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3-D Reconstruction of 2-D Crystals in Real Space
Roberto Marabini, Carlos O. S. Sorzano, Samuel Matej, José J. Fernández, José M. Carazo, and Gabor T. Herman

Abstract—A new algorithm for three-dimensional reconstruc-
tion of two-dimensional crystals from projections is presented, and
its applicability to biological macromolecules imaged using trans-
mission electron microscopy (TEM) is investigated. Its main depar-
tures from the traditional approach is that it works in real space,
rather than in Fourier space, and it is iterative. This has the ad-
vantage of making it convenient to introduce additional constraints
(such as the support of the function to be reconstructed, which may
be known from alternative measurements) and has the potential
of more accurately modeling the TEM image formation process.
Phantom experiments indicate the superiority of the new approach
even without the introduction of constraints in addition to the pro-
jection data.

Index Terms—3-D reconstruction, crystals, electron microscopy,
image reconstruction, projections.

I. INTRODUCTION

DETERMINATION of the structure of large macromolec-
ular assemblies is a crucial subject in current biochemical

research. Many basic biological processes, including DNA
metabolism, photosynthesis, protein synthesis, and viral
assembly, require the concerted action of a large number
of macromolecules. Understanding their three-dimensional
(3-D) organization in as much detail as possible is central to
the interpretation of their function. Interest in the structure
of biological molecules dates to the first attempts at X-ray
diffraction from protein crystals. However, it was the invention
of the electron microscope that made possible direct imaging
of biological structures at a macromolecular level and, more
recently, even at atomic resolution [1]–[6].

The analysis by transmission electron microscopy (TEM) of
biological material is inconvenienced by its sensitivity to elec-
tron radiation. In order to minimize the damage caused by the
radiation, the electron dose is kept low and consequently the
signal-to-noise ratio of the images is poor.

Image processing methods have been developed to counter
this problem. Although, in theory, these methods can be applied
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to a TEM image of any object, they are usually most powerful
for objects in which subunits are arranged in a regular manner,
such as two-dimensional (2-D) crystals. When processing im-
ages of such objects, Fourier transformation is usually employed
[7], [8]. This is due to the fact that their Fourier transform (FT)
is zero valued except at isolated points. This property often en-
ables a convenient manipulation of the data. 2-D crystals are
currently the only way to reach atomic resolution using electron
microscopy.

In this work an iterative method for performing 3-D recon-
struction of 2-D crystals in real space is proposed. We see
two potential advantages of this approach over the traditional
methods in Fourier space. First, it avoids interpolations in the
Fourier domain that often generate artifacts (especially when
the number of projections is small). Second, it allows the
convenient incorporation of information available from other
microscopies [9]–[11] and from adequate modeling of either
the sample [12] or the imaging device [13].

The paper is divided as follows. Section II summarizes the
traditional method for 3-D reconstruction of 2-D crystals and
introduces the background needed for understanding our new re-
construction algorithm. Section III describes the new algorithm.
Section IV discusses some details of implementation. Section V
presents our strategy for comparing reconstruction methods and
reports the results of our comparisons. Finally, Section VI dis-
cusses the results.

II. THEORETICAL BACKGROUND

A. Basic Definitions

We start this section by stating our notation and defining rig-
orously the terms 2-D crystal, crystal vector, and unit cell. We
adopt the common mathematical terminology that functions as-
sign values to points (these values can be real numbers or com-
plex numbers) and that the support of a function is the (closure
of the) set of points at which its value is not zero. We denote
by bold letters, such as , -dimensional row vectors (where

is some positive integer, in this paper usually 2 or 3), as in
While the mathematical derivations below

are not influenced by such interpretations, it is worthwhile to
bear in mind that a vector can be used to represent both a point
relative to a coordinate system (in space in case , and in
the plane in case ) and also the directed line segment from
the origin (the zero vector) to that point. On this basis, we will
refer to a vector as a point whenever such usage matches better
the geometrical interpretation.

A 3-D function is a 2-D crystal if there are two linearly
independent vectors and , called
the crystal vectors, such that

(1)
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for all points and for all integers and , and there is a posi-
tive number such that if . Crys-
tals are ordered structures that can be described as a repetition of
identical unit cells. For the 3-D function defined above, a pos-
sible unit cell is the set of points of the form

such that , and
. We call this particular unit cell the ref-

erence unit cell. We use the word motif to denote the function
that coincides with the 2-D crystal within the reference unit cell
and is zero-valued outside the reference unit cell. Thus, a 2-D
crystal can be thought of as consisting of regular repetitions of
its motif.

B. Outline of the Fourier-Space Method of Crystal
Reconstruction

The 3-D reconstruction process starts by obtaining a number
of projections of the object at various angles and calculating
their Fourier transforms (FTs). In the case of 2-D crystals, the
projections can be described as the convolution of a bidimen-
sional Shah1 function (usually called the real lattice) and a 2-D
motif. The FT of a Shah function is another Shah function (usu-
ally called the reciprocal lattice). Therefore, the projection FT
will be the product of a Shah function and the FT of the 2-D
motif. Even with imperfect real specimens the structural infor-
mation in the FT is concentrated at the points of the reciprocal
lattice, usually called reflections or spots. Once we have the
FT’s of all the projection images, the next step is to calculate the
specimen 3-D FT by applying the central section theorem.2 As
we are working with crystals that repeat themselves only in two
dimensions, the crystal 3-D FT is not a collection of spots, but
is a collection of lines parallel to the -axis (that is, perpendic-
ular to the crystal plane). These lines are called lattice lines and
their intersections with the central sections are the spots whose
values are given by the projection FTs. Since the specimen sup-
port is finite along the direction, the values of the FT along the
lattice lines change relatively smoothly and so, if the number of
different projections is high enough, the specimen 3-D FT can
be recovered.

C. 2-D Processing

Before starting the 3-D reconstruction, the 2-D projections
obtained in the microscope need to be enhanced to increase their
signal-to-noise ratio. We use the suite of programs developed at
the Medical Research Council (Cambridge) [15] to obtain this
goal. A detailed discussion is beyond the scope of this article;
a description is provided by [16]. In summary, the programs
perform two main steps. The first one is a filtration in Fourier
space: since the FT of a perfect crystal projection should be con-
fined to isolated points, every pixel not in a vicinity of these
points can be forced to have the value zero. The second step
consists of unbending or refining the crystal. Biological crystals

1A simple example of a bidimensional Shah function is: III(x; y) =
�(x �m)�(y � n). See [14] for further details.

2The central section theorem states that the FT of any projection p of a volume
f is equal to the restriction to one plane through the origin of the FT of f . This
plane is often referred to as a central section.

are seldom perfect: they are limited in space, and present disor-
ders. A repositioning of the individual unit cells over a perfect
lattice (obtained by re-interpolation from the original image)
usually improves the high resolution terms of the FT. In the
MRC suite, the main program involved in the first step is called
mmbox [7] and that in the second step is called unbend [17]. In
our experiments that are reported below, lattice refinement was
carried out using the X-windows based graphical environment
SPECTRA [18]. Lattice distortion correction was performed by
the methods described in [7]. In most cases two rounds of lattice
unbending gave the best results (i.e., with the maximum number
of high resolution spots in the projection FT).

D. 3-D Processing

The FT of a projection is stored in the MRC programs by a
collection of isolated spots, each one of which has a complex
value assigned to it that is represented by an ”amplitude” and
a ”phase.” To make the FT’s of different projections consistent
with each other, the amplitudes of the spots need to be scaled and
the phases of the spots need to be shifted. The differences in am-
plitude between projections are due to the different number of
unit cells contained in each image and the differences during the
staining, development and/or digitization of the micrographs.
The differences in phase are related to shifts in real space with
respect to a common coordinate system. The scale factors and
phase shifts that must be applied to each of the central sections
need to be identified prior to creating the 3-D FT. In the MRC
suite, the program ORIGTILT [13] performs these actions. The
traditional approach and our new algorithm differ in how they
process the output of ORIGTILT.

The traditional approach combines the projections in Fourier
space to obtain a nonuniformly sampled 3-D FT. From this a uni-
formly sampled 3-D FT is obtained by 1-D interpolation along
the lattice lines. The interpolation is made by a least-squares
algorithm [19]. It is recommended that the experimental data
be obtained at a third or fourth of the desired sampling rate in
Fourier space, which is the inverse of the specimen thickness
(according to our definition of a 2-D crystal, this thickness is
never greater than ).

E. Algebraic Reconstruction Techniques

Several variants of the 3-D reconstruction algorithms known
as Algebraic Reconstruction Techniques (ART) have been
extensively tested in our laboratory for a variety of situations
[20]–[24]. The conclusion we reach is that ART produces
high-quality reconstructions and is superior, for a large number
of tasks, to other well-known algorithms for 3-D reconstruc-
tion. Therefore, ART (and in particular a variant known as
ART with blobs [23]) was selected as the core method for our
developments for crystals. In this subsection we summarize our
successful implementation of ART with blobs for single parti-
cles. The proposed modification needed to handle crystalline
specimens is reviewed in Section III.

Algebraic reconstruction techniques are series expansion
methods [25], i.e., they assume that a volume can be approx-
imated by a linear combination of a finite set of known basis
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functions , each one of which is just the same function
shifted to one of grid points (denoted by ), as in

(2)

and the task of the algorithm is to estimate the unknown coeffi-
cients . A consequence of (2) is an image formation model of
the form

(3)

where is the th measurement of the volume to be recon-
structed (that is, a pixel value in the experimental data) and
is the corresponding line integral of the basis function . The
values and form an -dimensional vector and a -di-
mensional vector, respectively (which we will denote by and

), where is the number of projections and is the number
of pixels per projection. The elements are arranged in such a
way that all pixels belonging to a projection are consecutive.

Conceptually, ART can be described as an algorithm that
starts with a initial trial volume and iteratively modifies it de-
pending on the differences between the measured projection
data and the corresponding computer-generated projections of
the current trial volume (see Fig. 1). For a review on ART, see
[26].

The particular variant of ART that we use as the basis of our
algorithm operates as follows. Starting with a -dimensional
zero vector for the estimate of , we update this estimate of
iteratively. In an iterative step, we make use of data from one
projection only; we repeatedly cycle through all the projections
in the complete algorithm. The update of the estimate of is
done in a computationally efficient manner so as to reduce the
discrepancy between the measured data provided by the TEM
projection used in that iterative step and the matching pseudo
projection data that is obtained from the current estimate of
using the right-hand side of (3).

To be exact, the th iterative step is

(4)

where is a real number called the relaxation parameter that
controls the magnitude of each update, is the -dimensional
vector whose th component is , and denotes the inner
product (dot product) between two vectors. The expression

means that in the th iterative step we use the
projection indexed by the remainder of the division plus
1. A more careful description of this implementation, including
convergence properties, is given in [27].

Following [28], we do not use voxels as the basis functions,
but spherically symmetric functions that are not only spatially
limited but can also be chosen to be smooth. They are the gen-
eralized Kaiser–Bessel window functions, also known as blobs.
The property of blobs that makes them very promising for the
formulation of many algorithms is that they are smooth both in

Fig. 1. Each iteration of ART consists of three steps: (a) projection of the
current trial volume; (b) comparison of this projection with the experimental
data; and (c) updating of the trial volume (backprojection of the difference).

the real and in the Fourier domain. The choice of the grid (de-
fined as the set of locations of the centers of the blobs) influ-
ences the quality of the reconstruction. It was found that grids
different from the cubic one are preferable, in particular the use
of the so-called body-centered cubic grid (BCC, obtained by in-
terlacing two cubic grids in such a way that the points of ei-
ther grid are central to eight points forming a cube in the other
grid) is recommended [29]. However, this recommendation is
based on theoretical and experimental results for volumes that
are not crystalline, it has to be modified for crystalline volumes.
[In particular, the finiteness of the expansion (2) is justified on
the basis of the boundedness of the support of the volume, i.e.,
the fact that is zero-valued everywhere outside a bounded re-
gion of space. Under this assumption, we need to consider only
those finitely many points of the BCC grid for which the sup-
port of has points in common with the support of —see (2).
However, a 2-D crystal that is not identically zero cannot pos-
sibly have a bounded support—see (1). Hence something else
needs to be done to turn the 2-D crystal reconstruction problem
into a finite system of approximate equalities such as (3) that can
be solved as in (4).] For a detailed description of blobs and of
their placement in space, see [21]–[23], [28]–[30]. We only note
here that the recommended choices of the blobs and their place-
ments are independent of the object to be reconstructed, rather
they are based on general principles such as sampling efficiency
and the desirability of being able to represent constant-valued
functions. In particular, in our current work these choices are
made independently of the crystal vectors of the 2-D crystal to
be reconstructed.

F. Methodology for Objective Comparison of Algorithms

To compare the performance of the new algorithm with the
traditional one, we followed the statistical methodology for
objective comparison proposed in [31] and applied to electron
microscopy in [23]. In this methodology, the first step is to
define a task which is related to the type of information we
intend to extract from the reconstructed volume. Then, several
realizations from a statistically defined set of phantoms are
created; these phantoms must resemble, in some way, real
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Fig. 2. A 1-D crystal: the rectangle encloses the reference unit cell. The rectangle is half-open, points on the edge of the rectangle belong to the unit cell only
for the edge that is drawn solid.

Fig. 3. According to its definition (7), p (s) is the line integral of f along the line segment from ��� to 


. Due to (5), the line integral of f along the line segment
from ��� to ��� is the same as the line integral of f along the line segment from ��� to ��� . Hence, p (s) can be calculated as the integral over the line through the
reference unit cell (the union of the segments from ��� to ��� and from ��� to 


 ).

objects of interest. After that, projections of these phantoms are
generated and volumes are reconstructed from these projections
using the algorithms. Finally, to measure how well the task is
being performed by each algorithm, a figure of merit (FOM) is
defined; this is a numerical observer measuring the degree of
accomplishment of the task. Section V describes in detail the
particular phantoms, projections and FOM used for this work.

III. ART FOR CRYSTALS

A. Illustration on One-Dimensional Crystals

In this subsection, we present the new reconstruction algo-
rithm applied to 1-D crystals. We do this, since the 1-D crystal
reconstruction problem is sufficient for demonstrating all the
essential concepts of our approach, but it is less complex math-
ematically than the 2-D crystal problem, and it is easier to draw
illustrations of it.

A 1-D crystal is a function of two real variables for which
exists a vector , called the crystal vector, such that

(5)

for all the points and all integers . We assume that the
crystal is of a limited size in the direction; i.e., that there is a
positive number , such that

(6)

The set of points such that and
is the reference unit cell of this 1-D crystal

(see Fig. 2). Clearly, if we know the values of for all
points in the reference unit cell, then we can determine

anywhere using (5) and (6).
Let be the 2-D unit vector such that

(see Fig. 3) and let . The projection of a 1-D
crystal in the direction is a function (that we call ) whose
arguments are the points of the form (these lie on the
line that is perpendicular to and goes through the origin) and
whose values are the line integrals of along a line parallel to

going through (again, see Fig. 3). To be exact

(7)

Define . It is easy to show that

(8)

for all points and integers ; and so is also a crystal with
projection crystal vector is . The reference projection unit
cell is formed by the set of points of the form , such that

; if we know the values of for all
points in the reference projection unit cell, then the value of
the projection at any point can be obtained by using (8). The
following is an essential observation: for any in the reference
projection unit cell, can be calculated as the sum of line
integrals along line segments within the reference unit cell of the
1-D crystal (see Fig. 3). We refer to the union of these segments
as a line through the reference unit cell.
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Fig. 4. Black dots and big circles represent grid points and basis functions (2-D blobs), respectively. Although the point h is not inG (see text), the basis functions
centered at it contributes to the density of the reference unit cell. This contribution is determined by the coefficients c associated with the grid point g in G

such that h = g +ma for some integer m, see (9). If the indicated line through the reference unit cell corresponds to the ith measurement, then the l for
(3) is defined as the integral of b along the heavy line segment through it.

Suppose that, for now, the grid is consistent with the crystal
in the sense that the grid points are arranged so that if is
a grid point, then so is for any integer . Consider
the set of grid points which satisfy both of the
two criteria: (i) and (ii) the sup-
port of the basis functions centered at intersects the reference
unit cell; see Fig. 4. This set is finite, and so we can write

. Associating with each a coefficient
, leads to a 1-D crystal (with crystal vector ) defined as fol-

lows. Consider any point such that
. Let be the set of all (finitely many) grid points such

that the basis function centered at contains . For each in
there is at most one in such that is of the form
for some integer . We define

(9)

where is defined to be zero if there is no in such that
is of the form for some integer . It is easy to check

that this is indeed a 1-D crystal (with crystal vector ) and it
is completely described by the coefficients . It
is our intent to use such a finite description to approximate an
arbitrary 1-D crystal (see Fig. 4). The coefficients are calculated
based on a system such as (3), in which each is a measurement
within a reference projection unit cell and the are defined as
the appropriate line integrals through the basis functions .

For 1-D crystals, it is easy to select a grid that has desirable
properties from the reconstruction point of view and which is
also consistent with the crystal: all we need to do is to appro-
priately adjust the grid sampling distance. This does not carry
over to 2-D crystals: since there are two crystal vectors and ,
it is generally not possible to pick a sampling distance for the
BCC grid so that the resulting grid is consistent with the 2-D
crystal in the sense that whenever is a grid point, then so is

for all integers and . However, there is an
alternative way of handling lack of consistency of a grid with a
1-D crystal, and this way does carry over to 2-D crystals.

We assume that the given grid is regular in the sense that there
is a grid vector such that whenever is a grid point,
then so is for any integer . Now select a real number

such that is a nonzero integer multiple of . (Although

this is not needed for the theoretical discussion that follows, in
practice should be selected to be as near to 1 as possible.)

Let be defined by

(10)

for all points , where . The function is some-

times called a squashed version of , see [28] and [32]. It is im-
mediate from (10) that is a 1-D crystal with crystal vector

. It follows that the given regular grid is con-
sistent with . Now we show that all the projections of can
be obtained from the projections of . Hence we can reconstruct

from these derived projections using the given grid (as dis-
cussed above for the consistent case) and then recover using
(10).

According to (7) and (10), the projection of in di-
rection is defined by

(11)

where is a point on the line through the origin that is perpen-
dicular to . We claim that, for every 2-D unit vector , the
unit vector

(12)

(we use to denote the length of a vector) has the property
that, for all points on the line that goes through the origin
perpendicular to , there is a point

(13)

on the line that goes through the origin perpendicular to , such
that

(14)

[In less precise but more enlightening words: every value of
the projection of in the direction provides us with a value
of the projection of the squashed version of in direction
that depends only on as specified in (12).] The validity of
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(14) is easily tested by starting from (11), making the change of
variables

(15)

substituting for using (13), making the obvious cancellation,
substituting for using (12), and then observing (7).

Finally, we discuss how the of (3) would be produced for
the 1-D crystal case. What corresponds to an electron micro-
scopic projection in this case is a collection of measured (and
hence noisy) values of for many uniformly spaced points
; only a few of these are points inside the reference projection

unit cell. Similar to what is indicated in Section II-C, in order
to reduce the noise, we should make use of all the measured
data. This can be achieved by taking a 1-D Fourier transform
of with respect to the variable . This results, after
some 1-D processing, in values only at points whose spacing is

; that is, the inverse of the length of the reference projec-
tion unit cell. Only the central values, for some positive
integer , are reliable (due to the sampled and noisy nature
of the measured data), and using the inverse discrete Fourier
transform only on these values provides us with estimates of
the at equally spaced points within the reference
projection unit cell. The accuracy of these estimates is much
better than that of the raw measurements, due to the fact that
they are calculated based on all the measurements (and not just
those taken within the reference projection unit cell).

B. ART for 2-D Crystals

In this subsection the above-presented 1-D crystal reconstruc-
tion algorithm is generalized to the more relevant 2-D crystal
case. The development in this subsection follows closely that in
the previous subsection, except that we now assume that is a
2-D crystal with crystal vectors and .

Let be a 3-D unit vector such that .
The projection of in the direction is defined by the
formula given in (7), but now the interpretation of is that it
is a point in the plane through the origin that is perpendicular to

. It is the case that is a crystal with crystal vectors

(16)

This can be easily proven by putting in place
of in (7) (with integers and ) and changing the variable to

. The reference projection unit cell
is formed by the set of points of the form , such that

and . It is not difficult to see
that the situation depicted in Fig. 3 generalizes to 2-D crystals
and consequently, for any in the reference projection unit cell,

can be calculated as the sum of line integrals along line
segments within the reference unit cell of the 2-D crystal (i.e.,
as an integral along a line through the reference unit cell).

In strict analogy to what was done before, we say that a grid
(which is now a set of points in 3-D space) is consistent with
the 2-D crystal with crystal vectors and if, whenever is
a grid point, then so is (for any integers and

). It is again not hard to see how to carry over the ideas de-
picted in Fig. 4 to 2-D crystals, which subsequently allows us to
recover (using ART) a 2-D crystal from measurements within
the reference projection unit cell. However, such a reconstruc-
tion is possible only for grids consistent with the 2-D crystal,
and there is no guarantee that some “desirable” grid (such as
the BCC grid) will be consistent with .

To show how we overcome this difficulty, we now discuss
how the essential idea of squashing carries over to 2-D crystals.
For any invertible matrix of the form

(17)

we can define using (10), bearing in mind that is now a
point in 3-D space. It is trivial to prove that is a 2-D crystal
with crystal vectors and .

Suppose that we are given a regular grid; i.e., one that has, for
two fixed linearly independent grid vectors and

, the property that whenever is a grid point,
then so is (for any integers and ). Since the
BCC grid is obtained by interlacing two cubic grids, it is clearly
regular (and we can, in fact, choose and

). Suppose that , , and are four integers such that the
vectors and are linearly independent. Then
there is a unique invertible matrix of the form shown in (17)
that satisfies

(18)

(This follows from the property of the crystal vectors that they
are linearly independent.) It is now easy to show that the given
regular grid is consistent with . We leave for later the all-
important consideration of how the , , , and should be
chosen and turn instead to discussing the relationship between
projections of and projections of .

It turns out that having got our formalism for 2-D crystals
to match that for 1-D crystals, we can now obtain a matching
result (and using the same derivation): namely, that for the 3-D
unit vector there is a unit vector defined by (12) such
that, for all points on the plane that goes through the origin
perpendicular to , there is a point defined by (13) on the
plane that goes through the origin perpendicular to such that
(14) is satisfied. So from the actual projections of , we can
obtain projections of , from which we can reconstruct
using the given regular grid for the centers of our blobs, and
then we can calculate using (10).

We complete this subsection by discussing how the of
(3) are produced for the 2-D crystal case. The first phase of
this process (that is shared by the traditional approach and our
approach) has been summarized in Sections II-C and II-D. At
the end of that phase the MRC suite of programs outputs esti-
mates of the crystal vectors and and, for each projection, an
estimate of the associated direction vector (that, by (16), also
yields and ) and a 2-D array of complex numbers
( ), which are the estimated
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Fig. 5. Several views of a 3-D surface rendering of the bacteriophage �29

connector, based on a reconstruction from real data [36].

Fig. 6. Reconstructions of a phantom of the bacteriophage �29 connector
using the traditional algorithm (top) and the new algorithm (bottom), and
low-pass filtered version of a density volume of the same structure created
from atomic coordinates (middle). In each row three corresponding consecutive
slices are shown.

Fig. 7. The four central slices of a 64� 64� 64 digitization of a phantom
composed of three small spheres (radius = 1:75 times the edge of a voxel).
The density of a voxel is proportional to the volume of the voxel’s intersection
with the small spheres (being equal to one when it is totally inside one of them).
The image shows planes perpendicular to the y-axis (the tilt axis is parallel to
the y-axis).

values of the spots in the FT of the projection. A more precise
(and detailed) description of the nature of the is given in
[33, Sec. V-A]. In the same place (see [33, eq. (14)]), it is stated

Fig. 8. The two upper rows are central slices (matching those in Fig. 7) of
3-D reconstructions obtained using the MRC package. They were obtained
from 13 (first row) and 49 (second row) noiseless projections, respectively. The
gamma of the images was adjusted so that differences in the background are
more noticeable. The two lower rows are plots matching the central column for
each slice. The third row plots correspond to the first row of images and the
fourth row plots to the second row of images.

that can be estimated for certain points from the
by the use of the inverse discrete FT; namely, for
and ,

(19)

This provides us with high-quality estimates of the values of
the projection at uniformly sampled points within the reference
projection unit cell.

IV. PRACTICAL CONSIDERATIONS

A. Accuracy and Efficiency of the Implementation

At first sight, it may appear that the process described in the
last section may necessitate numerous interpolations that may
not only be demanding on computational resources but, worse,
may also be a source of inaccuracies due to interpolation errors.
In this subsection we show that this is in fact not the case: the
process involving squashing can be implemented without any
additional interpolations (as compared to the process that would
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be used if the given grid happened to be consistent with the 2-D
crystal).

Having obtained the projection data at the points indicted
in (19), we need to calculate for points in the ref-
erence projection unit cell of the projection of in the di-
rection . By (16), the crystal vectors of the projection of

in the direction are
and . By applications of
(12)–(14), one can easily show that, for and

(20)

and so from the left-hand side of (19), we immediately obtain
the values at uniformly sampled points within its reference
unit cell. No interpolations are needed, only a multiplication by
a value that is constant for each projection (but changes from
one projection to another).

The next step in the process is the reconstruction, using ART
with blobs as the basis functions, of . At the end of this, we
obtain a -dimensional vector that gives rise to an approxima-
tion of of the form (see (2))

(21)

Using (10), this yields

(22)

in which the desquashed blob is defined in the manner
of (10). Thus, in order to get from the squashed reconstruction
to the actual reconstruction, we do not need to recalculate the
coefficients of the expansion into basis function but rather we
replace the basic blob by its desquashed version and change
the locations of the grid points. In practice, is not explicitly
produced, we use only the vector defining it by (21) to obtain

directly from (22).
Typically, given a vector , the function represented by (2)

is evaluated for points placed on a cubic grid, by precalculating
the values of over its support for a much finer cubic grid and
then calculating the contribution of to by adding values
obtained from a regularly subsampled version of this finer array.
Hence, as long as the support of is not essentially larger
than that of , the evaluation of (22) is no more expensive (or
less accurate) than the evaluation of (2).

B. Choice of the Squashing Matrix

In the previous section, we did not specify exactly how the
, , , and , and hence the resulting squashing matrix

of (17), should be chosen. We now return to this important point.
As can be seen from the previous subsection, especially (22),
distorts both the basis functions and the grid. Since presum-

ably we start with basis functions and a grid that are considered

“good” based on previous experience [21], [29], it seems de-
sirable to keep these distortions to be as small as possible; in
other words to make to be as nearly the identity matrix as
possible subject to satisfying (18) for some appropriate integers

, , and . (Rotation matrices are equally acceptable, but
we will not get into that discussion here.) This leads to the fol-
lowing recommendation: subject to the condition that the vec-
tors and should be linearly independent,
choose the integers , , and so that

is as small as possible. (With this choice of
, the end points of the crystal vectors of will be those grid

points that are nearest to the end points of the crystal vectors of
.)

C. Electron Microscopic Issues

In this paper, we concentrate on the image processing aspects
of our approach and largely ignore the practical problems that
arise from the nature of the data that is obtained by TEM of a bi-
ological macromolecule. In this subsection, we briefly mention
two relevant considerations but leave it to the reader to find de-
tailed answers in the technical literature on electron microscopy.

The motif of a 2-D crystal may have various symmetries and
one can make use of these to improve the quality of the recon-
structions; for example, by using as input not only the projection
data recorded by the electron microscope but also those projec-
tions that can be generated by symmetry. The reconstruction al-
gorithm needs to know the direction of and values in these extra
projections. When they are generated by rotation or reflection it
is trivial to obtain all the projection directions (just applying the
symmetry to ) and the values (there are no changes to them).
The case of a glide reflection (a reflection followed by a shift)
is slightly more complex, but can still be handled within our
framework. (Glide reflections have been tabulated for all crys-
tallographic symmetries—see [34].) In some cases we found it
convenient for the handling of symmetries in conjunction with
the BCC grid to insist that the and the in the last subsection
should both be chosen to be zero.

Another technical concern is the relationship between the
coordinate system assumed by our mathematical discussion
and the coordinate system attached to the electron micrographs.
Even if we know the projection direction , it is not trivial to
identify the point in an electron micrograph that corresponds to
a particular in (7), since typically we have no prior knowledge
regarding the in-plane rotation of the electron micrograph. This
mandates that careful attention has to be paid to overcome any
discrepancy between the experimental coordinate system and
that assumed by (19).3

V. RESULTS

A. Biological Motivation

Prior to describing and applying our methodology for system-
atic comparison of the reconstruction algorithms, we show the
results of reconstructing a very realistic phantom. This phantom
was produced from the structure of a protein (the connector of

3Details of how such technical problems are handled can be found in the
source code for our algorithm that is available as a part of the Xmipp package
[35]. This is available at http://www.cnb.uam.esuam.es/~bioinfo.

Authorized licensed use limited to: Univ Politecnica de Madrid. Downloaded on July 17, 2009 at 07:54 from IEEE Xplore.  Restrictions apply.



MARABINI et al.: 3-D RECONSTRUCTION OF 2-D CRYSTALS IN REAL SPACE 557

Fig. 9. The two upper rows are central slices (matching those in Fig. 7) of
3-D reconstructions obtained using the new ART with blobs algorithm. They
were obtained from 13 (first row) and 49 (second row) noiseless projections,
respectively. The gamma of the image was adjusted in the same way as in Fig. 8.
The two lower rows are plots matching the central column for each slice. The
third row plots correspond to the first row of images and the fourth row plots to
the second row of images.

the bacteriophage ) that is known at atomic resolution. A
3-D reconstruction of this structure obtained from electron mi-
croscopy data [36] is shown in Fig. 5.

In our model the atoms are replaced by small spheres.4 The
number of projections, the projection angles and the MRC pro-
cessing are identical to what is described in [36] for real data.
The reconstructions are shown in Fig. 6. We show corresponding
slices of the reconstruction by the MRC package, of the recon-
struction by new algorithm, and of a low pass filtered version of
the phantom. The results obtained by the two algorithms for this
test case are quite similar, although not identical. The obvious
question is: Which algorithm provides a more accurate descrip-
tion? The remainder of this section is devoted to answering this
question; we present various experiments that we performed to
compare the standard Fourier space method (based on the MRC
approach) and the new ART with blobs algorithm.

B. Comparison of the 3-D Reconstruction Algorithms

1) Phantom Generation: The first set of experiments uses
a phantom composed of little spheres (see Fig. 7). These
experiments are mainly exploratory, and were designed for

4The atomic coordinates can be found [Online] at: http://www.pdb.org under
the PDB ID: 1FOU [37].

the purpose of finding out how many projections are needed
to properly sample the Fourier space. We were also interested
in how a trivial structure (practically a point) is reconstructed,
since algorithm-induced artifacts are more clearly identifiable
in this kind of simple phantoms. Such information is helpful
in designing the experiments for a more thorough algorithm
comparison.

The second set of experiments uses phantoms composed of
cylinders and spheres, and addresses the topic of detectability
of small structures. (An example of such a phantom can be seen
in Fig. 12.)

The phantoms are mathematically defined in the sense that
the file storing them contains the crystal vectors, the crystal size
(the number of unit cells), and the parameters that define each
feature (either a cylinder or a sphere) contained in the motif.

2) Projection Generation: The simulated data-collection
geometry was single axis tilting [38], with maximum tilt
angle . (To be more precise, for all projections in our
experiments, the of Section III-B is equal to 0.) Special
care was taken to generate realistic noise by considering the
addition of noise not only to the pixel values of the projections,
but also to the distances between neighboring unit cells (lattice
distortion). We also incorporated feature skipping, meaning that
for each unit cell of the phantom and for each feature (cylinder
or sphere) belonging to this unit cell a random number was
generated, and that feature was skipped (not taken into account
when computing the projection) if that number was less than
some fixed threshold.

As discussed in the last paragraph of Section III-B, at the end
of the first phase of processing the MRC suite of programs [15]
(in our experiments also helped by SPECTRA [18]) outputs es-
timates of the crystal vectors and and, for each projection,
an estimate of the associated direction vector and a 2-D array
of complex numbers , which are the estimated values of
the spots in the FT of the projection. In our experiments this
output was generated by two alternative approaches: one gener-
ating noiseless data and the other noisy data. For noiseless data,
the were directly calculated from the analytic 3-D FT of
the phantom. For noisy data, real space noisy projections were
created and processed using the MRC and SPECTRA packages
to provide estimated values of the , , and .

3) Results With the Phantom of Spheres:
Noiseless Data: The phantom described in Fig. 7 was

reconstructed from two different sets of noiseless projections
using the traditional (MRC) algorithms based on interpolation
in Fourier space (Fig. 8) and also using our new approach
(Fig. 9). Since the conclusions obtained from examining the
results for this noiseless case are identical those for the noisy
case we postpone their discussion until the noisy case is
presented.

a) Noisy Data: Similar experiments were done after
adding noise with mean zero and standard deviation 10 to the
projection pixel values, using mean zero and standard deviation
half of a voxel edge for the lattice distortion, and 3% for the
feature skip. Three reconstructions were performed with each
algorithm using 13, 49, and 97 projections, respectively—see
Figs. 10 and 11. (We mention that 90 projections are needed
to satisfy the criterion of [19], assuming that the thickness of
the specimen is the thickness of the reconstructed volume.)
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Fig. 10. Central slices (matching those in Fig. 7) of 3-D reconstructions
obtained using the MRC package. The reconstruction were obtained from 13
(top), 49 (middle) and 97 (bottom) noisy projections. The gamma of the image
was adjusted in the same way as in Fig. 8.

Fig. 11. Central slices (matching those in Fig. 7) of 3-D reconstructions
obtained using the new ART with blobs algorithm. The reconstructions were
obtained from 13 (top), 49 (middle) and 97 (bottom) noisy projections. The
gamma of the image was adjusted in the same way as in Fig. 8.

The reconstructions suggest that the accuracy of the traditional
algorithm (at least for this particular phantom) depends on the
position of the feature when the number of projections used is
small (the central sphere in the reconstruction is better defined
than the spheres above and below it), while this is not the case
for ART with blobs.

The following is our explanation of this experimentally ob-
served behavior of the algorithms. The magnitude of the FT of a
small sphere varies slowly. If the sphere is centered at the origin,
then the phase is also slowly varying and the FT is easy to in-
terpolate. However, the further the sphere is located from the
center, the more rapidly will the phase of its FT change and the
more difficult it will be to estimate the FT by interpolation. On

Fig. 12. Computer generated rendering of a 64� 64� 64 voxel digitization of
a phantom consisting of a hollow cylinder (inner radius = 20 voxel edges,
outer radius = 29 voxel edges) and 24 little spheres (radius =
1:50 voxel edges). The spheres are located around the exterior of the cylinder
at each 15 degrees, the value of their z coordinate is �4:25 voxel edges and,
for a given (x; y) value, only one sphere is allowed (that is, either there is a
sphere at the top of the cylinder or at the bottom). Consequently, there are 2
possible phantoms.

TABLE I
STANDARD DEVIATIONS (TOP) AND AVERAGES (MIDDLE) OF THE FOM
FOR THE DIFFERENT VALUES OF THE PARAMETERS FOR ART-BASED

RECONSTRUCTIONS. THE LABELS IN BOLD DENOTE THE VALUES OF �

(HORIZONTAL) AND NUMBER OF CYCLES THROUGH THE DATA (VERTICAL).
THE MAXIMUM VALUE OF THE FOM AND THE CORRESPONDING VARIANCE

ARE UNDERLINED. IN THE PLOT OF THE AVERAGES (BOTTOM) THE

AXES ARE NOT TO SCALE

the other hand, ART solves essentially the same system of equa-
tions regardless of the location of the spheres.
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TABLE II
STANDARD DEVIATIONS (TOP) AND AVERAGES (MIDDLE) OF THE FOM FOR THE DIFFERENT VALUES OF THE PARAMETERS FOR MRC-BASED RECONSTRUCTIONS.

THE LABELS IN BOLD DENOTE THE VALUES OF AK (VERTICAL) AND ZMAX (HORIZONTAL). THE MAXIMUM VALUE OF THE FOM AND THE CORRESPONDING

VARIANCE ARE UNDERLINED. IN THE PLOT OF THE AVERAGES (BOTTOM) THE AXES ARE NOT TO SCALE

4) Results With Cylindrical Phantoms: Another experiment
was performed using the family of phantoms described in de-
tail in Fig. 12. The number of noisy projections created in this
case was 97 (satisfying the criterion of [19]). The task to be per-
formed based on a reconstruction from the projections is to iden-
tify, as closely as possible, which of the possible phantoms
was used to generate the projection data. To decide whether a
particular sphere in a particular reconstruction is at the top or at
the bottom, the average reconstructed value of all the voxels that
would be inside the sphere if it were at the top is computed and
compared with the average reconstructed value of all the voxels
that would be inside the sphere if it were at the bottom. If the
former value is bigger (smaller) than the latter, then the sphere
is estimated to be at the top (bottom). The FOM used to mea-
sure the quality of the reconstruction is the number of spheres
correctly assigned, therefore its maximum value is 24 and its
minimum is 0.

Since each method has its own parameters that need to be
tuned, the experiment is performed in two stages. In the first
one, called training, the optimal values of the parameters of the
algorithms are estimated. In the second one, called testing, the
algorithms (each with their parameters fixed at the estimated
optima) are compared. Different sets of 28 randomly selected
phantoms were used for the training and the testing.

Training: The parameters to be optimized for ART (4) are
the relaxation parameter and the number of cycles through the
data. For the MRC approach (in particular, for the LATLINE pro-
gram described in [19]), AK and ZMAX need to be optimized (AK

is the relative weight for phases with respect to magnitudes of
the projection FT, and ZMAX is the maximum value expected
for the data set; for a detailed description see [19]). Tables I and
II summarize the results for ART and MRC.

We remark that the standard deviation of the FOMs for the
different values of the parameters are greater for the fully MRC-
based method. (In general, a low standard deviation is a desired
property, since it implies better reproducibility.)

Testing: The average values of the FOM were 19.89 and
22.41 for MRC and ART, respectively. A t-test over paired sam-
ples [39] was performed with the conclusion that the hypothesis
that ART performs better than MRC (from the point of view
of the FOM) can be maintained up to a significance of 0.9999
( ).

VI. DISCUSSION

Our main motivation for implementing a reconstruction al-
gorithm for crystals that works in real space and is iterative
is not to replace the well-established methods used at present
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but to create a framework in which we can easily incorporate
information available from other sources. This information,
such as surface reliefs from atomic force or shadowing mi-
croscopies (see [33] and [40] for a description of our work
in this area), or a more suitable model of the imaging device
(contrast transfer function—see [33]), is more easily and nat-
urally incorporated in a real space iterative method than in a
Fourier space based noniterative algorithm. For example, in
the ART-based method, the contrast transfer function can be
taken into account by modifying the in the system matrix
[see (3)] without any modification of the algorithm’s logic.
Surface relief information translates into constraints of the
type , for points that are outside the surface; this
naturally combines with (2) to give us additional equations
in the unknown coefficients , and the extended system of
equations can be solved using ART.

However, our tests indicate that the new algorithm behaves
better than the traditional one, even without the incorporation
of such additional information, especially when the number of
projections is small. As the number of projections increases,
the results provided by the two algorithms become more similar
but not identical. The experiment with the cylindrical phantoms
suggests that even then ART performs better than the Fourier-
based method (from the point of view of the FOM used), and
also presents greater reliability (since the variance of the FOM
is smaller, see Tables I and II).
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