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Abstract—In this paper, we present a stable, reliable and robust
method for reconstructing a three dimensional density function
from a set of two dimensional electron microscopy images. By
minimizing an energy functional consisting of a fidelity term and
a regularization term, a L2-gradient flow is derived. The flow is
integrated by a finite element method in the spatial direction and
an explicit Euler scheme in temporal direction. The experimental
results show that the proposed method is efficient and effective.

I. INTRODUCTION

In the past few years, cryo-electron microscope imaging
techniques have established themselves as indispensable tools
for determining the three dimensional(3D) structures of large
macromolecules and biological machineries. The pipeline of
single-particle techniques includes particle picking, classifi-
cation and alignment, orientation and reconstruction [3], [8],
[10]–[12].

The usually used reconstruction algorithms are filtered
back projection(FBP) [7], direct fourier reconstruction [7],
and iterative methods including algebraic reconstruction tech-
nique(ART) [5], simultaneous iterative reconstructive tech-
nique(SIRT) [4], and simultaneous algebraic reconstruction
technique(SART) [2]. In order to accelerate convergence of
these algorithms block iterative techniques have been proposed
[5], [6].

In this paper, we propose a volume constraint algorithm
which assumes the volume of the object would be a prior
knowledge and keep unchanged during the imaging process.
Besides, we propose a new variational reconstruction method
which employs the level set and L2 gradient flow technique
[13] with volume-preserving regularization. Our method is a
series expansion method. Assume the object f has a mathe-
matical expression. Instead of using pixel basis functions, we
use tri-cubic B spline basis functions. f can be expressed as
a linear combination of these B spline basis functions. One
of the advantages of using B spline basis functions is that we
can obtain a C2 smooth object. And the local support property
of B splines can be used to accelerate the reconstruction
process. We use a finite element method (FEM) to solve the
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variational problem. To avoid solving large linear equations,
orthogonalization of B spline basis functions will be employed.

The rest of these paper is organized as follows. In Section
2 some basic setting is defined including image size, B
spline basis function grid and volume grid. Section 3 explains
our algorithms in details. Section 4 gives some illustrative
examples. Finally, we conclude this paper in Section 5.

II. PROBLEM SETTING

Let {gd} be a set of the two-dimensional images mea-
sured from an unknown three-dimensional function (electric-
potential) f by X-ray projection Xd in the direction d ∈ S2.
Our problem is to construct f(x, y, z), (x, y, z)T ∈ Ω ⊂ R3,
such that Xdf is as close to gd as possible.

We assume all the measured images have the same size
(n + 1) × (n + 1), the pixel values gd of each image are
defined on the integer grid points (i, j)T ∈ [−n

2 , n
2

]2
(we

assume n is an even number). Since gd is the projection of f ,
we therefore define Ω as

Ω =
{

(x, y, z)T :
√

x2 + y2 + z2 ≤ n

2
+ 1

}
.

For simplicity, we put this sphere within a cube defined as
Ωc =

[−n
2 − 1, n

2 + 1
]3

, with the assumption that

f(x, y, z) = 0 if (x, y, z)T ∈ Ωc \ Ω,

gd(i, j) = 0 if
√

i2 + j2 >
n

2
.

Let d ∈ S2. The image values gd at the grid points are
defined as

gd(i, j) =
∫ ∞

−∞
f(ie(1)

d +je(2)
d +td) dt, (i, j)T ∈

[
−n

2
,
n

2

]2

for the unknown function f , where e(1)
d and e(2)

d are two
directions satisfying

‖e(1)
d ‖ = ‖e(2)

d ‖ = 1, 〈e(1)
d , e(2)

d 〉 = 0, (1)

〈e(1)
d ,d〉 = 0, 〈e(2)

d ,d〉 = 0. (2)

e(1)
d and e(2)

d also determine the in-plane rotation.



Given an even and positive integer m = 2l, let h = n+2
m ,

and the domain Ωc is uniformly partitioned with grid point
(i, j, k)h for (i, j, k) ∈ [−l, l]3. The function f is represented
as

f(x, y, z) =
l−2∑

i=−l+2

l−2∑
j=−l+2

l−2∑
k=−l+2

fijkN3
i (x)N3

j (y)N3
k (z),

(3)
where (x, y, z)T ∈ Ωc, N3

α are cubic B-spline basis functions
defined on the interval [−2h + αh, 2h + αh].

To reconstruct the electric-potential in the spatial domain,
we minimize the following energy functional.

J(f) = J1(f) + αJ2(f) + βJ3(f), (4)

where

J1(f) =
∫

S2

∫
R2

(Xdf − gd)2 dudvdA,

J2(f) =
∫

Γc

g(H, K)dA,

J3(f) =
∫
R3\ΩΓc

f(x)2dx, .

In J1, Xd stands for a projection of a 3D function in the
direction d ∈ S2. Γc = {x ∈ R3 : f(x) = c} in J2, J3

is an iso-surface of f , c is a given constant and ΩΓc
is the

region enclosed by Γc. Here H(f) denotes the Hessian matrix
of f . H and K stand for the mean and Gaussian curvatures
of surface Γc.

1) Obviously, J1 is used to minimize the error of the
measured images and the reconstructed images.

2) J2 is a regularization term that makes the iso-surface
Γc smooth in certain sense, depending on the type of
function g that is used. We usually take g(H, K) = 1
or g(H, K) = ‖∇f‖.

3) J3 is used to make the reconstructed function as close
to zero (background density) as possible outside the
volume ΩΓc

, so that there are no outliers.

Algorithm Steps. Since Γc depends on f , the energy func-
tional J(f) is nonlinear with respect to f . To minimize J(f),
we use the following iterative algorithm:

1) Given an initial f .
2) Determine the constant c.
3) Minimize J(f) by changing f .
4) Checking the termination conditions |J(f (k+1)) −

J(f (k))| < ε. If they are satisfied, stop the iteration,
otherwise repeat from step 2.

In the next section, we explain each of the steps in some
details.

III. IMPLEMENTATION DETAILS

A. Estimate Iso-value c

For an electric-potential density function f ∈ R3 for a
protein, we need to select an iso-value c, so that the iso-
surface Γc is the boundary (molecular surface) of the protein.

We determine c such that

card{xijk : f(xijk) > c} = V0/Vcube,

where card stands for the cardinality of a finite set, Vcube

is the volume of the voxel. Hence, we first sort f(xijk) in
decreasing order:

g1 ≥ g2 ≥ · · · ,

and select gn as the isovalue c, where n is the integer part of
V0/Vcube.

B. Updating f

We wish to minimize J(f) by adjusting f . This goal is
achieved by solving a L2-gradient flow of J(f) in the B-spline
space. Let us first construct the flow. Based on Variational
methods and Green formula, it is easy to derive the following
first order variational form.

δ(J1(f), ψ) = 2
∫

S2

∫
R2

(Xdf − gd)XdψdudvdA.

If g(H, K) = 1, δ(J2(f), ψ) is computed by

δ(J2(f), ψ) = −
∫
R3

�(f − c)div
( ∇f

‖∇f‖
)

ψdx.

If g(H, K) = ‖∇f‖, then we have

δ(J2(f), ψ) = 2
∫
R3

�(f − c)∇f∇ψdx,

Where � denotes delta function. In this paper, we use the
following approximation.

�α(x) =
{

0, |x| > α,
1
2α

[
1 + cos

(
πx
α

)]
, |x| ≤ α,

(5)

where α > 0 is a given parameter, which control the support
[−α, α] of �α(x). Note that �α(x) is a C1 smooth function.

δ(J3(f), ψ) =
∫
R3

[�(c − f)f2ψ + 2H(c − f)fψ]dx,

Using these first order variations, we construct the following
weak form L2-gradient flow.
∫
R3

∂f

∂t
ψdx+δ(J1(f), ψ)+αδ(J2(f), ψ)+βδ(J3(f), ψ) = 0,

(6)
for all ψ in the B-spline function space. We solve (6) using a
numerical method. In the temporal discretization, we use an
explicit forward Euler scheme. For the spatial direction dis-
cretization we use finite element method. These discretization
lead to a linear system, which are solved using direct method.



C. Finite Element Discretization

Denote x = [x, y, z]T , suppose

f(x) =
∑

i

∑
j

∑
k

fijkN
(1)
i (x)N (2)

j (y)N (3)
k (z), (7)

with fijk as unknowns, and N
(p)
α = N3

α, p = 1, 2, 3. Taking
the test function ψ as φi′j′k′(x) = N

(1)
i′ (x)N (2)

j′ (y)N (3)
k′ (z),

we then obtain a matrix form

MX = B

for (6). The elements of matrix M are in the form∫
R

N
(1)
i N

(1)
i′ dx

∫
R

N
(2)
j N

(2)
j′ dy

∫
R

N
(3)
k N

(3)
k′ dz.

The one-dimensional integrals above can be computed by a
Gauss quadrature formula (see [1], [14]). The elements of the
vector B are

−[δ(J1(f), φi′j′k′) + δ(J2(f), φi′j′k′) + δ(J3(f), φi′j′k′)].

The computations involving delta function are computed in
the neighborhood of surface Γc. This does not mean we need
to have an explicit representation for Γc. What we need is the
�(f − c), which is approximated by �α(f − c) (see (5)).

1) Fast Computation of Stiff Matrix M : We orthogonalize
the basis functions N

(l)
i (x) using the Schimidt orthogonaliza-

tion process, to obtain new basis functions Ñ
(l)
i (x), such that∫

R

Ñ
(l)
i (x)Ñ (l)

j (x)dx = δij , i, j = 1, · · · , n, l = 1, 2, 3.

Let
φ̃ijk = Ñ

(1)
i Ñ

(2)
j Ñ

(3)
k .

Then by representing the function f using the new basis φ̃ijk,
we obtain a unit matrix M . Hence there is no need to store
and inverse the matrix.

Now we have representation (7) of f and the representation

f(x) =
∑

i

∑
j

∑
k

f̃ijkÑ
(1)
i (x)Ñ (2)

j (y)Ñ (3)
k (z). (8)

2) Fast Computation of δ(J1, ψ): Consider the computation
of the term δ(J1(f), ψ) in (6). Using (7) and taking ψ =
φ̃i′j′k′ , we have

δ(J1(f), φ̃i′j′k′)

= 2
∫

S2

∫
R2

(Xdf − gd)Xdφ̃i′j′k′dudvdA (9)

≈ 2
∫

S2

∫ n
2

−n
2

∫ n
2

−n
2

(Xdf − gd)Xdφ̃i′j′k′dudvdA.(10)

Now let us explain how each of the terms in (10) is efficiently
computed.

Computing Xdφ̃i′j′k′ .
First consider the computation of Xdφ̃i′j′k′ . The computa-

tion mainly includes two steps:
1) Compute Xdφijk for all i, j, k.

2) Convert Xdφijk to Xdφ̃i′j′k′ .

Since the second step is straightforward, we describe only
the first one in detail. Let d ∈ S2 be a given direction. Then
the projection of φijk in the direction d is a two-dimensional
function, defined as

(Xdφijk)(u, v)

=
∫ ∞

−∞
φijk(ue(1)

d + ve(2)
d + td) dt,

=
∫ ∞

−∞
N3

i ([u, v, t]a1) N3
j ([u, v, t]a2)N3

k ([u, v, t]a3) dt,

where e(1)
d and e(2)

d are two directions defined by (1),
which spans the (u, v)-plane in space R3, [a1,a2,a3] =
[e(1)

d , e(2)
d ,d]T .

Computing Xdf .
Here we propose an efficient approach for computing Xdf .

Since

Xdf = Xd

∑
ijk

fijkφijk =
∑
ijk

fijkXdφijk,

and since Xdφijk have been computed previously, Xdf is
easily computed from Xdφijk. Notice that Xdφijk is locally
supported. The cost for computing Xdf is O(n3). The total
cost for the projection is O(pn3),where p denotes the total
number of projections.

D. Temporal Step-size

It is obvious that using a too small time step-length will slow
down the evolution process, while on the contrary using a too
large time step-length has the danger of causing the evolution
blow up. Hence, choosing a suitable time step-length is crucial
to efficiently reconstruct the function. From the L2 gradient
flow (6), we can see that after one step iteration, the function
f is updated as

f = f (p) + τ∆f,

where f (p) is the function at previous step, ∆f is the increment
of f (p) computed using the L2 gradient flow. The problem here
is how large the temporal size τ should be used. We determine
τ such that∫

S2

∫
R2

[
Xd(f (p) + τ∆f) − gd

]2

dudvdA = min.

From this we can easily derive that the best τ we should
choose is

τ = −

∫
S2

∫
R2

[
Xd(f (p)) − gd

]
Xd(∆f)dudvdA∫

S2

∫
R2

[Xd(∆f)]2 dudvdA

.



(a) (b)

(c) (d)
Fig. 1. (a) 2D noisy projections of 1FFK. (b) reconstructed result using
J1. (c) reconstructed result using J1 + J2. (d) reconstructed result using
J1 + J2 + J3.

Fig. 2. Fourier shell correlation curves of 1FFK.

Fig. 3. Reconstructed 1FFK Volume. From left to right: Side view; Side
view; Top view;

IV. ILLUSTRATIVE EXAMPLES

A. Simulated Data

We first applied our algorithm to a large ribosomal
subunit(PDB-ID=1FFK). This data contained 5000 projec-
tions with random projection directions. The image size was
143 × 143 with 2.8Å pixel size. Part of the projections were
shown in Fig. 1(a).

We use the algorithm with J1 term, J1+J2 and J1+J2+J3

respectively. Fig. 1(b), (c) and (d) show part of the slices along
the z− axis of the reconstructed functions. From these pictures
we can easily see that the result using J1+J2+J3 have higher
contrast and lower noise.

Furthermore, we randomly split the data set in two equal
parts, reconstructed two volumes using the two subsets re-
spectively and computed the resolution using Fourier shell
correlation(FSC) function with 0.5 cutoff. We compared our
result using J1 + J2 + J3 with WBP and Fourier methods. It
is easily seen from Fig. 2 that our method can achieve better
resolution than WBP and Fourier’s. A 3D volume iso-value
surface was shown in Fig. 3.

Fig. 4. Noisy projections of p53.

Fig. 5. FSC curves of p53.

(a) (b)
Fig. 6. Reconstructed p53 volume.(a) (b): Views from different side.

3800 independent projections that thanks to the C2 symme-
try yield 7600 projections

B. Experimental Data

Our second experiment use a data set contained 3800
independent projections of a mutant of p53 that thanks to the
C2 symmetry yield 7600 projections. This molecule has a C2
symmetry along the principle axis(z−axis). Fig. 4 shows part
of the 2D noisy projections.

In this experiment, we first computed three functions using
J1+J2+J3 with three different regularization terms g(x) = 0
(means no regularizer), g(x) = ‖∇f(x)‖ and g(x) = 1 re-
spectively. For each case, we calculated its FSC and resolution.
These results were put into table I.

TABLE I
RESOLUTION COMPARE WITH DIFFERENT REGULARIZATION TERMS.

g = 0 g = ‖∇f‖ g = 1
FSC 0.052 0.085 0.068

Resolution 19.23Å 11.76Å 14.71Å

In this table, the best resolution was obtained by using
regularization term g = ‖∇f‖.

Next, we reconstructed the p53 3D volume using J1 +J2 +
J3 with regularization term g = ‖∇f‖, WBP and Fourier
method respectively. From Fig. 5, we can see that our method
using J1 +J2 +J3 obtained the best resolution(10.48Å). This
reconstructed volume was shown in Fig. 6.

Finally, we applied our algorithm to a virus named as
Adenovirus (see [9] for the data) with icosahedral symmetry.



Fig. 7. Part of the noisy projections of Adenovirus.

Fig. 8. Part of the slices along the z−axis of reconstructed Adenovirus.

Fig. 9. Reconstructed volume of Adenovirus.

This data set contained 9621 noisy projections(See Fig. 7) with
image size 408× 408. J1, J2 and J3 were used to reconstruct
the three dimensional volume function. Part of the slices
along the z−axis of the reconstructed volume and iso-surface
rendering were shown in Fig. 8 and 9 respectively. These
resolutions are 8.73Å for our method, 10.24Å for Fourier
method and 10.48 Å for WBP.

V. CONCLUSIONS

In this paper, we proposed a new 3D single particle re-
construction algorithm using L2 gradient flow. We employed
the minimal support property of B-spline and Schmidt orthog-
onalization process to accelerate the algorithm. In the end,
simulated and experimental experiments show our algorithm
using regulation term g = ‖∇f‖ could achieve the best

resolution compared with WBP and Fourier method.
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