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�

Centro Nacional de Biotecnologı́a-CSIC
Campus Universidad Autónoma de Madrid

28049 Madrid, Spain

Samuel Matej
Blockley Hall 4th Fl.

University of Pennsylvania
Philadelphia, PA 19104, USA

ABSTRACT

A new algorithm for 3D reconstruction of two-
dimensional crystals from projections is presented, and
applied to biological macromolecules imaged using elec-
tron microscopy. Its main departure from the traditional
approach is that it works in real space, rather than in Fourier
space, and is iterative. This approach has the advantage
of making it convenient to introduce additional constraints
(such as the support of the function to be reconstructed,
which may be known from alternative measurements) and
has the potential of more accurately modeling the electron
microscope image formation process.

1. INTRODUCTION

The analysis by transmission electron microscopy (TEM)
of biological material is inconvenienced by its sensitivity to
electron radiation. In order to minimize the damage caused
by the radiation, the electron dose is kept low and conse-
quently the signal to noise ratio of the images is poor.

Image processing methods have been developed to
counter this problem. Although, ideally, these methods can
be applied to a TEM image of any object, they are usually
most powerful for objects in which subunits are arranged
in a regular manner, such as two-dimensional biological
crystals. When processing images of such periodic objects,
Fourier transformation is usually employed [1]. This is due
to the fact that their Fourier transform (FT) is zero valued
except at isolated points. This property often enables a con-
venient manipulation of the data. 2D crystals are currently
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the only way to reach atomic resolution using electron
microscopy [2, 3]

In this work an iterative method for performing three-
dimensional reconstruction of 2D crystals in real space is
proposed. We see two potential advantages of this approach
over the traditional methods in the Fourier space. First, it
avoids interpolations in Fourier domain that often gener-
ate artifacts (especially when the number of projections is
small). Second, it allows the convenient incorporation of
information available from other microscopies [4, 5] and
from adequate modeling either of the sample [6] or of the
imaging device [7].

2. THEORETICAL BACKGROUND

2.1. Outline of the Fourier space method of crystal re-
construction

The 3D reconstruction process starts by obtaining a number
of projections of the object at different angles and calculat-
ing their Fourier transforms. In the case of crystalline spec-
imens (that is, specimens made by regular repetitions of a
motif or unit cell) the crystal projections can be described
as the convolution of a bidimensional Shah 1 function (usu-
ally called the real lattice) and a 2D motif. The FT of a
Shah function is another Shah function (usually called the
reciprocal lattice). Therefore, the projection FT will be the
product of a Shah function and the FT of the 2D motif. Even
with imperfect real specimens the structural information in
the FT is concentrated at the points of the reciprocal lattice
usually called reflections or spots. Once we have the FTs
of all the projection images, the next step is to calculate the

1A simple example of a bidimensional Shah function is: � 	 	 	 � �� � � �  �� � � � � � � � ! # � � % � ' # .
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specimen 3D FT by applying the central section theorem. 2

As we are working with crystals that repeat themselves only
in two dimensions, the crystal 3D FT is not a collection of
spots, but is a collection of lines parallel to the � � axis (that
is, perpendicular to the crystal plane). These lines are called
lattice lines and their intersection with the central sections
are the spots whose values are given by the projection FTs.
If the number of different projections is high enough, the
specimen 3D FT (that is, the lattice lines) can be recovered.

The traditional approach combines the projections in
Fourier space to obtain a non-uniformly sampled 3D FT.
From this a uniformly sampled 3D FT is calculated by 1D
interpolation along the lattice lines. The interpolation is
made by a least squares algorithm [8]. It is recommended
that experimental data be obtained at a third or fourth of the
desired sampling rate in Fourier space, which is the inverse
of the specimen thickness.

2.2. Outline of the Algebraic Reconstruction Techniques
(ART) used as base of our novel reconstruction algo-
rithm for 2D crystals

Algebraic reconstruction techniques are series expansion
methods [9]; i.e., they assume that a volume � can be ap-
proximated by a linear combination of a finite set of known
basis functions � � centered at � grid points as in

� 
 � � �
� � ��

� � � � � � � 
 � � (1)

and the task of the algorithm is to estimate the unknown co-
efficients � � (for a review on ART, see [10]). A consequence
of Eq. 1 is an image formation model of the form:

� � ! � � ��
� � � $ � % � � � (2)

where � � is the ith measurement of the volume to be recon-
structed (that is, a pixel of the experimental data) and $ � % � is
the corresponding line integral of the basis function � � . The
values � � and � � form a ( * -dimensional vector and a � -
dimensional vector that we will name + and , respectively,
where ( is the number of projections and * the number of
pixels per projection.

The particular variant of ART that we use as the basis
of our algorithm operates as follows. Starting with a � -
dimensional zero vector for the estimate of , , we update
this estimate of , iteratively. In an iterative step we made
use of data from one projection only; we repeatedly cycle
though all the projections in the complete algorithm. The

2The central section theorem states that the FT of any projection - of
a volume . is equal to one plane through the origin of the FT of . . This
plane is often referred to as the central section.

Fig. 1: ART may be adapted to reconstruction of 2D crys-
tals by redefining the notion of line of integration. The up-
per part of the image shows a projection beam crossing two
unit cells. The lower part of the image shows an equivalent
trajectory using a single unit cell.

update of the estimate of , is done in a computationally
efficient manner so as to reduce the discrepancy between
the measured data provided by the projection used in that
iterative step and the matching pseudo projection data that
is obtained from the current estimate of � using the right
hand side of Eq. 2. Following Lewitt [11] we use spherically
symmetric basis functions. The arrangement of the centers
of these functions is referred to as the grid. The choice of
the grid influences the quality of the reconstruction. It was
found that grids different from the cubic one are preferable,
in particular the use of the so-called body-centered cubic
grid (BCC) is recommended [12].

3. ART FOR CRYSTALS

The new reconstruction algorithm takes advantage of the
crystal periodicity and only keeps in memory a single copy
of these unit cells. Certainly, the projection lines may go
through several unit cells, but this difficulty is easily over-
come by redefining the projection lines as shown in Fig. 1.

Using a single unit cell of the volume also forces us to
modify the choice of the grid. The BCC grid has desirable
properties (uniform sampling of the space, symmetries, etc),
these are lost if we simply choose our grid for a unit cell to
be those points of the BCC grid which happened to fall in
the unit cell. Similarly, it is desirable to estimate projec-
tion data points which uniformly cover the unit cell in the
projections.

Thus, in developing this new algorithm particular atten-
tion have had to be payed to the following points: which
grids should be used, how a volume approximated as in
Eq. 1 using a given grid is related to its projections sam-
pled on different grids and how crystallographic symmetry
is implemented. Space constraints preclude a detailed and

690



mathematical description of the algorithm. Nevertheless,
before going to the results section we note that the approach
taken is conceptually similar to the one named squashing
[11, 13] in which given two volumes � � and � � related by a
linear transformation (that is, one is a deformed or squashed
version of the other); the goal is to reconstruct the volume

� � from data measured using the volume � � .

3.1. Results

Various tests have been performed with mathematical phan-
toms. The results show (see Figs. 2, 3 and 4) that if the
number of projection images is low, then the reconstruction
obtained with the new algorithm is superior to that of the
traditional algorithm.

Fig. 2: Central slices of a � � 	 � � 	 � � voxels phantom
composed of three small spheres (radius = 1.75 voxel edge).
The density of the voxel � � is proportional to the volume of
the voxel intersection with the small spheres (being equal to
one when it is totally inside one of them). The image shows
the planes perpendicular to the Y axis (the tilt axis is parallel
to the Y axis).

Fig. 3: Central slices (matching those in Fig. 2) of 3D re-
constructions obtained using the traditional algorithm. The
reconstructions in the upper and lower rows have been ob-
tained from 13 and 49 noiseless projections respectively.
The gamma of the images has been slightly increased so
that differences in the background are more noticeable.

The theoretical explanation of this is based on the in-
terpolation in Fourier space carried out by the classical al-
gorithm: if the number of samples is small the interpola-
tion is poor. An example will clarify the situation: the first

Fig. 4: Central slices (matching those in Fig. 2) of 3D re-
constructions obtained using the new ART based algorithm.
The reconstructions in the upper and lower rows have been
obtained from 13 and 49 noiseless projections respectively.
The gamma of the image has been adjusted in the same way
as in Fig. 3.

phantom is formed by three small spheres that can be ap-
proximated by very pointy Gaussians. Therefore, the mag-
nitude of their Fourier transforms should look like a very
flat Gaussian (as the traditional method reduces the 3D re-
construction to a set of 1D problems -each one of the lattice
lines (see 2.1) is calculated independently- in the follow-
ing we will assume that the Gaussians are 1D). If a pointy
Gaussian is near to the origin, then the phase of its FT is
(nearly) constant; therefore, we have a function that is very
easy to interpolate. As it is moved farther away from the
origin the faster is the change in the phase of its FT and the
more difficult is the interpolation. On the other hand, ART
solves almost the same system of equations regardless of the
spatial localization of the spheres.

In our tests with phantoms, and when the number of pro-
jections is high enough, the traditional method produces re-
constructions similar to the new method. Currently more
realistic phantoms, like the one shown in Fig. 5, are being
designed to accurately compare the two reconstruction al-
gorithms. In these new phantoms the projections are calcu-
lated from the protein atomic coordinates.

3.2. Future Work

Our main motivation for implementing a reconstruction al-
gorithm for crystals that works in real space and is itera-
tive is not to replace the well established methods used at
present but to create a framework in which we can easily
incorporate information available from other sources. This
information, such as surface reliefs from atomic or shadow-
ing microscopies (see [15, 16] for a description of our work
in this area), or a more suitable model of the imaging device
(contrast transfer function; see [16]) is more easily and nat-
urally incorporated in a real space iterative method than in
a Fourier space based algorithm. For example, in the ART
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Fig. 5: Reconstruction of a phantom of the bacteriophage� � �
connector using the traditional algorithm (top) and the

new algorithm (middle). Low-pass filtered version of a den-
sity volume of the same structure created from atomic coor-
dinates [14] (botton).

based method, the contrast transfer function can be taken
into account by modifying the �

� 	 
 in the system matrix (see
Eq. 2) without any modification of the algorithm’s logic.
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