset
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6. Conclusions

The tests described in the previous chapter show the importance of the initial solution in
the 3D classification problem. This is not surprising, as there are countless examples in the
scientific literature that describe this issue. The method presented here proves to be a very
relevant approach for providing a reliable and high quality initial solution.

In fact the TRPV-5 experiment was of particular interest, as neither Relion nor Cryosparc
were able to converge to the two distinct underlying classes. However, our approach man-
aged to provide a correct solution. In addition, when its outcome was fed into Relion for
further refinement, this was able to converge in a few iterations. This reinforces the previous
statement, as Relion on its own did not converge, but when provided with our initial solution
it completed successfully. Indeed, the experiments have shown that similar or better results
were obtained when combining our algorithm with a couple of Relion EM iterations. In
addition, this pathway not only provides superior results but also demonstrates to be one of
the most performing ways to achieve 3D classification, only being beaten by our standalone
initial solution with slightly worse results.

Even though discrete 3D classification is deemed obsolete for elucidating continuous move-
ments of macromolecules, the continuous flexibility analysis tools are computationally very
expensive, requiring hours or days to complete. Thus, the high throughput of the algorithm
described in this work proves to be a viable option for preliminarily testing of conformational
heterogeneity in a dataset. What is more, continuous flexibility analysis is not suited for
compositional heterogeneity experiments, which are better modeled by the classical 3D clas-
sification methods. As a consequence, 3D classification remains as a necessary and crucial
step in CryoEM image processing.

All in all, our method has proven to be a very effective approach to 3D classification, a nec-
essary step in many CryoEM image processing scenarios. We have empirically demonstrated
the improvements obtained by using it, both in terms of the quality of the results and the
computational time required to obtain them. Therefore, we hope that structural biologists
will take advantage of it for elucidating the behavioral insights of critical proteins involved
in diseases.





7. Future work

7.1 Generalization to multiple classes
One of the largest limitations of our algorithm is that it is fixed to providing two classes. At
the same time, many problems in biology require more that these two classes. As the classi-
fication algorithm is integrated in Scipion, the user may run it repeatedly in a hierarchical
manner to obtain a greater amount of classes. However, this is tedious and inefficient. Thus,
our next step is to automatize this hierarchical classification process.

Several of such approaches of this hierarchical classification already exist. For instance, as
described by J. Gomez-Blanco et al., their approach subdivides each class until no resolution
improvement can be obtained from this partitioning. To do so, they employ the ResLog
plot criteria, which relates the reconstruction resolution with the amount of particles used
at it[52]. A separation necessarily involves that less particles will be used for each recon-
struction, so the overall resolution is expected to decrease. In their approach, the ResLog
plot is used to test if the resolution improves in relative terms to the particle count. At the
end, similar classes can be merged to gain back resolution[29].

7.2 Performance improvements
Even though our algorithm has demonstrated superior performance, its implementation can
be improved in many ways to maximize computational resource usage. During testing, we
have observed that the majority of time is devoted to the 2D group classifications. At the
same time, this process was barely using the GPU of the system.

We suspect that this is due to a disk Input/Output (I/O) bottleneck, as many images need to
be loaded onto the GPU, which can incur a higher computation time than the actual image
processing. Currently, the classification program is invoked once per group. We believe
that if the classification program is modified to consider a set of groups, loading only once
duplicate particles can help to reduce the overall loading times.
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7.3 3D classification refinement
In the results shown in this work, we have observed cases where subsequent EM iterations
help to improve the initial partition in certain cases. In those results we have employed
Relion to carry out those EM iterations. However, we intend to develop our own tools to
refine the initial partition. A prototype of such a program has been already implemented in
Xmipp, but extensive testing is yet needed.

A potential variant of this refinement program could also consider slight variations in the
angular assignment from the consensus volume, as these were estimated from a partially
incorrect map.

7.4 Classification consensus
Another moral obtained from the experiments presented in this project is that 3D classi-
fication algorithms are highly unstable and there is no single solution that is robust in all
cases. This is not unique to the 3D classification problem, indeed, it is a common topic in
all steps of the CryoEM image processing pipeline. One of the supporting pillars of Scipion
is the ability to to contrast results from multiple executions of the same step, even allow-
ing to compare distinct implementations. Such programs are named as consensus and their
primary intention is to automatically combine the results in the best way possible.

Currently, we are also working on a 3D classification consensus protocol which provides
confidence scores to each of the classes and automatically selects the optimal number of
classes based on this score.
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A. Social, economic,
environmental, ethical and

professional impacts

A.1 Introduction
This study is dedicated to introducing a novel approach to a complex issue in CryoEM, as
is the case of 3D classification. Indeed, this is a very powerful tool employed by structural
biologists for investigating proteins and their interactions. Such insights play a crucial role
in the development of new drugs and vaccines, ultimately contributing to the improvement
of citizens’ quality of life.

Given the direct relation between the project and the pharmaceutical and biotechnology
sectors, a comprehensive examination of the potential ethical, social, economic, and environ-
mental impacts of the project is necessary. The objective of this section is to meticulously
evaluate each of these facets and describe the potential impact of this algorithm.

A.2 Description of impacts related to the
project

Social impacts
The social impacts of this project are primarily related to science. Research groups in the
field of structural biology may be positively affected by the advances proposed on this work.
Firstly, the results presented here show that the algorithm leads to superior results when it
is used in conjunction with current solutions. In addition, this same tandem performs better
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in terms of computational time. As a consequence, the project has the potential to increase
the productivity of structural biologists by providing then with better results faster. This
increased productivity of researchers leads to faster vaccine and drug developments, which
has implications in the pharmaceutical and healthcare industry.

In addition, the project has been developed on an academic environment under a Free and
Open Source Software (FOSS) licensing terms. This means that it can be used as a basis
for further improvements or new fields of applications.

Environmental impacts
As mentioned earlier, one of the advances of the algorithm relate to the lower computational
cost associated to the 3D classification process. This directly relates into a reduction of the
energy consumption of the compute infrastructure.

Economic impacts
As a consequence of the previous arguments, the project poses a notable economic impact
on research facilities. Firstly, the fact that this algorithm is distributed under a FOSS
lices means that its utilization comes at no cost. Secondly, the project reduction in power
consumption directly translates into lower power bills. Consequently, these two factors
combine to decrease the operational expenses for various research groups.

A.3 Conclusions
In conclusion, this project offers numerous advantages to the scientific community and re-
search institutes. Firstly, it shows potential aiding the development of drugs and vaccines.
In addition, the project could yield positive outcomes for both the environment and the
economy by minimizing the power consumption linked to the image processing pipeline in
CryoEM.



B. Economic budget

This project is estimated to last a semester. During this period, a full-time engineer will be
hired to carry out all the software development. The estimated cost associated to this posi-
tion is 30e/hour, taxes included. Considering that during the span of 6 months 37.5h/week
of labour will be dedicated to the project, the engineer will work a total of 900h.

The development of the project will be carried out on a laptop for convenience. This laptop
must have enough computational power to run small tests, but the intensive testing will be
carried out in a high-end workstation. An amortisation time of 3 years was considered for
these electronic devices. Additionally, the developer will be benefited from a paid subscrip-
tion to GitHub Pro. All these expenses make up for the material resources listed in Table
B.1. These prices were accounted with the Value Added Tax (VAT) excluded, as this is
accounted separately for the entire project.

This work will take place inside CNB-CSIC facilities. This research centre not only provides
office space for the worker, but it also provides a data centre with adequate cooling and
power management for our computing equipment. These costs were accounted as indirect
costs, which are 15% of the direct costs. CNB-CSIC is a non-profit organisation. Thus, no
industrial benefit will be applied to the budget.

Finally, according to the Spanish economic framework, a 21% VAT tax was applied to the
subtotal. At the end, the budget for this project totals THIRTY-NINE THOUSAND
THREE HUNDRED THIRTY-EIGHT AND ONE TENTH EUROS (39, 338.10e)
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Labour (direct cost)
Position Hours Cost/hour Cost
Engineer 900 30.00 € 27,000.00 €
Total 27,000.00 €

Material resources (direct cost)
Item Purchase prize Usage time Amortization time Cost
Dell Precision 7960 Tower Workstation 5,997.87 € 6 months 36 months 999.65 €
Dell P2415Q Monitor 380.12 € 6 months 36 months 63.35 €
Logitech MX Ergo Mouse 125.00 € 6 months 36 months 20.83 €
Logitech MX Ergo Keys 99.00 € 6 months 36 months 16.50 €
Thinkpad T480 Laptop 875.70 € 6 months 36 months 145.95 €
Github Pro monthly subscription 4.00 € 6 months 1 months 24.00 €
Total 1,270.28 €

Total direct costs 28,270.28 €
Indirect costs 4,240.54 €
Budget subtotal 32,510.82 €

VAT 6,827.27 €

Total budget 39,338.10 €

15 %

21 %

Table B.1: Budget
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