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a b s t r a c t

In this paper, we present an iterative algorithm for reconstructing a three-dimensional density function
from a set of two dimensional electron microscopy images. By minimizing an energy functional consist-
ing of a fidelity term and a regularization term, an L2-gradient flow is derived. The flow is integrated by a
finite element method in the spatial direction and an explicit Euler scheme in the temporal direction. Our
method compares favorably with those of the weighted back projection, Fourier method, algebraic recon-
struction technique and simultaneous iterative reconstruction technique.

� 2011 Elsevier Inc. All rights reserved.
1. Introduction

In the past 10 years, cryo-electron microscope imaging tech-
niques have become indispensable tools for determining the
three-dimensional structure of large macromolecules and biologi-
cal machineries. Different from X-ray crystallographic methods,
electron microscopy does not require crystallization. Specimens
are applied to a grid covered with holey carbon, and then are rap-
idly plunged into a cryogen-usually liquid ethane cooled by liquid
nitrogen (Frank, 2006). This data acquisition process can be very
fast. Hence, these methods provide good opportunities to deter-
mine the three-dimensional structures of large macromolecules
that are either too large or too heterogeneous to be investigated
by X-ray methods (van Heel et al., 2000). Cryo-electron microscopy
(Cryo-EM) single-particle analysis (van Heel et al., 2000; Frank,
2006; Zhang et al., 2010) and cryo-electron tomography are the
two main techniques in this field. The process of single-particle
analysis includes several steps including image classification, ori-
entation and three-dimensional reconstruction. These steps can
be integrated into an iterative refinement using projection match-
ing (Penczek et al., 1994; Radermacher, 1994; Sorzano et al.,
2004a). Other steps include corrections for the contrast transfer
function (CTF) and amplitude in order to obtain higher resolutions.
In this paper, we concentrate on the three-dimensional reconstruc-
tion step of single-particle analysis.
ll rights reserved.
The most common reconstruction algorithms in single-particle
analysis are weighted back projection (WBP) (Radermacher,
2006), Fourier reconstruction (DeRosier and Klug, 1968; Crowther
et al., 1970; Natterer and Wübbeling, 2001; Matej and Lewitt,
2001), and iterative methods including algebraic reconstruction
technique (ART) (Gordon et al., 1970) and simultaneous iterative
reconstruction technique (SIRT) (Gilbert, 1972). Other methods in-
clude simultaneous algebraic reconstruction technique (SART)
(Andersen and Kak, 1984) and block ART (Marabini et al., 1998).
For limited angle tomography, such as electron tomography (ET),
regularization methods have been applied for solving the ill-posed
problem. SIRT with regularization through early stopping has been
applied to ET (Schoenmakers et al., 2005; Voorhout et al., 2006).
Projection onto convex sets (POCS) assumes that the object f be-
longs to the intersection of some closed convex sets (Youla and
Webb, 1982; Sezan and Stark, 1982; Carazo, 1992). Variational reg-
ularization methods employ different regularization terms such as
total variation (TV) regularization (Aganj et al., 2007) and regular-
ization using the second partial derivatives (Kybic et al., 2001;
Kybic et al., 2002; Do et al., 2010).

In this paper we propose an L2-gradient flow three-dimensional
reconstruction algorithm of single-particle analysis for solving a
variational model with TV regularization term. The object is repre-
sented with a function f in the tri-cubic B-spline function space.
One of the advantages of using cubic B-spline functions is that
we can obtain a C2 smooth object (Unser, 1999). The compact sup-
port property of B-spline basis can be employed to accelerate the
reconstruction process. The L2-gradient flow is derived based on
the first-order variation (Giaquinta and Hildebrandt, 1996) of the
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energy model. An explicit Euler scheme and the finite element
method are employed to yield an iteration scheme. To avoid solv-
ing large systems of linear equations, we use the orthogonal basis
of tri-cubic B-spline basis functions derived from Schmidt orthog-
onal process. Further, we derive a temporal step-size formula
which can automatically give a proper time step-size at every iter-
ation step.

Currently, the Fourier method and WBP produce the best results
for input data with good angular coverage. Our algorithm outper-
forms these approaches thanks to the incorporation of a priori
knowledge through the regularization, and comparing with the
prior TV regularization work (Kybic et al., 2001, 2002), our algo-
rithm does not solve a linear system of equations and can be used
for large number of measures.

2. Methods

To reconstruct an object in the temporal domain, we minimize
the following energy functional

Jðf Þ ¼ J1ðf Þ þ kJ2ðf Þ; ð1Þ

where

J1ðf Þ ¼
X
d2D

Z
R2

Xdf � gdð Þ2 du;

J2ðf Þ ¼
Z

R3

krfk dx:

The tri-variable function f is the unknown object to be recon-
structed. Let u = [u,v]T,x = [x,y,z]T. Let S2 � R3 denote the unit
sphere. Xd stands for a projection of f in the direction d 2 D � S2.
{gd} is a set of two-dimensional projections measured from the
electron microscope. The first term in the modes (1) measures
the fidelity to the projection data. The second one is a TV regular-
ization term which plays the role of smoothing. The parameter k is
a nonnegative weighting constant. Our goal is to search for a func-
tion f that makes the projection Xdf best fit the data gd so that its
total variation is low.

2.1. L2-gradient flow

We want to minimize J(f) by adjusting f. This goal is achieved by
solving an L2-gradient flow of J(f) in the B-spline space XB (see B.1).
It is easy to derive the following first-order variations (see B.2 and
B.3)

dðJ1ðf Þ;wÞ ¼2
X
d2D

Z
R2

ðXdf � gdÞXdw du; ð2Þ

dðJ2ðf Þ;wÞ ¼
Z

R3

ðrf ÞTrw
krfk dx; ð3Þ

where w is a test function in the function space XB. Using these
first-order variations, we construct the following weak-form L2-gra-
dient flow (Xu, 2008)Z

R3

@f
@t

w dxþ dðJ1ðf Þ;wÞ þ kdðJ2ðf Þ;wÞ ¼ 0: ð4Þ

The function f 2 XB is represented as

f ðx; y; zÞ ¼
X

i;j;k
fijkN3

i ðxÞN
3
j ðyÞN

3
kðzÞ;

X
i;j;k

~f ijk
~N3

i ðxÞ~N3
j ðyÞ~N3

kðzÞ: ð5Þ

where N3
a (a = i,j,k) is a cubic B-spline basis function defined on the

interval [�2 + a,2 + a] (see A.1), and fijk is the coefficient of tri-cubic
B-spline tensor product N3

i ðxÞN
3
j ðyÞN

3
kðzÞ. ~N3

aða ¼ i; j; kÞ is the orthog-
onal tri-cubic B-spline basis function and ~f ijk is the coefficient of
orthogonal tri-cubic B-spline tensor product ~N3

i ðxÞ~N3
j ðyÞ~N3

kðzÞ. There
is a lower-triangular matrix A connecting the two sets of basis
functions,

½N3
0;N

3
1; . . . ; N3

n�
T ¼ A½~N3

0;
~N3

1; . . . ; ~N3
n�

T
; ð6Þ

where

A ¼

a00

a10 a11

a20 a21 a22

a30 a31 a32 a33

. .
. . .

. . .
. . .

.

an;n�3 an;n�2 an;n�1 an;n

2
6666666664

3
7777777775
:

Matrix A can be calculated using Eq. (B.10)–(B.14).
Suppose that the size of the measured images is n � n, where n

is an integer number. The pixel values of each image gd are defined
on the coordinate points (i,j)T 2X0 = [ � [n/2], � [n/2] + n � 1]2,
where i,j = � [n/2], � [n/2] + 1, � � �, � [n/2] + n � 1. Since n > 0, [x]
means taking the largest integer value that is not greater than x.
The domain of function f is defined as X = [ � [n/2], � [n/
2] + n � 1]3 and the dimension of reconstructed volume in each
coordinate direction is n. We define the cubic B-spline basis func-
tion on the same coordinate points as the image. The number of cu-
bic B-spline basis functions in each coordinate direction is n � 4,
making the total number of tri-cubic B-spline tensor products
amounting to (n � 4)3. Considering the one-dimensional case, for
example n = 10 or 11, we take 6 or 7 cubic B-spline basis functions,
respectively. They are shown in Fig. 1. The function f represented
by these cubic B-spline basis functions vanishes at the boundary
of the domain X.

The projection direction d can be represented by three Euler an-
gles (h1,h2,h3). In this paper, we use the z–y–z convention for the def-
inition of Euler angles. The first angle h1 defines a rotation matrix Rh1

around the z-axis. h2 defines a rotation matrix Rh2 around the new y
axis and Rh3 is the third rotation around the new z-axis. The rotation
matrix R corresponding to the projection direction d is defined by

R ¼ Rh3 Rh2 Rh1 :

Denote R ¼ ½eð1Þd ; eð2Þd ; d�, where ed
(1),ed

(2) and d are the final coordi-
nate system after three rotations. Hence, the projection of f along
the direction d is defined by

ðXdf Þði; jÞ ¼
Z 1

�1
f ðieð1Þd þ jeð2Þd þ tdÞ dt; ði; jÞT 2 X0: ð7Þ
2.2. Iteration scheme

Employing an explicit Euler scheme in the temporal direction
and the finite element method in the spatial direction with orthog-
onal tri-cubic B-spline basis functions, we obtain a linear system of
equations (see Appendix B Discretization)
~X ¼ ~B ð8Þ

with ~X ¼ ½~f ðmþ1Þ
i0 j0k0
�T unknown. Therefore, solving these equations is re-

duced to the calculation of the vector ~B ¼ ½~Bi0 j0k0 �
T . Given i0,j0 ,k0,

~Bi0j0k0 ¼
Z

X
f ðmÞ~/i0 j0k0 dx� sdðJ1ðf ðmÞÞ; ~/i0 j0k0 Þ � skdðJ2ðf ðmÞÞ; ~/i0 j0k0 Þ; ð9Þ

where ~/i0 j0k0 ¼ ~N3
i0 ðxÞ~N

3
j0 ðyÞ~N

3
k0 ðzÞ. Using (8), (9), (B.2) and (B.3), we can

derive the following iteration scheme:

~f ðmþ1Þ
i0 j0k0

¼ ~f ðmÞ
i0 j0k0
� 2s

X
d2D

Z
X0

ðXdf ðmÞ � gdÞXd
~/i0 j0k0 du� sk

Z
X

�
ðrf ðmÞÞTr~/i0 j0k0

krf ðmÞk dx ð10Þ
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Fig. 1. The cubic B-spline basis functions in one-dimensional case. The top figure shows six B-spline basis functions for n = 10. The bottom figure shows seven B-spline basis
functions for n = 11.
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where ~f ðmÞ
i0 j0k0

(i0, j0,k0 = � [n/2] + 2, � � � , � [n/2] + n � 3) is the coeffi-
cient of orthogonal tri-cubic B-spline tensor product ~/i0 j0k0 at the
iteration step m. Trapezoidal integration formula is used to calcu-
late these integrals in the above iteration scheme. To avoid singular-
ity when krf(m)k = 0, we replace krf(m)k with � + krf(m)k in the
iteration scheme (10), where � is a small positive number. In this
paper, we take � = 10�5. The gradient of function f(m) and ~/i0 j0k0 can
be calculated accurately using formula (5) and (B.5), respectively.
Choosing a suitable time step-length s is crucial to efficiently recon-
struct the function. A step-length which is too small will slow down
the evolution process, while on the contrary using a step-length
which is too large has the danger of causing the evolution blow
up. In the appendix, we derive a formula to compute an optimal
time step-length (see C.1 and C.2).

2.3. Final algorithm:L2GF

Based on the above L2-gradient flow and iteration scheme (10),
we give the following reconstruction algorithm named L2GF.

Algorithm 1. L2GF.

Input:
fgd : d 2 Dg: Projection images with d 2 D known.
f(0): Initial function. In this paper f(0) is set to be zero.
Kmax: The maximum number of iterations.
Step 1: Convert f(0) into orthogonal tri-cubic B-spline

coefficients ~f ð0Þijk using Eq. (5) and (6).

Step 2: For m = 0,1, . . . ,Kmax � 1
Compute time step-length s using (C.2).

Obtain ~f ðmþ1Þ
ijk using the iteration scheme (10).

Convert ~f ðmþ1Þ
ijk to f ðmþ1Þ

ijk using Eq. (5) and (6).

Compute f(m+1) from f ðmþ1Þ
ijk using Eq. (5).

Step 3: Output reconstructed density map from f ðKmaxÞ.

The largest cost in Algorithm 1 comes from computing the term
d(J1(f(m)), ~/i0 j0k0 Þ, in which we need compute all the tri-cubic B-spine
basis functions projections {Xd/ijk}. Given a projection direction d,
we first compute the projection of Xd/000 using rectangular numer-
ical integral. The other tri-cubic B-spine basis functions projections
can be obtained from Xd/000 by shifting and interpolating. That is,
we have the following formula (see (B.9)):

ðXd/ijkÞðu;vÞ ¼ ðXd/000Þ u� ½i; j; k�eð1Þd ;v � ½i; j; k�eð2Þd

� �
: ð11Þ

Since (see (B.8))

dðJ1ðf ðmÞÞ; ~/i0j0k0 Þ ¼ 2
X
d2D

Z
X0

X
i;j;k

f ðmÞijk Xd/ijk � gd

 !
Xd

~/i0j0k0 du; ð12Þ

we have the following fast algorithm for computing dðJ1ðf ðmÞÞ; ~/i0 j0k0 Þ.

Algorithm 2. Fast computation of dðJ1ðf ðmÞÞ; ~/i0j0k0 Þ.

Input:
f(m): Function at the iteration number m.
fd 2 Dg: The set of projection directions.
Step 1: 8d 2 D

Compute Xd/000 using Eq. (7).
Compute Xd/ijk for all i,j,k using Eq. (11).

Step 2: Convert Xd/ijk to Xd
~/i0j0k0 using matrix A in Eq. (6).

Step 3: Compute dðJ1ðf ðmÞÞ; ~/i0j0k0 Þ using Eq. (12).
The computational complexity of L2GF for one

iteration step is O(Ndn3) (see Appendix B for details) where
Nd is the number of projections in D.
3. Results

3.1. Simulated data:GroEL

To validate our algorithm, we first characterize the L2GF algo-
rithm under different conditions. In this test, all simulated noisy
projections are generated using Xmipp software (Sorzano et al.,
2004b).

We first perform the L2GF algorithm under different parameter
k with 60 iterations. We choose a file 1J4Z.pdb from Protein Data
Bank (PDB), blur it to 10Å with a sampling rate 1.6 Å and produce
1000 projections with the size 120 � 120. Gaussian noise with a
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Fig. 3. The L2GF error curves calculated from Eq. (14) for different value of k with
60 iterations using 1000 projections (SNR = 0.3).
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using 1000 projections (SNR = 0.3).
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signal-to-noise ratio (SNR) of 0.3 is added to these projections. To
evaluate the reconstructed results, we use the following energy, er-
ror and Fourier shell correlation (FSC) formulas

Energyðf ðmÞÞ ¼ J1ðf ðmÞÞ
Nd

; ð13Þ

Errorðf ðmÞÞ ¼
P

i;j;k f ðmÞði; j; kÞ � TrueMapði; j; kÞ
� �2

P
i;j;k TrueMapði; j; kÞ½ �2

; ð14Þ

FSCðrÞ ¼
P

ri2rF1ðriÞ � F2ðriÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
ri2r F1ðriÞj j2 �

P
ri2r F2ðriÞj j2

q ; ð15Þ

where ‘TrueMap’ stands for the true volume obtained from PDB file.
F1 and F2 are the Fourier transforms of the density maps f1 and f2. F2

is the complex conjugate of F2. We first perform two L2GF iterations
with k = 0, then for the rest of the iterations, different choice of k is
involved. Fig. 2 shows the energy curves calculated using Eq. (13)
for different values of k. From Fig. 2 we can see that all the energy
curves decrease monotonously, and for larger k, the energy curve
decreases more slowly. Secondly, we compare the errors using Eq.
(14) for different choices of k. We can see from Fig. 3 that for
0 6 k 6 1.0 the errors decrease at the first several iterations and
then increase gradually. This is because small values of k weaken
the smoothing effect of J2, and the noise leads to the increased error.
For k = 5, 10 and 25, the error curves monotonously decrease. We
can conclude that for low SNR data, such as SNR = 0.3, a big value
of k is needed for the L2GF algorithm to obtain a smooth solution.
In addition, we compare the resolution using FSC (15) between
the reconstructed map and the 10 Å map (blurred from 1J4Z.pdb)
at 0.5 cutoff for different choices of k. At the first iteration, the
FSC resolution has a big value, and then falls off quickly at the sec-
ond iteration. From Fig. 4 we can see that for big values of k such as
5, 10 and 25, the values of resolution decrease with increasing iter-
ations which means that the use of J2 with a reasonable value of k
can improve the resolution of reconstruction.

In order to investigate the impact of noise on the reconstruction,
we add Gaussian noise to the 1000 projections with different SNR:
0.01, 0.1, 1.0, and 10.0. For each set of projections, we do recon-
struction using Xmipp’s WBP program ‘xmipp_reconstruct_wbp’
(Radermacher, 2006), Fourier program ‘xmipp_reconstruct_fourier’
(Matej and Lewitt, 2001), block ART and SIRT program
‘xmipp_reconstruct_art’ (Marabini et al., 1998; Gilbert, 1972), and
our L2GF program. The threshold for WBP, relaxation parameters
for block ART and SIRT, and L2GF’s parameter k are well chosen to
obtain desirable resolutions. The reader is referred to (Sorzano
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Fig. 2. The L2GF energy curves calculated from Eq. (13) for different value of k with
60 iterations using 1000 projections (SNR = 0.3).
et al., 2001, 2005) for a detailed discussion on the relaxation param-
eters of block ART and SIRT. The resolution is computed using FSC
between the reconstructed map and the 10Å true map (blurred
from 1J4Z.pdb) at 0.5 cutoff. For block ART, one iteration is enough
to obtain the best result (Marabini et al., 1998). For SIRT and L2GF,
the iteration numbers are chosen to obtain stable resolutions. The
resolutions, parameters and iteration numbers are contained in
Table 1. From Table 1 we can see that L2GF has significant advanta-
ges for low SNR’s data over the other four methods. And for lower
SNRs, L2GF needs a higher value of k. Fig. 5 shows five slices corre-
sponding to each reconstruction result of the five methods for pro-
jections with SNR = 0.01. All the maps have been filtered at the
resolution given by the FSC. The iteration numbers for SIRT and
L2GF are chosen to obtain stable resolutions. In this test, the L2GF
algorithm is performed with k = 0 for the first 10 iterations, and
k – 0 for the rest of iterations.

Next, we perform the L2GF algorithm and the other four meth-
ods with different number of projections 1000, 10,000, 50,000 and
100,000 under the same SNR of 0.3. The 1J4Z.pdb is blurred to a
map with a resolution 3 Å and a sampling rate 1.0 Å. Each set of
projections with the size 181 � 181 are produced using random
projection directions. For each set of projections, we reconstruct
the map using Xmipp’s programs including WBP, Fourier, block



Table 1
Resolution comparison of the five methods for different SNR.

WBP/thr Fourier Block ART/
relax

SIRT/relax/
iters

L2GF/k/
iters

0.01 17.49/
0.05

18.10 17.97/0.001 17.98/0.005/
50

15.95/20/
50

0.1 9.80/0.03 9.94 9.98/0.005 9.96/0.1/50 9.53/5/50
1 9.26/0.02 9.27 9.33/0.01 9.32/0.1/50 9.08/5/50
10 9.01/

0.005
8.99 9.02/0.01 9.01/0.5/50 8.97/1/50
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ART, SIRT and our L2GF program, respectively. The threshold for
WBP, relaxation parameters for block ART and SIRT, and L2GF’s
parameter k are well chosen to obtain desirable resolutions. The re-
sults are given in Tables 2 and 3 and Fig. 6. From Table 2, we can
see that the L2GF reconstruction yields better resolutions than
the other four methods. The resolution improvement seen for the
L2GF algorithm decreases as the number of projections increases.
Fig. 3(a–e) shows five slices corresponding to the reconstruction
results for the five methods using 10,000 projections. All these
Fig. 5. From left to right, slices at z = 26 in the reconstructed maps of GroEL from 1000 pro

Table 2
FSC resolution comparison of the five reconstruction methods for different number of pro

WBP/thr Fourier B

1000 4.33/0.03 4.61 5
10,000 3.47/0.02 3.75 3
50,000 2.96/0.005 2.99 3
100,000 2.93/0.005 2.95 3

Table 3
Comparison of the five reconstruction methods.

1J4Z WBP Fourier Bloc

FSC0.5 3.47 Å 3.75 Å 3.57
Error 0.109 1.047 0.10
CPU cores 1 1 12
Time (Min.) 81 32 34/p

Fig. 6. From left to right, slices at z = 36 in the reconstructed maps from 10000 projec
reconstructed maps have been filtered at the resolution given by
the FSC. In Table 3, an error value 0.18 is used to halt iteration
for block ART, SIRT and L2GF. For block ART, one iteration is enough
to obtain the error less than 0.18, while SIRT and L2GF need 16 and
30 iterations, respectively. The L2GF algorithm has been parallel-
ized using MPI (Message Passing Interface). Twelve Intel Xeon
E5630@2.53 GHz CPU cores are used for these iterative reconstruc-
tions. From Table 3, we can see that L2GF needs more time than the
other four methods to obtain a better resolution. Similarly, in this
test, the L2GF algorithm is performed with k = 0 for the first 10 iter-
ations, and k – 0 for the rest of iterations.
3.2. Electron microscope data:group II chaperonin

For the electron microscope data test, we use as our test exam-
ple the group II chaperonin of the archaea Acidianus tengchongensis
strain S5T. This archaea contains two types of chaperonin subunits
ATcpna and ATcpnb. Prior work has shown that recombinant ATcp-
na (rATcpna) assembles into an 8-fold double ring structure, and
recombinant ATcpnb (rATcpnb) into a 9-fold structure (Wang
jections with SNR = 0.01 using WBP, Fourier, block ART, SIRT and L2GF, respectively.

jections.

lock ART/relax SIRT/relax/iters L2GF/k/iters

.15/0.005 5.15/0.1/40 4.10/10/40

.57/0.005 3.57/0.6/30 3.13/5/30

.44/0.007 3.13/0.6/16 2.92/5/15

.41/0.007 2.97/0.6/11 2.90/5/13

k ART SIRT L2GF

Å 3.72 Å 3.13 Å
2 0.176 0.176

12 12
er iteration 34/per iteration 87/per iteration

tions with SNR = 0.3 using WBP, Fourier, block ART, SIRT and L2GF, respectively.



Fig. 7. From left to right, iso-surface display of the reconstructed maps of group II chaperonin using WBP, Fourier, block ART, SIRT and L2GF, respectively.

Fig. 8. The equatorial domains corresponding the five maps in Fig. 7 are zoomed in.
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Fig. 9. The Fourier shell correlation curves of group II chaperonin reconstruction for
the five methods.
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et al., 2010). A common feature shared by rATcpna and rATcpnb is
a characteristic double ring structure, in which each subunit con-
tain three domains: an equatorial domain, an apical domain and
an intermediate domain. The crystal structure of rATcpnb has been
published (Huo et al., 2010). The real dataset rATcpna used in this
paper for reconstruction is collected using FEI Titan Krios (to be
published).

The CTF for each micrograph is determined using CTFFIND3
(Mindell and Grigorieff, 2003). The phases are flipped with the
‘applyctf’ program in the EMAN suite (Ludtke et al., 1999). These
micrographs are interpolated down by 2 � 2 binning, resulting in
a pixel size of 1.866 Å. Tens of thousands of particles with the size
143 � 143 are picked using FindEM (Roseman, 2004) and Gauto-
match (Zhang et al., 2011). Two-dimensional image analysis, inten-
sive classification and averaging of these particles using the
program ‘refine2d.py’ in the EMAN suite reveal many classes with
top views of 8-fold symmetry. Bad classes with no clear structural
information are discarded. An initial model is created using
EMAN’s ‘startcsym’ and Gaussian noise is added to it. A python
script including the Xmipp’s reconstruction programs and the
L2GF program are written to perform the alignments and projec-
tion matching refinements. We reconstruct the 8-fold symmetric
map of rATcpna from 9310 images out of initial 13896 images
using the python script with an initial angular increment of 10� un-
til there is no significant change in angle assignments between suc-
cessive rounds. This test runs on the high performance cluster at
the Core Facilities for Protein Sciences, CAS. For Xmipp’s program
‘xmipp_reconstruct_wbp’, the threshold for filter values is chosen
to be 0.005. Corresponding to lower or higher than this threshold
value, the reconstruction result is noisier or smoother and could
not obtain a significant improved resolution. For Xmipp’s block
ART program, we choose the relaxation parameter to be 0.003
and for Xmipp’s SIRT, 0.6. For L2GF, the parameter k is set to be
10. All the initial functions in the three iteration reconstruction
methods are set to be zero. For SIRT, 30 iterations are used for each
round. For L2GF, 50 iterations are used with k = 0 for the first 40
iterations and k = 10 for the rest of the iterations in each refine-
ment. These final results are shown in Figs. 7–9. The resolutions
are computed by randomly splitting the dataset into two halves,
doing reconstruction for each half-set and then computing the
FSC between the two half-set reconstruction results. Fig. 7(a–e)
shows the reconstructed density maps using WBP, Fourier method,
block ART, SIRT and L2GF, respectively. These maps have been fil-
tered at their resolutions given by the FSC, and normalized in the
same way. The maps displayed in Fig. 7 have the same contour le-
vel 3.16. Enlarged portions of the equatorial domain in these maps
are shown in Fig. 8. We can see clearer a helices in the equatorial
domain in the L2GF map of Fig. 8(e) than the other four maps. The
resolutions corresponding to WBP, Fourier, block ART, SIRT and
L2GF calculated using Fig. 8 are 9.07 Å, 9.35 Å, 9.72 Å, 9.73 Å and
8.69 Å, respectively. We conclude that the L2GF method achieves
a better resolution than the other four methods.
4. Discussion and conclusions

In this paper, we proposed a three-dimensional reconstruction
algorithm named L2GF using the L2-gradient flow of energy model
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(1). The L2-gradient flow was constructed using the first-order var-
iation of the energy model. By numerical discretization in the
temporal and spatial directions using the forward Euler scheme
and the finite element method, respectively, the L2GF algorithm
was derived. A temporal step-size formula was proposed to accel-
erate this algorithm. We have tested this algorithm using one sim-
ulated dataset and one experimental dataset.

In our simulated dataset, we have found that the a high value of
the parameter k should be selected for low SNR which can be pro-
gressively decreased as SNR increases. This conclusion is consistent
with Eq. (1). For high SNR, k is small, the contribution of TV regular-
ization term J2 is low. For low SNR, k is high, increasing the contribu-
tion of J2 to properly deal with noise. In our tests, we have found that
k in the range [5,25] is a good choice for data with low SNR.

In the test with different parameter choices of k, we performed
the L2GF algorithm with k=0 for two iterations, and with k – 0 for
the rest of the iterations. Since the initial function f was zero, the
regularization term J2 was identically zero during the first itera-
tion. From Figs. 2 and 3 we found that the reconstructed results
had large energies and errors for k = 0 at the first two iterations.
Hence we performed the L2GF algorithm with k – 0 from the third
iteration. In general, we need some initial iterations with k = 0 in
performing the L2GF algorithm. The initial number of iterations
with k = 0 changed according to the dataset. In the other tests,
we used 10 iterations for the simulated dataset and 40 iterations
dðJ1ðf Þ;wÞ¼
X
d2D

Z
R2

d ðXdf��gdÞ
2

h i
d�

du

������
�¼0

¼2
X
d2D

Z
R2

ðXdf �gdÞXdw du: ðB:2Þ
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rf ðxÞTrwðxÞ
krf ðxÞk dx: ðB:3Þ
for the experimental dataset, respectively, with k = 0, plus the rest
of iterations with k – 0. By comparing the L2GF algorithm with
WBP, Fourier method, block ART and SIRT, we have showed that
our algorithm can obtain better resolutions. The L2GF program is
freely available from http://lsec.cc.ac.cn/�xuguo/misce.htm.
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Appendix A. Notations

Let rect(t) denote the rectangular function defined as

rectðtÞ ¼
0 if jtj > 1

2 ;
1
2 if jtj ¼ 1

2 ;

1 if jtj < 1
2 ;

8><
>:
then the cubic B-spline basis N3
0ðxÞ with support [�2,2] is defined

recursively by

Nmþ1
0 ðxÞ ¼ Nm

0 ðxÞ � rectðxÞ; m ¼ 0; 1; 2;

where ⁄ denotes the convolution of two functions, and
N0

0ðxÞ ¼ rectðxÞ. Other basis functions associated with the offset a
are defined by the shifting of N3

0ðxÞ, i.e.,

N3
aðxÞ ¼ N3

0ðx� aÞ; ðA:1Þ

where a could be any real number.

Appendix B. Discretization

Define the tri-cubic B-spline space XB:

XB ¼ f ðxÞ : f ðxÞ ¼
X�½n=2�þn�3

i;j;k¼�½n=2�þ2

fijk/ijkðxÞ; fijk 2 R; x 2 X

8<
:

9=
;; ðB:1Þ

where /ijkðxÞ ¼ N3
i ðxÞN

3
j ðyÞN

3
kðzÞ, x = [x, y,z]T. For any wðxÞ 2 XB, let

f� ¼ f þ �w:

Then the first-order variations of J1(f) and J2(f) can be derived as
follows
Using (B.2) and (B.3), and restricting the integral domain to the
image domain, we have the following weak-form L2-gradient flowZ

X

@f
@t

w dx ¼ �2
X
d2D

Z
X0

ðXdf � gdÞXdw du� k
Z

X

� ðrf ÞTrw
krfk dx: ðB:4Þ

In order to solve the L2-gradient flow (B.4), we first discretize the
left-handed side using forward Euler scheme:Z

X

@f ðmÞ

@t
w dx 	

Z
X

f ðmþ1Þ � f ðmÞ

s
w dx;

where m is the iteration number and s is the temporal step-size. For
the right-handed side of (B.4), we use the finite element method in
the tri-cubic B-spline space XB. At every iteration step m (m = 1,
2, . . .), suppose

f ðmÞðxÞ ¼
X
i;j;k

f ðmÞijk /ijkðxÞ

with ff ðmÞijk g known. We take the test function w as

/i0 j0k0 ðxÞ ¼ N3
i0 ðxÞN

3
j0 ðyÞN

3
k0 ðzÞ;

i0; j0; k0 ¼ �½n=2� þ 2;�½n=2� þ 3; � � � ; �½n=2� þ n� 3;

and discretize (B.4) on the both sides and obtain a set of equations

MX ¼ B

with X ¼ ½f ðmþ1Þ
ijk �T unknown. The elements of matrix M and B are in

the form

http://www.lsec.cc.ac.cn/~xuguo/misce.htm
http://www.lsec.cc.ac.cn/~xuguo/misce.htm
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Z
X

N3
i ðxÞN

3
i0 ðxÞN

3
j ðyÞN

3
j0 ðyÞN

3
kðzÞN

3
k0 ðzÞ dx;

and

Z
X

f ðmÞ/i0j0k0 dx� sdðJ1ðf ðmÞÞ;/i0 j0k0 Þ � skdðJ2ðf ðmÞÞ/i0 j0k0 Þ;

respectively. The one-dimensional integrals above can be computed
by Gaussian quadrature formula (see Abramowitz and Stegun,
1972; Xu and Shi, 2006). Using the fact that the B-spline basis are
locally supported, these one-dimensional integrals can be efficiently
calculated. Solving these equations is very time consuming when
the projection images have a large size. And the number of the ele-
ments of M is (n � 4)6, it is very possible that the required space for
storing the matrix M is beyond the memory capacity of the com-
puter in use. To overcome these difficulties, alternatively we em-
ploy a set orthogonal basis ~N3

aðxÞ of cubic B-spline basis functions
derived from Schmidt orthogonal process. Using these new orthog-
onal basis functions, f(m) can be represented as

f ðmÞðxÞ ¼
X

ijk

~f ðmÞijk
~N3

i ðxÞ~N3
j ðyÞ~N3

kðzÞ; x ¼ ½x; y; z�T :

Taking test function w as

~/i0j0k0 ðxÞ ¼ ~N3
i0 ðxÞ~N

3
j0 ðyÞ~N

3
k0 ðzÞ ðB:5Þ

and repeating the above discretization process, we can derive a set
of new equations

~X ¼ ~B ðB:6Þ

with ~X ¼ ½~f ðmþ1Þ
i0 j0k0
�T unknown. Therefore, solving these equations is re-

duced to calculating the vector ~B ¼ ½~Bi0 j0k0 �
T . Given i0,j0,k0,

~Bi0 j0k0 ¼
Z

X
f ðmÞ~/i0 j0k0 dx� sdðJ1ðf ðmÞÞ; ~/i0 j0k0 Þ

� skdðJ2ðf ðmÞÞ; ~/i0j0k0 Þ: ðB:7Þ

The largest cost in calculating vector ~B is from the term
dðJ1ðf ðmÞÞ; ~/i0 j0k0 Þ.

dðJ1ðf ðmÞÞ; ~/i0j0k0 Þ ¼ 2
X
d2D

Z
X0

ðXdf ðmÞ � gdÞXd
~/i0 j0k0 du

¼ 2
X
d2D

X0

X
i;j;k

f ðmÞijk Xd/ijk � gd

 !
Xd

~/i0j0k0 du: ðB:8Þ

Given any projection direction d, we can compute the projection
Xd/000 quickly based on the property of local support of B-spline ba-
sis function. The other tri-cubic B-spline basis functions projections
Xd/ijk can be easily obtained using the following shift formula:

ðXd/ijkÞðu;vÞ ¼ ðXd/000Þðu� ½i; j; k�e
ð1Þ
d ; v � ½i; j; k�eð2Þd Þ: ðB:9Þ

Notice that Xd/ijk is locally supported. The cost for computing Xdf(m)

is O(n3). Then for all i0,j0,k0 the computational complexity of
dðJ1ðf ðmÞÞ;/i0 j0k0 Þ is O(Ndn3). Given i0,j0,k0, the cost of converting
dðJ1ðf ðmÞÞ;/i0 j0k0 Þ to dðJ1ðf ðmÞÞ; ~/i0 j0k0 Þ is O(1). Hence, the computational
complexity of dðJ1ðf ðmÞÞ; ~/i0 j0k0 Þ for all i0,j0,k0 is O(Ndn3). Similarly, the
cost of dðJ2ðf ðmÞÞ; ~/i0 j0k0 Þ could be reduced to O(n3) in terms of the lo-
cal support of the B-spline basis function. Hence, the total compu-
tational complexity of L2GF algorithm for one iteration step is
O(Ndn3). From the definition of Schmidt orthogonal process, there
is a lower-triangular matrix A connecting the two sets of basis
functions,

½N3
0;N

3
1; . . . ; N3

n�
T ¼ A½~N3

0;
~N3

1; . . . ; ~N3
n�

T
;

where

A ¼

a00

a10 a11

a20 a21 a22

a30 a31 a32 a33

. .
. . .

. . .
. . .

.

an;n�3 an;n�2 an;n�1 an;n

2
6666666664

3
7777777775

The matrix A can be calculated by using the following formulas:

a00 ¼ kN3
0k; a10 ¼

hN3
1;N

3
0i

a00
; a11 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hN3

1;N
3
1i � a2

10

q
; ðB:10Þ

ak;k�3 ¼
hN3

k ;N
3
k�3i

ak�3;k�3
; ðB:11Þ

ak;k�2 ¼
hN3

k ;N
3
k�2i � ak�2;k�3ak;k�3

ak�2;k�2
; ðB:12Þ

ak;k�1 ¼
hN3

k ;N
3
k�1i � ak�1;k�3ak;k�3 � ak�1;k�2ak;k�2

ak�1;k�1
; ðB:13Þ

akk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hN3

k ;N
3
ki � a2

k;k�3 � a2
k;k�2 � a2

k;k�1

q
; k ¼ 2;3; . . . ; n: ðB:14Þ

For k = 2, we define a2,�1 = 0.

Appendix C. Temporal step-size

From the iteration scheme (10), we can see that after one step
iteration, the function f is updated as

f ðmþ1Þ ¼ f ðmÞ þ sDf ðmÞ;

where f(m) is the function at previous step, Df(m) is the increment of
f(m) computed using the L2-gradient flow. Now we address the ques-
tion of how large of a temporal size s should be used. We determine
s such thatX
d2D

Z
X0

Xdðf ðmÞ þ sDf ðmÞÞ � gd

� �2
duþ k

Z
X
krðf ðmÞ þ sDf ðmÞÞk dx

¼min :

By solving this minimization problem, we have

s ¼ � 2aþ kc
2bþ kd

; ðC:1Þ

where

a ¼
X
d2D

Z
X0

Xdðf ðmÞÞ � gd

� �
XdðDf ðmÞÞ du;

b ¼
X
d2D

Z
X0

XdðDf ðmÞÞ
� �2

du;

c ¼
Z

X

hrðDf ðmÞÞ;rf ðmÞi
krf ðmÞk dx;

d ¼
Z

X

hrðDf ðmÞÞ;rðDf ðmÞÞi
krf ðmÞk � hrðDf ðmÞÞ;rf ðmÞi2

krf ðmÞk3

" #
dx:

If k = 0, s=�a/b. It is possible to get a negative time step-length
using (C.1). In this case the L2GF algorithm will not converge. To
solve this problem, we choose the time step-length as

s1 ¼
s; if s P 0;
� a

b ; else if a < 0;
0; else:

8><
>: ðC:2Þ



M. Li et al. / Journal of Structural Biology 176 (2011) 259–267 267
References

Abramowitz, M., Stegun, I.A., 1972. Handbook of Mathematical Functions with
Formulas, Graphics, and Mathematical Tables. America Dover Publications, Inc..

Aganj, I., Bartesaghi, A., Borgnia, M., Liao, H.Y., Sapiro, G., Subramaniam, S., 2007.
Regularization for inverting the Radon transform with wedge consideration. In:
Proc. Fourth IEEE Int. Symp. Biomedical Imaging: From Nano to Macro
(ISBI2007), Arlington VA, USA, pp. 217–220.

Andersen, A.H., Kak, A.C., 1984. Simultaneous algebraic reconstruction technique
(SART): a superior implementation of the ART algorithm. Ultrason. Imaging 6,
81–94.

Carazo, J.M., 1992. The fidelity of 3D reconstructions from incomplete data and the
use of restoration methods. In: Frank, J. (Ed.), Electron Tomography: Three-
dimensional Imaging with the Transmission Electron Microscope. Springer,
London, pp. 117–166 (Chapter 6).

Crowther, R.A., DeRosier, D.J., Klug, A., 1970. The reconstruction of a three-
dimensional structure from projections and its application to electron
microscopy. Proc. R. Soc. Lond. 317, 319–340.

DeRosier, D.J., Klug, A., 1968. Reconstruction of three dimensional structures from
electron micrographs. Nature 217, 130–134.

Do, S., Karl, W.C., Kalra, M.K., Brady, T.J., Pien, H., 2010. A variational approach for
reconstructing low dose images in clinical helical CT. In: Proc. 2010 IEEE Int.
Symp. Biomedical Imaging: From Nano to Macro (ISBI2010), Rotterdam, The
Netherlands, pp. 784–787.

Frank, J., 2006. Three-dimensional Electron Microscopy of Macromolecular
Assemblies. Oxford University Press, New York.

Giaquinta, M., Hildebrandt, S., 1996. Calculus of Variations, vol. I. Springer-Verlag,
Berlin.

Gilbert, P., 1972. Iterative methods for the three-dimensional reconstruction of an
object from projections. J. Theor. Biol. 36, 105–117.

Gordon, R., Bender, R., Herman, G.T., 1970. Algebraic reconstruction techniques
(ART) for three-dimensional electron microscopy and X-ray photography. J.
Theor. Biol. 29, 471–481.

van Heel, M., Gowen, B., Matadeen, R., Orlova, E.V., Finn, R., Pape, T., Cohen, D., Stark,
H., Schmidt, R., Schatz, M., Patwardhan, A., 2000. Single-particle electron cryo-
microscopy: towards atomic resolution. Q. Rev. Biophys. 33, 307–369.

Huo, Y., Hu, Z., Zhang, K., Wang, L., Zhai, Y., Zhou, Q., Lander, G., Zhu, J., He, Y., Pang,
X., Xu, W., Bartlam, M., Dong, Z., Sun, F., 2010. Crystal structure of group II
chaperonin in the open state. Structure 18, 1270–1279.

Kybic, J., Blu, T., Unser, M.A., 2001. Variational approach to tomographic
reconstruction. In: Proc. of SPIE, San Diego CA, USA, pp. 30–39.

Kybic, J., Blu, T., Unser, M.A., 2002. A variational approach – part II: applications.
IEEE Trans. Signal Process. 50, 1977–1985.

Ludtke, S.J., Baldwin, P.R., Chiu, W., 1999. EMAN semiautomated software for high-
resolution single-particle reconstructions. J. Struct. Biol. 128, 82–97.

Marabini, R., Herman, G.T., Carazo, J.M., 1998. 3D reconstruction in electron
microscopy using ART with smooth spherically symmetric volume elements
(blobs). Ultramicroscopy 72, 53–65.

Matej, S., Lewitt, R., 2001. 3D-FRP: direct Fourier reconstruction with Fourier
reprojection for fully 3-D PET. IEEE Trans. Nucl. Sci. 48, 1378–1385.

Mindell, J.A., Grigorieff, N., 2003. Accurate determination of local defcous and
specimen tilt in electron microscopy. J. Struct. Biol. 142, 334–347.
Natterer, F., Wübbeling, F., 2001. Mathematical methods in image reconstruction.
SIAM, Philadelphia.

Penczek, P.A., Grasucci, R.A., Frank, J., 1994. The ribosome at improved resolution:
new techniques for merging and orientation refinement in 3D cryo-electron
microscopy of biological particles. Ultramicroscopy 53, 251–270.

Radermacher, M., 1994. Three-dimensional reconstruction from random
projections-orientational alignment via Radon transforms. Ultramicroscopy
53, 121–136.

Radermacher, M., 2006. Weighted back-projection methods. In: Frank, J. (Ed.),
Electron Tomography Methods for Three-dimensional Visualization of
Structures in the cell. Springer, New York, pp. 245–273 (Chapter 8).

Roseman, A.M., 2004. Find EM-a fast, efficient program for automatic selection of
particles from electron micrographs. J. Struct. Biol. 145, 91–99.

Schoenmakers, R., Perquin, R.A., Fliervoet, T.F., Voorhout, W., 2005. High resolution,
high throughput electron tomography reconstruction. Microsc. Microanal. 11
(suppl. 2), 312–313.

Sezan, M., Stark, H., 1982. Image restoration by the method of convex projections:
part 2-applications and numerical results. IEEE Trans. Med. Imag. MI-1, 95–100.

Sorzano, C.O.S., Jonic, S., El-Bez, C., Carazo, J.M., Carlo, S.D., Thévenaz, P., Unser, M.,
2004a. A multiresolution approach to pose assignment in 3-D electron
microscopy of single particles. J. Struct. Biol. 146, 381–392.

Sorzano, C.O.S., Marabini, R., Boisset, N., Rietzel, E., Schröder, R., Herman, G.T.,
Carazo, J.M., 2001. The effect of overabundant projection directions on 3D
reconstruction algorithms. J. Struct. Biol. 133, 108–118.

Sorzano, C.O.S., Marabini, R., Herman, G.T., Carazo, J.M., 2005. Multiobjective
algorithm parameter optimization using multivariate statistics in three-
dimensional electron microscopy reconstruction. Pattern Recognit. 38, 2587–
2601.

Sorzano, C.O.S., Marabini, R., Velázquez-Muriel, J., Bilbao-Castro, J.R., Scheres,
S.H.W., Carazo, J.M., Pascual-Montano, A., 2004b. Xmipp: a new generation of an
open-source image processing package for electron microscopy. J. Struct. Biol.
148, 194–204.

Unser, M., 1999. Splines. A perfect fit for signal and image processing. IEEE Signal
Process. Mag. 16, 22–38.

Voorhout, W., Haas, F.D., Frederik, P., Schoenmakers, R., Busing, W., Hubert, D., 2006.
An optimized solution for cryo-electron tomography. Microsc. Microanal. 12,
1110–1111.

Wang, L., Hu, Z., Luo, Y., Huo, Y., Ma, Q., He, Y., Zhang, Y., Sun, F., Dong, Z., 2010.
Distinct symmetry and limited peptide refolding activity of the thermosomes
from the acidothermophilic archaea Acidianus tengchongensis S5 T. Biochem.
Biophys. Res. Commun. 393, 228–234.

Xu, G., 2008. Geometric partial differential equation methods in computational
geometry. Science Press, Beijing.

Xu, G., Shi, Y., 2006. Progressive computation and numerical tables of generalized
Gaussian quadrature formulas. J. Numer. Methods Comput. Appl. 27, 9–23.

Youla, D., Webb, H., 1982. Image restoration by the method of convex projections:
part 1-theory. IEEE Trans. Med. Imag. MI-1, 81–94.

Zhang, K., Li, M., Sun, F., 2011. Gautomatch: an efficient and convenient gpu-based
automatic particle selection program. Unpublished .

Zhang, K., Zhang, Y., Hu, Z., Ji, G., Sun, F., 2010. Development and frontier of electron
microscopy 3D reconstruction. Acta Biophys. Sin. 26, 533–559.


	Single-particle reconstruction using L2-gradient flow
	1 Introduction
	2 Methods
	2.1 L2-gradient flow
	2.2 Iteration scheme
	2.3 Final algorithm:L2GF

	3 Results
	3.1 Simulated data:GroEL
	3.2 Electron microscope data:group II chaperonin

	4 Discussion and conclusions
	Acknowledgments
	Appendix A Notations
	Appendix B Discretization
	Appendix C Temporal step-size
	References


