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Abstract

Benign neurofibromas, the main phenotypic manifestations of the rare neurological disorder

neurofibromatosis type 1, degenerate to malignant tumors associated to poor prognosis in

about 10% of patients. Despite efforts in the field of (epi)genomics, the lack of prognostic

biomarkers with which to predict disease evolution frustrates the adoption of appropriate

early therapeutic measures. To identify potential biomarkers of malignant neurofibroma

transformation, we integrated four human experimental studies and one for mouse, using a

gene score-based meta-analysis method, from which we obtained a score-ranked signature

of 579 genes. Genes with the highest absolute scores were classified as promising disease

biomarkers. By grouping genes with similar neurofibromatosis-related profiles, we derived

panels of potential biomarkers. The addition of promoter methylation data to gene profiles

indicated a panel of genes probably silenced by hypermethylation. To identify possible ther-

apeutic treatments, we used the gene signature to query drug expression databases. Tri-

chostatin A and other histone deacetylase inhibitors, as well as cantharidin and tamoxifen,

were retrieved as putative therapeutic means to reverse the aberrant regulation that drives

to malignant cell proliferation and metastasis. This in silico prediction corroborated reported

experimental results that suggested the inclusion of these compounds in clinical trials. This

experimental validation supported the suitability of the meta-analysis method used to inte-

grate several sources of public genomic information, and the reliability of the gene signature

associated to the malignant evolution of neurofibromas to generate working hypotheses for

prognostic and drug-responsive biomarkers or therapeutic measures, thus showing the

potential of this in silico approach for biomarker discovery.

Introduction

Neurofibromatosis type 1 disease (NF1; Online Mendelian Inheritance in Man/OMIM—data-

base #162200) is a rare chronic neurological disorder caused by a deficient autosomal domi-

nant genetic background, which affects 1 in 3000 live births [1]. Alterations in the tumor
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suppressor gene neurofibromin (NF1) enhance expression of the Ras signaling pathway, which

is involved in the evolution of many cancers [2]. Patients develop various anomalies in skin,

eyes and skeleton, as well as in the cardiovascular, endocrine and nervous systems. In the

peripheral nervous system, disorders typically manifest as benign neurofibromas (NF). Dermal

neurofibromas (dNF) arise from small cutaneous nerves, whereas plexiform neurofibromas

(pNF) have a deeper location within larger nerves; dNF and pNF gene expression patterns

are indistinguishable [3]. In ~10% of NF1 patients, pNF can degenerate to malignant periph-

eral nerve sheath tumors (MPNST). About 50% of MPNST cases associate to NF1 disease,

whereas the other 50% appear sporadically. Whether there are significant biological differences

between sporadic and NF1-associated MPNST cases is debated [4–7].

The likelihood of MPNST development in NF1 patients depends on several risk factors [8],

and appropriate prediction of pNF evolution would help to stratify patients and to choose the

best early treatment. Despite recent advances based on studies of concomitant alterations in

genes other than NF1, gene copy number alteration, epigenetic changes and gene expression,

no prognostic biomarkers are available. Unlike other types of sarcoma, MPNST show a wide

spectrum of chromosomal alterations [9]. In both sporadic and NF1-associated MPNST,

amplifications are more frequent than deletions and affect the distal part of chromosome arm

17q [10]. Deletions mainly involve band p21 of chromosome 9, thus driving a dose reduction

of the kinase inhibitor CDKN2A [11], and the proximal part of 17q, where NF1 appears to be

co-deleted with SUZ12, which encodes a member of the epigenetic regulator polycomb repres-

sor complex 2 (PRC2). Genetic modifications due to PRC2 silencing are suggested as biomark-

ers for NF1 patient stratification [12].

Hypermethylation of tumor suppressor genes and hypomethylation of oncogenes are epige-

netic changes reported for most cancers. A whole-methylome analysis identified 3690 genes

probably associated with MPNST development and progression; among these were genes that

encode CDKN2A and the tumor suppressors SOX10 and RASSF1, a Ras association domain

family member [13]. RASSF1A silencing by promoter methylation is a biomarker of NF1-asso-

ciated MPNST patients with poor prognosis [14].

Genome-wide RNA expression studies encompass patient samples [3,6,10,15,16], human

cell cultures including NF- and MPNST-derived cell lines [1,3], and mouse models [17] that

replicate human NF histology [18]. Gene expression profiles serve to identify disease biomark-

ers, such as BIRC5, TOP2A and TK1, that categorize MPNST patients with poor prognosis

after surgery [10], or might also help to identify new therapeutic agents through drug reposi-

tioning, i.e., use of tested drugs to treat new disease indications [19]. NFFinder and other bio-

informatics tools compare gene signatures to seek potential repurposing medicines in the

context of orphan diseases [20]. Although a unique average gene signature associated to

changes from NF to MPNST would be desirable as input for NFFinder, differences in sample

nature, array platforms, and hybridization protocols hamper direct comparison of results

among studies, which explains the current lack of attention to genomic data integration in

neurofibromatosis.

The combination of data from public databases such as the Gene Expression Omnibus

(GEO) and ArrayExpress [21,22] and development of high-throughput technologies has led

generalization of data integration by meta-analysis in genomic research. By using statistical

tools to combine independent studies, microarray meta-analysis approaches extract consistent

average gene expression signatures as well as interaction networks [23]. Robust, unsupervised

meta-analysis approaches are currently being developed based on projections of high-di-

mensional data into a low-dimensional space to infer dependency among data [24]. These

approaches nonetheless require a relatively large sample number [25] and connections among

the different -omics data, which precludes their use in studies for which information is limited.

MPNST vs. NF gene signature
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Combining pre-calculated values (P-values and effect sizes) led to a useful method to integrate

heterogeneous data, qualitative and quantitative, for analysis of diabetes mellitus and Down

syndrome [23,26]. This method, based on adding a score determined for each gene in each

experiment using a formula similar to that applied in correlation studies, weights the size of

the effect with reproducibility for all sample replicates and the statistical significance of the dif-

ferentially expressed genes. As a starting point to identify biomarkers in the context of neurofi-

bromatosis, we used a slight modification of this formula to integrate public genomic data and

obtained a robust ranked score gene signature associated to the NF transition to MPNST.

Results

Experimental sets used to define the gene expression signature

associated to NF-to-MPNST transition

To define a unique MPNST vs. NF gene signature that integrates data from diverse expression

studies, we sought cited accessions in GEO and ArrayExpress databases that include MPNST

and NF samples, and found five microarray studies (four human and one murine). These stud-

ies are referenced in Fig 1 and the heterogeneity of these data sets is detailed in Table 1 (bold).

Despite the different number of genes represented by each microarray platform, all of them

satisfied the selection criteria, segregated properly NF and MPNST samples, and supported

relevant works that identified potential biomarkers and therapeutic targets [3,10,16,17] or

discriminated neurofibromas and MPNST from other mesenchymal tumors [15]. Based on

expression profile similarity [3], we grouped dNF and pNF samples from studies E-TABM-69,

GSE41747 (human) and GSE66743, respectively. We also grouped segregated sporadic and

NF1-associated MPNST samples from the GSE66743 study, as there were no differentially ex-

pressed genes between samples [10]. The final number of MPNST and NF samples compared

Fig 1. Prisma flow diagram.

https://doi.org/10.1371/journal.pone.0178316.g001
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is shown in Table 1; see Materials and methods for details of sample selection and preprocess-

ing, and probe mapping to ENSEMBL genes as common identifiers.

MPNST vs. NF gene expression signature

To integrate the five data sets, we calculated a score for each gene in each experiment (Fig 2,

Microarray processing, and S1 Table), based on a formula used to combine data from hetero-

geneous sources [23]. To obtain a single score (si) for each gene, we added individual scores

(sij) across human and mouse data sets (Fig 2, Meta-analysis). The final MPNST vs. NF gene

signature contained 579 unique ENSEMBL human genes with non-null score and absolute

median logFC value >0.99. The 336 up- and 243 downregulated genes included in this signa-

ture are highlighted in Table A in S2 Table (bold), embedded in the larger list from which the

gene signature was filtered. The list includes the starting 7064 unique ENSEMBL human genes

(4059 up- and 3005 downregulated) with non-null score in at least one independent study for

which sij was computed. The comparison of non-null score profiles of this unfiltered integra-

tive gene list and the lists derived from each individual study revealed comparable and overlap-

ping patterns of gene scores (S1 Fig). Genes with the highest absolute scores in each study

were at both ends of the unfiltered list, and were thus included in the final gene signature.

However, some mice genes showed opposite behavior to that set in human, which corrobo-

rated differences in transcriptional responses between human and mouse models, particularly

in neurodegenerative diseases [27]. Given the difficulty of interspecies comparison of results,

we restricted the number of murine genes used to compute final scores (for score computation

details, see Materials and methods).

The most promising biomarkers, 20 up- and 20 downregulated genes with the highest and

the lowest score values from the MPNST vs. NF signature, were extracted from Table A in S2

Table (Table 2). In addition to gene score values, we determined attributes for estimating the rele-

vance of each gene in the list, such as the median value of effect size, computed regarding the

mean (logFC) or the median (logFC_m) across studies, as well as to assess the bias across the stud-

ies, like the number of studies in which each gene is represented, the inclusion or exclusion of

Table 1. Microarray studies selected from public databases and included in the MPNST vs. NF meta-analysis.

Tissue Organism NF vs. control MPNST vs. control MPNST vs. NF Reference Platform Probe

NumberAccession Samples Accession Samples Accession Samples

NF control MPNST control MPNST NF

Cell

cultures

Human GSE140381 22 10 GSE140381 13 10 GSE140381 22 10 [3] Affy U133 Plus

2.0

54675

GSE397641 3 3 [1] Agilent-014850

4x44K

45015

Nerve

tumors

Human GSE417471 26 3 GSE417471 6 3 E-MEXP-

3532
4 14 [15] Affy U133A 22283

E-TABM-692 4 16 [16] Agilent 011521

G4110A

19061

GSE417471,3 6 26 [17] Affy U133 Plus

2.0

54675

GSE667431 30 8 [10] ABI Version 2 33025

Mouse GSE417471 15 15 GSE417471 18 15 GSE417471 18 15 [17] Affy 430 2.0 45101

1Accession number from GEO database.
2Accession number from ArrayExpress database.
3Data included in GSE14038 accession.

https://doi.org/10.1371/journal.pone.0178316.t001
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mouse data, and the Bhattacharyya distance (BD) ratio, which replaced the entropy used by

Rasche et al. [23] as an estimator of the homogenous contribution of each study to the final score

(see Materials and methods) (Table A in S2 Table). The relationships between gene scores and

additional attributes (Results A in S1 Appendix) and the final contribution of each individual

experiment to the gene signature (Results B in S1 Appendix) are also evaluated.

Fig 2. General schema of the integration of studies to generate the MPNST vs. NF gene signature and its processing by NFFinder.

The upper panel shows the five microarray studies used to compute the MPNST vs. NF gene signature by meta-analysis (central panel). Score

values calculated for each gene in each study (sij) and for each signature gene (si) are shown next to rectangles that indicate the respective

gene size effect or fold change (FCij and FCi); red for upregulated genes and green for downregulated ones. The lower panel describes the

results obtained from NFFinder when GEO and CMap-DrugMatrix databases are interrogated for direct or inverse matching of gene

expression patterns, respectively, by using the signature gene names as input. Experimental validation should verify the hypotheses

generated by this in-silico predictive workflow.

https://doi.org/10.1371/journal.pone.0178316.g002
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Table 2. List of 20 genes with the highest and the lowest scores of the MPNST vs. NF signature1.

ENSGENE2 hgnc_symbol3 chrom_name4 band score logFC5 logFC_m6 studies7 mouse8 BD_ratio9

ENSG00000171848 RRM2 2 p25.1 3.06 4.19 4.47 5 1 13.68

ENSG00000131747 TOP2A 17 q21.2 2.98 3.73 3.94 5 1 10.01

ENSG00000166803 KIAA0101 15 q22.31 2.80 4.02 4.08 5 1 8.80

ENSG00000089685 BIRC5 17 q25.3 2.80 3.13 3.22 5 1 5.24

ENSG00000137804 NUSAP1 15 q15.1 2.59 3.67 3.75 5 1 16.50

ENSG00000185686 PRAME 22 q11.22 2.50 3.43 3.65 4 0 7.08

ENSG00000149948 HMGA2 12 q14.3 2.44 3.54 3.57 5 1 21.31

ENSG00000117724 CENPF 1 q41 2.43 3.08 3.20 5 1 9.38

ENSG00000198901 PRC1 15 q26.1 2.43 3.05 3.14 5 1 16.71

ENSG00000157456 CCNB2 15 q22.2 2.34 2.99 3.11 5 1 14.17

ENSG00000128045 RASL11B 4 q12 2.19 3.39 3.81 4 0 17.65

ENSG00000156076 WIF1 12 q14.3 2.17 4.70 4.99 4 0 22.10

ENSG00000134057 CCNB1 5 q13.2 2.16 2.54 2.48 5 1 20.67

ENSG00000066279 ASPM 1 q31.3 2.15 2.93 3.02 5 1 11.88

ENSG00000088325 TPX2 20 q11.21 2.14 2.96 3.19 5 1 23.98

ENSG00000123975 CKS2 9 q22.2 2.07 2.21 2.30 5 1 17.55

ENSG00000143476 DTL 1 q32.3 2.07 3.20 3.30 5 1 26.58

ENSG00000170312 CDK1 10 q21.2 2.01 3.12 3.17 4 1 17.50

ENSG00000007062 PROM1 4 p15.32 1.99 4.19 4.54 4 0 12.37

ENSG00000115163 CENPA 2 p23.3 1.94 2.77 2.93 5 1 18.19

ENSG00000021300 PLEKHB1 11 q13.4 -1.66 -2.96 -3.13 5 1 35.86

ENSG00000109846 CRYAB 11 q23.1 -1.68 -3.13 -3.20 5 1 38.39

ENSG00000100146 SOX10 22 q13.1 -1.74 -2.81 -2.93 5 1 35.15

ENSG00000100307 CBX7 22 q13.1 -1.79 -2.33 -2.37 5 1 18.08

ENSG00000149218 ENDOD1 11 q21 -1.82 -2.40 -2.44 4 1 18.78

ENSG00000197766 CFD 19 p13.3 -1.87 -2.98 -2.53 5 1 43.75

ENSG00000148180 GSN 9 q33.2 -1.90 -2.60 -2.58 5 1 7.053

ENSG00000134121 CHL1 3 p26.3 -1.94 -3.63 -3.36 5 1 32.93

ENSG00000172005 MAL 2 q11.1 -1.97 -3.05 -3.24 5 1 16.49

ENSG00000174944 P2RY14 3 q25.1 -2.01 -3.39 -3.47 5 1 35.95

ENSG00000108381 ASPA 17 p13.2 -2.06 -2.29 -2.40 5 1 31.63

ENSG00000168477 TNXB 6 p21.32 -2.07 -3.13 -3.34 5 1 26.58

ENSG00000127951 FGL2 7 q11.23 -2.08 -3.92 -3.75 5 1 27.43

ENSG00000196616 ADH1B 4 q23 -2.08 -3.86 -3.88 5 1 38.97

ENSG00000071991 CDH19 18 q22.1 -2.15 -4.21 -4.01 5 1 33.78

ENSG00000147588 PMP2 8 q21.13 -2.33 -4.39 -4.80 5 1 14.94

ENSG00000171819 ANGPTL7 1 p36.22 -2.60 -3.85 -4.12 5 1 18.30

ENSG00000148671 ADIRF 10 q23.2 -2.66 -3.81 -4.00 4 0 3.22

ENSG00000160307 S100B 21 q22.3 -3.22 -4.31 -4.38 5 1 11.91

ENSG00000107317 PTGDS 9 q34.3 -3.47 -4.89 -4.85 5 1 7.88

1The complete MPNST vs. NF gene signature of 579 genes, embedded in the unfiltered list of 7064 genes, is bold-highlighted in Table A in S2 Table.
2ENSEMBL gene ID.
3Gene symbol from HUGO Gene Nomenclature Committee.
4Human chromosome name.
5Median of logFCij computed for each gene across the studies.
6Median of logFC_mij computed for each gene across the studies.
7Number of studies included in the MPNST vs. NF meta-analysis.
8Inclusion (1) or exclusion (0) of mouse data in MPNST vs. NF meta-analysis. Exclusion may be due to the absence of mouse data or because current data

differed from human data.
9Bhattacharyya distance ratio.

https://doi.org/10.1371/journal.pone.0178316.t002
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In silico search for therapeutic drugs to reverse malignant phenotype

Analysis of similar or opposite gene signatures is one of the most important applications of

gene signatures for generating hypotheses for the study of NF1 and other rare diseases. We

used NFFinder [20] to explore repurposing of drugs that might reverse the NF1-associated

MPNST malignant phenotype by inspecting CMap and DrugMatrix databases for gene expres-

sion patterns opposite to the MPNST vs. NF gene signature (Fig 2, NFFinder processing). The

complete score-ranked list of drugs with pval<0.005 can be seen at goo.gl/IdyV1N; Table A in

S3 Table shows the first 50 drug entries retrieved. In the top two positions was Entinostat MS-

275, a histone deacetylase (HDAC) inhibitor selective for class I HDAC. The non-specific

HDAC inhibitor Trichostatin A (TSA) appeared in 39 of the top 50 entries retrieved. Two

other HDAC inhibitors, the class I-selective HC-toxin and the non-specific HDAC inhibitor

Scriptaid, were also on the shortlist. Other anti-cancer compounds were rifabutin, an antibi-

otic effective against lung cancer cells, PNU-0251126, which correlated positively with drugs

for leukemia treatment, the protein phosphatase 2A inhibitor cantharidin, which induces cell

death, the anti-inflammatory steroid medrysone, the topoisomerase II inhibitor ellipticine, a

potent antineoplastic agent, and the non-steroidal selective estrogen receptor (ER) modulator

tamoxifen, used to treat ER-positive breast cancer. To identify conditions similar to the NF-to-

MPNST transformation that might share therapeutic treatments, we used NFFinder to search

for disease gene signatures from GEO experiments with expression patterns resembling the

MPNST vs. NF gene signature; results are shown in goo.gl/36xlB1 and the first 50 GEO studies

are summarized in Table B in S3 Table. The most similar diseases were other types of cancer

(58%), of which 73% were solid tumors, especially in prostate and breast, 20% were leukemias

and lymphomas, and 7%, tumor cell lines. We also found premalignant neoplasias of epithelial

tissue in endometrium and kidney (12%), lipid metabolism conditions (6%), pulmonary dis-

eases (4%), muscular dystrophy (4%) and neuronal conditions (2%).

The experimental validation of the therapeutic effectiveness of drugs retrieved by NFFinder

to treat NF1-associated MPNST was reported for HDAC inhibitors [28], cantharidin [29] and

tamoxifen [30], and clinical trials have been suggested for all of them. The conclusion of our

in-silico workflow (Fig 2) with these experimental data confirms the predictive value of the

MPNST vs. NF gene signature and its usefulness to identify robust biomarkers and therapeutic

agents in neurofibromatosis disease.

Functional characterization of the MPNST vs. NF gene signature

We provide detailed lists of GO term enrichment of MPNST vs. NF up- and downregulated

genes (Tables A to F in S4 Table), as well as over-represented pathways derived by analysis of

KEGG (Tables G and H), Wiki (Tables I and J), and Reactome (Tables K and L) databases.

Results C in S1 Appendix details genes in the pathways identified.

For upregulated genes, DNA replication and cell cycle pathways were shared in the three

pathway databases; 70% of GO terms associated to these genes were thus involved mainly in

processes that underlie positive regulation of cell proliferation, mitosis and meiosis. We also

found terms related to morphogenesis and development of skeletal, nervous, cardiovascular

and digestive systems. GO terms directly related to malignancy of proliferating cells included

collagen catabolic process, which can affect extracellular matrix (ECM) organization, a process

involved in epithelial to mesenchymal transition (EMT) and cell migration. The KEGG ECM-

receptor interaction pathway was also over-represented, which supports this observation. In

accordance with GO terms and pathways, components from nucleus and cytoplasm were asso-

ciated predominantly with upregulated genes.

MPNST vs. NF gene signature
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For the downregulated genes, all three pathway databases identified the immunity pathway

linked to complement activation, including regulatory elements and complement components.

Downregulated genes also appeared to control peripheral nervous system development, particu-

larly viamyelination and axonogenesis. Other downregulated genes participated in the response

to steroid hormones and in cell migration, chemotaxis, and cell adhesion to another cell or to a

substrate such as the ECM. Unlike upregulated genes, downregulated genes accumulated GO

terms related to plasma membrane and its intrinsic components, including elements from pro-

teinaceous ECM involved in cell junction formation. When we analyzed the unfiltered list of 3005

downregulated genes, from which we derived the MPNST vs. NF downregulated gene signature,

we found that specific KEGG pathways in cancer were over-represented (Table P in S4 Table).

In accordance with this functional characterization, most upregulated genes from Table 2

are involved in cell cycle progression, have been linked with carcinogenic processes in which

they are upregulated, and many have also been described as diagnostic biomarkers (S5 and S6

Tables). HMGA2 is the only gene product that is an architectural transcription factor, although

some other genes act as regulatory elements in mitosis, especially cyclins CCNB2, CCNB1, and

kinase CDK1. As anticipated, and in contrast to the mitosis-related products of upregulated

genes, which were found mainly in nucleus and cytoskeleton, the 20 most-downregulated gene

products (Table 2) act mainly in the extracellular space. Whereas upregulated genes are over-

expressed in cancer, some downregulated genes can be silenced or overexpressed, and thus

have dual roles in cancer, as tumor suppressors or cell proliferation promoters. Some of these

genes appear to be involved in signal transduction and development in the nervous system

(PLEKHB1, SOX10, CHL1, PTGDS), in maintenance of structural integrity of cells and tissues,

e.g., ECM formation or myelin synthesis (CRYAB, CBX7, GSN, MAL, TNXB, CDH19, PMP2,

ANGPTL7, ADIRF), or to have various roles in the immune response (ENDOD1,P2RY14,

FGL2, S100B). SOX10 and S100B coregulate Schwann cell proliferation and myelination [31].

CBX7 is involved in epigenetic transcriptional repression. The metabolic proteins ASPA and

ADH1B are also in the most-downregulated group. ASPA participates in increasing the pool

of acetate, an essential precursor for histone acetylation reactions. ADH1B oxidizes alcohol,

thus also helping to generate acetate precursors, as well as retinol, an early step in synthesis of

retinoic acid, a basic molecule in epithelial tissue growth and differentiation.

Chromosome distribution of genes in the MPNST vs. NF signature

To establish whether there are significant distribution differences in human chromosomes for

genes in the MNPST vs. NF signature (336 up- and 243 downregulated genes), we computed

frequencies of the number of genes per chromosome arm from the gene signature and the

whole human genome (Fig 3). Upregulated genes accumulated significantly in chromosome

arms 4q, 7p, 8q and 17q, whereas downregulated genes were over-represented mainly in 1q,

3p, 5q and 11q. Another binomial distribution identified chromosome bands in which both

up- and downregulated genes were over-represented. The highest concentration of upregu-

lated genes was found in bands 3q25.33 and 15q15.1, with others concentrated in bands 7p15.3

and Xq22.1; the largest number of bands with over-representation of upregulated genes was

seen in arm 15q and the distal part of 17q. The highest significant concentration of downregu-

lated genes was found in bands 1q24.3 and 19q13.12; arm 1q showed the largest number of

over-represented bands. The function of genes in over-represented chromosome regions is

shown in S7 Table. Enrichment in GO biological process terms coincided with the functions

of up- and downregulated genes in the MPNST vs. NF signature, as described above.

Comparison of chromosome region enrichment from the MPNST vs. NF gene signature

with that in S2 Fig for the unfiltered gene list indicated some shared over-represented regions;

MPNST vs. NF gene signature
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chromosome arms 7p, 8q and 17q accumulated upregulated genes on the unfiltered list,

whereas arms 3p and 11q concentrated downregulated genes. The distal part of chromosome

arm 17q showed the largest number of over-represented bands. In addition, the unfiltered list

showed over-represented upregulated genes in arms 1q, 2p, 2q, 6p, 7q, 19p and Xq, and down-

regulated genes in 1p, 9q, 10q, 14q, 17p and 20p.

Fig 3. Chromosome distribution of the MPNST vs. NF gene signature. The gene signature distribution was calculated from the 336

genes with positive score (a), and from the 243 genes with negative score (b). Bar diagrams compare the observed distribution of MPNST

vs. NF gene percentage in the human chromosome arms (dark bars) with the expected distribution according to the human ENSEMBL

database (light bars). Statistical significance of the gene signature over-represented chromosome arms is above the bars. Over-represented

human chromosome bands in the MPNST vs. NF gene signature are shown below each chart. Their statistical significance is shown at the

top right side of band names. (****) P(X�x) < 0.0001, (***) 0.0001< P(X�x) < 0.001, (**) 0.001< P(X�x) < 0.01, (*) 0.01< P(X�x) < 0.05.

https://doi.org/10.1371/journal.pone.0178316.g003

MPNST vs. NF gene signature
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Panels of biomarkers with similar expression profiles in the context of

NF1 disease

Given the greater potential prognostic capacity of biomarker panels compared to individual

biomarkers, we built robust gene profiles to group functionally related genes with similar

expression patterns. To obtain gene profiles, we extended the gene score methodology to iden-

tify other average gene signatures in the NF1 context. We performed five additional differential

expression analyses; Table 1 groups the accession numbers of the studies used to determine

gene signatures for the five new comparisons. Two of these new comparisons involved nerve

tumors, whereas the other three comprised cell cultures. For tumor tissue, we carried out two

meta-analyses that integrated human and mouse nerve tumors by comparing NF vs. control

(nerve tissue) and MPNST vs. control. For cell cultures, we made three comparisons. Only the

comparison of MPNST cell lines vs. control (NHSC; normal human Schwann cells) integrated

data from two studies; for the other two comparisons, primary NFSC (neurofibroma Schwann

cells) vs. control (NHSC) and MPNST cell lines vs. primary NFSC, we used standard differen-

tial expression analyses, as only one study was available. These additional gene signatures were

added as Tables B to J in S2 Table. Their composition, and a comparison with the MPNST vs.

NF gene signature are detailed in Results D in S1 Appendix.

To search for function-related genes in the context of neurofibromatosis, we sought genes

with similar expression patterns in the six comparisons of NF, MPNST and control phenotypes

in cell cultures and nerve tumors; S8 Table shows the list of 2209 genes obtained by gathering

signatures of these comparisons. Comparisons (clustered by tissue type) and genes grouped

independently, and dendrograms were determined of the comparisons and of the genes,

grouped in 46 clusters represented by their self-organizing tree algorithm (SOTA) centroid

vectors (Fig 4). Divergence between sample tissue types coincided with dissimilarities in the

functional characterization of genes in the cell culture and nerve tumor signatures (Results D

in S1 Appendix). As predicted, the second line of sample divergence separated MPNST sam-

ples (vs. NF or vs. control) from NF vs. control comparisons. Results E in S1 Appendix evalu-

ates gene pattern homogeneity in each cluster.

Although almost every cluster contained genes from the MPNST vs. NF tumor tissue signa-

ture (highlighted in S8 Table), the most populated clusters (>15 genes) appeared in four clus-

ter areas, from which were derived four biomarker panels that included the majority of the 20

most up- and downregulated genes (Fig 4). Cluster 3, which includes genes involved in devel-

opment of the peripheral nervous system, contained six genes of the 20 most-downregulated

(Table 2), CRYAB, SOX10, FGL2, CDH19, PMP2 and S100B; SOX10 and S100B are markers

used to diagnose neural crest-derived tumors [32]. Cluster 17 incorporated three of the most-

downregulated genes, PLEKHB1, GSN and CHL1. Cluster 25 included 153 genes and 181 GO

terms, and thus concentrated the highest functional enrichment. This cluster, with adjacent

clusters 23 and 24, accumulated the majority of genes involved in cell proliferation. Cluster

25 included 17 of the 20 genes with the highest scores from the MPNST vs. NF comparison

(Tables 2 and S8), particularly the genes that encode the putative NF1 prognostic markers

TOP2A and BIRC5 [10]. Finally, cluster 34 contained five of the 20 most-downregulated genes

in the MPNST vs. NF signature, CBX7, P2RY14, TNXB, ADIRF and PTGDS. Details for gene

accumulation in clusters from the MPNST vs. NF signature, and for the five additional signa-

tures, are shown in S3 Fig.

Panel of hypermethylated biomarkers in the context of NF1 disease

Aberrant epigenetic changes are associated to most cancers, particularly hypomethylation of

oncogenes and hypermethylation of tumor suppressors. To establish relationships between

MPNST vs. NF gene signature
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Fig 4. Clustering of phenotype comparisons and of NF1-related genes. Comparisons among MPNST, NF and control phenotypes were grouped

through hierarchical clustering. Cell culture and nerve tumor comparisons are shown on the top of the upper dendrogram, and the node height scale is

detailed on the left of this tree. The hierarchical relationship among gene clusters obtained by grouping the logFC_m values of 2209 NF1-related genes by

the Self-Organizing Tree Algorithm (SOTA) is represented by the dendrogram on the left. Clusters are described by their SOTA centroid vectors. Color

scale of logFC_m values is shown below. The right side of the Fig details the number of genes in each cluster, the gene number of the MPNST vs. NF

signature in each cluster (*, > 15 genes), the percentage of genes of this signature in each cluster (grey scale shown below), the number of biological

process GO terms over-represented in each cluster, and the summary of the GO term enrichment as functional characterization of clusters. A complete list

of terms is shown in S9 Table.

https://doi.org/10.1371/journal.pone.0178316.g004

MPNST vs. NF gene signature
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gene expression and aberrant promoter methylation, we associated our six gene expression signa-

tures with the methylation status of gene promoters. In GEO and ArrayExpress databases, we

sought studies that provide raw methylation data relative to NF1 evolution. GEO accession

GSE21714 genome-wide methylome analysis compared immunoprecipitated DNA from 10

pooled MPNST samples, 10 pooled NF samples, and 6 pooled control Schwann cell samples [13];

for the process used to identify methylated promoters, see Materials and methods. The edgeR.

logFC and edgeR.adj.pval (<0.1) values obtained for MPNST vs. NF (Table A in S2 Table),

MPNST vs. control (Table B), and NF vs. control (Table C) methylome comparisons showed 428,

594 and 9 differentially methylated gene promoters, respectively (right columns); most were

hypermethylated. MPNST vs. NF and MPNST vs. control comparisons showed 181 promoters in

common, and MPNST vs. control and NF vs. control Schwann cells indicated 4 shared promoters.

Hypermethylation of the RASSF1A promoter identified a NF1-associated MPNST subgroup

with poor prognosis [14]; we therefore tested RASSF1 promoter methylation status as a control

of our analysis. The RASSF1 promoter was differentially hypermethylated in MPNST vs. NF

and in MPNST vs. control Schwann cells, but not in NF vs. control Schwann cells. To find

other potential regulatory elements with aberrant promoter methylation, we searched for

other downregulated genes with hypermethylated promoters in MPNST vs. NF and MPNST

vs. control Schwann cell comparisons. Using the unfiltered gene lists for all comparisons

(Table J in S2 Table), we selected genes whose expression pattern in tumor tissue included a

negative MPNST vs. NF score, as well as logFC values < -0.5 for MPNST vs. NF and MPNST

vs. control comparisons. Genes selected also showed edgeR.logFC and edgeR.adj.pval pro-

moter methylation values >1.5 and<0.1, respectively. We found 56 gene promoters that fit

these selection conditions. The RASSF1 gene and 9 of the selected genes found in the MPNST

vs. NF gene signature are listed in Table 3; the full list is given in S10 Table.

Discussion

MPNST vs. NF gene expression signature

Here we report the integrative MPNST vs. NF gene signature associated to the NF-to-MPNST

transition in the context of neurofibromatosis type 1 disease. For this signature, filtered from a

larger list of all differentially expressed genes from five studies comparing MPNST to NF, we

included genes with the highest scores, size effects and consensus among individual studies,

and used it as a core to study biomarkers and drugs that might control evolution to malignity

in NF1 patients.

The 20 highest and 20 lowest score-ranked genes suggested as promising biomarkers

(Table 2) are all implicated in carcinogenic processes and many are suggested biomarkers.

Among the top 20 genes in the MPNST vs. NF signature are 4 genes reported as induced in

the transition from benign NF to MPNST (S11 Table); their products are the topoisomerase

TOP2A, needed for correct chromosome segregation in mitosis, the apoptosis inhibitor BIRC5,

a member of the mitotic chromosome passenger complex, the architectural transcription regu-

lator HMGA2, and TPX2, which is essential for correct mitotic spindle assembly and activates

the AURKA kinase to control cell cycle progression. Among the 20 most-downregulated genes

are 4 NF- and/or MPNST-associated genes (S12 Table), the transcriptional regulator SOX10,

needed for neural crest multipotent cell and peripheral nervous system development, the extra-

cellular matrix glycoprotein TNXB, the cell-cell adhesion Ca2+-dependent cadherin CDH19,

specific to myelin-forming cells, and the Ca2+-binding S100B, whose inhibition is associated to

MPNST transformation [33].

The NF1 gene, the basic reference of reliability for the gene signature generated, had a null

score and was thus absent from the MPNST vs. NF signature. This suggested that most samples

MPNST vs. NF gene signature
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of sporadic MPNST had somatic deactivating NF1 mutations, which corroborates previous

studies [34]. Our results coincide with gene expression data that compare MPNST with benign

NF, although given the strict score threshold, some known MPNST-related genes on the unfil-

tered gene list were lacking in the gene signature, such as SOX9, which encodes a developmen-

tal transcription factor [3], and TNC, which is involved in axon guidance during development

[16]. Other cancer-related genes were absent from the signature for similar reasons, such as

CDH1, which codes for the tumor suppressor cadherin 1. CDH1 silencing is a marker of the

EMT associated to cell proliferation, invasion and metastasis [35].

We found that despite some exceptions, our results for over-represented chromosome

regions in the MPNST vs. NF gene signature corroborated previous data on chromosome

region enrichment. In addition, we identified other regions such as chromosome arm 3p, in

which many downregulated genes are concentrated. A detailed comparison of these regions

and reported aberrant chromosome modifications is shown in Discussion A in S1 Appendix.

Biomarker panels that share NF1-related gene expression profiles

In addition to the study of individual genes as potential biomarkers, tests of groups of genes in

the MPNST vs. NF signature can improve prospects for diagnosis or prognosis. Kolberg et al.

[10] defined a prognostic test for post-tumor resection MPNST patients, based on expression

of three proteins encoded by genes located in the distal part of chromosome 17q (BIRC5, TK1,

TOP2A). These genes were included in a 31-gene cell cycle progression (CCP) signature that is

a robust predictor of clinical outcome for prostate cancer patients [36].

Given the limitation of the MPNST vs. NF score-ranked gene signature for grouping genes

with similar function, we built profiles that integrated other NF1-related signatures. These sig-

natures, obtained from tumor tissue and cultured cells, were based on one or two studies each

and were thus less robust than our original MPNST vs. NF, built from five studies. Genes were

grouped by their profiles using SOTA, which allows hierarchical clustering by a neural net-

work. We obtained a large number of SOTA clusters containing homogeneous groups of func-

tionally related genes that shared similar expression profiles.

Of the upregulated genes in the MPNST vs. NF signature, most grouped to Cluster 25 and

are linked to cell cycle progression. Mechanisms that regulate the complex process of cell cycling

are precisely regulated, and deregulation drives to aberrant cell proliferation and cancer develop-

ment [37]. Not surprisingly, many genes from the CCP signature [38] were included in the cluster

25. Our group of the 20 most-upregulated genes contained 9 of the 31 CCP signature genes

(RRM2, TOP2A, KIAA0101, BIRC5, NUSAP1,CENPF, PRC1, ASPM, DTL), and 14 more CCP

genes were upregulated in the MPNST vs. NF gene signature (FOXM1, TK1, CDC20,BUB1B,

PBK, CDKN3,ASF1B, CEP55,DLGAP5, RAD51,KIF11,KIF20A,PTTG1,CDCA8). Due to its

potential as MPNST biomarker [39], we propose the inclusion of HMGA2 in any similar list built

to interrogate the expression status of genes involved in cell cycle progression in MPNST progno-

sis. A panel from cluster 3 should contain at least CRYAB, SOX10, FGL2, CDH19, PMP2, and

S100B. Cluster 17 genes to be evaluated would be PLEKHB1, GSN and CHL1. A cluster 34 panel

should include at least CBX7, P2RY14, TNXB,ADIRF and PTGDS genes.

The divergence between expression values in comparisons of cell cultures and nerve tumors

indicated clear differences due to the nature of the samples. Many essential characteristics of

cancers in which the ECM plays a fundamental role, such as those involving EMT, invasion

and metastasis, cannot be appropriately mimicked by cultured cells. In contrast to MPNST,

which contain a mixture of different cell types, cultured cells derive from a single cell type. Dif-

ferences between cultured cells and nerve tumors, exemplified by SOX9, SUZ12, EGFR, SPP1
and BMP2 genes, are detailed in Discussion B in S1 Appendix.
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Genes potentially silenced by hypermethylation of their CpG-island

promoter region

To identify potential biomarkers whose expression is inhibited by hypermethylation, we

sought genes that were downregulated and showed promoter hypermethylation in tumor tis-

sue for MPNST vs. NF and MPNST vs. control comparisons; 42% of the differentially methyl-

ated promoters were shared, most of which were hypermethylated. This result correlated with

gene expression data, as more than 58% of genes from the MPNST vs. NF showed similar

behavior in the MPNST vs. control comparison. In addition to the tumor suppressor RASSF1,

whose differential promoter hypermethylation status and expression inhibition are associated

in MPNST and other cancers [14], we found additional regulatory genes. The genes identified

by common expression and methylation patterns were implicated mainly in cancer, which

corroborates the importance of epigenetic changes in the control and evolution of cancerous

processes; they were also linked to immune response, nervous system development, lipid

metabolism, metabolic energy balance and detoxification (S10 Table). Many act as mediators

in signal transduction pathways, have a structural role, or interact with other proteins to con-

trol various biological processes related to cell proliferation and apoptosis. Most genes in the

MPNST vs. NF signature that are potentially silenced by promoter hypermethylation are asso-

ciated with structural functions in the peripheral nervous system (PRIMA1, ST6GALNAC2,

ITGB4, MBP, MPZ) or with signal transduction pathways (RABGAP1L,ACKR1, S100B) (S10

Table, bold). Differentially methylated genes are discussed in detail in Discussion C in S1

Appendix.

From MPNST vs. NF gene signature to working hypotheses:

Therapeutic applications of HDAC inhibitors, cantharidin and tamoxifen

To identify diseases or biological problems similar to malignant NF evolution, or to define

potential therapeutic drugs that could reverse malignant phenotype, we used NFFinder to

compare the MPNST vs. NF signature with similar or contrasting signatures. Gene signatures

in GEO studies most similar to that of MPNST vs. NF were associated with cancer, mainly

solid tumors, followed by other diseases that share several phenotypic alterations with neurofi-

bromatosis. Most signatures in CMap and DrugMatrix databases that contrasted from the

MPNST vs. NF signature indicated that the reported as effective compounds to treat MPNST,

cantharidin and tamoxifen, and especially HDAC inhibitors, could potentially reverse the

malignant phenotype. Our in-silico prediction corroborates these data, which indicates the

reliability of our gene signature as representative of NF evolution to malignancy.

HDAC inhibitors control gene expression by blocking deacetylation of histone and non-

histone proteins. These inhibitors modify the chromatin condensation status [40] and also

control several chromatin structure-independent processes that alter gene expression, such as

transcription factor activity, miRNA expression, and signal transduction [41]. Some HDAC

inhibitors act as epigenetic regulators by modifying the DNA methylation status, which reveals

crosstalk between acetylation and methylation [42]. This ability of HDAC inhibitors to reverse

epigenetic aberrations make them effective therapeutic agents in cancer, as well as in neurolog-

ical and immune disorders [43]. In cancer, HDAC inhibitors impair cell proliferation, neoan-

giogenesis and metastasis, and increase differentiation and apoptosis. Blockade of tumor

angiogenesis nonetheless hinders drug delivery and limits the use of these inhibitors for solid

tumors [44]. Combination therapies are thus necessary.

Based on the sensitivity of Ras signaling tumors to HDAC inhibitors, López et al. assessed

these compounds in MPNST, both in vitro and in tumor xenografts [28]. The strong reaction

of NF1-associated MPNST cell lines to HDAC inhibitors led the authors to suggest their
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therapeutic value for inclusion in clinical trials. NFFinder also found that the pan-HDAC

inhibitor TSA can replace the effective combination of synergy-acting compounds PD-901

and JQ1 to kill MPNST cells and shrink tumors [12,20]. Robust biomarkers are nonetheless

needed to predict the effectiveness of TSA and other HDAC inhibitors, alone or in combina-

tion, in clinical trials for treatment of NF1-associated MPNST.

Among the 20 most up- and downregulated, several genes alter their expression in response

to HDAC inhibitors such as the upregulated genes TOP2A, BIRC5, HMGA2, CCNB1,CCNB2,

TPX5 and CDK1 [45–49], and the downregulated genes SOX10 [50] and GSN [51]. As compo-

nents of the epigenetic regulation system, HMGA2 and GSN are main targets of HDAC inhibi-

tors, and suggest their utility as predictive treatment markers.

HMGA2 controls gene transcription directly via chromatin remodeling, or indirectly, by

altering the binding affinity of regulators and nuclear proteins to DNA through protein-pro-

tein interactions. Involved in the control of fetal development, HMGA2 also has a central role

in tumor growth and metastasis. HMGA2 protein levels rise acutely in malignancies [52], and

its overexpression correlates with poor prognosis in colon, lung, pancreas, ovary and gastric

cancers [53,54]. Besides use of HMGA2 as a diagnostic/prognostic biomarker in NF progres-

sion to malignity, the reported silencing of HMGA2 with HDAC inhibitors justifies its use as a

biomarker of treatment effectiveness of these drugs [55].

In addition to its structural role as one of the most abundant actin-binding proteins, the

multifunctional regulator gelsolin GSN is involved in apoptosis and regulates processes related

to pathological states such as amyloidosis, inflammation, Alzheimer’s disease, cardiovascular

diseases, cancer and aging [56]. In cancer, GSN has a dual effect as a promoter of cell growth

and invasion [57] and as a tumor suppressor that inhibits metastasis. Its tumor suppressor

effect is reported for most cancers, and it is downregulated in all of them [58]. GSN transcrip-

tional repression is associated with epigenetic control through DNA methylation and histone

deacetylation, and addition of HDAC inhibitors increases GSN expression [51], which sup-

ports its use as a biomarker for the effectiveness of MPNST treatment with HDAC inhibitors.

HMGA2 and GSN, as well as EZH2 and CBX7, respective members of PRC2 and PRC1 epi-

genetic repressor complexes, probably impaired during NF malignant transformation, are

involved in the control of cell proliferation and metastatic phenotype by regulation of the

tumor suppressor protein CDH1 and other markers of EMT, whose expression is reversed

after treatment with HDAC inhibitors, particularly TSA [59]. HDAC inhibitor activity coun-

teracts CBX7 silencing and EZH2 protein overexpression over the CDH1 promoter, as dis-

cussed in Discussion D in S1 Appendix.

In addition to genes involved in epigenetic regulation as possible HDAC inhibitor targets,

we found two other genes related to acetate metabolism and availability (ASPA, ADH1B)

among the 20 most-underexpressed genes of the MPNST vs. NF signature. Supplementation

with acetate precursors as coadjuvant chemotherapy to complement two metabolic pathways

that involve ASPA and ADH1B in acetate synthesis is considered in Discussion E in S1

Appendix.

Cantharidin and tamoxifen were also retrieved by NFFinder and confirmed experimentally

as effective drugs to inhibit MPNST cultured cell proliferation and survival. The protein phos-

phatase 2A inhibitor cantharidin was found by screening from a library of 472 small bioactive

compound library [29] and shown to avoid growth of NF1-associated MPNST cultured cells,

though additional studies should clarify the relevance of cantharidin in vivo.

Due to MPNST are not sex steroid hormone sensitive, the ER modulator tamoxifen inhibits

MPNST cultured cell growth independently of ER [30,60]. Combination therapies of tamoxi-

fen and trifluoperazine have shown to be effective on treatment of sporadic and NF1-asso-

ciated MPNST, suggesting the quick repurposing of these drugs for clinical and prophylactic
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uses. Tamoxifen, which induces NF1-associated MPNST cell death mediated by autophagy in

a K-Ras degradation dependent-process [61], might replace cloroquine and combine with

HDAC inhibitors to induce apoptosis-oriented autophagy in “resistant” sporadic MPNST cells

[28]. Tamoxifen and HDAC inhibitors might thus boost productive autophagy in a similar

way as the combination of tamoxifen with panobinostat has been proposed for treatment of

other solid tumors like hepatocellular carcinoma [62].

Meta-analysis method to define the MPNST vs. NF gene signature

Various meta-analysis approaches have been developed to integrate data from independent

studies. Due to their inherent difficulties, most meta-analyses restrict the inclusion of studies

to a small number of different platforms or to a single platform. Integration of genomics data

for rare diseases presents even greater challenges. Scanty heterogeneous data, common for rare

diseases, might hide consistent information and patterns potentially present across studies.

The meta-analysis method used here, based on previously described gene scores [23,26], iden-

tifies differentially expressed genes between two conditions, by integrating data from platforms

of distinct size. Although we used a similar formula, our gene score differed slightly from that

published in five aspects; a) scores were computed for genes as up- and downregulated, b) the

logFC computed, based on the mean of expression ratios, was replaced by the logFC_m based

on the median value of expression ratios, which increased score robustness, c) logFC_m values

were normalized to the interval [0,1] for upregulated and [-1,0] for downregulated genes to

avoid expression ratio bias among studies, d) the use of MAD (median absolute deviation)

rather than standard error values to compute the penalty term due to expression deviation

among replicates, which resulted in lower values for the penalty term and thus in more strin-

gent scores, and e) stringency was reinforced by a third condition imposed for calculation of

scores (B factor >0). Computation of the gene final score by the addition of each gene study

score might favor genes represented in a higher number of platforms. The last filter step

selected 10% of the genes on the complete list, which yielded the MPNST vs. NF signature; this

is nonetheless a more balanced representation of the gene list for each of the starting studies,

as it contains a larger proportion of genes common to various studies.

In addition to problems frequently encountered when comparing transcriptomes, integra-

tion of human and mouse data has drawbacks inherent to species-specific differences. As

mouse models do not appear to mimic human neurodegenerative diseases at molecular level

in every respect [27], we prioritized the human over the mouse transcriptome. Although

doubts remained regarding the incorporation of mouse data in the meta-analysis, we included

those data since robust genes expressed similarly in humans and mice could be candidates for

preclinical studies. As the gene signature includes the behavior of each gene regarding the spe-

cies and tissue type, it provides comprehensive information for the design of experiments.

The integrative gene signature associated to neurofibroma malignant evolution is the main

contribution of this work. This signature constitutes the first step to generate working hypoth-

eses concerning biomarkers of disease evolution and treatment effectiveness, as well as thera-

peutic drugs. Our in silico methodology used to define the signature and derive hypotheses for

experimental purposes could be applied in the study of orphan diseases other than NF1.

Conclusions

Here we used a meta-analysis method based on gene scores to define the gene signature associ-

ated to the transition of benign neurofibromas to MPNST. Signature components showing the

highest/lowest scores are proposed as disease biomarkers. Given the greater diagnostic and

prognostic robustness of biomarker panels compared to individual genes, we clustered
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functionally related genes from profiles that integrate additional NF1-related gene signatures,

and established four panels derived from clusters 3, 17, 34 and cluster 25, which comprises

genes involved in cell cycle progression. By further studying the epigenetic regulation of malig-

nant transformation, we identified potential hypermethylated, silenced biomarkers, which

links promoter methylation status to gene expression profiles.

The gene signature was used to search for drugs able to reverse malignant phenotype.

Retrieved from NFFinder and previously tested for effectiveness, cantharidin, tamoxifen, TSA

and other HDAC inhibitors have yielded promising effects as candidates for chemotherapy.

We suggest HMGA2 and GSN genes, two targets of HDAC inhibitors, as epigenetic biomarkers

for testing the therapeutic effectiveness of HDAC inhibitors.

Materials and methods

The detailed workflow of selection and pre-processing of microarrays used to obtain the

MPNST vs. NF gene signature, translation to ENSEMBL gene names, and computation of

gene scores and of effect size medians, and final filters are shown in S4 Fig. Where appropriate,

tables are indicated for some of the main results generated (right). The meta-analysis PRISMA

checklist is included as supporting information (S2 Appendix).

Study selection

Microarray and DNA methylation studies were selected from GEO and ArrayExpress public

databases using the key words NF1, MPNST, neurofibromatosis, and neurofibroma; we

included high-throughput sequencing, microarray and methylation data. Additional selection

criteria were 1) for microarray studies, only data from Affymetrix, Agilent, ABI and Illumina

platforms were allowed, and 2) we only considered studies accepted for publication, with raw

data from samples from cell cultures or nerve tumors.

Microarray data preprocessing

Each microarray was preprocessed and evaluated independently using the R/BioConductor

software environment [63]. R packages used in pre-processing steps are detailed in Materials

and methods A in S1 Appendix. After grouping dNF and pNF samples as NF, and sporadic

and NF1-associated as MPNST, the resulting expression set was filtered to discard features

with FDR values >0.05 obtained by ANOVA. The expression set derived was used to assess

appropriate grouping of samples from the independent studies by principal component analy-

sis (PCA), as shown in S5 and S6 Figs. The final derived expression set was used to analyze

gene differential expression.

Probe name translation to human ENSEMBL and HUGO gene IDs and

mapping in human chromosome arms

As integration of scores from different platforms required common identifiers, we translated

probe names from each study to ENSEMBL human gene IDs according to Ensembl Archive

release 82 (September 2015). To obtain a unique score for each gene, we selected the score of

the probe with the greatest variation when the identifier was present more than once. This var-

iation was calculated as the variance of normalized expression values of all samples from the

two phenotypes compared. Mouse gene IDs were also translated to human homologous gene

IDs. Human ENSEMBL gene IDs were associated with HUGO gene nomenclature IDs and

mapped to human chromosomes and bands. Details of ENSEMBL gene ID association to

human chromosome arms are shown in Materials and methods B in S1 Appendix.
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Gene scores across studies and final individual gene score in a two-

phenotype comparison

Gene scores were also computed in the R/Bioconductor environment [63]; Materials and

methods C in S1 Appendix details the formula and computation method used. In an example

illustrating the factors involved in gene score computation, S13 Table shows values for the dif-

ferentially expressed genes obtained by comparing MPNST vs. NF from the GSE66743 study.

The final score across studies of a single species was calculated as the sum of standardized indi-

vidual sij scores. Final human and mouse scores were weighted for human results. Genes exclu-

sive to mouse were ignored and mouse data that differed from human data in the expression

ratio sign were discarded. The human score was calculated by adding scores from human stud-

ies. Inclusion of murine data was limited to genes for which the sign for the final human and

mouse scores were identical, and final human scores were not null.

logFC and logFC_m of genes across studies

Gene logFC were calculated across the studies as the median value of logFCij; logFCij values for

each gene (i) in each individual study (j) were obtained in the phenotype comparison. Gene

logFC_m were computed as the median value of logFC_mij; we have defined logFC_mij as the

log2 of the median value of all expression ratios between phenotypes. To avoid inconsistency,

the same restriction imposed on the final score was used for logFC and logFC_m values. The

signs for human median values of computed logFC/logFC_m were compared with those of

mouse. If human and mouse signs were equal, the mouse logFC/ logFC_m was used to com-

pute the final logFC/logFC_m. If the signs were different, mouse values were ignored and

human values were used as the final logFC/logFC_m.

Final filters to obtain the gene signature

To avoid inconsistency, the resulting list of genes with non-null score was screened to remove

genes showing score signs opposite to those of logFC values (S4 Fig, third filter). To select

genes with the highest score and median size effect values, a final filter was applied to the previ-

ous gene list (S4 Fig, fourth filter). This filter screened 10% of genes with the highest scores

(genes with positive score) and 10% of genes with the lowest score (genes with negative score).

In both cases, the absolute logFC value should be>0.99.

Computation of bias in score values among studies: Bhattacharyya

distance (BD) ratio

To determine the relative influence of individual experiments on final score values, we com-

puted for each gene the BD between the observed distribution of score frequency and the

expected discrete distribution if each study contributed equally to the final score. The lowest

BD values thus correlated with similar contributions of individual studies to final score val-

ues, while the highest values indicated disparity in the contribution of individual studies. To

compare BD without considering the number of studies available for each gene, we com-

puted the BD ratio by dividing the BD by the maximum possible BD value considering the

number of studies for each gene. The lowest and highest BD ratio values indicated the similar

or dissimilar contribution of each study to each gene score, respectively. A BD ratio equal to

zero was applied exceptionally to those genes for which only one study was available, to dis-

tinguish these genes from those for which there was more than one study, although only one

showed a non-null score. Computation details are given in Materials and methods D in S1

Appendix.

MPNST vs. NF gene signature

PLOS ONE | https://doi.org/10.1371/journal.pone.0178316 May 24, 2017 19 / 27

https://doi.org/10.1371/journal.pone.0178316


Statistical analyses

To determine the statistical significance of the different gene distribution frequencies in human

chromosome regions, we calculated the accumulated probability of a binomial distribution

P(X�x) using the pbinom function from the R stats package; ���� P�0.0001, ��� 0.0001<P�

0.001, �� 0.001<P�0.01, � 0.01<P�0.01. The expected frequency of gene distribution in

human chromosome arms/bands was calculated considering the association of ENSEMBL gene

IDs to human chromosome arms/bands. To assess correlation between values of two vectors,

Pearson’s product-moment correlation was calculated using the cor.test function from the R

stats package.

Gene and pathway functional enrichment

The over-representation test for GO terms from GO Ontology database release 2016_09_24

(The Gene Ontology Consortium, 2015) was performed through PANTHER v.10 (release

20160715; [64]) using ENSEMBL IDs as input, Homo sapiens (all genes in the database) as ref-

erence list, GO biological process, GO molecular function and GO cellular component com-

plete as Annotation Data Set, and the Bonferroni correction for multiple testing (P<0.05).

The EnrichNet tool [65] was used to inspect KEGG, BioCarta, Wiki Pathways and Reactome

databases to search for pathways in which a differentially expressed group of genes is enriched

compared to the whole human genome; ENSEMBL IDs were used as input. Only pathways

with a significant XD-score or Fischer q-value <0.1 were considered. The search for opposite

and similar gene signatures in CMap-DrugMatrix and GEO databases in NFFinder was per-

formed as described [20].

Gene clustering and visualization

Genes were grouped using SOTA [66] implemented in the analysis and visualization tool Mul-

tiexperimentViewer MeV v. 4.9 [67]. Parameters were fit by default, including distance (Pear-

son correlation), and Max. Cycles (100). Sample tree was carried out using hierarchical

clustering to optimize sample leaf order. Pearson correlation was selected as the distance met-

ric, and average linkage clustering as the linkage method.

DNA methylation analysis

Methylation data were downloaded from GEO, and inspected and analyzed using the MEDIPS

R package [68]. Linux command lines, R code based on Lienhard et al. [68], and details of the

analysis are shown in Materials and methods E in S1 Appendix.
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S1 Fig. Comparison of gene score profiles of the integrative MPNST vs. NF gene signature

and the five individual studies. a. Plot showing the percentage of score values for up- (score>

0) and down- (score<0) regulated genes of the MPNST vs. NF unfiltered list. This list contains

the score values of the 7064 unique ENSEMBL human genes sorted in x-axis from the highest

to the lowest score value (Table A in S2 Table). Vertical red dot lines discriminate the first 336

up- and the last 243 downregulated genes with the highest absolute score values, included in

the MPNST vs. NF gene signature. b. Plots with x and y axes equal to plot A showing the per-

centage of score values from non-null score genes represented in each of the five studies inte-

grated in the MPNST vs. NF gene signature (E-MEXP-353, E-TABM-69, GSE41747 (human),

GSE66743 and GSE41747 (mouse)). Unlike these five plots, that contain differentially ex-

pressed genes derived from the MPNST vs. NF comparison, the last plot (Control), as negative

control, includes non-null score genes obtained in the NF vs. Control cell culture comparison

from the GSE14038 accession.

(PDF)
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S2 Fig. Chromosome distribution of the MPNST vs. NF gene signature. The distribution

was calculated from 4059 genes with positive score (a), and from 3005 genes with negative

score (b). Bar diagrams compare the observed distribution of MPNST vs. NF gene percentage

in the human chromosome arms (blue bars) with the expected distribution according to the

human ENSEMBL database (red bars). Statistical significance of the gene signature over-repre-

sented chromosome arms is above the bars. Over-represented human chromosome bands in

the MPNST vs. NF gene signature are shown below each chart. Their statistical significance is

shown at the top right side of band names. (����) P(X�x) < 0.0001, (���) 0.0001< P(X�x) <

0.001, (��) 0.001< P(X�x) < 0.01, (�) 0.01< P(X�x) < 0.05.

(PDF)

S3 Fig. Grey scale diagram that shows the percentage of genes from each gene signature

included in the clustering process. Numbers over the gray scale diagram indicate the number

of genes included in each cluster. The interval of color scale values is shown below the diagram.

The right side of diagram details the number of genes in each cluster, the number of biological

process GO terms over-represented in each cluster, and the summary of that GO term enrich-

ment as functional characterization of clusters. A complete list of terms is shown in S9 Table.

(PDF)

S4 Fig. Workflow of selection and pre-processing of microarrays selected to obtain the

gene signature MPNST vs. NF, translation to ENSEMBL gene names, and computation of

gene scores and median of logFC/logFC_m. Main outputs of some individual steps appear

on the right. i: Each individual gene. j: Each individual study.

(PDF)

S5 Fig. Principal components (PCA) plots obtained for each study included in MPNST vs.

NF meta-analysis. The final number of probes (Table A in Results B in S1 Appendix) consid-

ered in the computation of PCA plots is shown. The legend of colored circles on the left shows

sample phenotypes compared.

(PDF)

S6 Fig. Principal components (PCA) plots obtained for other studies included in addi-

tional comparisons other than tumor tissue from MPNST vs. NF. The final number of

probes (Table A in Results B in S1 Appendix) considered in the computation of PCA plots is

shown. Colored circles on the left show the sample phenotypes compared in the analyses. PCA

plot from GSE14038 (cell cultures) includes the samples from the previously described com-

parison MPNST vs. NF from GSE41747 (human tumor tissue) depicted in S5 Fig.

(PDF)
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28. López G, Torres K, Liu J, Hernández B, Young E, Belousov R, et al. Autophagic survival in resistance to

histone deacetylase inhibitors: novel strategies to treat malignant peripheral nerve sheath tumors. Can-

cer Res. 2011; 71: 185–96. https://doi.org/10.1158/0008-5472.CAN-10-2799 PMID: 21084276

29. Semenova G, Stepanova D, Deyev SM, Chernoff J. Medium throughput biochemical compound screen-

ing identifies novel agents for pharmacotherapy of neurofibromatosis type I. Biochimie. 2017; 135: 1–5.

https://doi.org/10.1016/j.biochi.2017.01.001 PMID: 28065690

30. Byer SJ, Eckert JM, Brossier NM, Clodfelder-Miller BJ, Turk AN, Carroll AJ, et al. Tamoxifen inhibits

malignant peripheral nerve sheath tumor growth in an estrogen receptor-independent manner. Neuro

Oncol. 2011; 13: 28–41. https://doi.org/10.1093/neuonc/noq146 PMID: 21075781

31. Fujiwara S, Hoshikawa S, Ueno T, Hirata M, Saito T, Ikeda T, et al. SOX10 transactivates S100B to

suppress Schwann cell proliferation and to promote myelination. PLoS One. 2014; 9: e115400. https://

doi.org/10.1371/journal.pone.0115400 PMID: 25536222

32. Karamchandani JR, Nielsen TO, van de Rijn M, West RB. Sox10 and S100 in the Diagnosis of Soft-tis-

sue Neoplasms. Appl Immunohistochem Mol Morphol. 2012; 20: 445–450. https://doi.org/10.1097/PAI.

0b013e318244ff4b PMID: 22495377
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Results A: Relationships between score values and additional attributes in the 

MPNST vs. NF gene signature 

 

Gene logFC values across the studies from the MPNST vs. NF signature (bold-

highlighted in Table A in S2 Table) were plotted regarding gene score values (Fig A 

(a)). A positive correlation between gene logFC and score values was inferred 

(Pearson’s product-moment correlation 0.94; pval 2.2e-16; 95% confidence interval 

from 0.93 to 0.95). Red dots identify 114 genes for which mouse scores were not 

included in the final computation of gene scores, due to the absence of those genes in 

the mouse study, or because mouse and human studies showed different behavior. 

Most of genes ignoring mouse data located in the interval [-1, 1] of score values. 

Although the majority of these genes accumulated around the logFC interval [-2, 2], the 

highest logFC absolute values were similar in genes considering or not mouse data. 

Due to a high correlation between logFC and logFC_m values (Pearson’s product-

moment correlation 0.9962; pval 2.2e-16; 95% confidence interval from 0.9956 to 

0.9969; Fig A (b)), a similar plot could be inferred when logFC_m and score values 

were compared. 

 

To assess the homogenous contribution of each study to the final gene scores, we 

computed the Bhattacharyya distance ratio (BD-ratio). The lower was the BD-ratio, the 

more homogeneous was the contribution of the studies. 530 genes, 91.54% of the total 

gene signature, showed BD-ratios between 0 and 100. These genes, represented by 

more than one study, showed higher absolute scores compared with genes with BD-

ratios 0 or 100, as the distribution of genes indicates considering both BD-ratio and 

score values (Fig A (c)). Null BD-ratios were assigned to 5 genes (less than 1%) that 

were in only one study, to distinguish them from 44 genes (7.60%), present in more 

than one study, with all score values null except one, which results in a BD-ratio of 100. 

This maximum value for BD-ratio remarks the unequal contribution of studies to the 

gene score computation of these 44 genes. A slight negative correlation existed 

between BD-ratios and absolute score values for genes with BD-ratios in the interval 

(0, 100) (Pearson’s product-moment correlation -0.097; pval < 0.01968; 95% 

confidence interval from -0.177 to -0.016). Again, red dots denote genes excluding 

mouse data. Genes with absolute score values higher than 1 and lowest BD-ratios, for 

which individual experiments similarly contribute to the final score, mostly included 

mouse data in the computation of gene scores.  

 

The number of genes included in the MPNST vs. NF signature with final score 



3 

 

calculated starting from 5, 4, 3, 2, or 1 study, both for up- and downregulated genes, is 

shown in Fig A (d). As the chart indicates, the highest amount of genes depended on 5 

studies (56.31%), 4 from human and one from mouse. 26.94%, 10.88%, 5% and 0.86% 

of genes depended on 4, 3, 2 and 1 study, respectively. As expected from the addition 

of five individual scores, the highest absolute average scores were obtained for genes 

represented in a higher number of studies.  
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Results B: Contribution of individual studies to the MPNST vs. NF gene signature 

 

Although the five individual studies show similar patterns of gene score distribution (S1 

Fig), they contribute unequally to the MPNST vs. NF gene signature. Both human and 

mouse studies from the GSE41747 accession contributed with the highest number of 

genes to the gene signature, and studies E-TABM-69 and GSE66743 with the lowest 

(S1 Fig and Table A). However, the amount of genes from studies E-TABM-69 and 

GSE66743 present in the MPNST vs. NF gene signature considerably increased in 

comparison with the previous unfiltered gene list. Only 7.86 and 6.66% of genes with 

non-null score from individual studies E-TABM-69 and GSE66743, respectively, were 

in the unfiltered gene list, whereas these ratios arose to 34.71% and 39.72% in the 

MPNST vs. NF gene signature. The addition of the gene number from all studies that 

contribute to the unfiltered gene list covers 1.32 times the length of the unfiltered gene 

list (first column score ≠ 0 divided by 7064). In contrast, the total amount of genes from 

all studies included in the MPNST vs. NF gene signature covered 2.82 times the length 

of the gene signature (second column score ≠ 0 divided by 579). This indicates that 

genes included in the final gene signature relied on score values computed from a 

higher amount of studies than genes from the unfiltered list. This result agreed with the 

above described BD-ratios in which 91.53% of genes from the gene signature relied on 

score values computed from more than one study.  

 

Table A: Microarray studies selected from GEO and ArrayExpress databases 
included in MPNST vs. NF meta-analysis 

Organism 

 

Accession 

 

Probe 
number 

 
Final 
probe 

number
1 

 

adj.pval
2 

<0.05 
(ENSEMBL 

gene 
number) 

 
Unfiltered MPNST vs. NF gene list 

(7064 genes) 
 

MPNST vs. NF gene signature 

(579 genes) 

     

score ≠ 0 
(ENSEMBL 

gene 

number) 

 
max 

(adj.pval
2
) 
 
max(logFC

2
) 

[score < 0] 
 
min(logFC

2
) 

[score > 0] 
 

score ≠ 0 
(ENSEMBL 

gene 
number) 

 
max 

(adj.pval
2
) 
 
max(logFC

2
) 

[score < 0] 
 

min(logFC
2
) 

[score > 0] 

Human 

 E-MEXP-353
3 

 22283  13,487  2,670  850  0.00351  -0.5328  0.5878  293  0.00351  -0.7374  0.8759 

 E-TABM-69
3 

 19061  1,478  1,352  555  0.00054  -0.4648  0.4649  201  0.00052  -0.6420  0.7297 

 GSE41747
4,5

  54675  20,776  7,909  3,108  0.00082  -0.3467  0.3194  512  0.00079  -0.9829  0.6547 

 
GSE66743

4 
 33025  1,340  989  471  0.00071  -0.9010  0.8691  230  0.00071  -1.3152  0.9312 

Mouse  GSE41747
4 

 45101  33,061  10,982  4,307  0.00036  -0.1959  0.2262  394  0.00025  -0.4115  0.4626 

 

1
Obtained after the first two screening steps of preprocessing of microarray studies. 

2
adj.pval and logFC values obtained from MPNST vs. NF differential gene expression analysis with limma R package. 

3
Accession number from ArrayExpress database. 

4
Accession number from GEO database. 

5
Data included in GSE14038 accession. 

 

The maximum adj.pval for genes with non-null score, for every study both in the gene 

signature and in the unfiltered list, was lower than the commonly used 0.05 to select 

differentially expressed genes, indicating that score selected genes were significantly 
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up- or downregulated, respectively, in every individual study (Table A). However, as 

columns max(logFC) and min(logFC) show, gene scores sij did not discriminate for high 

absolute logFC values. Due to the last filter step, these logFC values resulted slightly 

higher in the gene signature compared to the unfiltered gene list. 

 

Results C: Genes included in main functional pathways associated to the MPNST 

vs. NF signature 

 

Most upregulated genes were implicated in DNA replication and cell cycle, which are 

the main pathways involved in cell proliferation. Replication pathway concentrated 

genes involved in initiation of replication (CDC6, CDC45, CDT1, DBF4, GINS1, GINS2, 

MCM2, MCM4, MCM6), in elongation (RFC4), in sealing of nicks (LIG1), in control of 

replication (GMNN, PCNA), and in providing precursors for DNA synthesis (RRM2, and 

TYMS, targets of a cyclin-dependent kinase inhibitor [1], and of the chemotherapeutic 

agent 5-fluorouracil [2], respectively, in colorectal cancer). AURKA, AURKB, BIRC5 

and CDCA8 are mitotic genes, members of the chromosomal passenger (CPC) 

complex, essential for alignment and segregation of chromosomes; PTTG1 regulates 

chromosome stability; SPDL1 and centromere proteins CENPA, CENPE, CENPF, 

CENPH, CENPI, CENPK, CENPN and CENPU were involved in protein recruitment to 

the centromere and kinetochore, mitotic progression and chromosome segregation; 

CASC5, KNTC1, MAD2L1, ZWINT, ZWILCH, SKA1, and NDC80 kinetochore complex 

components NDC80, NUF2, SPC24, SPC25, were required for chromosome 

segregation and spindle checkpoint activity; BUB1, BUB1B, CDK2, CHEK1, CKS1B, 

NEK2 appeared as mitotic checkpoint kinases, whereas PLK4 kinase regulates 

centriole duplication; CCNA2, CCNB1 and CCNB2 are cyclins that bind and activate 

mitotic kinases to promote cell cycle transitions; CDC20 and UBE2C allow cell cycle 

progression by destruction of mitotic cyclins; FBXO5 and SKP2 are involved in 

proteasome degradation of target proteins; chromosome cohesion was due to RAD21, 

SGOL1/SGO1 and, in meiosis, SGOL2/SGO2; NCAPG, NCAPH, NCAPD2, NCAPG2 

and SMC4 are members of the condensin complex; and KIF18A, KIF18B, KIF20A, 

KIF23, KIF2C, and ECT2 take part in the kinesin complex. The KEGG extracellular 

matrix (ECM)-receptor pathway contains the potent apoptosis suppressor COMP, the 

motility receptor HMMR, the adhesion integrin ITGA4, and the osteopontin SPP1, 

relevant in interactions between the cell and the ECM. The KEGG ECM-receptor 

pathway is essential for cell maintenance and tissue and organ morphogenesis, 

involves fibril forming collagen from connective and cartilaginous tissues. We found 

that some genes in this pathway were shared with the Reactome pathway of 
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interactions with the neural adhesion immunoglobulin NCAM1. 

 

Downregulated genes included in the immunity pathway related with complement 

activation incorporated regulatory elements of that pathway (CD55, A2M, PROS1, 

SERPING1 and CD59) in addition to complement components (C1S, C3, C4A, C4B 

and CFD). KEGG pathway of cell adhesion molecules (CAMs) groups glycoproteins 

located in the cell surface: integrins such as ITGA6 and ITGB8; immunoglobulins such 

as JAM2, CD58 and others related with the nervous system, such as L1CAM, the 

synaptic and potential tumor supressor CADM1, the brain specific receptor CADM3, 

the neuronal growth regulator NEGR1; selectins such as SELPLG; NLGN3, a 

neuroligin; MPZ, the main structural component of the peripheral myelin sheath; and 

cadherins CDH19 and PCDH20. Down-regulated genes also showed over-

representation of circulating particles released into the extracellular space (blood 

microparticles). 

 

Results D: Characterization of additional NF1-related gene signatures  

 

In addition to the MPNST vs. NF comparison meta-analysis, we carried out other five 

comparisons: 2 meta-analyses to integrate nerve tumor tissue from human and mouse 

in comparisons NF vs. control and MPNST vs. control; 1 meta-analysis that combines 

human cell cultures to compare MPNST vs. control (MPNST cell lines vs. NHSC); 2 

differential analyses from human cultured cells in NF vs. control (primary NFSC vs. 

NHSC) and MPNST vs. NF (MPNST cell lines vs. primary NFSC) comparisons. The 

number of genes that exhibited non-null scores in all comparisons of NF1-related 

signatures, both in cell cultures and in tumor tissue, is shown in Table B. The 

comparison MPNST vs. control showed the highest number of changes in gene 

expression in both types of tissue. The comparison NF vs. control showed the lowest 

amount of changes, especially in cultured cells. 
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Table B: Number of genes included in Neurofibromatosis gene signatures. 

Tissue 

 

Organism 

 

Gene list 

 NF vs. control  MPNST vs. control  MPNST vs. NF 

   
Up-

regulated 
(score >0) 

 
Down-

regulated 
(score < 0) 

 Total  

Up-
regulated 
(score > 

0) 

 
Down-

regulated 
(score < 0) 

 Total  
Up-

regulated 
(score >0) 

 
Down-

regulated 
(score < 0) 

 Total 

Cell 
cultures 

 

Human 

 Unfiltered 
list

1
 

 623  533  1156  4486  3900  8386  1591  1342  2933 

  
Gene 

signature
2  63  54  117  449  390  839  160  135  295 

Nerve 
tumors 

 
Human/ 
Mouse 

 Unfiltered 
list

1
 

 3687  2892  6579  5204  3602  8806  4059  3005  7064 

  
Gene 

signature
2
 
 369  290  659  521  363  884  336  243  579 

 

1
Complete lists included in S2 Table. 

2
Gene lists bold-highlighted in S2 Table . 

 

In tumor tissues, the MPNST vs. NF signature shared more genes with the gene 

signature MPNST vs. control than with the NF vs. control. Respective 67 and 36% of 

up- and downregulated genes from comparison MPNST vs. NF behaved similarly in 

MPNST vs. control, i.e. the score sign was identical in both comparisons. There were 

no genes showing opposite behavior, i.e. upregulated genes in one comparison being 

downregulated in the other one. Similar percentages of 66 and 48% were obtained 

comparing up- and downregulated genes from unfiltered lists of MPNST vs. NF and 

MPNST vs. control. In this case, a small percentage of 4 and 6% of up- and 

downregulated genes in MPNST vs. NF list showed score of opposite sign in MPNST 

vs. control gene list. In contrast, only 3 and 5% of up- and downregulated genes from 

MPNST vs. NF signature (25 and 20% in the unfiltered gene lists), respectively, 

appeared included in NF vs. control gene signature, indicating a lower similarity 

between these two signatures. Moreover, 1 and 5% of up- and downregulated genes, 

respectively, in the MPNST vs. NF signature exhibited opposite behavior in the NF vs. 

control signature. The amount of genes that showed opposite behavior in respective 

unfiltered gene lists increased to around 10 and 20%. The two additional tumor tissue 

gene signatures obtained from comparisons MPNST vs. control and NF vs. control also 

shared a quite large amount of genes. 23 and 38% of genes from the MPNST vs. 

control signature were also up- and down- regulated, respectively, in the NF vs. control 

gene signature. These percentages increased to 48 and 59% when we compared the 

unfiltered gene lists. 

 

Compared to tumor tissue, the MPNST vs. NF signature shared a similar high number 



8 

 

of genes with the MPNST vs. control comparison in cell cultures. 56 and 77% of up- 

and down- regulated genes, respectively, from the MPNST vs. NF signature showed 

the same behavior in the MPNST vs. control comparison. There were no gene scores 

with opposite sign. Analogously, percentages 75 and 81 were computed for the 

unfiltered gene lists. Less than 1% of genes from MPNST vs. NF signature had scores 

with opposite sign in MPNST vs. control comparison. In contrast, and in agreement 

with tumor tissues, gene signatures from comparisons MPNST vs. NF and NF vs. 

control showed low similarity in cell cultures. Only 1 and 3% (4 and 13% comparing 

unfiltered gene lists) of respective up- and downregulated genes from MPNST vs. NF 

signature behaved in the same way in NF vs. control gene signature. Concerning cell 

culture comparisons MPNST vs. control and NF vs. control, most part of the small NF 

vs. control gene signature was included in the MPNST vs. control signature (60 and 

59% of up and down- regulated genes, respectively). Higher percentages were 

observed for unfiltered signatures (68 and 83%, respectively).  

 

To further examine similarities and differences between tumor tissue and cell cultures, 

we compared independently gene signatures from each comparison (MPNST vs. NF, 

MPNST vs. control and NF vs. control) in both types of tissue. High differences were 

observed between tumor tissue and cell cultures. Tumor tissue comparisons MPNST 

vs. NF, MPNST vs. control and NF vs. control only shared 12, 18 and 3% of genes with 

their respective cultured cell signatures. Although these percentages arose to 21, 42 

and 6% in unfiltered gene lists, the amount of genes showing opposite behavior also 

increased between 3 and 5 times. Differences associated to the nature of the tissue 

probably contributed to such big different behavior between tumor tissue and cultured 

cells.  

 

Due to the differences between cultured cells and tumor tissue in terms of gene 

expression, we expected analogous differences in the functional characterization of 

these gene signatures in the three comparisons considered: MPNST vs. NF, MPNST 

vs. control and NF vs. control. S14 Table summarizes biological process GO term 

enrichment for up- and down- regulated genes of each comparison.  

 

As anticipated, a lot of similarities between GO terms associated to upregulated genes 

from MPNST vs. NF and MPNST vs. control were observed in tumor tissue. The 

MPNST vs. control signature showed a high number of GO terms associated to cell 

proliferation (52%), as well as morphogenesis and development of several systems 

according specification patterns, particularly nervous, skeletal, gastric, urogenital, 
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reproductive systems, hearth, and sense organs. Other GO terms were related to 

transcriptional activity and processes involved in malignancy such as collagen catabolic 

process, epithelial cell differentiation and cell migration (Table C in S14 Table). Unlike 

the MPNST vs. NF downregulated gene signature, no immunity GO terms associated 

to the MPNST vs. control downregulated genes were observed. This difference was 

still maintained when we compare the unfiltered gene lists. Instead, in common with the 

MPNST vs. NF signature, downregulated genes from MPNST vs. control comparison 

also seemed to control the peripheral nervous system development. Terms related to 

muscle system organization, regulation of membrane potential and regulation of 

phosphatidylinositol 3-kinase signaling also occurred (Table D in S14 Table).  

 

The same differences and similarities observed between cultured cells and tumor 

tissue in the MPNST vs. NF comparison were observed in the MPNST vs. control 

comparison. GO terms related with cell proliferation from tumor tissue signatures for 

MPNST vs. NF and MPNST vs. control were nearly absent from signatures for these 

comparisons in culture cells. This difference was not observed when we evaluated the 

unfiltered gene lists for these two comparisons, which suggested lower scores for cell 

proliferation genes in cultured cells than in tumor tissue. In contrast, immune response 

positively associated to downregulated genes was observed for tumor tissue and 

cultured cells of MPNST vs. NF, but only for cultured cells of MPNST vs. control and 

not in the tumor tissue comparison. This difference was maintained when we compared 

unfiltered gene lists. In turn, many terms involving development, signal transduction, 

cell communication and migration can also be observed in MPNST vs. control gene 

signature (Table E in S14 Table). In MPNST vs. control downregulated genes, several 

GO terms associated to acquired immune response, development of peripheral 

nervous system, ECM organization and cell migration were over-represented (Table F 

in S14 Table).  

 

Finally, the biggest difference in GO term representation was seen between 

comparisons MPNST vs. NF and NF vs. control. In tumor tissue NF vs. control 

comparison, most GO terms associated to upregulated genes were related with 

synaptic transmission (Ca2+ transport, membrane potential and synaptic exocytosis) 

(Table G in S14 Table). However, GO terms associated to cultured cells were related 

to growth and development, including branching morphogenesis of epithelial tubes and 

regulation of developmental bone morphogenetic (BMP) signaling pathway. Regulation 

of epithelial and mesenchymal cell proliferation, and ECM organization were also over-

represented in GO terms associated to upregulated genes from cultured cells of NF vs. 
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control comparison (Table I in S14 Table). Considering the unfiltered lists of 

upregulated genes, several GO terms associated to innate immune response can be 

observed in NF vs. control comparison for tumor tissue and cultured cells. Instead, 

axonogenesis was the unique GO term linked to downregulated genes.  

 

Results E: Homogeneity of gene profiles in each SOTA cluster 

 

To check homogeneity of gene patterns in each cluster, Fig B illustrates the particular 

behavior of each gene in SOTA clusters.  
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Although in general gene profiles fairly fit centroid vectors, some of the most populated 

clusters 16, 20-23 and 31 showed gene profiles that slightly differed from consensus 

centroids. The landscape of cluster profiles shows similarity among certain profiles 

according with their proximity in the SOTA tree. Additionally, these profiles remark the 

lack of symmetry in cell cultures regarding nerve tumors, particularly in clusters 7, 8, 

16, 17, 20-22, 25, 26, 28, 30-35, 38 and 39. Cluster 33 presented the highest 

asymmetry between cell cultures and nerve tumor comparisons because most of genes 

were upregulated in cell cultures and downregulated in nerve tumors. 
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Discussion A: Comparison between over-represented chromosome regions in 

the MPNST vs. NF gene signature and previously described MPNST aberrant 

chromosome modifications  

 

In order to correlate gene expression with gain or loss of chromosomic regions, we 

included as attribute for each gene the encoding chromosomic region. Despite 

differences reported in genomic aberrations (reviewed by Yang and Du [3]), our results 

corroborated the enrichment in chromosome regions previously described. Typical gain 

regions located in chromosome arms 7p, 8q and 17q, and we have found these regions 

over-represented, containing upregulated genes of the MPNST vs. NF gene signature 

and of the unfiltered list. In addition, we also identified gene enrichment in chromosome 

arm 4q, proposed as over-represented region [4]. The chromosome arm 15q [5], also 

reported as gene enriched, resulted only over-represented when we considered the 

unfiltered gene list, which indicates that genes included in this arm showed lower 

scores. Nevertheless, the over-representation of three bands from chromosome arm 

15q illustrates the relevance of this region including cell proliferation genes, particularly 

four from the top 20 upregulated genes (KIAA0101, NUSAP1, PRC1 and CCNB2). 

Over-representation of chromosome bands from the distal part of chromosome arm 

17q included TOP2A, BIRC5 and TK1 genes. As this region was gained in five patients 

with poor outcome, a prognostic value has been associated to this amplification [6,7]. 

Besides these genes, FOXM1, LOXL2 and EYA4 were also described as upregulated 

and included in MPNST aberrant amplified genomic regions, in agreement with our 

results. In contrast with their over-expression in the gene signature, HMMR and 

MMP13 were described as included in significant deleted chromosome regions (S11 

Table). 

 

We identified chromosome arm 3p over-represented for downregulated genes with the 

lowest cumulative probability and, with increasing probability, chromosome arms 1p, 

5q, and 11q. Chromosome arms 1p, 3p and 11q also showed gene enrichment in the 

unfiltered downregulated gene list. Whereas chromosome arm 1p was reported as 

included in significant deleted regions, 3p and 11q were not previously described. 

Chromosome arm 3p includes a heterogeneous set of genes mainly involved in cell 

adhesion, cell communication, immune response, nervous system development and 

axon guidance. Some of them are related with cancer, particularly encoding genes for 

the Ser/Thr kinase TGFBR2 and the metalloproteinase inhibitor TIMP4. Chromosome 

arm 11q includes three of the 20 bottom signature genes (PLEKHB1, CRYAB and 
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ENDOD1). Unlike MPNST vs. NF gene signature, the whole unfiltered list also showed 

over-representation of 9p and 17p chromosome arms. Over-representation of band 

17p13.1 for downregulated genes agreed with the MPNST deletion of this region 

encoding the tumor suppressor TP53 [8,9]. In turn, we did not find either over-

representation among downregulated genes of band 9p21, the most frequently deleted 

region in MPNST [10]. In fact, CDKN2A and CDKN2B, located in that region, were only 

slightly downregulated in the unfiltered gene list. Considering reported downregulated 

genes related with NF and/or MPNST (S12 Table), in agreement with its 

downregulation, RASSF2 is located in a significantly deleted region, whereas ITGB4, 

although downregulated, it locates in a MPNST amplified region, the distal part of 

chromosome arm 17q. NKAIN2 and RABGAP1L, unexpectedly, were associated to 

deleted chromosomal regions in cutaneous NF1 neurofibromas.  

 

Discussion B: Expression profile differences between cultured cells and nerve 

tumors observed in SOX9, SUZ12, EGFR, SPP1 and BMP2 genes 

 

SOX9 was highly upregulated in cell culture comparisons whereas only a slight and 

moderate upregulation was seen in MPNST vs. NF and MPNST vs. control 

comparisons (S8 Table). In fact, the chosen score threshold of MPNST vs. NF gene 

signature avoided the inclusion of SOX9 in this signature. In agreement with our 

results, Kolberg et al., [6] were unable to find upregulation for SOX9. SUZ12, the gene 

encoding one of the members of the silencing epigenetic complex PRC2, that in 

agreement with De Raedt et al. [11] was downregulated in the comparison MPNST vs. 

NHSC, did not show downregulation in tumor tissue. The gene encoding the epidermal 

growth factor receptor EGFR, reported to be amplified and upregulated in MPNST in 

several studies [12–14], was clearly upregulated in our data in the three comparisons 

from cell cultures, but it only showed to be upregulated in MPNST vs. control 

comparison in tumor tissue. Again, in agreement with Kolberg et al. [6], EGFR was not 

upregulated in the MPNST vs. NF comparison in tumor tissue. More paradoxical 

resulted the encoding gene for the osteopontin SPP1, that in agreement with Thomas 

et al. [15], resulted upregulated in the comparison MPNST vs. NF of tumor tissue, but it 

showed to be downregulated in cell cultures. In the unfiltered gene lists (Table J in S2 

Table), the gene encoding the bone morphogenetic protein BMP2 was differentially up-

regulated in MPNST cultured cells compared to control cells [16], but it was excluded 

from that respective gene signature due to the score threshold. In contrast with cultured 

cells, BMP2 did not show upregulation in tumor MPNST vs. NF comparison. All these 

comparisons between our results and others previously reported suggest that some 
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differences in gene expression, imputed to intrinsic variation among tumors, might be 

due to the nature of tissue. 

 

Discussion C: Panel of genes potentially silenced by hypermethylation of their 

CpG-island promoter region 

 

In addition to RASSF1, other proteins seem to contribute to control the cell cycle arrest 

in different ways (S10 Table): the Ras oncogene family member RAB40B, involved in 

proteasomal degradation of target proteins; the cell growth suppressor FAM107A; the 

transcriptional repressor FOXS1; RHBDF1, the indirect activator of EGFR, that 

regulates cell survival, proliferation and migration; the mediator of cell survival NGFR; 

the regulator of cell cycle progression MX2; the proto-oncogene FGR, that negatively 

regulates cell migration and adhesion; INPP5D, the negative regulator of proliferation 

and survival of myeloid cells; the anti-apoptotic STAT6, an important diagnostic marker 

for solitary fibrous tumor [17]; the tumor suppressor CADM4; and the regulator of cell 

survival and apoptosis TRAF1.  

 

As regulators of immune responses, S10 Table includes the GTPase activating protein 

RAP1GAP2, FGR, the proto-oncogene HCK, the arrestin ARRB1, the atypical 

chemokine receptor ACKR1, and the marker for neural crest Schwann cell lineage 

S100B. The EF-hand binding protein S100B is involved in intra and extracellular 

activities as regulator and signal [18]. S100B is downregulated in astrocytes by the 

epidermal growth factor EGF and the pro-inflammatory cytokine interferon (IFN)-γ [19]. 

It shows a complex transcriptional regulation that has not been addressed in the 

MPNST progression. S100B regulates Schwann cell proliferation and myelination with 

its co-regulator SOX10, described as hypermethylated [20]. However, due to our 

restrict threshold conditions, SOX10 was only found differentially hypermethylated in 

MPNST vs. control comparison. Besides S100B, other proteins involved in nervous 

system development and function are the signal transduction phosphatase inhibitor 

PPP1R1B, the nerve growth factor receptor NGFR, the scaffolding protein GRASP, a 

linker of receptors for phosphoinositides to neuronal proteins, the Ras protein 

RASGRF2, the transcription factor SOX8, that has also been related with some types 

of cancer [21], the axon outgrowth suppressor SLITRK2, the regulator of calcineurin 

RCAN1, and several proteins involved in structural functions such as PRIMA1, required 

to anchor acetylcholinesterase to the membrane of neuronal synapses in brain, the 

sialyltransferase ST6GALNAC2, the integrin ITGB4, and the myelin components MBP 

and MPZ.  
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In addition to genes MBP, RABGAP1L, MPZ, ITGB4 and S100B (S12 Table), genes 

PPP1R1B, FGR, NGFR and INPP5D were related with MPNST and/or NF. PPP1R1B 

is a target of hippocampal dopamine. Reduction of dopamine levels thus decreased the 

PP1R1B phosphorylation levels in NF1 male mice [22]. FGR was not hyperexpressed 

in a neurofibrosarcoma compared to control tissue of a NF1 patient [23]. NGFR is a 

Schwann cell differentiation marker, downregulated in MPNST cell lines vs. control 

Schwann cells [24], and functional in NF cells [25]. NGFR acts as tumor suppressor 

that controls survival and death of neural cells, axonal growth and synaptic plasticity 

[26–29]. Its expression has been detected in human cancers of thyroid, stomach and 

liver. The NGFR hypermethylation status has been associated with cell proliferation, 

invasion, formation of colonies, and induced cell apoptosis in human colorectal cancer. 

NGFR silencing in this type of cancer reduced overall survival and disease-free survival 

[30]. Also in agreement with our results, loss of genomic region containing INPP5D 

seemed to cause silencing of INPP5D in cutaneous neurofibromas.  

 

Not only downregulated genes resulted hypermethylated, but also many upregulated 

genes. Promoters of KRT18, MEST, and WT1 genes were differentially 

hypermethylated in comparisons MPNST vs. NF and MPNST vs. control Schwann 

cells. These genes showed a similar pattern of gene upregulation. In agreement with 

our results, keratin KRT18 was reported as upregulated [6,31]. KRT18 is a biomarker 

for clinical diagnosis of cancer [32], although it has not been related with 

hypermethylation. In contrast, the imprinted genes MEST (mesoderm specific 

transcript) and the transcription factor WT1 (Wilms tumor) were related with 

hypermethylation. The modification in methylation levels at regulatory regions of 

imprinted genes, that exhibit preferential expression from a paternal allele, has been 

related with cancer. Aberrant methylation of MEST was associated to cervical cancer 

[33]. Upregulated in several cancers, WT1 acts as an oncogene rather than a tumor 

suppressor [34] and aberrant hypermethylation of this gene was reported in 

hepatocellular carcinoma [35].  

 

Discussion D: HDAC inhibitors counteract repression of CBX7 and over-

expression of EZH2 

 

The tightly regulation of cell migration and invasion by silencing CDH1 not only 

depends on HMGA2 and GSN, but also on the epigenetic Polycomb Repressor 

Complexes PRC1 and PRC2. Protein subunits of PRC1 and PRC2 control 
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developmental programs, whose deregulation drives to develop various types of 

cancer. PRC1 and PRC2, involved in epigenetic regulation of transcription by 

chromatin remodeling, act as transcriptional repressors by histone modification in two 

sequential steps. The first step involves trimethylation of histone H3 by PRC2; in the 

second step, PRC1 monoubiquitinates histone H2A [36]. PRC1 and PRC2 cooperate to 

condensate chromatin because trimethylated histones seem to recruit PRC1 to the 

promoter of target genes and, in addition, PRC1 and PRC2 show coordinate regulation 

in prostate cancer through microRNAs [37]. In MPNST some protein subunits from both 

PRC1 and PRC2 were differentially expressed and contribute to the inactivation of 

these two fundamental epigenetic regulators. The presence among top 20 

downregulated genes in MPNST vs. NF signature of encoding gene for CBX7, the 

histone chromatin remodeling enzyme, component of the epigenetic repressor complex 

PRC1, suggested that PRC1 could also play a role on epigenetic regulation, probably 

impaired during NF malignant transformation. Our results also suggest dysfunction of 

PRC2 due to the over-expression of EZH2, subunit of PRC2. Loss of PRC2 has a 

favorable effect on transcription of genes from the Ras signaling pathway [11].  EZH2 

upregulation and CBX7 downregulation are reported in breast tumors [36]. 

 

CBX7, a protein subunit of PRC1 is silenced in several cancers and proposed for 

evaluation as prognostic marker [38]. CBX7 is involved in the regulation of cell cycle 

and proliferation genes [39]. The loss of expression of CBX7 drives to poor prognosis 

and progression to malignancy due to its essential role in epithelial to mesenchymal 

transition (EMT) [38]. Because CBX7 inhibits the silencing activity of HDAC2 over the 

CDH1 promoter, the downregulation of CBX7 drives to EMT and to the malignant 

phenotype [40], not only by its lack of binding to CDH1 promoter, but also by the lack of 

repression of the osteopontin gene SPP1 (rank position 141 in Table A  in S2 Table) 

and other genes associated with cell migration and invasion [41,42]. HDAC inhibitors 

avoid the silencing effect of HDAC2 over CDH1 promoter, neutralizing the silencing of 

CBX7 and restoring expression levels of CDH1, which contributes to avoid metastasis. 

Being regulated by a member of the HMGA protein family, CBX7 could also be an 

indirect target of HDAC inhibitors [38].  

 

The upregulation of the PRC2 protein component EZH2 (rank position 114 in Table A 

in S2 Table), has also been reported to promote the invasive phenotype by inhibiting 

the expression of CDH1 by histone methylation at the CDH1 promoter region. TSA and 

vorinostat HDAC inhibitors would reverse CDH1 silencing by reducing the PRC2 

occupancy on the CDH1 promoter, attenuating the metastatic phenotype [43]. PRC2 
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inactivation depends on co-deletion/mutation of NF1 and SUZ12 and/or EED, genes 

encoding two subunits of PRC2 [11]. Whereas SUZ12 and EED were not significantly 

deregulated in MPNST vs. NF gene signature, EZH2 appeared highly induced. This 

contradictory upregulation of EZH2, reported in multiple types of cancers, and 

correlated with poor prognosis, may be explained by a oncogenic activity of EZH2 

independent of its transcriptional repression function [44], or as a consequence of the 

high cell proliferation rate rather than a cause of that proliferation [45]. In fact, EZH2 

expression correlated with the expression of the proliferation marker MKI67, ranking in 

position 32 in the gene signature. Consequently, the inhibition of EZH2 has shown 

antitumor effects in MPNST [46]. In agreement with De Raedt et al. [11], at least in 

MPNST showing co-deletion/mutation of SUZ12 and EED, the use of EZH2 inhibitors 

as therapeutic agents could exacerbate the malignant phenotype. However, TSA and 

vorinostat HDAC inhibitors would prevent the activity of EZH2 without disturbing PRC2 

protein-protein interactions and without altering the expression of PRC2 members, 

including HDAC1 [43].  

 

Discussion E: Supplementation with acetate precursors as coadjuvant 

chemotherapy 

 

The encoding gene for the aspartatoacylase ASPA, which metabolizes N-acetyl-L-

aspartic acid (NAA) to aspartate and acetate, ranks in position 10 among negative 

score genes from MPNST vs. NF gene signature. Although ASPA protein is better 

known by its role in myelin lipid biosynthesis in central nervous system, essential to 

maintain intact the white matter, it is also involved in neuroblastoma, a cancer of the 

sympathetic nervous system in which low expression correlates with poor prognosis 

[47]. It is downregulated at both mRNA and protein levels in esophageal squamous cell 

carcinoma, glioma and glioblastoma [48–50]. The metabolic reprogramming due to the 

lack of ASPA causes the starvation of its final product, acetate, the essential precursor 

for oligodendrocyte myelination and histone acetylation. This metabolic inhibition of 

histone acetylation induces tumor cell transformation. The supplementation with an 

external source of acetate could solve the metabolic problem. In fact, a preclinical 

study testing the supplementation of glycerol triacetate (GTA) as a chemotherapeutic 

coadjuvant has been reported in glioma [51]. GTA is hydrophobic and able to cross the 

blood-brain barrier and plasma membranes. The cytostatic growth arrest caused by 

GTA was similar to the growth arrest obtained with the HDAC inhibitor vorinostat. 

However, this growth arrest was not associated with apoptosis or differentiation, but to 

the increased acetylation of proteins involved in cell cycle regulation [52].  
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In addition to ASPA, the enzyme ADH1B could be de-regulated in the provision of 

acetate. It ranks in position 7 among negative gene scores of the MPNST vs. NF 

signature. This enzyme catalyzes the conversion of alcohol in acetaldehyde. In a 

second step of alcohol degradation, the aldehyde dehydrogenase ALDH2 oxidizes 

acetaldehyde to acetate. Although the upregulation of ADH1B has been associated 

with poor prognosis in high-grade serous ovarian cancer [53], it was downregulated in 

tongue squamous cell carcinoma [54], and appeared upregulated or downregulated at 

later stages of fetal lung development [55]. The lack of ADH1B in MPNST points to a 

similar role as ASPA to generate acetylation precursors. Then, supplementation with 

GTA as coadjuvant chemotherapy could complement two metabolic pathways involved 

in the synthesis of acetate, involving ASPA and ADH1B. The required experimental 

confirmation is indispensable to validate this hypothesis. 
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Materials and methods A: Microarray data pre-processing 

 

Affymetrix platform data were normalized by the function rma from affy package [56] 

that uses the robust multi-array average (RMA) expression measure. We normalized 

Agilent platform data within and between arrays by methods loess and quantiles by 

using the limma R package [57]. After normalization, R and G normalized values were 

retrieved from MA matrix values to obtain a normalized expression set, including 

reference values of the two color platform by using the R conversion formula 

R=2^((1/2)*(M+2A)); G=2^((1/2)*(-M+2A)). ABI platform data was normalized by 

quantiles through the function qnNormalize from ABarray package [58]. When sample 

batch information was provided in the experiment, we adjusted for batch effects the 

expression set obtained for each study by the function ComBat of sva package [59] by 

using the R code:  

###Exprs set batch adjustment 

library(sva) 

Batch = targets$batch 

mod = model.matrix(~as.factor(phenotype), data=targets) 

Exprs_adjusted = ComBat(dat=Exprs_0, batch=Batch, mod=mod, 

par.prior=TRUE, prior.plots=FALSE) 

 

The resulting expression set was filtered twice to remove features showing little 

variation. The first filter ruled out features with expression values with standard 

deviation lower than quantile 0.2 by varFilter function from genefilter package [60] or a 

similar R script: 

 ###Filtering 

library(genefilter) 

esetIQR <- varFilter(eset, var.func=sd, var.cutoff=0.2, 

filterByQuantile=TRUE)  

Exprs_filtered<-exprs(esetIQR) 

###or 

Exprs_filtered<-matrix(nrow= nrow, ncol= 1, apply(Exprs, 1, sd)) 

rownames(Exprs_filtered)<-rownames(Exprs) 

Exprs_filtered<- Exprs [rownames(as.matrix(Exprs_filtered 

[Exprs_filtered [,1] > quantile (Exprs_filtered [,1], 0.2),])), ] 

 

R code to discard features with FDR values >0.05 obtained by ANOVA in the limma 

package [57]: 

 library(limma) 

phenotypes<-factor(colnames(Exprs_filtered)) 

aof<-function(x){m<-data.frame(phenotypes,x);anova(aov(x~phenotypes,m))} 

anovaresults<-apply(Exprs_filtered, 1, aof) 

pvalues<-data.frame(lapply(anovaresults,function(x){x["Pr(>F)"][1,]})) 

tpvalues<-t(pvalues) 

colnames(tpvalues)<-"pvalue" 

fdr.result<-p.adjust(tpvalues[,1], "BH") 

bhtresh<-cbind(tpvalues, fdr.result) 

order_bhtresh<-bhtresh[order(fdr.result),] 

row.names(order_bhtresh)<-

substring(row.names(order_bhtresh),2,nchar(row.names(order_bhtresh))) 



20 

 

Exprs_filtered_anova<- Exprs_filtered [rownames(Exprs_filtered) %in% 

rownames(order_bhtresh[order_bhtresh[,2] < 0.05,]),] 

 

R code used to analyze principal components (PCA): 
Exprs_2<- Exprs_filtered_anova 

Exprs_2_t<-t(Exprs_2) 

Exprs_2_t_out=prcomp(Exprs_2_t,scale=TRUE) 

Cols = function(vec) { 

    cols = rainbow(length(unique(vec))) 

    return(cols[as.numeric(as.factor(vec))]) 

} 

###plot in two dimensions 

par(mfrow = c(1,2)) 

plot(Exprs_2_t_out$x[,1:2],col = Cols(classes),pch =19,  

       xlab ="PC1",ylab ="PC2") 

plot(Exprs_2_t_out$x[,c(1,3)], col = Cols(classes),pch =19, 

       xlab ="PC1",ylab ="PC3") 

 

R code to determine differentially expressed genes with the limma package [57]: 
library(limma) 

phenotypes<-factor(colnames(Exprs_2)) 

###Levels: Phenotype1   Phenotype2   Phenotype3 

design<-model.matrix(~0+phenotypes)  #or#    

design<- modelMatrix(targets,ref="Universal_RNA")                                                                   

colnames(design)<-levels(phenotypes) 

fit <-lmFit(Exprs_2, design) #or# fit<-lmFit(MA, design) 

cont.matrix<-makeContrasts("Phenotype1vsPhenotype2"= Phenotype1  -

Phenotype2   , "Phenotype1vsPhenotype3"= Phenotype1-Phenotype3,  

"Phenotype2vsPhenotype3"= Phenotype2-Phenotype3, levels=design) 

fit2<-contrasts.fit(fit, cont.matrix) 

fit2<-eBayes(fit2) 

   

###Comparison Phenotype1vsPhenotype2  

toptable_coef_Phenotype1vsPhenotype2<-toptable(fit2,coef=" 

Phenotype1vsPhenotype2", n=nrow(fit), adjust.method="BH") 

 

Materials and methods B: Translation from probe names to human ENSEMBL 

gene IDs, HUGO IDs and mapping in human chromosome arms 

 

R code to translate probe names of Affymetrix U133 Plus 2.0 platform (example) by 
using the biomaRt package ([61]: 

library(biomaRt) 

ensembl = useMart(biomart = 

"ENSEMBL_MART_ENSEMBL",dataset="hsapiens_gene_ensembl", host = 

"sep2015.archive.ensembl.org") 

humanensembl<-useDataset("hsapiens_gene_ensembl", mart=ensembl) 

probe_to_gene<-getBM(attributes = c("affy_hg_u133_plus_2", 

"ensembl_gene_id","hgnc_symbol", "chromosome_name", "band"), 

mart=humanensembl) 
 

Materials and methods C: Scores of genes across studies and final score for 

each gene in a comparison between two phenotypes 

 

The score sij for each gene (i) in each comparison study (j) was calculated modifying 

the previously proposed formula [62], as follows: 
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𝑠𝑖𝑗 = {
𝑆(𝑙𝑜𝑔𝐹𝐶_𝑚𝑖𝑗) (1 −

𝑀𝐴𝐷𝑖𝑗

|𝑙𝑜𝑔𝐹𝐶_𝑚𝑖𝑗|
) (1 − 𝑝𝑣𝑎𝑙𝑖𝑗) 𝑝𝑣𝑎𝑙𝑖𝑗 < 0.1,   1 −

𝑀𝐴𝐷𝑖𝑗

|𝑙𝑜𝑔𝐹𝐶_𝑚𝑖𝑗|
> 0,    𝐵 > 0

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

  

𝑆(𝑙𝑜𝑔𝐹𝐶_𝑚𝑖𝑗)  scales 𝑙𝑜𝑔𝐹𝐶_𝑚𝑖𝑗 > 0   𝑏𝑒𝑡𝑤𝑒𝑒𝑛 0 𝑎𝑛𝑑 + 1 𝑎𝑛𝑑 

                                 𝑙𝑜𝑔𝐹𝐶_𝑚𝑖𝑗 < 0    𝑏𝑒𝑡𝑤𝑒𝑒𝑛 − 1 𝑎𝑛𝑑 0 

 

pvalij and Bij factors for each gene in each study were obtained from computation of the 

differential expression between two phenotypes by using the data expression sets and 

the limma R package [57]. MADij is the median deviation of each ratio between two 

phenotypic samples to the logFC_mij: The robust logFC_mij value was calculated as the 

log2 median of all expression ratios among the samples of the phenotypes compared. 

Phenotype expression values were obtained as 2 raised to the expression value 

derived from each microarray normalization step. The normalization step of positive 

and negative logFC_mij values regarding logFC_mij quantiles 99.95% and 0.05%, 

respectively, yielded scaled S(logFC_mij) values normalized between -1 and +1. 

Values of logFC_mij > or < than quantiles 99.95% and 0.05%, respectively, were 

mapped to 1 or -1, respectively. R code used to compute S(logFC_mij) values:  

 

scaled_logFC_median<-numeric() 

for(i in 1: nrow){ 

scaled_logFC_median [i]<-ifelse(logFC_median[i]>0, 

logFC_median[i]/as.numeric(quantile(logFC_median, .9995)), 

logFC_median[i]/abs(as.numeric(quantile(logFC_median, 0.0005))))}  

scaled_logFC_median<- ifelse(scaled_logFC_median > 1, 1, 

scaled_logFC_median) 

scaled_logFC_median<- ifelse(scaled_logFC_median < -1, -1, 

scaled_logFC_median) 

 

The multiplication of the three factors of the formula shown above gave a sij score 

value between -1 and +1, positive for upregulated genes and negative for 

downregulated genes. Unlike the previously described score, our score retained the 

sign of size effect distinguishing up- and downregulated genes across the analysis. 

After computing gene scores in each experiment, we tested the three constraints 

imposed to the calculation of scores, i.e. P-values <0.1 and penalization factors due to 

deviations of size effect and B factors >0. If these constraints were satisfied, gene 

scores retained their values. Otherwise, score values were coerced to zero. R code to 

compute the gene scores sij: 

score<-numeric() 

for(i in 1:nrow){score[i]<- 

scaled_logFC_median [i] * (1 - P.Value[i]) * (1 - 

(MAD[i]/abs(logFC_median[i]))) } 

 

###Conditions for score 

for(i in 1:nrow){score[i]<- 

ifelse((1 - (MAD[i]/abs(logFC_median[i]))) [i] < 0, 0, score[i])} 
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for(i in 1:nrow){score[i]<- ifelse(P.Value[i] > 0.1, 0, score[i])} 

for(i in 1:nrow){score[i]<-ifelse(B[i] < 0, 0, score[i])} 

 

Materials and methods D: Computation of bias in score values among studies: 

Bhattacharyya distance (BD) ratio 

 

R code (apply for all genes):  

###nplatform: number of independent studies 

###s: final score 

###s1: human score 1 

###s2: human score 2 

###s3: human score 3 

###s4: human score 4 

###sm: mouse score 

###max_s: maximum score (excluding mouse data) 

max_s <- max(c(abs(s1), abs(s2), abs(s3), abs(s4)), na.rm=T) 

###max_b: maximum score (including mouse data) 

max_b <- max(c(abs(s1), abs(s2), abs(s3), abs(s4), abs(sm)), na.rm=T)  

###genename: gene name 

###only_human: list of genes ignoring mouse data 

###Gene Bhattacharya distance 

Bhattacharyya_dist<-numeric() 

Bhattacharyya_dist[i]<-  

ifelse(!is.na(s) & s !=0, 

                   ifelse(nplatform > 0, 

                        ifelse(genename %in% only_human, 

                                                                

(-1)*log((1/nplatform)*(sum(c(sqrt(abs(s1)/max_s),sqrt(abs(s2)/max_s), 

sqrt(abs(s3)/max_s), sqrt(abs(s4)/max_s)), na.rm=T))),                            

(-1)*log((1/nplatform)*(sum(c(sqrt(abs(s1)/max_b), sqrt(abs(s2)/max_b), 

sqrt(abs(s3)/max_b), sqrt(abs(s4)/max_b), sqrt(abs(sm)/max_b)), 

na.rm=T)))), NA), NA) 

###Gene DB maximum  

max_BD<-numeric() 

max_BD<-ifelse(nplatform==5,(-1)*log(1/5), 

               ifelse(nplatform==4, (-1)*log(1/4), 

                      ifelse(nplatform==3, (-1)*log(1/3), 

                            ifelse(nplatform==2, (-1)*log(1/2),  

                                   ifelse(nplatform==1, 0, NA))))) 

###Gene BD_ratio 

BD_ratio<-numeric() 

BD_ratio<-ifelse(nplatform>1, (Bhattacharyya_dist *100)/max_DB, 

                                      ifelse(nplatform==1, 0, NA)) 

 

 



23 

 

Materials and methods E: DNA methylation analysis 

 

SRA files were downloaded from GEO database and transformed to fasq format by the 

sra.toolkit program. The human genome assembly hg19 (GRCh37) used to align fastq 

sequences was downloaded from UCSC Genome Bioinformatics with the wget 

program. The index reference genome was created by the program bwa [63]. We 

aligned pair end sequences against the reference genome using the program bwa. 

Through the samtools program [64], we transformed sam files to bam files. Appropriate 

alignments of resulting bam files from the 6 replicates per phenotype were displayed 

with the Integrative Genomics Viewer (IGV; [65]) after creating an index for bam files. 

We inspected data by using the MEDIPS R package [66] obtaining Pearson 

correlations between all pairs of samples and calculating coverage saturation and 

calibration plots. Concerning Pearson correlation between all pairs of samples, MPNST 

samples correlated better among them (median 0.95) than NF and control phenotype 

samples (medians 0.87 and 0.89, respectively). Comparing pairs of phenotypes, high 

correlation was observed between NF and control samples (median 0.86) whereas 

these two phenotypes showed lower correlation with MPNST (median 0.65 between 

MPNST and NF, and median 0.59 between MPNST and control samples). To ensure 

that the covering of sequences along the whole genome was sufficient to compute 

differential DNA methylation between pairs of phenotypes, we applied a coverage 

saturation analysis to individual samples. As saturation plots show in Fig C, estimated 

correlation between artificial subsets of sequencing data was higher than 0.9 for every 

sample. MPNST samples showed estimated correlation values of 0.97; samples of NF 

exhibited 0.92 of estimated correlation; and 0.93 was the value for control replicates. 

These results guaranteed enough sequencing depth and allowed us to conclude that 

the selected window size of 200 was appropriate to accomplish the following analysis. 

The calibration plots shown in Fig D indicated that the normalization step regarding 

CpG density assured an effective MeDIP enrichment. We also compared the resulting 

bam files for differential methylation by MEDIPS package. We substituted stacked 

reads by only one representative to avoid false positives in the comparison of 

conditions. Translation of coordinates to promoters was carried out downloading 

coordinates from the UCSC Table Browser, selecting the human assembly Feb. 2009 

(GRCh37/hg19), group Genes and Gene Predictions, track RefSeq Genes, BED output 

format, and get BED after selecting upstream by 1500 bases (promoter). 

 

###DNA methylation analysis 

###Download and reprocessing sra files(command line in linux) 

 ###sra-toolkit program: download fastq files 
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 prefetch –v SRR0427XX fasq.dump –outdir/opt/fastq/ --split-

files/home/sra_files/SRR0427XX.sra 

###wget program: download reference genome hg19 

wget 

http://hgdownload.cse.ucsc.edu/goldenPath/hg19/bigZips/chromFa.tar.gz  

###bwa program: reference genome index 

bwa index –p bwa index –p hg19bwaidx –a bwtsw hg19.fa 

###bwa program: alignment of individual sequences to reference genome  

bwa mem hg19bwaidx SRR0427XX_1.fastq SRR0427XX_2.fastq > SRR0427XX_aln-

pe.sam 

###samtools program:  sam files to bam files  

samtools view –bhuS SRR0427XX_aln-pe.sam | samtools sort – 

SRR0427XX_sorted  

###samtools program: index for bam files  

samtools index SRR0427XX_aln-pe.bam 

 

 

###Files in the R working directory: 

#SRR042748_sorted.bam  

#SRR042750_sorted.bam  

#SRR042752_sorted.bam  

#SRR042754_sorted.bam  

#SRR042756_sorted.bam  

#SRR042758_sorted.bam  

#SRR042760_sorted.bam  

#SRR042762_sorted.bam  

#SRR042764_sorted.bam  

#SRR042766_sorted.bam  

#SRR042768_sorted.bam  

#SRR042770_sorted.bam  

#SRR042772_sorted.bam  

#SRR042774_sorted.bam  

#SRR042776_sorted.bam  

#SRR042778_sorted.bam  

#SRR042780_sorted.bam  

#SRR042782_sorted.bam  

 

###Read the input and create the MEDIPS sets for the three different 

phenotypes (MPNST, NF and Normal) 

library(MEDIPS) 

library(BSgenome.Hsapiens.UCSC.hg19) 

BSgenome="BSgenome.Hsapiens.UCSC.hg19" 

uniq=1e-3 

extend=300 

shift=0 

ws=200 

bam_file_MPNST<-c("SRR042748_sorted.bam", "SRR042750_sorted.bam", 

"SRR042752_sorted.bam", "SRR042754_sorted.bam", "SRR042756_sorted.bam", 

"SRR042758_sorted.bam") 

bam_file_NF<-c("SRR042760_sorted.bam",    "SRR042762_sorted.bam",    

"SRR042764_sorted.bam",   "SRR042766_sorted.bam", "SRR042768_sorted.bam",  

"SRR042770_sorted.bam") 

bam_file_Normal<-c("SRR042772_sorted.bam",   "SRR042774_sorted.bam", 

"SRR042776_sorted.bam",  "SRR042778_sorted.bam", "SRR042780_sorted.bam",  

"SRR042780_sorted.bam", "SRR042782_sorted.bam") 

MPNST_MeDIP = lapply(X=bam_file_MPNST, FUN= MEDIPS.createSet, BSgenome = 

BSgenome, extend = extend, shift = shift, uniq = TRUE, window_size = ws) 

NF_MeDIP = lapply(X=bam_file_NF, FUN= MEDIPS.createSet, BSgenome = BSgenome, 

extend = extend, shift = shift, uniq = TRUE, window_size = ws) 

Normal_MeDIP = lapply(X=bam_file_Normal, FUN= MEDIPS.createSet, BSgenome = 

BSgenome, extend = extend, shift = shift, uniq = TRUE, window_size = ws) 

 

###Local density of CpGs considering the genome and window parameters 

CS_MPNST = MEDIPS.couplingVector(pattern = "CG", refObj = MPNST_MeDIP[[1]]) 

 

###Exploring data and quality control of samples: Obtaining Pearson 

correlations between all pairs of samples 

cor.matrix = MEDIPS.correlation(MSets=c(MPNST_MeDIP, NF_MeDIP, Normal_MeDIP), 



25 

 

plot =T, method ="pearson") 

 

###Exploring data and quality control of samples: Calibration plots for MPNST 

MeDIP set (calibration plots were obtained in a similar way for NF and Normal 

MeDIP sets) 

for (i in 1:length(MPNST_MeDIP)){ 

        png(paste("D:/working_directory/Suppl_Figures/MPNST", 

"/Suppl.Fig1_calibration_MPNST_", i, ".png", sep="")) 

        MEDIPS.plotCalibrationPlot(MSet=MPNST_MeDIP[[i]], CSet=CS_MPNST) 

        dev.off() 

} 

 

###Exploring data and quality control of samples: Saturation analysis for 

MPNST MeDIP set (saturation analyses were carried out in a similar way for NF 

and Normal MeDIP sets) 

for (i in 1:length(MPNST_MeDIP)){ 

  png(paste("D:/working_directory/Suppl_Figures/MPNST", 

"/Suppl.Fig2_saturation_cancer_", i, ".png", sep="")) 

  sr=MEDIPS.saturation(file=bam_file_MPNST[i], BSgenome = BSgenome, uniq = 

TRUE, extend =extend, shift= shift, window_size = ws, nit = 10, nrit = 1, 

empty_bins = TRUE, rank = FALSE) 

  MEDIPS.plotSaturation(sr) 

  dev.off() 

} 

 

###Differential methylation analysis between MPNST and NF (comparisons between 

MPNST vs. Normal and NF vs. Normal were analyzed in a similar way) 

results_MPNST_vs_NF = MEDIPS.meth(MSet1 = cancer_MeDIP, MSet2 = benign_MeDIP, 

CSet = CS_cancer, p.adj = "bonferroni", diff.method = "edgeR",  

                                  MeDIP = T, CNV = F, minRowSum = 10) 

 

 

###Selecting significant windows for MPNST vs. NF comparison (similarly were 

obtained significant windows for MPNST_vs_Normal and NF_vs_Normal): 

mr.edgeR_MeDIP_MPNST_vs_NF.s = MEDIPS.selectSig(results = results_MPNST_vs_NF, 

p.value = 0.1, adj = T, ratio = NULL, bg.counts = NULL, CNV = F) 

###Merging hypermethylated regions   

DMR_MPNST_vs_NF.s.gain = 

mr.edgeR_MeDIP_MPNST_vs_NF.s[which(mr.edgeR_MeDIP_MPNST_vs_NF.s[, 

grep("logFC", colnames(mr.edgeR_MeDIP_MPNST_vs_NF.s))] > 0), ] 

DMR_MPNST_vs_NF.s.gain.m = MEDIPS.mergeFrames(frames = DMR_MPNST_vs_NF.s.gain, 

distance = 1) 

###Merging hypomethylated regions   

DMR_MPNST_vs_NF.s.loss = 

mr.edgeR_MeDIP_MPNST_vs_NF.s[which(mr.edgeR_MeDIP_MPNST_vs_NF.s[, 

grep("logFC", colnames(mr.edgeR_MeDIP_MPNST_vs_NF.s))] < 0), ] 

DMR_MPNST_vs_NF.s.loss.m = MEDIPS.mergeFrames(frames = DMR_MPNST_vs_NF.s.loss, 

distance = 1) 

###Extraction of data from regions of interest (ROIs) 

columns = names(results_MPNST_vs_NF)[grep("counts|rpkm|edgeR", 

names(results_MPNST_vs_NF))] 

rois_MPNST_vs_NF.s.gain.m = MEDIPS.selectROIs(results = results_MPNST_vs_NF, 

rois = DMR_MPNST_vs_NF.s.gain.m, columns = columns, summarize = "avg") 

rois_MPNST_vs_NF.s.loss.m = MEDIPS.selectROIs(results = results_MPNST_vs_NF, 

rois = DMR_MPNST_vs_NF.s.loss.m, columns = columns, summarize = "avg") 

 

 

 

 

###Annotation  

#Limiting hypermethylated ROIs to chromosomes 1 to 22 and X (analogously for 

hypomethylated) 

rois_MPNST_vs_NF.s.gain.m_select<-

rois_MPNST_vs_NF.s.gain.m[rois_MPNST_vs_NF.s.gain.m$chr=="chr1"|rois_MPNST_vs_

NF.s.gain.m$chr=="chr2"| 

                                                              

rois_MPNST_vs_NF.s.gain.m$chr=="chr3"|rois_MPNST_vs_NF.s.gain.m$chr=="chr4"| 
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rois_MPNST_vs_NF.s.gain.m$chr=="chr5"|rois_MPNST_vs_NF.s.gain.m$chr=="chr6"| 

                                                              

rois_MPNST_vs_NF.s.gain.m$chr=="chr7"|rois_MPNST_vs_NF.s.gain.m$chr=="chr8"| 

                                                              

rois_MPNST_vs_NF.s.gain.m$chr=="chr9"|rois_MPNST_vs_NF.s.gain.m$chr=="chr10"| 

                                                              

rois_MPNST_vs_NF.s.gain.m$chr=="chr11"|rois_MPNST_vs_NF.s.gain.m$chr=="chr12"| 

                                                              

rois_MPNST_vs_NF.s.gain.m$chr=="chr13"|rois_MPNST_vs_NF.s.gain.m$chr=="chr14"| 

                                                              

rois_MPNST_vs_NF.s.gain.m$chr=="chr15"|rois_MPNST_vs_NF.s.gain.m$chr=="chr16"| 

                                                              

rois_MPNST_vs_NF.s.gain.m$chr=="chr17"|rois_MPNST_vs_NF.s.gain.m$chr=="chr18"| 

                                                              

rois_MPNST_vs_NF.s.gain.m$chr=="chr19"|rois_MPNST_vs_NF.s.gain.m$chr=="chr20"| 

                                                              

rois_MPNST_vs_NF.s.gain.m$chr=="chr21"|rois_MPNST_vs_NF.s.gain.m$chr=="chr22"| 

                                                              

rois_MPNST_vs_NF.s.gain.m$chr=="chrX",] 

 

 

###Promoter annotation 

#File of coordinates from promoters download from UCSC Table Browser: 

“"promoter_1500_hg19" 

promoter_1500_hg19<-read.csv("promoter_1500_hg19", sep="\t", header=FALSE) 

promoter_1500_hg19<-promoter_1500_hg19[,1:4] 

colnames(promoter_1500_hg19)<-c("chr","start", "end","promoter") 

aaa<-as.character() 

for(i in 1:57111){aaa[i]<-gsub("_up_1500_chr(([0-9]+)|X)_([0-9]+)_[f-r]", "", 

as.character(promoter_1500_hg19$promoter[i]))} 

promoter_1500_hg19_df<-cbind(aaa, promoter_1500_hg19[,1:3]) 

colnames(promoter_1500_hg19_df)[1]<-"refseq_mrna" 

 

#Adding RefSeq promoter annotation to ROIs (hypermethylated, analogously for 

hypomethylated) 

rois_MPNST_vs_NF.s.gain.m_anot = MEDIPS.setAnnotation(regions = 

rois_MPNST_vs_NF.s.gain.m_select, annotation = promoter_1500_hg19_df) 

id<-list() 

for(i in 1:((length(colnames(rois_MPNST_vs_NF.s.gain.m_select))-36){id[[i]]<-

rois_MPNST_vs_NF.s.gain.m_anot[!is.na(rois_MPNST_vs_NF.s.gain.m_anot[,36+i]),c

(1:3, 32:36, 36+i)] 

colnames(id[[i]])[9]<-"ENSPROMOTER"} 

rois_MPNST_vs_NF.s.gain.m_anot_promoter <- do.call("rbind", id) 

 

#Let unique values of edgeR.logFC and edgeR.logCPM for each RefSeq annotated 

promoter (hypermethylated; analogously for hypomethylated) 

groups<-split(rois_MPNST_vs_NF.s.gain.m_anot_promoter, 

rois_MPNST_vs_NF.s.gain.m_anot_promoter[,9]) 

for(i in(1:length(groups))){groups[[i]]<-

groups[[i]][abs(groups[[i]]$edgeR.logFC)==max(abs(groups[[i]]$edgeR.logFC)),][

1,]} 

rois_MPNST_vs_NF.s.gain.m_anot_promoter <- do.call("rbind", groups) 

rois_MPNST_vs_NF.s.gain.m_anot_promoter<-

rois_MPNST_vs_NF.s.gain.m_anot_promoter[order(rois_MPNST_vs_NF.s.gain.m_anot_p

romoter$edgeR.adj.p.value, decreasing=F),] 

 

#Translate RefSeq annotation to ENSEMBL annotation 

library(biomaRt) 

ensembl = useMart(biomart = 

"ENSEMBL_MART_ENSEMBL",dataset="hsapiens_gene_ensembl", host = 

"feb2014.archive.ensembl.org") 

humanensembl<-useDataset("hsapiens_gene_ensembl", mart=ensembl) 

humangenes_mrna<-getBM(attributes = c("ensembl_gene_id", "refseq_mrna", 

"hgnc_symbol"), mart=humanensembl) 

humangenes_ncrna<-getBM(attributes = c("ensembl_gene_id", "refseq_ncrna", 

"hgnc_symbol"), mart=humanensembl) 

 

colnames(humangenes_mrna)[2]<-"ENSPROMOTER" 
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colnames(humangenes_ncrna)[2]<-"ENSPROMOTER" 

 

rois_MPNST_vs_NF.s.gain.m_anot_promoter_genes_1<-

merge(rois_MPNST_vs_NF.s.gain.m_anot_promoter, humangenes_mrna, 

by="ENSPROMOTER") 

rois_MPNST_vs_NF.s.gain.m_anot_promoter_genes_2<-

merge(rois_MPNST_vs_NF.s.gain.m_anot_promoter, humangenes_ncrna, 

by="ENSPROMOTER") 

rois_MPNST_vs_NF.s.gain.m_anot_promoter_genes<-

rbind(rois_MPNST_vs_NF.s.gain.m_anot_promoter_genes_1, 

rois_MPNST_vs_NF.s.gain.m_anot_promoter_genes_2) 

rois_MPNST_vs_NF.s.gain.m_anot_promoter_genes<-

rois_MPNST_vs_NF.s.gain.m_anot_promoter_genes[!is.na(rois_MPNST_vs_NF.s.gain.m

_anot_promoter_genes$ensembl_gene_id),] 

#Let unique values of edgeR.logFC and edgeR.logCPM for each ENSEMBL annotated 

promoter (hypermethylated; analogously for hypomethylated) 

groups<-split(rois_MPNST_vs_NF.s.gain.m_anot_promoter_genes, 

rois_MPNST_vs_NF.s.gain.m_anot_promoter_genes[,10]) 

for(i in(1:length(groups))){groups[[i]]<-

groups[[i]][abs(groups[[i]]$edgeR.logFC)==max(abs(groups[[i]]$edgeR.logFC)),][

1,]} 

rois_MPNST_vs_NF.s.gain.m_anot_promoter_transl <- do.call("rbind", groups) 

rois_MPNST_vs_NF.s.gain.m_anot_promoter_transl<-

rois_MPNST_vs_NF.s.gain.m_anot_promoter_transl[order(rois_MPNST_vs_NF.s.gain.m

_anot_promoter_transl$edgeR.adj.p.value, decreasing=F),] 
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