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ABSTRACT  
 
The process of developing new drugs has an impact on improving the quality of life for 

human beings, as it is focused on improving prognosis, survival and quality in life of 

patients. Drug development begins with the discovery of a new potential drug substance. 

The early stages of drug development have been digitalized through Computer-Aided 

Drug Design techniques (CADDS). The screening technique based on the structure of a 

known active ligand (LBVS) has been relegated to second place in favor of the approach 

based on the target molecule structure (SBVS), which a priori seems more attractive due 

to the use of 3D structures and the greater difficulty that the use of the former apparently 

presents. This study intends to bring together different LBVS process analyses within a 

flow management platform denominated Scipion in order to obtain a workflow applicable 

to the discovery of new drug targets. This integration into Scipion is expected to provide 

advantages to the user in terms of simplicity and manageability of data and the 

necessary bioinformatics tools. The work results indicate that the use of LBVS structure 

pre-processing is highly helpful for the further experimental procedure. Additionally, 

advantages of integrating these tools within Scipion are presented, as well as the 

improvement in some methods to obtain a fully automated process. For integration 

purposes, the Scipion platform is employed, with all its resources; and different open-

source tools and packages, that have been adapted to the nature of the platform and to 

the needs presented by the variety of data typologies that can be included in this type of 

analysis. Once the protocols validation is performed, it can be concluded that the 

integration has been successful in most of them. However, some tools are still only 

indicative and require improvement in terms of code development. Also, there are clear 

advantages in this implementation both in terms of user manageability as well as in 

process automation. 
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1. INTRODUCTION 
 
Virtual drug screening has become very important in the discovery of new targets due to 

the reduction of the number of candidate molecules in huge databases [1] . The discovery 

of new drugs stalled a few decades ago because of the cost in time and money involved 

in the experimental approach, as it is estimated that it costs approximately 1 to 2 billion 

euros to develop a drug, and the process may require 10 to 15 years [2]. In this context, 

CADDs appeared in 1981 and its techniques have boosted Drug Design Virtual 

Screening [3]. 

Virtual Screening (VS) is one of the most widely used CADDs [4] and its objective is to 

find those molecules (known or to be synthesized) that have a high probability of showing 

biological activity on a target molecule, from an extensive database. The basic aim of 

these methods is to predict the nature and strength of binding of a given molecule to a 

target.  

There are mainly two types of VS, Structure-Based Virtual Screening (SBVS) or direct 

drug design and Ligand-Based Virtual Screening (LBVS) or indirect drug design. The 

structure-based method is the approach of choice in cases where the 3D structure of the 

target protein has been experimentally characterized. However, the ligand-based 

approach is necessary when the 3D structure of the target does not exist or cannot be 

characterized [5]. 

This work focuses only on the second of the approaches, the LBVS. The main techniques 

used in this approach are different 2D chemical similarity analysis methods [6], searching 

molecules with a similar shape to known actives and screening using pharmacophores 

obtained by consensus pharmacophoric characteristics of several active ligands. A 

ligand-based screen ranges from a single analysis, such as filtering by pharmacokinetic 

characteristics, to a set of analyses that together constitute a workflow. 

Here, a workflow divided into two stages is introduced. The first one focuses on the 

analysis of the chemical and structural characteristics of the screened molecules and 

includes the following steps: filtering by bioactivity, filtering by 2D descriptors 

(fingerprints), filtering by shape, analysis of ADME properties and filtering by PAINS. The 

second step is related to obtaining a consensus pharmacophore and screening the 

structures that pass the first part of the workflow with this pharmacophore. 

 

In the last few years, different bioinformatics tools that perform the steps involved in 

ligand-based virtual screening have emerged [7-9]. For example, there are several 

software packages or libraries dedicated to the calculation molecular descriptors, such 

as ODDT [10] or RDKit [11], which are used to filter ADME properties or to calculate 
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fingerprints. There are also tools and catalogues to detect structures potentially 

detrimental to the screening result, and to compare structural similarities between two 

molecules such as SwissSimilarity [12-13]. Other tools capable of obtaining 

pharmacophores from a set of ligands, such as PharmaGist [14], and tools for screening 

using the obtained pharmacophore, for example Pharmit [15], have also emerged. Finally, 

it is possible to automatically download datasets from well-known databases such as 

ChEMBL and PDB with preliminary filtering according to the preferences or needs of the 

project. 

The proliferation of a wide variety of facilities for each of the above-mentioned analyses 

has both advantages and disadvantages: on the positive side, there is a wide variety of 

options for screening. On the negative side, there is a great difficulty for the researcher 

to study and learn how to handle each of the tools, each of these resources with their 

respective requirements and software installations. Together with the additional 

challenge of compatibilizing output files from one step to the following one, implies a 

considerable work and time cost.  

One of the possible solutions is the integration of a set of tools, in a workflow shape 

approach, into a software management platform (Scipion) that facilitates the use of these 

programs through the implementation of graphical user interfaces (GUI). This solution is 

focused on achieving almost complete automation of a defined LBVS process within a 

tool capable of minimizing user requirements in the installation of the framework, in basic 

knowledge of chemoinformatics and in molecular archive formats. 

The development functions used in most of the analyses come from the Python package 

RDKit and the source code for a significant number of workflow steps is adapted from 

the TeachOpenCadd project released by Volkamer Lab [16]. In addition, this work focuses 

on improving some protocol steps to increase filtering possibilities of the user and to 

substitute certain phases that usually have to be performed manually, which reduce the 

dynamism of the process. 

The project concludes with the integration of the necessary protocols to execute a LBVS 

in Scipion and its subsequent validation by ensuring the same performance of all the 

tools both inside and outside the framework. 

 

2. OBJECTIVES 
 
The main objective of this work is to integrate a workflow based on LBVS for virtual drug 

screening into a platform/flow manager that allows the concatenation of different 

software in a single environment (Scipion) and its use worldwide. This workflow aims to 

integrate the most relevant LBVS filters/protocols and processes, as well as 
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programmatic access to databases such as PDB or CHEMBL to automate the screening 

as much as possible. In addition, it implements tools to analyze the results of the different 

steps and improves some scripts of the standard workflow.  

The report also discusses the validation of the different Scipion integrated protocols.  

 

3. MATERIALS AND METHODS 

3.1. FRAMEWORK 
Scipion is an open-source project, developed at the National Centre of Biotechnology 

(CNB, CSIC) that can be downloaded from http://scipion.cnb.csic.es. Originally, it was a 

software framework for integrating several 3DEM (Electron Microscopy) software 

packages through a workflow-based approach, allowing the execution of reusable, 

standardized, traceable and reproducible image-processing protocols. These protocols 

incorporate tools from different programs while providing full interoperability among them 

and the implemented workflows can be modified to suit the user's needs [17].  

These software packages are integrated into Scipion as plug-ins. Those that are open 

source are automatically downloaded with the platform (GROMACS [18]), while for those 

that require a license, for example Schrödinger, Scipion notifies the user how the 

program must be acquired and installed. 

It is also possible to integrate tools in the form of scripts that are executed inside Scipion 

through conda environments. This is the context of the workflow presented in the paper. 

 

Scipion has grown in different branches: Scipion-em, for Electron Microscopy tools 

(https://github.com/scipion-em); and Scipion-chem, for CHEMoinformatics and virtual 

drug screening tools (https://github.com/scipion-chem). This last one houses the project 

of LBVS implementation. 

Scipion-chem has the advantage of combining different structural biology softwares on 

a single platform, as well as presenting them in the form of protocols linked to a graphical 

interface. The arrangement of the tools in protocols makes them interchangeable and 

possibilities their reutilization. In addition, the framework records the steps and options 

chosen by the user for further study and reproduction. Finally, Scipion has implemented 

tools, in different protocols, with the same objective, giving the user a wide range of 

options to process their data and compare results. 

 

http://scipion.cnb.csic.es/
https://github.com/scipion-em
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3.2. PROTOCOLS IN SCIPION 

A protocol is defined as a data processing task that involves the execution of several 

steps, which can range from calls to external programs (plug-in) to Python scripts that 

perform a series of tasks [19]. 

Each protocol requires a set of input Scipion objects and the setting of input parameters; 

and produces some other Scipion objects to store the results of their execution. Protocols 

can be linked to each other, forming a workflow (Figure 1), through Scipion objects, 

which contains different files and attributes for different instances, such as small 

molecules (SmallMolecule object) or proteins (AtomStruct object). 

  

3.3. PROTOCOL CLASS STRUCTURE  

Figure 2 shows the structure of a Protocol Class, which is divided into five main sections:  

- Parameter definition: declaration of the GUI parameters which would be the 

attributes of the protocol. 

 

- Steps list: choice of steps or functions that will conform objective tasks of the 

protocol. 

 

- Steps functions: step functions are the most important part of the protocol as 

they contain the Python code which will be executed or a call to external 

programs and scripts.  

 

Figure 1. Example of a Scipion workflow.  
Each box corresponds to a protocol, they are linked by lines forming different workflows in a hierarchical tree structure. 
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- Validation and info functions: these functions are not necessary for the 

development of the protocol, but they provide very useful information for the user.   

a. Validate and Warning function: both are executed just before the protocol. 

They provide information about the possible errors that can appear in the 

protocol run. Validate function is a critical step since the protocol will not 

run if the stated errors there are not corrected. 

b. Citations function: the main objective of this function is to record the 

references (listed in bibtex format) of the protocol methods.  

c. Summary function: this function provides information about the current 

step of the protocol. In addition, when the protocol ends, this function 

shows information about the results, the quality, or any other relevant 

data. 

d. Methods function: it provides more descriptive information about the 

protocol execution than the Summary function, as it can be used for a 

Materials and methods section of a paper. 

 

- Other utils functions: these are helper functions used throughout the code in 

the main functions and are protocol specific. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2. Skeleton code of a Protocol Class in Scipion.  
Reproduced from Creating a protocol — Scipion 3.0.0 documentation. 2022. Github.Io. Retrieved 21 June 2022, from 
https://scipion-em.github.io/docs/docs/developer/creating-a-protocol 

https://scipion-em.github.io/docs/docs/developer/creating-a-protocol
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The following sections (3.4. and 3.5.) describe the steps corresponding to the designed 

workflow in order of execution. 

All the protocols and scripts created for this work are at 

https://github.com/AlbaLomas/TFM-LBVS-Scipion.  

 

3.4. INTEGRATED PROTOCOLS – STRUCTURE-BASED FILTERING  

3.4.1. ChEMBL programmatic access - Compound data acquisition 

ChEMBL is a public database which contains information of a variety of potentially drug-

derivable compounds, extracted manually from the existing literature. The database 

contains functional, pharmacokinetic (ADMET) and affinity data of the compounds. After 

manual data extraction, raw results are standardized and curated for quality assurance. 

ChEMBL already contains more than 5.4 million bioactivity measurements for more than 

one million compounds and 5200 protein targets [20]. 

 

The first workflow protocol aims to obtain an initial set of compounds that present 

bioactivity recorded in ChEMBL against a target molecule. It is therefore recommended 

for cases where the user does not have a starting set of ligands to analyze. 

The result of the protocol is the import of the obtained molecules, in SMILES format [21-

22], into a SetOfSmallMolecules Scipion object. This import is key so that the molecules 

can be used in the following protocols. 

The protocol-linked script code is an adaptation of the code provided by the 

TeachOpenCadd project called Compound data acquisition 

(https://projects.volkamerlab.org/teachopencadd/talktorials/T001_query_chembl.html) 

and enables a broader search in the database. 

Programmatic access is provided by a Python library called ChEMBL webresource client, 

which is the only official Python client library developed and supported by the ChEMBL 

group [23] and avoids the user requirement of studying how to interact with the REST 

APIs.  

 

The protocol filters the compounds according to the following parameters [24]: 

- Uniprot ID: Uniprot code of the target molecule. 

 

- Assay type: ChEMBL includes six different types of assays, “biological assays 

are experimental methods for assessing the presence, localization, or biological 

activity of a substance in living cells and biological matrices” [25]. 

https://github.com/AlbaLomas/TFM-LBVS-Scipion
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a. Binding (B): it is based on the binding of ligand molecules to receptors, 

antibodies, or other macromolecules. This type of assays obtain data for 

measuring this binding, e.g.  Ki, IC50, Kd. 

b. Functional (F): a set of systematic in vivo experiments designed to 

measure the effect or biological role of a compound in a cellular pathway 

or biological process, e.g., cell death in a cell line. 

c. ADMET (A): assays related to the pharmacokinetic characteristics of a 

compound e.g., t1/2, oral bioavailability. 

d. Toxicity (T): Data measuring toxicity of a compound, e.g., cytotoxicity. 

e. Physicochemical (P): this type of assay is performed in the absence of 

biological material and measures physicochemical properties of the 

compounds e.g., chemical stability, solubility. 

f. Unclassified (U): those assays which cannot be included in one of the 

above categories e.g., ratio of binding vs efficacy. 

 

In case that the chosen assay type is Binding, which is recommended, the next 

parameter is the Bioactivity measure.  

- Bioactivity measure:  

a. IC50: (Half maximal inhibitory concentration) indicates the required 

concentration of a compound to inhibit a biological process by 50%. The 

lower the IC50 value, the higher the compound bioactivity.  

b. EC50: (Half maximal effective concentration) is the drug concentration 

required to produce half (50%) of the compound maximum effect. The 

lower the EC50 value, the higher the compound bioactivity. EC50 is 

equivalent to IC50, but this last is used in the case of working with 

inhibitors. 

c. Kd: dissociation constant, this term is generic and describes the binding 

affinity between a molecule and an enzyme or a receptor.  

d. Ki: inhibition constant, the term is equivalent to the dissociation constant 

(Kd), but it is used when the molecule for which bioactivity is measured is 

an inhibitor. 

 

- Target type: it is highly advisable that the chosen target type is "SINGLE 

PROTEIN", as the aim of the LVBS is to find compounds that have activity on a 

single target. Although it is possible to choose between other options. 
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- Organism of compound origin: it is recommended to choose human proteins; 

since the ultimate goal is to obtain possible molecules to be used as human 

drugs. 

The user will specify the search according to these parameters using the GUI of the 

protocol.  

When the assay type is a Binding assay, the script undertakes the following steps: firstly, 

it retrieves the ChEMBL ID of the compound with the highest affinity on the target. Then, 

it obtains the bioactivity data of the affine compound similar molecules and filters them 

according to assay type, bioactivity measure, target type and organism of compound 

origin fields.  

Next, for those molecules that have passed the screening, their structure is obtained in 

form of "canonical SMILES". After collecting the bioactivity and structural data for each 

molecule, the filter is performed according to the average bioactivity chosen. The 

adapted script is able to sort the obtained molecules in bioactivity ascending order 

independently of the bioactivity measure. In case the chosen bioactivity measure is IC50 

or EC50, they are transformed into plC50 and plEC50 values (negative logarithm in M) 

and ordered from the highest to the lowest. On the other hand, Kd and Ki values are 

ordered from the lowest to the highest. In most cases, the measure of bioactivity chosen 

is the IC50 since the drugs sought usually correspond to inhibitors [26]). It finally filters the 

molecules according to their bioactivity value. 

In the rest of cases the search is limited to filtering without screening for bioactivity. 

 

The result of the protocol is a number of compounds, also determined by the user, that 

show activity against the target and have the highest bioactivity levels.  

 

The following protocols (ADME, fingerprint-based LBVS and shape-based LBVS) are 

based on the Similar Property Principle (SPP) and structure-activity relationship (SAR) 

which state that structurally similar molecules also show similar properties [27]. 

 

3.4.2. Analysis of ADME properties 

Another protocol included in the workflow is the analysis of ADME properties. The 

objective is the qualitative evaluation of the screening compounds pharmacokinetic 

properties. These properties give a notion of whether the analyzed compounds can fulfil 

their function as a drug when they are ingested by humans. This analysis is done using 

an empirical rule known as Lipinski's rule of five (Ro5) [28] as it was developed to estimate 

the bioavailability of a compound only based on its chemical structure. The most 
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important pharmacokinetic properties (in the human body) are Absorption, Distribution, 

Metabolism and Excretion (ADME).  

 

This filtering is particularly useful for testing compounds whose pharmacological 

properties/activity have already been proven. 

Ro5 dictates that for a compound to be orally administered it can only violate one of the 

Lipinski rules, there are variants of the standard that include new rules that do not require 

the complete fulfillment of them by the compound. However, in this paper only the original 

Ro5 rules will be considered. The compound must:  

- Contain no more than 5 hydrogen bond donors (the total number of nitrogen–

hydrogen and oxygen–hydrogen bonds). 

 

- Contain no more than 10 hydrogen bond acceptors 

(all nitrogen or oxygen atoms). 

 

- Have a molecular mass between 160 and 500 Da, as large molecules (high 

molecular weight) might have more difficulties in passing phospholipid 

membranes. 

 

- Not exceed 5 in its octanol-water partition coefficient (log P). This coefficient 

measures the distribution of a compound, usually between a hydrophobic 

(e.g., 1-octanol) and a hydrophilic (e.g., water) phase. 

 

The protocol’s script is an adaptation of the source code, provided by the 

TeachOpenCadd project called Molecular filtering, ADME and lead-likeness criteria 

(https://projects.volkamerlab.org/teachopencadd/talktorials/T002_compound_adme.ht

ml) and another source code form oddt github 

(https://oddt.readthedocs.io/en/latest/_modules/oddt/virtualscreening.html). They offer 

the user the possibility of filtering a set of compounds by the rule Lipinski's rule and the 

Rule of 3 (Ro3). This new rule has the same statements as the Ro5, the difference 

between them is that, in the case of Ro3, the values that define whether a compound 

satisfies the rule are multiples of 3 and not of 5. 

The protocol accepts as input a SetOfSmallMolecules Scipion object and the result of 

the process are those molecules that have successfully passed the chosen filter in a new 

SetOfSmallMolecules object. 

 

https://en.wikipedia.org/wiki/Hydrogen_bond
https://en.wikipedia.org/wiki/Nitrogen
https://en.wikipedia.org/wiki/Hydrogen
https://en.wikipedia.org/wiki/Oxygen
https://en.wikipedia.org/wiki/Chemical_bond
https://en.wikipedia.org/wiki/Hydrogen_bond
https://en.wikipedia.org/wiki/Nitrogen
https://en.wikipedia.org/wiki/Oxygen
https://en.wikipedia.org/wiki/Atoms
https://en.wikipedia.org/wiki/Octanol-water_partition_coefficient
https://projects.volkamerlab.org/teachopencadd/talktorials/T002_compound_adme.html
https://projects.volkamerlab.org/teachopencadd/talktorials/T002_compound_adme.html
https://oddt.readthedocs.io/en/latest/_modules/oddt/virtualscreening.html
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3.4.3. Compound similarity - Fingerprint-based LBVS 

Molecular descriptors are defined as mathematical representations of molecular 

properties, and they are used to characterise molecular physicochemical information 

quantitatively [29]. 

There are different types of molecular descriptors: 

- 1D descriptors: one-dimensional or global descriptors, i.e., for a single 

molecule, they have a single value. Solubility or molecular weight are examples 

of 1D descriptors. 

 

- 2D descriptors: two-dimensional descriptors are based on the structure of the 

molecular formula, these include molecular graphs, trajectories, fragments, 

atomic environments, or fingerprints. Fingerprints are computational 

representations of molecules encoding chemical and molecular features in the 

form of 0 (absence of the feature) and 1 (presence of the feature). 

 

- 3D descriptors: 3D descriptors are based on the three-dimensional structure of 

the molecule. They are less robust than 2D representations because of molecular 

flexibility, as the true shape of a molecule cannot be fully established. 3D 

descriptors include PPP patterns (Potential Pharmacophore Points), distance 

matrices (containing all distances between atoms) and description of three-

dimensional fields (e.g., steric or electrostatic). 

 

In previous protocols, 1D descriptors are analyzed, e.g., in the filtering of ADME 

properties. 2D descriptors filters are also widely used in virtual screening and mapping 

chemical space. In this case, the workflow analyses the similarity of two molecules using 

their fingerprints since "Molecular fingerprints are essential cheminformatics tools for 

virtual screening and mapping chemical space" [30]. 

 

The protocol offers the user the option of filtering by two types of fingerprints: 

- MACCS (Molecular ACCess System): these fingerprints consist of 166 bits 

representing predefined structural fragments (Figure 3). The presence or 

absence of a fragment is reported in each position [31]. 

 

Figure 3. Illustration of MACCS fingerprint.  
Reproduced from T004 · Ligand-based screening: compound similarity. 2019. Volkamerlab.Org. Retrieved 21 June 2022, 
from https://projects.volkamerlab.org/teachopencadd/talktorials/T004_compound_similarity.html 
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- Morgan (circular fingerprints): this type of fingerprint is based on the Morgan 

algorithm [32]. Each bit corresponds to a circular environment (with a defined 

radius) for each atom in the molecule (Figure 4). The number of counted 

neighboring bonds and atoms depends on the radius. The length of the fingerprint 

in this case is not limited because it can be modulated according to the radius 

studied.  

 
 

 

 

 

 

 

The similarity between both fingerprints is measured by different similarity coefficients. 

In this work, Tanimoto and Dice coefficients are chosen: 

- Tanimoto coefficient: it is the most popular coefficient in both chemical 

informatics and computational medicinal chemistry because of its ease of 

implementation and quickness [33]. 

Figure 5 shows Tanimoto coefficient calculation: 

 

 

 

 

 

 

 

 

- Dice coefficient: also known by other names such as Sørensen's index, Dice 

coefficient is a “statistic introduced to compare the similarity of two samples” [34].  

Figure 6 shows the calculation of Dice coefficient. 

 

 

 

 

 

 

Figure 4. Illustration of Morgan circular fingerprint. 
Reproduced from T004 · Ligand-based screening: compound similarity. 2019. Volkamerlab.Org. Retrieved 21 June 
2022, from https://projects.volkamerlab.org/teachopencadd/talktorials/T004_compound_similarity.html 
 

T004 · Ligand-based screening: compound similarity. (s/f). Volkamerlab.Org. 

Recuperado el 22 de junio de 2022, de 

https://projects.volkamerlab.org/teachopencadd/talktorials/T004_com

pound_similarity.html 

 
 

Figure 5. Tanimoto coefficient formula and its composition. 
Reproduced from T004 · Ligand-based screening: compound similarity. 2019. Volkamerlab.Org. Retrieved 21 June 2022, 
from https://projects.volkamerlab.org/teachopencadd/talktorials/T004_compound_similarity.html 
 

Figure 6. Dice coefficient formula and its composition. 
Reproduced from T004 · Ligand-based screening: compound similarity. 2019. Volkamerlab.Org. Retrieved 21 June 
2022, from https://projects.volkamerlab.org/teachopencadd/talktorials/T004_compound_similarity.html 
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Both coefficients range from 0 to 1, being 0 the minimum similarity and 1 the maximum 

similarity. Although, because of each coefficient's calculation, Dice's coefficient tends to 

have higher values than those from Tanimoto one.  

 

The script has been adapted from the existing script developed by the TeachOpenCadd 

project called Ligand-based screening: compound similarity 

(https://projects.volkamerlab.org/teachopencadd/talktorials/T004_compound_similarity.

html). The result of the protocol is a new SetOfSmallMolecules object that would contain 

those that obtain a similarity result equal to or higher than the value set by the user 

specified in the protocol GUI. 

 

3.4.4. Molecular filtering: unwanted substructures – PAINS search 

PAINS (Pan-Assay INterference compoundS) are compounds that frequently show 

erroneous results (false positives) in high-throughput screening (HTS). This is a 

consequence of the functional groups they contain which cause non-specific binding to 

a wide range of targets [35]. 

PAINS concept is widely accepted by the research community, in fact, filtering by these 

compounds is already integrated in most virtual screening workflows. Moreover, several 

scientific publications, such as the Journal of Medicinal Chemistry, require this filtering 

for compounds presented in final papers [36]. 

Different filter scripts and PAINS catalogues are available, and the choice depends on 

the type of search or test desired. For increasing the filtering possibilities, in the protocol, 

it is possible to choose between the predefined PAINS catalogue offered by the RDKit 

library or to use a catalogue provided by the user. This user supplied file must be 

structured as follows: on each line, the first position is reserved for the PAINS molecule 

in SMART format, and the second position is for the PAINS name, both elements must 

be space separated. 

 

The code corresponding to RDKit catalogue filtering is adapted from TeachOpenCadd 

and is called Molecular filtering: unwanted substructures 

(https://projects.volkamerlab.org/teachopencadd/talktorials/T003_compound_unwanted

_substructures.html), and the code used for filtering by personal catalogue comes from 

the github repository (https://github.com/iwatobipen/rdkit_pains). 

 

The required input file for this protocol is again a SetOfSmallMolecules object. The 

protocol GUI requests the user either to have his own PAINS catalogue or to use the 

https://github.com/iwatobipen/rdkit_pains
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RDKit one. In case the user already has this file, the GUI will show a field to enter the 

catalogue absolute path.  

As output archives, there are two files with txt extension and two SetOfSmallMolecules 

objects, one of them containing those molecules where no match has been found with 

any of the PAINS in the catalogue. The other one contains those molecules that have at 

least one match. The matching PAINS will be registered in the SetOfSmallMolecules in 

the form of an attribute for each molecule. Therefore, the user will be able to analyze any 

molecules that have not passed the filter through a viewer attached to 

SetOfSmallMolecules objects which displays a table with the attributes for each molecule 

in the set. This is helpful because some compounds that are considered interfering 

structures are not excluded for being used as drugs [37] as 5% of FDA-approved drugs 

have known PAINS. Hence, the user can use the protocol to discard all molecules with 

PAINS or perform a more exhaustive molecule-by-molecule analysis.  

 

3.4.5. LBVS based on the shape 

The next filter is based on the analysis of the shape of the query molecule/ligand used 

as a reference in the search for similar structures. The methods applied in the shape 

filtering are usually based on the calculation of distances, surface areas and/or volumes. 

 

A commonly used measure for comparing the structure of two molecules in virtual 

screening programs is the calculation of the Root Mean Square Deviation (RMSD) 

between the atoms of two molecules [38]. RMSD is a distance which describes the 

structural difference between two topologies, this is detailed in Figure 7. The lower the 

RMSD between two structures, the greater the similarity between them. 

 

 

 

RDKit package allows the calculation of RMSD between a set of molecules and a 

reference with very high similarity. However, it is unable to calculate RMSD values for 

dissimilar compounds.  

On the one hand, it is possible to estimate the optimally (minimum) RMSD between two 

molecules by “rdMolAlign()” module function “AlignMol()”. It calculates the necessary 3D 

Figure 7. RMSD formula. Where N is the number of atoms in the system and (x,y,z) are the coordinates of the first 
structure atoms and (x',y',z') are the coordinates of the equivalent atoms of the second structure.  
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transformation to align the probe molecule (in a specific conformation) to the query (in a 

specific conformation) so that the RMSD between a specified set of atoms is minimized.  

On the other hand, it is also possible to calculate the best RMSD (“GetBestRMS()”) by 

aligning all permutations of matching atoms orders in both molecules. In some cases, it 

can lead to a 'combinatorial explosion' when hydrogens molecules are present. The 

difference between both functions is that “AlignMol()” aligns molecules without changing 

atom order [39]. 

 

Both calculations have been integrated into the shape filtering protocol. However, the 

RMSD calculation is only effective when the selected molecules are very similar, small 

differences in the structure of the compared molecules will cause a response error. 

Therefore, filtering only by such functions would imply that a large part of the starting 

molecules would not be analyzed, as they commonly show structural differences with 

the query molecule. For this reason, it is necessary to calculate other distance measures. 

RDKit current tools for calculating distances between molecules of unequal size are 

Protrude Distance and Tanimoto distance. Protrude Distance focusses on the volume 

mismatch and is defined as the percentage of the larger molecule which 

protrudes/exceeds from the smaller molecule. Tanimoto Distance measures similarity 

between finite sample sets and is defined as the size of the intersection divided by the 

size of the union of the sample sets (Figure 8). 

 

 

 

 

 

 

The protocol allows you to choose which coefficient you want to calculate and requires 

as input a SetOfSmallMolecules object. The analysis result will be another 

SetOfSmallMolecules object with those molecules that have obtained a coefficient range 

specified in the protocol GUI. 

Before the calculation of RMSD and the Tanimoto and Protrude distances, it is necessary 

to superimpose the structures which would be compared. So far RDKit does not have a 

tool that performs a previous alignment to the calculation of similarity, so the results 

provided by these tools must be carefully analyzed by users. 

 

The second part of the workflow (3.5.) consists of obtaining a consensus pharmacophore 

using ligands from PDB database. This structure is then used in the screening of the 

Figure 8. Tanimoto Distance formula. Where A corresponds to a finite sample set with n binary attributes, and B to the 
other one.  
 

https://en.wikipedia.org/wiki/Binary_numeral_system
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filtered molecules (first part of the analysis), by comparing the pharmacophoric 

characteristics of the consensus and those belonging to the analyzed molecules. 

 

3.5. INTEGRATED PROTOCOLS – THE PHARMACOPHORE CONCEPT 

As stated above, the ligand-based approach for the discovery of new drug targets 

becomes necessary when information on the 3D structure of the target receptor is not 

available or does not exist. This implies that the filtering is focused on the comparison 

between candidate molecules and a tested ligand. In this context, there is another type 

of ligand screening which measures the similarity between different molecules by their 

pharmacophoric characteristics. 

One of the tools included in the Scipion workflow is the construction of a consensus 

pharmacophore model using known ligands. These ligands must fulfil a number of 

characteristics: obviously, they must bind to the target protein, at the same binding site 

and in the same orientation [40]. 

Pharmacophore is defined, according to IUPAC, as "the ensemble of steric and 

electronic features that is necessary to ensure the optimal supra-molecular interactions 

with a specific biological target structure and to trigger (or to block) its biological 

response". Therefore, a pharmacophore can be considered as an abstract set of stereo-

electronic features that ensure the favorable interaction between a ligand and its target 

in energetic terms. These definitions are accepted by the scientific community so that 

molecules that share pharmacophoric characteristics or patterns are assumed to 

recognize the same binding sites on a biological receptor and have similar biological 

profiles [41]. 

Pharmacophore virtual screening solves the lack of structural diversity found in similarity 

analyses based on 2D structures. One of the advantages is that the spatial arrangement 

of the stereoelectronic molecular features [42] is the most relevant in pharmacophore 

analysis, and the chemical structure of the ligand remains in the background. Another 

advantage of this approach is the simplicity of the technique which also enables the 

analysis of huge databases in a time-efficient way, resulting in a selection of compounds 

that are very likely to show biological activity on the target [43-45]. 

 

3.5.1. PDB access and ligand extraction - Protein data acquisition  

Protein Data Bank (PDB) is a public and supervised (Worldwide Protein Data Bank) 

database that stores the three-dimensional (3D) structure of different nucleic acids and 

proteins. These structures are provided by different biologists and biochemists from all 

over the world who obtain them through different techniques such as magnetic/nuclear 

resonance, X-ray crystallography or electron microscopy [46]. 
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The source code from which the protocol script has been adapted comes from tutorial 

008, also by Volkamer Lab (Protein data acquisition: Protein Data Bank). 

Programmatic access to PDB is done using two Python packages: biotite 

(https://www.biotite-python.org/) and pypdb (https://github.com/williamgilpin/pypdb/).  

 

The protocol GUI offers different fields that complete the filtering of the protein-ligand 

structures registered in PDB:  

 

- Uniprot ID of the target protein. 

 

- Experimental method: structure determination method, among the possible 

options are X-RAY DIFFRACTION, SOLUTION NMR, ELECTRON 

MICROSCOPY, etc or None, in case the experimental technique is not specified. 

 

- Minimum molecular weight of the ligand associated with the structure.  

 

- Quality of the structure: the lower the angstrom resolution of the structure, the 

higher the quality. 

 

- Number of structure chains: it is recommended to set the value of this field to 

1, as it simplifies the processing of the structure and the search. 

 

- Date of deposition: this field is enabled to ensure the reproducibility of the 

screening; the user sets a date after which any structure that is uploaded on the 

database will not be considered. In the protocol the user must choose a year and 

the date that will be passed to the search criteria is January 1st of the year set. 

 

- Number of final extracted ligands. 

 

One of the disadvantages of the source code is that it does not classify the structures 

according to the binding site of the ligand to the protein, which does not allow the correct 

selection of ligands to create the consensus pharmacophore. According to the original 

code, the user must do a manual classification of the resultant ligands by visual 

inspection of the structure. However, although manual selection is a possibility, the new 

code facilitates the calculation of the centers of mass of the different ligands and their 
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subsequent clustering thanks to the DBSCAN algorithm [47] implemented by scikit-learn 

package. 

The center of mass can be defined as the average position of all parts of the measured 

system, weighted according to their mass. Through this calculation, it is possible to know 

the point in space where each center of mass is located, which gives an idea of the ligand 

position with regard to the protein and allows the ligands to be grouped according to their 

location. 

The centre of mass is estimated using the coordinates of the ligand atoms and the 

molecular weights from the information included in the HETATM lines of the PDB file. 

 

DBSCAN is a non-supervised algorithm whose acronym stands for Density-Based 

Spatial Clustering of Applications with Noise. It is a density-based algorithm: it estimates 

the density distribution of the nodes in each cluster. DBSCAN has the advantage of not 

requiring the specification of a desired number of clusters, unlike k-means. Instead, it is 

necessary to specify the minimum number of points (ligands in this case) that each 

cluster must have and the maximum distance between one point and other to be part of 

the same group. It is desirable that the minimum number of points in the clusters is one: 

the aim is not to concentrate the ligands in a few clusters, but to know which ones bind 

to the target at the same binding site. 

The output of the protocol is the generation of different SetOfSmallMolecules objects that 

will be composed by the ligands that have been grouped in the same cluster; in other 

words, there will be as many sets as clusters are obtained. Moreover, each molecule 

includes its canonical SMILES and the structure of its target protein as attributes, so that 

the binding site can be visualized and allows the user to check the clustering performed 

by the script. 

Thanks to the DBSCAN algorithm implementation, the automation of the process is 

covered: the user can directly choose any of the SetOfSmallMolecules for the next 

protocol to obtain the consensus pharmacophore. Furthermore, it is also possible for the 

user to create an own SetOfSmallMolecules, via other protocols provided by Scipion-

chem, ignoring the algorithm classification, therefore the manual mode is still possible.   

 

3.5.2. Consensus pharmacophore generation and pharmacophore-based 

screening 

The first part of the process involves the generation of the consensus pharmacophore 

from the ligands extracted in the previous protocol. Each ligand has different 

pharmacophore characteristics that are divided into the following families: donor, 

acceptor, aromatic, hydrophobe, lumpedhydrophobe, posionizable. The characteristics 
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are obtained by RDKit “GetFeatureDefs()” function and classified into the above-

mentioned families with “GetFamily()” function. 

Up to this point, the script obtains different clusters, each of them represents one of the 

families and contains all the family characteristics of all the ligands examined. 

Then the coordinates of the pharmacophore characteristics for each feature type are 

extracted by “GetPos()” function. These coordinates are represented in a 3D space, so 

each one has three points in a [x,y,z] form.  

Now it is necessary to re-cluster these coordinates using the k-means algorithm, 

needless to say, the coordinates of each feature are grouped separately. Figure 9 

intends to show k-means clustering performance.  The clustering is performed by the 

“clustering()” function, which is provided again by Volkamer Lab (Ligand-based 

pharmacophores) and requires the following parameters: 

- kq: determines the number of clusters (k) per feature type 

- K: number of clusters (number of features/kq) 

- Minimum cluster size: minimum number of features that a cluster must have to 

be taken into account by the algorithm, it is intended that the clusters contain 

features of most of the molecules in our set of ligands.  

- Top cluster number: number of clusters to be selected, the largest ones. 

 

 
 
 
 
 
 
 
 
 
 

 
“clustering()” function returns the number of clusters obtained from the k-means analysis. 

It must be mentioned that kq should take a value that assures for all family features at 

least one cluster, but no more than 5 clusters. The code is adapted from 

TeachOpenCadd Ligand-based pharmacophores Jupyter Notebook 

(https://projects.volkamerlab.org/teachopencadd/talktorials/T009_compound_ensemble

_pharmacophores.html) and sets the value of kq to 7; the value of minimum cluster size 

Figure 9. K-means clustering diagram.  
The grey points correspond to the different characteristics from all starting ligands for a single family. After clustering, it 
is obtained groups of features that are spatially closest to each other.   
Reproduced from T009 · ligand-based pharmacophores. 2019. Volkamerlab.Org. Retrieved 21 June 2022, from 
https://projects.volkamerlab.org/teachopencadd/talktorials/T009_compound_ensemble_pharmacophores.html 

 
 

https://www.linguee.es/ingles-espanol/traduccion/needless+to+say.html
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is 75% of the number of molecules in our set of ligands; and the clusters top number is 

4.  

The next step is the selection of clusters from a k-means clustering by using 

“get_clusters()” function. It returns the indices of these clusters; the selection is based 

on cluster size: the largest clusters are chosen.  

After this step, “get_selected_cluster_center_coords()” function retrieves cluster center 

coordinates for selected clusters. These coordinates will finally be the consensus 

pharmacophore within the starting ligands. 

Differing from the source code, in the protocol integrated in Scipion all feature families 

are taken into account to obtain a more accurate result. 

 

Once the coordinates corresponding to the consensus pharmacophore are available, the 

last step of the protocol is filtering by this pharmacophore. The filtering is carried out 

using RDKit tools: 

(https://github.com/rdkit/UGM_2016/blob/master/Notebooks/Stiefl_RDKitPh4FullPublic

ation.ipynb). The starting molecules are analyzed for their pharmacophore 

characteristics, and these are compared with the characteristics of the consensus 

pharmacophore. In other words, thanks to the RDKit package, the pharmacophoric 

characteristics of analyzed molecules are extracted per family and compared family by 

family with those for which the consensus pharmacophore has been constructed. The 

comparison is performed through the function “MatchPharmacophoreToMol()” which 

provides a Boolean response, True if there is a match between the pharmacophoric 

characteristics of the molecule and the model; False, if there is not. The user, in the 

protocol GUI, will select the minimum number of pharmacophoric characteristics/families 

which the filtered molecules must conform in order to pass the screening.  

 

The inputs required by this protocol are two SetOfSmallMolecules objects, one of them 

containing the ligands which will build the pharmacophore (those obtained in the 

programmatic access or provided by the user in the form of PDB files); and another one 

containing the molecules that must match to the built pharmacophore. The output is a 

new object SetOfSmallMolecules containing only those molecules that have passed the 

filtering. 
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4. RESULTS  
 

This part of the project corresponds to the results presentation, which, in this case, refers 

on the validation of the protocols integrated in Scipion-chem i.e., to verify that the 

integrated scripts work in the same way both inside and outside the Scipion platform. 

 

For this purpose, the EGFR, ErbB1, HER1 or Epidermal Growth Factor Receptor, is 

selected as the target protein and the objective is to find small molecules that could work 

as human EGFR inhibitors. EGFR is a tyrosine kinase receptor-like protein that is located 

on the surface of some cells and interacts with Epidermal Growth Factor (EGF), which 

is involved in cell signaling pathways that control cell multiplication and survival. The 

interest for this protein comes from its relevance in cancer: mutations in EGFR gene 

cause a higher production of EGFR proteins than expected in some types of cancer cells, 

which leads to a faster multiplication of these cells. Therefore, the discovery of new drugs 

that block EGFR activity is of great importance in cancer treatments [48]. 

 

Validation is performed by executing separately the Scipion protocols and their source 

code in Jupyter Notebooks; most of them belonging to TeachOpenCadd platform and 

others from public code hosted in GitHub platform.  

In the methodology section, seven different protocols have been explained, most of 

which are interchangeable. It is necessary to select a protocol order, so to design a 

specific workflow for the validation and to be able to compare the results of each step. 

In this case, the final workflow consists of two stages: 

- The first phase of the protocol corresponds to the formation of the set of 

structures to be analyzed and their filtering by properties derived from their 

chemical structure. 

1. Compound data acquisition  

2. ADME filtering 

3. PAINS filtering 

4. Compound similarity filtering 

 

- The second phase of the workflow corresponds to the filtering of the structures 

resulting from the first phase by applying a Pharmacophore based virtual 

screening (PBVS). 

5. Ligand filtering and acquisition 

6. Pharmacophore generation and screening  
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Additionally, the protocol for shape filtering is validated separately, as the source code 

is not integrated in any script ratified outside the Scipion platform. 

 

1.1. STRUCTURE-BASED FILTERING 

1.1.1. Compound data acquisition 

Objective: to generate a set of initial molecules, based only in the Uniprot ID. 

 

It is very important to define the parameters which, obviously, must be identical on both 

Scipion and the notebook to obtain comparable results. The parameters used for the 

validation of this workflow step are as follows: 

- Uniprot ID: "P00533"  

- Organism protein: "Human protein" 

- Objective type: "Single protein” 

- Bioactivity type: "IC50” 

- Assay type: "B" 

- Number of final structures: “all” 

 

The output obtained in both cases (Jupyter Notebook and Scipion) is the same: the 

ChEMBL target is ChEMBL203 which is a single protein and represents the human 

Epidermal growth factor receptor. The search returns 6283 total compounds, with pIC50 

ratios ranging from 11,523 (CHEMBL63786) to 1,602 nM (CHEMBL45068). 

 

In the case of the Scipion integrated protocol, the idea is that the user chooses the 

number of molecules (in SMILES format) to store at the end of the protocol in a 

SetOfSmallMolecules object, each of them having its pIC50 value as attribute. Therefore, 

the notebook case provides a file with csv extension and Table 1 disposition; and Scipion 

provides smi extension file, with Table 2 information, each line has these data separated 

by commas; and an object with Table 2 structure.  

The purpose is that in the end, both processes will give identical results, not only in the 

number of compounds, but also in their identity and pIC50 value.  
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1.1.2. Molecular filtering: ADME and lead-likeness criteria 

Objective: filtering those molecules obtained in the programmatic access to ChEMBL 

by using Lipinski's rule (Ro5).  

 

The result for both platforms is that 5091 of the 6283 total molecules have passed the 

filter, i.e., they fulfil at least 3 of the 4 Lipinski rules. The remaining structures, 1192 

molecules, are eliminated from the workflow, being discarded for the following steps. 

The Notebook again produces as output a csv file with the structure of Table 3. In the 

case of the Scipion protocol, the main output is an object with the molecules that have 

passed the filter. However, for validation, it is included a function that creates a file, called 

"check.txt" which is shown in the Figure 10, and it saves the result of the Lipinski rules 

Table 1.  Output csv file of “Compound data acquisition” Jupyter Notebook.  
It is divided into five columns: compound ChEMBL ID; compound IC50 values, in case the value is lower than 0.01 the 
number is represented with a single digit (0.003 = 3); measure unit of IC50; compound canonical smiles and compound 
pIC50 values.  

Table 2.  “Compound data acquisition” Scipion protocol output as Scipion object.  
It is divided into three columns: compound canonical smiles; compound ChEMBL ID and compound pIC50 values.  
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for each molecule. The calculation of these values verifies that on both platforms the Ro5 

have identical results, this way the implementation of the protocol is validated.  

 

 

 

 

1.1.3. Molecular filtering: unwanted substructures 

Objective: filter the structures obtained after ADME filtering by searching for PAINS.  

 

In this project, the PAINS protocol validation focuses on the case of using the catalogue 

of pains included in RDKit application. 

 

From the initial 5091 molecules, at least 453 molecules are found to have a minimum of 

one PAINS structure, in both platforms.   

On one hand, the result obtained in the Jupyter Notebook are two data frames: one with 

those molecules that have passed the filtering, and another with the molecules that 

contain PAINS with the structure of Figure 11.  

On the other hand, in the case of the Scipion protocol, the output are two objects, one 

containing the molecules that do not contain PAINS from which the analysis will continue. 

The other 453 molecules will be discarded and included in a SetOfSmallMolecules object 

Table 3.  Output csv file of “ADME and lead-likeness criteria” Jupyter Notebook.  
It is divided into ten column: compound ChEMBL ID; compound IC50 values, in case the value is lower than 0.01 the 
number is represented with a single digit (0.003 = 3); measure unit of IC50; compound canonical smiles; compound pIC50 
values; compound molecular weight; compound number of hydrogen bond acceptors; compound number of hydrogen bond 
donors; compound logp; and whether the compound fulfil the Ro5.  

Figure 10. Part of “check.txt” file.  
It contains the ChEMBL ID of the compounds that pass the ADME filtering, its molecular weight, number of hydrogen bond 
acceptors (n_hba), number of hydrogen bond donors (n_hbd) and logp values.   

https://en.wikipedia.org/wiki/Hydrogen_bond
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called "SmallMoleculesPains”. This object has the matching PAINS type associated to 

each molecule as an attribute, an example is shown in the Table 4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.1.4. Ligand-based screening: compound similarity 

Objective: filtering the remaining molecules after Ro5 and PAINS screening by 2D 

descriptors.   

 

Next filter focuses on molecular similarity: similarity is calculated by comparing the 

fingerprints of the analyzed molecules and an inhibitor drug tested against the target 

protein, Gefitinib (Figure 12). 

 

This protocol is validated by calculating, for all 

molecules, MACCS and Morgan fingerprints, and by 

calculating the similarity to Gefitinib molecule using 

Tanimoto and Dice coefficients. 

In both options, the values obtained are exactly the 

same for the fingerprints as is shown in Tables 5 y 6. 

 

Figure 11. Output file of “Unwanted substructures” Jupyter Notebook that includes those compounds that have PAINS 
in their structures. The file is divided into three columns: ChEMBL ID, RDKit molecule and PAINS structure found. 

Table 4. Representation of “SmallMoleculesPains” object which is an output of “Unwanted substructures” Scipion Protocol.  
It contains those compounds that have PAINS in their structures. The file is divided into two fields: compound smi file path, 
and PAINS structure found.   

Figure 12.  Gefitinib molecule structure. 
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After obtaining the results of the comparison of both fingerprints by Dice and Tanimoto 

coefficients, it is possible to analyze the quality of the filtering by comparing how are the 

different outputs. Figure 13 shows the different filter results and that the choice of 

MACCS filtering calculation and Tanimoto coefficient comparison is the option which 

present a more likely Gaussian distribution. Therefore, this one seems to have filtered in 

the most appropriate way; since, near half of the molecules have similarities greater than 

or equal to 0.5, and the rest, less than or equal to 0.5. For this reason, as for continue 

with the filtering it is 

necessary to choose a 

fingerprint type and a 

similarity coefficient, the 

final choice is Tanimoto-

MACCS duo. 

 

 

 

 

Table 5.   Output file of “Compound similarity” Jupyter Notebook. 
It is divided into eight columns: molecule ChEMBL ID, molecule canonical smiles, molecule pIC50 value, RDKit molecule, 
Tanimoto-MACCS coefficient, Tanimoto-Morgan coefficient, Dice-MACCS coefficient and Dice-Morgan coefficient.  

Table 6.   Representation of the SetOfSmallMolecules object which is the output of “Compound similarity” Scipion protocol. 
It is divided into five fields: compound smi file path, Tanimoto-MACCS coefficient, Tanimoto-Morgan coefficient, Dice-
MACCS coefficient and Dice-Morgan coefficient.  
 

  

Figure 13. Matplotlib histograms showing the filtering by fingerprints results.  
The X-axis shows the similarity values between the analysed molecules and Gefitinib which range from 0 to 1. The Y-
axis indicates the number of molecules that are related to each similarity value. The upper title of each plot shows which 
type of fingerprint and similarity coefficient is being represented. 
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The molecules that continue for subsequent analysis are those that, after comparison of 

Maccs fingerprints using the Tanimoto similarity coefficient, have obtained a value equal 

to or greater than 0.5 with respect to the fingerprint of the Gefitinib molecule.  

 

Specifically, this filtering concluded with the discarding of 1,786 molecules from the 4637 

initial ones, leaving 2851. 

 

1.2. PHARMACOPHORE BASED VIRTUAL SCREENING (PBVS) 

The second part of the pharmacophore ligand virtual screening workflow starts with 

ligand extraction to obtain the consensus pharmacophore. 

1.2.1. Protein data acquisition: Protein Data Bank (PDB) 

Objective: obtain different target protein ligands in pdb files. 

 

The parameters used in the search on both platforms are as follows: 

- Uniprot code: P00533 

- Experimental method: X-RAY-DIFFRACTION 

- Minimum molecular weight of the ligand: 100.0 

- Structure quality: 3.0 

- Number of chains in the structure: 1 

- Deposition date: 2020 

- Number of final ligands to be obtained: 4 

- Maximum distance between instances: 0.8 angstrom 

- Minimum samples of a cluster: 1 

 

The programmatic search with these parameters in ChEMBL results in the structures 

5UG9, 5HG8, 5UG8, 5UGC and their respective ligands (8AM, 634, 8BP and 8BS). 

The Jupyter Notebook only performs the ligand search without going into where they 

bind to the EGFR.  

In the case of the Scipion protocol, a classification according to the protein-ligand binding 

site is obtained, the result is that all the ligands are included in a cluster, so it is 

interpreted that they all bind to the protein at the same binding site.  

 

To check if the algorithm has done a good clustering, the pdb files are overlaid using the 

“MatchMaker” function of Chimera [49] (Figure 14.A), and all structures that do not 

correspond to the ligands are removed (Figure 14.B). This analysis shows that the 

ligands overlap in the same area of the protein. 



 27 

 

 
 
 
 
 
 

 
 

 

 

1.2.2. Ligand-based pharmacophores 

Objective: generate a pharmacophore from the ligands that are known to interact with 

the EGPR. 

 

Using the 8AM, 634, 8BP and 8BS ligands, the script, by means of the K-means 

algorithm, obtains the coordinates of the consensus pharmacophore with respect to the 

overlapping ligands. 

First, it is obtained an overview of the total number of features per family and per ligand. 

In both cases (Scipion, Jupyter Notebook) the same results are obtained (Table 7). Then 

the coordinates of each feature characteristic are clustered (family by family) and the 

consensus pharmacophore is constructed with the largest clusters (Table 8).  

 

 

 

 Mol1 Mol2 Mol3 Mol4 

Donor 4 2 2 2 

Acceptor 5 6 7 7 

Aromatic 4 3 3 3 

Hydrophobe 2 1 1 1 

LumpedHydrophobe 1 1 1 0 

PosIonizable 0 1 1 1 

Figure 14. A) 8AM, 634, 8BP and 8BS ligands structures attached to the EGFR protein in the same binding site.  
B) Superimposed 8AM, 634, 8BP and 8BS structures.  

A B 

Table 7.   Listing of the pharmacophoric characteristics of each family per ligand.  
Families are represented in rows and the ligands in columns. 
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FEATURES X Y Z 

Donor1 -14.271666666666667 15.282833333333334 -25.706166666666668 

Donor2 11.75675 -2.9387500000000006 -32.5585 

Acceptor1 -12.479111111111111 14.526555555555555 -28.126666666666665 

Acceptor2 -15.7845 18.182333333333332 -24.858166666666666 

Acceptor3 13.724800000000002 -3.4705999999999992 -32.4134 

Acceptor4 -16.3844 10.3812 -26.9424 

Hydrophobic1 -14.052666666666667 18.13 -21.531666666666666 

Aromatic1 -13.385348148148147 13.480403703703704 -27.773292592592593 

Aromatic2 12.531766666666666 -3.456149999999999 -33.11249166666667 

 

  
Figure 15 shows the consensus pharmacophore features, embodied in the structure 
of the starting ligands, that are obtained by using the Pharmagist and Pharmit tools. 
 
 

Table 8.   Coordinates of the pharmacophoric features that constitute the consensus pharmacophore. 

Figure 15. Diagram of the consensus pharmacophore obtained with 8AM, 634, 8BP and 8BS ligands from Pharmit.  
White spheres correspond to the donor family characteristics; yellow spheres correspond to the acceptor family 
characteristics; green spheres correspond to the hydrophobic family characteristics and purple ones correspond to the 
aromatic family.  
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1.3. SHAPE-FILTERING VALIDATION 

The shape filtering protocol validation is done separately, as the RDKit functions that are 

implemented are still under development and there is no source code with tested 

functionality. 

Validation focuses on analyzing how the RDKit distance calculation tools behave with 

molecules that are classified as very similar.  

Table 9. Chemical structures of the 10 most similar database molecules to Bexarotene.  
Re-edited from Peón, A., Naulaerts, S., & Ballester, P. J. (2017). Predicting the reliability of drug-target interaction 
predictions with maximum coverage of target space. Scientific Reports, 7(1), 3820. https://doi.org/10.1038/s41598-017-
04264-w 
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It is selected the 10 molecules from the ChEMBL database that are most structurally 

similar to Bexarotene (ChEMBL1023) according to Peón et al., 2017 [50]. These 

structures and the percentage of similarity with the Bexarotene molecule are shown in 

Table 9. 

The first step is the comparison of the Bexarotene molecule with itself in order to evaluate 

the results provided by the RMSD calculation, Tanimoto and Protrude distances. It is 

important to remember that RDKit performs all calculations without the process of a 

previous superposition between the compared structures. RDKit will run the process 

using the best fitting conformers according to the algorithm applied. The results obtained 

from this first comparison are an RMSD value of 2.416 and Tanimoto and Protrude 

distances values of 0.563 and 0.392 respectively. These values indicate that the 

conformers chosen, and the alignment performed by the algorithm (in this case) is not 

optimal as the result of all values should be 0 for the comparison of the same molecule. 

 

Table 10 shows the results obtained with molecules whose target similarity ranges from 

85.7% to 81.3%. It is noticed that the values for Tanimoto and Protrude distances are 

quite similar to those obtained in the query self-comparison. However, the calculation of 

the RMSD with these structures is impossible, i.e., the protocol does not find any 

substructure match between the probe and the query molecule. This fact is logical, since, 

as mentioned above, when there are small differences between the objective structure 

and the analyzed one, the RMSD does not obtain any response; and in this case, all the 

structures differ by at least 15% from Bexarotene. 

By focusing on the values of distances calculation, all of them present higher values than 

the result of the query self-comparison, except in the case of CHEMBL101212, which 

presents a higher similarity value. This molecule has an alkoxy group that Bexarotene 

does not have. Regardless this result, the rest of the molecules present a Tanimoto 

distance that ranges between 0.577 and 0.651. 

Table 10.  Results of the shape comparison between Bexarotene and its 10 most similar molecules.  
The table is divided into 6 columns: molecule ChEMBL ID, RMSD value, Tanimoto Distance value, Protrude Distance 
value, TDI -TD0 and PDI – PD0.  
Last two columns correspond to the standardization result of the distances in relation to the results obtained by the 
comparison of Bexaroten with itself. 
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The conclusion that can be drawn from these data is that this filter should not be used to 

definitively discard molecules in a screening. Instead, it can be used in a predictive way, 

first comparing the molecule with itself to see how accurately the “optimal” conformers 

are chosen and aligned by RDKit, and then analyzing the results of the rest of the 

molecules taking into account this first result.  

The concept is correct as these protocol-implemented distances and the RMSD 

calculation are widely used measures to compare the structure of two molecules, but it 

is clear that there is still a lot of work to do before the RDKit tools can achieve suitable 

results. 

2. CONCLUSIONS 

 
An overview of the platform and the different protocols shows that the integration of 

different LBVS protocols in Scipion offers the user several advantages: 

- As Scipion-chem branch has already integrated a conda environment with all the 

necessary tools to perform the protocols, it is only compulsory to install Scipion 

tool itself. This saves a lot of time and reduces the complexity of the process, 

offering the possibility to use different tools without the need to install different 

software packages separately. 

 

- In contrast to other tools, and besides some protocols in Scipion that include 

programs that have pay-per-use software; the protocols that are the subject of 

this work include only open-source tools facilitating access to science for 

everyone.  

 

- Because of the structure of the platform and the protocols: they contain 

information/help messages and warnings that provide information to the user 

about both the type of data being processed and the analyses performed by each 

protocol. These functions help the user to make the best decisions and reduces 

the requirement to have detailed knowledge of the bioinformatics tools used. In 

addition, Scipion tries to offer a standard workflow that the user can employ 

without having to design it oneself, facilitating the initiation of new users and 

simplifying the combined use of all tools. 

 

- Almost all protocols accept a variety of molecular structure files through the 

Scipion objects usage. This fact gives considerable flexibility for the user, without 

being limited by a specific type of data, and provides interconnectivity between 

the different analyses. 
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- Since it is possible to use the different protocols independently, it also increases 

the flexibility of the tool by allowing the user to choose how and in which order to 

process the data. 

 
All these advantages are only relative to the properties of the platform itself. However, 

the originality of the work also lies in the implementation of tools that achieve virtual 

screening process automation:  

- The programmatic access to PDB and ChEMBL enables the analysis to be 

started from scratch, without the requirement of initial data, only the UNIPROT 

code of the target protein is needed. This also implies a timesaving for the user 

that is not required to create his own library of compounds to be filtered, and 

provides a reliable source, such as the selected databases, which is generally 

used in the scientific community. 

 

- Ligand extraction from PDB database includes the clustering of the filtered 

ligands into groups according to the active site where they interact with the target 

molecule. Thus, the program is able to give the user a notion of the binding sites 

without the need for a bibliographic or visual inspection by the user. However, it 

does allow the user to review the results so that the manual mode is still available. 

 

- In some protocols, output files are generated in order to analyze the results and 

to check whether the analysis has produced plausible findings. 

 

Furthermore, it is necessary to emphasize the usefulness of using this type of screening, 

which saves time and money in the experimental part of the trials. 

In the specific example used for the validation section, the analysis starts with 6283 

molecules and after the first part of the workflow, without incorporating shape filtering 

and screening by pharmacological characteristics, around 3400 compounds are 

discarded, leaving 2851. This means that the final number of compounds is reduced by 

almost 55% compared to the total number of initial compounds. This reduction is quite 

considerable and facilitates in a simple and fast way the following steps in any type of 

research that involves the discovery of new molecules that have similar activities to a 

specific target. 
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To summarize, Scipion brings together the most important LBVS tools in a single 

platform that interconnects them, while being completely open source. In addition, new 

features are incorporated into the protocols that automate the process. 

Even with the advantages of LBVS and its integration into a single framework, it is 

important to understand that the results of a LBVS are only predictions and the next 

natural step for successful drug discovery and development is experimental validation. 

 

3. FUTURE WORK  
 

Regarding the next steps that could be undertaken to improve the different protocols, we 

have the following: 

- Creating new viewers to make processing more dynamic and easier for the user 

to follow, i.e., introducing graphics for better visualization of the results or the 

visualization of the consensus pharmacophore (“Consensus pharmacophore 

generation and pharmacophore-based screening” protocol).  

 

- Include other tools, new protocols for adding new steps to the existing LBVS. For 

example, for those related to the creation of the pharmacophore, by considering 

other types of classification algorithms to improve the results. 

 

- In particular, improving the protocol for shape filtering; for the moment only the 

RMSD calculations and Tanimoto and Protrude distances are implemented, 

which, as mentioned above, present difficulties when comparing molecules with 

strong dissimilarities. One way to improve the protocol is to implement another 

tool known as Shape-it [51] which is widely used in the superposition of molecular 

structures and is employed by SwissSimilairty. 

 

- Enhance in all protocols, and in particular the structural similarity study protocol, 

the number of files that can be used as input, i.e., enable a wider variety of 

molecular files to be used as input files.   
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