

CSSIC.

Immunization with DNA-launched RNA Replicon and Poxvirus Vaccine Candidates Expressing HCV Proteins Induce Potent Immune Responses

MARÍA Q. MARÍN¹, PATRICIA PÉREZ¹, CARLOS ÓSCAR S. SORZANO², KARL LJUNGBERG³, PETER LILJESTRÖM³, CARMEN E. GÓMEZ¹, MARIANO ESTEBAN¹ AND JUAN GARCÍA-ARRIAZA¹ 1 Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain. 2 Biocomputing Unit, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain. 2 Biocomputing Unit, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain. 3 Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden.

Hepatitis C virus (HCV) represents a major global health problem for which a vaccine is not available. We have previously described a vaccine against HCV based on the modified vaccinia virus Ankara (MVA) expressing the nearly full-length genome of HCV genotype 1a (MVA-HCV) that elicited mainly HCV-specific CD8⁺ T-cell responses in mice. Here, to enhance the potency of MVA-HCV we combined it with two novel alphavirus-based DNA-launched self-replicating RNA replicons (DREP) vaccines expressing core-E1-E2-p7-NS2-NS3 HCV proteins (named DREP-HCV and DREP-e-HCV). DREP-e-HCV contains a translational enhancer that has been described to improve humoral responses against heterologous antigens. These DREP-HCV vaccine candidates efficiently trigger cellular apoptosis in transfected cells. Furthermore, when mice were immunized with the DREP vaccines as a prime followed by a MVA-HCV boost, the HCV-specific CD4⁺ and CD8⁺ T cell responses were significantly improved compared to an MVA-HCV homologous prime/boost immunization, being DREP-e-HCV/MVA-HCV the most potent immunization regimen. HCV-specific CD4⁺ and CD8⁺ T cell responses were mainly directed against E1-E2 and NS2-NS3, respectively, and they were highly polyfunctional, with triple and quadruple cytokine-producer T cells. Additionally, DREP/MVA immunization regimen led to the generation of higher antibody levels against E2 protein than the MVA-HCV homologous immunization. Thus, our findings provided a potent immunization protocol triggering adaptive and memory HCV-specific T-cell and humoral immune responses, and based on an apoptosis-triggering DREP vaccine administrated as a prime followed by a MVA boost. These results support the consideration of DREP-HCV and MVA-HCV as immune efficient candidate vaccines against HCV.

Scheme of the DREP-based and MVA-HCV hepatitis C vaccines. We constructed four novel DREP-based HCV vaccines that contains the alphavirus replicase placed under the control of the cytomegalovirus (CMV) promoter, and the HCV genes (either Core-E1-E2 or p7-NS2-NS3; genotype 1a) placed under the control of the alphavirus subgenomic promoter (SP). DREP-e-HCV vectors contains a translational enhancer (e) upstream HCV proteins. MVA-HCV is a poxvirus modified vaccinia virus Ankara (MVA) vector, previously generated, that express all HCV proteins under the control of a viral synthetic early/late (sE/L) promoter.

DREP-HCV, DREP-e-HCV and MVA-HCV correctly express HCV

proteins. **A)** Human 293T cells were mock-transfected or transfected with DREP-HCV (mixture of DREP-C-E1-E2 + DREP-p7-NS2-NS3), DREP-e-HCV (mixture of DREP-e-C-E1-E2 + DREP-e-p7-NS2-NS3) or empty DREP-Ø. At 48 h post-transfection, cells were harvested and HCV proteins were detected by Western Blot. **B)** DF-1 cells were mock-infected or infected with MVA-HCV and MVA-WT. At 24 h post-infection, cells were harvested and HCV proteins were detected by Western Blot. B) DF-1 cells were detected by Western Blot.

4h 24h 34h 4h 24h 34h 4h 24h 34h 4h 24h 34h 34h

75 kDa

75 kDa

37 kDa

37 kDa ·

45 kDa ·

U	IJ ZJ	00
	¥	¥
	 Adaptive Immune Responses: 	Memory Immune Responses:
	(n=5 mice/group)	(n=5 mice/group)
	 HCV-specific T cells 	 HCV-specific T cells
	 Antibodies anti-E2 	 Antibodies anti-E2
Immunization groups:		
11	DREP-HCV / MVA-HCV	
2	DREP-e-HCV / MVA-HCV	
3	MVA-HCV / MVA-HCV	
4	DREP-Φ / MVA-WT	
5	MVA-WT / MVA-WT	

Vaccination schedule. Schematic diagram showing the homologous and heterologous prime/boost immunizations performed in C57BL/6 mice (n=10 mice/group), to study the immunogenicity of DREP-HCV and DREP-e-HCV vaccine candidates. Immunization groups are indicated, together with the time points where animals were immunized and sacrificed to analyze the adaptive and memory HCV-specific T cell and humoral immune responses.

← ^P-PKR

PKR (total)

🛏 elF2α (total)

^P-elF2α

- **B**-actin

DREP-HCV / MVA-HCV

DREP-Φ/MVA-WT MVA-WT/MVA-WT

DREP-e-HCV / MVA-HCV

A-HCV / MVA-HCV

A) <u>Magnitude of total HCV-specific CD4⁺ and CD8⁺ T cell memory immune responses</u>. Splenocytes were obtained at 53 days post-boost from five immunized mice per group and HCV-specific CD4⁺ and CD8⁺ T cell memory immune responses elicited against all HCV peptide pools were measured by ICS. (***, p< 0.001).

B) <u>Breadth of HCV-specific CD4⁺ and CD8⁺ T cell memory immune responses</u>. Percentages of Core-, E1-, E2-, p7-, NS2-, NS3-, NS4- or NS5-specific CD4⁺ and CD8⁺ T cells. Frequencies represent the sum of the percentages of CD4⁺ or CD8⁺ T cells producing CD107a and/or IFN- γ and/or TNF- α and/or IL-2 against each HCV peptide pool. (***, p< 0.001). **C)** <u>Polyfunctionality of total HCV-specific CD4⁺ and CD8⁺ T cell memory immune responses</u>. All possible combinations of the responses are shown on the X axis while the percentages of CD4⁺ or CD8⁺ T cells producing CD107a and/or IFN- γ and/or TNF- α and/or IL-2 against all the HCV peptide pools are shown on the Y axis. (***, p< 0.001).

Phenotypic profile of HCV-specific CD4⁺ and CD8⁺ T cell adaptive and memory immune responses elicited in immunized mice. Five mice per group were sacrificed at 10 (A) or 53 (B) days post-boost and the phenotypic profile of adaptive or memory splenic HCV-specific CD4⁺ and CD8⁺ T cells was analyzed by ICS, respectively. **, p< 0.005; ***, p< 0.001. Percentages of T central memory (TCM; CD127⁺, CD62L⁺), T effector memory (TEM; CD127⁺, CD62L⁻), and T effector (TE; CD127⁻, CD62L⁻) HCV-specific CD4⁺ or CD8⁺ T cells producing CD107a and/or IFN- γ and/or TNF- α and/or IL-2 against all HCV peptide pools are represented. (C) Representative cytometry plots of HCV-specific CD8⁺ T cell adaptive immune responses against NS2 and NS3. The T cell memory sub-populations are depicted as density plots. Blue dots represent CD8⁺ T cells producing cytokines, with the percentages indicated inside the plots.

7 Humoral immune responses against HCV E2

Humoral immune responses elicited against HCV E2 protein. Levels of HCV E2-specific total IgG binding antibodies were measured by ELISA in serial two-fold dilutions of pooled serum samples (n=10 per group) obtained from immunized mice at 10 days post-boost. Absorbance values were measured at 450 nm. The mean and standard deviations are indicated. Statistical significance shows the comparison of DREP-HCV/MVA-HCV (blue) and DREP-e-HCV/MVA-HCV (red) versus MVA-HCV/MVA-HCV . (*, p<0.05).

• We successfully generated novel DREP-based HCV vaccine candidates (DREP-HCV and DREP-e-HCV).

- DREP vectors efficiently promoted cellular apoptosis in transfected cells.
- Mice immunized with DREP-based HCV/MVA-HCV prime/boost immunization protocols induced a significant enhancement in adaptive and memory HCV-specific CD4⁺ and CD8⁺ T cell immune responses compared to MVA-HCV/MVA-HCV; being DREP-e-HCV/MVA-HCV the most potent regimen.
- HCV-specific CD4⁺ and CD8⁺ T cell immune responses were broad and directed mainly against E1-E2 and NS2-NS3, respectively.
- The elicited T cell immune responses were highly polyfunctional and have a T effector memory phenotype.
- The heterologous immunization schedule elicited high anti-E2 antibodies, with no differences between both DREP-based HCV vaccines.
- These findings reinforce the combined use of DREP-based vectors and MVA-HCV as promising vaccines against hepatitis C.