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A B S T R A C T   

The quality of a 3D map produced by the single-particle analysis method is highly dependent on an accurate 
assignment of orientations to the many experimental images. However, the problem’s complexity implies the 
presence of several local minima in the optimized goal functions. Consequently, validation methods to confirm 
the angular assignment are very useful to yield higher-resolution 3D maps. In this work, we present a graph- 
signal-processing-based methodology that analyzes the correlation landscape as a function of the orientation, 
an approach allowing the estimation of the assigned orientations’ reliability. Using this method, we may identify 
low-reliability images that probably incorrectly contribute to the final 3D reconstruction.   

1. Introduction 

Knowing the three-dimensional (3D) structure of a macromolecule is 
essential for understanding its function, dynamics and conformational 
changes. Hence, in the last decades, there have been great advances to 
obtain the 3D structure of macromolecules, and single-particle analysis 
(SPA) has become one of the most widespread in recent years because of 
its flexibility and good results. 

The single-particle technique is, at its core, a tomographic imaging 
modality where multiple copies of a purified macromolecule are imaged 
with an electron microscope under frozen–hydrated conditions to pro
duce a 3D density map of Coulomb potential. This technique’s basic idea 
is that several copies of the same macromolecule are randomly oriented 
during image acquisition producing multiple different views of the same 
macromolecule in a single image known as a micrograph. An important 
characteristic of the SPA method is that these views are considered in
dividual projections of the macromolecule. Another important pecu
liarity of this modality is that the projections acquired with a 
transmission electron microscope, under cryogenic–conditions, are 
extremely noisy (i.e., signal-to-noise ratios, or SNRs, between 0.1 and 
0.01) and, thus, require robust data analysis methods. At this point it is 
worth noting that the assumption of all the macromolecules in a 
micrograph being of identical structure and differing only in their 

orientation is in practice usually off; hence, there are significant efforts 
to achieve such a goal by identifying heterogeneous sets of projections. 

A major requirement of any tomographic modality is the precise 
knowledge of every projection’s orientation; the more exact this infor
mation is, the more precise the information is in the final 3D map. 
However, an undesirable consequence of the SPA method is that the 
information about the orientation of every copy of the macromolecule 
under investigation is largely unknown. Therefore, some matching 
process is necessary to obtain such information that in practice consists 
of three angles for the orientation and two in-plane displacements (in 
the recent years a new family of algorithms that do not require an 
explicit angular assignment has started to appear (Sharon et al., 2020)). 

Although there exist many algorithms to estimate these orientation 
parameters (Scheres, 2012; Sorzano et al., 2015; Punjani et al., 2017; 
Grant et al., 2018; Reboul et al., 2018; Sorzano et al., 2018), all of them 
making significant efforts to avoid local minima, the fraction of incor
rectly aligned particles any of them bring forth can be non-negligible 
(Vargas et al., 2016, 2017). The objective function used for the align
ment plays an important role (Stewart and Grigorieff, 2004; Jonić et al., 
2005; Sorzano et al., 2015) and considering simultaneously several 
objective functions may be advantageous because it might happen that a 
local minimum of an objective function is unlikely to coincide with local 
minima of the others. 
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In this work, we propose a novel approach to validate the angular 
assignment performed by any method with the assumption that the 
orientation assigned to a particular projection should be consistent with 
the angular assignment it would have obtained had less noise been 
present in the goal function’s landscape. In order to denoise the land
scape of a goal function we use signal spectral decomposition based on 
graph theory because in that way, as it will be clearer below, we can 
exploit the spatial relationship between neighboring orientations in 
relation to the registration parameters and the similarity criterion used 
for matching projections; importantly, this approach will allow us to 
identify low-reliability projections. Signal processing on images using 
graph theory (using image-element adjacency graphs) has become 
common to perform on them tasks of filtering, segmentation, or clus
tering; whereas, in this work we use image adjacency graphs (images are 
at graph’s vertices with edges determined by their orientation rela
tionship) in a similar way to the approach proposed in (Xie et al., 2020), 
but here we utilize the image adjacency graphs to analyze the landscape 
of a goal function. 

This paper is organized as follows. The next section presents a 
detailed description of our proposed validation methodology. Subse
quently, in Section 3 we present results to evaluate our approach as a 
tool for validating previously-obtained angular assignments. Then, in 
Section 4 we discuss and analyze the results reported in the previous 
section. 

2. Materials and methods 

Most methods in SPA assign orientations to the set of experimental 
projections (the set P ) by using a set of reference projections (the set R ) 
obtained from a known 3D map. This process can be described as fol
lows, for every experimental projection f ∈ P (f : R2→R), an angular 
assignment method finds 

argmax
gi∈R

ϕ(gi,Mi(f ) ), (1)  

where Mi is the optimal rigid transformation (i.e., an in-plane rotation 
together with a translation) aligning the experimental projection f with a 
reference projection gi ∈ R , and ϕ is a similarity measure between any 
two projections. This approach assumes that the reference projection’s 
orientation information resulting from the search in Eq. (1) is assigned 
to the experimental projection f. For our method, we use the standard 
Pearson’s correlation coefficient between the two projections being 
compared. However, our approach is general and can potentially 
accommodate any other similarity function. 

Given a reference projection gi, if the orientation assigned to it is 
correct, one should expect that any of its neighboring reference pro

jections gj, for i ∕= j, would also yield a high similarity value (i.e., ϕ
(

gj,

Mi(f)
)

should be high). However, in practice there is the possibility of 

assigning an incorrect orientation to the experimental projection f due to 

Fig. 1. (a,c) Graphical representations of the similarity measurements between an experimental projection f and all the reference projections in R computed with the 
Pearson’s correlation coefficient for two different experimental images. (b,d) Graphical representation of the lowpass filtered version of (a,c), respectively. The color 
bar on the left shows the range of the similarity measures for all the graphs. Blue dots are superimposed where the maximum values occur on every graph. The 
angular distance between the blue dots on the raw graph and the lowpass filtered version provides a reliability criterion for the orientation assignment; in other 
words, the occurrence of highest values in the same region of both the raw and low-pass filtered graphs implies more reliable orientation assignments. Hence, the 
upper row (a,b) shows a case in which we are more confident about the angular assignment than in the case shown in the bottom row (c,d). 
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the presence of spurious similarity values for some of the neighboring 

reference projections gj (i.e., high values of ϕ
(

gj,Mi(f)
)

for some gjs in 

an otherwise low-valued-ϕ neighborhood). 
In order to remove such spurious similarity values from the objec

tive-function’s landscape, we use a graph signal processing (GSP) 
approach (Zhu and Rabbat, 2012; Manoj et al., 2018; Waheed et al., 
2020; Sandryhaila and Moura, 2013). This is a recently-developed 
branch of signal processing where its classical tools developed in the 
Euclidean domain have been generalized to irregular domains, 
including graphs; importantly, in this approach it is possible to incor
porate the relationship among data samples as part of the analysis 
process (this is especially useful for the method we propose here because 
we compare any experimental projection against a set of synthetically 
generated reference projections from known orientations; projections 
that keep a spatial relationship among them). While classic signal pro
cessing deals with functions defined over a set of discretized values 
typically arranged over a regular grid and have some spatial relationship 
among themselves, graph signal processing deals with functions defined 
over the nodes of a graph, nodes that likely have an irregular distribu
tion in space and might not have spatial interpretation. 

A graph is defined by a set of vertices V and a set of edges E con
necting the vertices. Additionally, every edge e = (v, v′

) ∈ E may have a 
weight w(v, v′

) ∈ R associated to it. Given a graph defined by (V,E,w), we 
say that a graph signal is a function ϕ : V→R whose values are known for 
the graph vertices (ϕ(v) for all v ∈ V). The reader interested in the 
general topic of GSP is referred to (Zhu and Rabbat, 2012; Manoj et al., 
2018; Waheed et al., 2020; Sandryhaila and Moura, 2013). 

In our approach, every reference projection gi is a vertex of the graph. 
An edge connects two reference projections gi and gj if their angular 
distance is closer than a maximum angle Dmax (at this point, the angular 
sampling of the projection sphere determines the number of neighbors of 

a node). A decaying exponential gives the weight of any edge depending 
on the angular distance d 

wij =

⎧
⎪⎪⎨

⎪⎪⎩

e−
d(gi ,gj)

Dmax , if d
(
gi, gj

)〈
Dmax,

0, otherwise.
(2) 

Finally, the function value at each one of the vertices is given by ϕ(gi,

Mi(f)). In our algorithm, we set Dmax to be 3 times the angular sampling 
distance used to generate the set of reference projections, R . 

The Fourier transform of a function is the representation of such a 
function as a superposition of complex exponentials (Wang, 2012). 
Importantly, the eigenfunctions of the Laplace operator ∇2 are precisely 
the Fourier basis (i.e., the Laplacian of the plane wave ej2πx,ξ is equal to 
− 4π2‖ξ‖2ej2πx,ξ). Thus, the Fourier transform is simply a method of 
expressing a function in terms of a sum of its projections onto the set of 
eigenfunctions (i.e., basis functions) while diagonalizing the Laplacian 
operator ∇2. 

To extend the concept of Fourier transform to a graph signal we take 
advantage of an interesting connection between the Laplace differential 
operator of a function and the Laplacian of a graph. Both, the Laplacian 
operator of a function and the Laplacian operator for graph signals are 
similar, except for a negative factor, because both of them provide in
formation about how much a function (respectively, a graph signal) 
differs in a point from its average value taken over the neighboring 
points. Thus, to obtain the Fourier transform of a graph signal is 
necessary to calculate first the Laplacian of the graph signal (i.e., ∇2ϕ =

∇,∇ϕ). The Laplacian matrix L of the graph is a |V| × |V| symmetric 
matrix whose elements are defined as 

Fig. 2. Histograms for the measurements (left) ϕ̃f , and (right) df produced at different iterations during the Relion’s assignment of orientations to the experimental 
projections of (upper row) the BMV and (bottom row) the β-galactosidase. The blue histograms were produced at the 5th iteration for both the BMV and β-galac
tosidase, whereas the orange histograms were produced at the 15th and 20th iterations for the β-galactosidase and BMV, respectively. 
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lij =

{∑

k∕=i

wi,k, if i = j,

− wij, if i ∕= j,
(3)  

where wij is the edge weight between the ith and jth nodes obtained with 
(2). A direct consequence of L being symmetric is that it has associated 
to it a set 

{
λ1,…, λ|V|

}
of real, non-negative eigenvalues (these eigen

values are sorted in nondecreasing order, λ1⩽λ2⩽⋯⩽λ|V|), and a set 
{

u1,

…,u|V|
}

of corresponding real eigenvectors. The eigenvalues of L play 
the role of frequency and its eigenvectors play the role of the Fourier 
basis (complex exponentials in the case of standard signal or image 
processing). Hence, the Graph Fourier Transform can be defined as 

ϕ̂m =
∑|V|

i=1
ϕ

(

gi

)

umi, (4)  

where umi is the i-th component of the m-th eigenvector (note that m 
plays the role of Fourier index, as in the Discrete Fourier Transform). 
Conversely, the Inverse Fourier Transform is given by 

ϕ

(

gi

)

=
∑|V|

m=1
ϕ̂mumi. (5) 

As with the standard Fourier transform, we have the following Par
seval’s identity 

∑|V|

i=1
(ϕ(gi))

2
=
∑|V |

m=1

(
ϕ̂m

)2
. (6) 

It is worth mentioning that in this equation (ϕ̂m)
2 is the energy of the 

m-th Fourier component. 
At this point is worth mentioning the following interesting fact, a 

standard discrete image defined over a regular grid can be represented 
with a graph whose vertices are the image pixels and its edges are 
determined by the adjacency relation between pixels sharing an edge 
(this representation includes the standard periodic boundary conditions 
used for Fourier analysis). The Graph Fourier Transform of such a rep
resentation is exactly the same as the standard 2D Discrete Fourier 
Transform of the image (Gray, 2006). However, the Graph Fourier 
Transform is much more general as it can deal with arbitrary adja
cencies, irregular sampling grids, and, even, graphs whose vertices are 
not associated to any spatial domain (i.e., they may be words, objects, or 
any other entity). 

We may exploit the Graph Fourier Transform of the landscape of our 
proposed similarity function ϕ for the reference gi (i.e., ϕ̂

(
gi
)
) to remove 

noise from its associated graph signal. To achieve this, we can apply an 
ideal lowpass filter to the graph signal by simply truncating the sum in 
the Inverse Graph Fourier Transform to a smaller set with only M 
components (M < |V|) 

ϕ̃

(

gi

)

=
∑M

m=1
ϕ̂mumi. (7) 

Fig. 3. Different FSCs corresponding to 3D maps produced with several methods using the experimental projections of the BMV. Each image in the upper row shows 
the FSCs corresponding to 3D maps obtained with projections in the C and the W sets using (a) Relion after the 10th and 15th iteration, respectively, and (b) Xmipp’s 
highres after the 3rd iteration; for all the curves, the number of projections in the W set is presented in parentheses. Additionally, each image in the bottom row 
presents the FSCs corresponding to 3D maps obtained with projections in the C set and the whole dataset using (c) Relion stopping at different iterations (shown in 
parentheses) and (d) Xmipp’s highres after the 3rd iteration. 
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In our algorithm, we choose the subset of M Fourier components to 
be those with the largest energies and whose combined energies amount 
for 95% of the total spectral energy. Hence, the filtered landscape ̃ϕ(gi) is 
a smoother version of the landscape of similarities (see an example in 
Fig. 1). 

Once we have the raw landscape of similarities and its lowpass 
filtered version, we look for the projection direction with maximum 
similarity in both graphs. Let us refer to them as vf and ̃vf (both vectors 
having unit norm). We then define their similarity as 

df = vf , ṽf , (8)  

where ., . is the standard inner product in R3. 
Another interesting quality criterion is the correlation between the 

two reference projections associated with both directions vf (best 
matching reference in the unfiltered graph) and ṽf (best matching 
reference in the filtered graph), let us refer to them as gi and ̃gi. Although 
the two best directions may be quite far apart, the corresponding ref
erences may be similar. We try to detect such a situation by aligning 
projections g̃i to gi and comparing them 

ϕ̃f = ϕ
(

gi, M̃i

(
g̃i

))
. (9) 

The quantities df and ϕ̃f are two qualifiers of the quality of the 
angular assignment of the image f. 

3. Results 

We implemented our method within the Scipion image processing 
framework for cryo-EM (de la Rosa-Trevín et al., 2016) using the Xmipp 
image processing suite for microscopy (Sorzano et al., 2004). 

We illustrate the applicability of our method with three experimental 
examples. The first dataset comes from the Brome Mosaic Virus - BMV 
(EMPIAR-10010, 2014; Wang et al., 2014), the second from a 

β-galactosidase (EMPIAR-10061, 2016; Bartesaghi et al., 2015), and the 
third from an in–house acquired apoferritin. The 21,244 projections of 
the BMV were acquired with a voltage of 300 kV, a 50,000× magnifi
cation, a spherical aberration of 4.1 mm, an amplitude contrast of 0.1, 
and pixel size equal to 0.99 Å/pix. The 10,000 projections for the 
β-galactosidase were acquired with a voltage of 300 kV, a 50,000×
magnification, a spherical aberration of 2.7 mm, an amplitude contrast 
of 0.1, and pixel size equal to 0.32 Å/pix. Lastly, the 46,182 projections 
for the apoferritin were acquired with a voltage of 300 kV, a 50,000×
magnification, a spherical aberration of 2.7 mm, an amplitude contrast 
of 0.1, and pixel size equal to 0.94 Å/pix. We followed a standard image 
analysis pipeline, such as the one described in (Sorzano et al., 2020), and 
used Relion’s autorefine and Xmipp’s highres to produce the final maps of 
both datasets. 

After obtaining the angular assignments, and 3D maps, for the two 
datasets we apply the methodology of Section 2 to determine the quality 
of these angular assignments by obtaining their corresponding mea
surements ϕ̃f and df with our graph-based method. In Fig. 2 we present 
histograms exemplifying how these measurements behave when vali
dating the assigned orientations; concretely, they are produced at two 
different iterations of Relion during its assignment of orientations to the 
experimental projections of both the BMV and the β-galactosidase. These 
histograms demonstrate that the higher the values for ϕ̃f and the lower 
the values for df the better the indication is for a good quality of 
orientation assignment. 

To automate the classification into reliably (C) and non-reliably (W) 
assigned orientations, we have segmented both histograms using the 
method proposed by Otsu (Otsu, 1979). The assumption being that 
images whose orientations are described as reliable will produce better 
3D reconstructions and to verify this assumption we reconstruct a 3D 
map using the same number of projections either from the smaller set, 
normally the non-reliably assigned, or a random subset of a 
predetermined-size chosen from the larger set. Finally, we compare the 

Fig. 4. Different FSCs corresponding to 
3D maps produced with several methods 
using the experimental projections of 
the β-galactosidase. Each image in the 
upper row shows the FSCs correspond
ing to 3D maps obtained with pro
jections in the C and the W sets using (a) 
Relion after the 10th and 15th iteration, 
respectively, and (b) Xmipp’s highres

after the 5th iteration; for all the curves, 
the number of projections in the W set is 
presented in parentheses. Additionally, 
each image in the bottom row presents 
the FSCs corresponding to 3D maps ob
tained with projections in the C set and 
the whole dataset using (c) Relion stop
ping at different iterations (shown in 
parentheses) and (d) Xmipp’s highres

after the 5th iteration.   
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resolution of both sets, reliable and non-reliable, with the FSC. 
In Fig. 3 we present results obtained with the experimental pro

jections from the BMV. Fig. 3a shows the FSCs, with different line colors, 
corresponding to the 3D maps produced with Relion when using the 

projections classified in sets C and W for the orientation-assignment at 
the 10th and 15th iteration, respectively. In turn, Fig. 3b shows the FSCs, 
also with different line colors, corresponding to the 3D maps produced 
with Xmipp’s highres using sets C and W. These figures show that in 
every case, the 3D maps produced with orientation-assigned projections 
in the C sets have better resolution than their counterparts produced 
with projections in the W sets. For additional comparison, we present in 
Figs. 3c and 3d the FSCs corresponding to the 3D maps reconstructed 
with all the experimental projections in the dataset and the 3D maps 
reconstructed only with the C sets. Fig. 3c corresponds to the FSCs 
associated with the 3D maps produced with Relion using the experi
mental projections whose orientations have been assigned at the 10th 
and 15th iteration, respectively. On the other hand, Fig. 3d corresponds 
to the FSCs associated with the 3D maps produced with Xmipp’s highres. 

For the β-galactosidase and the apoferritin, we reproduce the ex
periments of Fig. 3 and present the corresponding results in Figs. 4 and 
5, respectively. Similar to the experiments with the BMV, the results 
with the β-galactosidase and the apoferritin also suggest that in every 
case, the 3D maps produced with orientation-assigned projections in the 
C sets have better resolution than their counterparts produced with 
projections in the W sets. 

Finally, in order to make clearer the usefulness of the proposed 
validation method we include the results for an experiment with the 
BMV in which we study the effect of including projections identified as 
potentially misaligned during the reconstruction of the 3D map. For this, 
we used the high-resolution map EMD-6000 of the virus, obtained from 
the Electron Microscopy Data Bank (EMDB-6000, 2014; Wang et al., 
2014), as a reference for FSC comparison. Our validation method 
identified 1,383 projections as potentially misaligned for the BMV 

Fig. 5. Different FSCs corresponding to 3D maps produced with several methods using the experimental projections of the apoferritin. Each image in the upper row 
shows the FSCs corresponding to 3D maps obtained with projections in the C and the W sets using (a) Relion after the 5th and 10th iteration, respectively, and (b) 
Xmipp’s highres after the 3rd iteration; for all the curves, the number of projections in the W set is presented in parentheses. Additionally, each image in the bottom 
row presents the FSCs corresponding to 3D maps obtained with projections in the C set and the whole dataset using (c) Relion stopping at different iterations (shown 
in parentheses) and (d) Xmipp’s highres after the 3rd iteration. 

Fig. 6. Comparison of the FSCs produced when comparing the high-resolution 
3D map of BMV (EMD-6000 from the Electron Microscopy Data Bank) against 
the 3D maps obtained from the two datasets when the W contains (green) 50%, 
(red) 30%, and (blue) 10% of misaligned projections, respectively. (For inter
pretation of the references to color in this figure legend, the reader is referred to 
the web version of this article.) 
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dataset; based on this result, two equal-size sets of projections were 
formed, the set C containing only projections identified as correctly 
assigned and the set W containing complementary percentages of 
correctly-assigned and misaligned projections. Then, these sets of pro
jections were used to reconstruct two 3D maps that were compared 
against the reference 3D map. We performed this experiment with the 
second set of projections containing 50%, 30%, and 10% of projections 
identified as misaligned, respectively. We report the results of these 
experiments in Fig. 6 where we can see that the higher the percentage of 
potentially misaligned projections in a set, the greater the difference 
between the FSC curves. 

4. Discussion and conclusions 

In the course of reconstructing a 3D map, there is the possibility of 
some errors occurring in the refinement process when using the 
projection-matching approach and when they occur they negatively 
affect the quality of the resulting map. These errors are mainly due to 
suboptimal precision in the estimation of the projections’ orientations 
(usually stemming from errors in the registration among projections) 
and heterogeneity (either structural or compositional) of the specimens 
sampled in the experimental projections and undetected during the 
classification stage. Furthermore, the problem of suboptimal precision in 
the assignment of orientations to experimental projections can become 
persistent as a consequence of reference bias, a phenomenon resulting 
from the incorrect registration of reference projections to data or noise 
in experimental projections, (Henderson, 2013; van Heel, 2013) or over- 
fitting, a phenomenon occurring when registering high-frequency noise 
wrongly interpreted as high-resolution structural features, (Chen et al., 
2013; Stewart and Grigorieff, 2004). 

Currently, the established practice in cryo-EM is to validate the final 
reconstructed 3D maps. Although there have been several attempts to 
validate the 3D angular assignment (Vargas et al., 2016, 2017), these 
techniques are not yet widely adopted and the problem is sufficiently 
open to new explorations. 

We have proposed a methodology to validate such assignments and 
the results presented in Section 3 show that the assignment validation 
approach allows identifying projections that contribute little to 
improving the map’s resolution because their angular assignment is 
probably wrong according to our proposed quality criteria. Notably, 
such a validation procedure can be used in conjunction with any 
orientation-assigning method as part of any refinement process, where it 
can assist in the exclusion of poorly registered projections (that other
wise could continue having their orientations wrongly assigned during 
the refinement process) and, thus, facilitating the reconstruction of 
higher-resolution 3D maps. Based on the growing interest in the cryo-EM 
community to provide tests to validate reported 3D maps, the 
orientation-assignment validation method we are proposing could 
complement those existing approaches, either at the refinement-process 
level or when cross-validating reconstructed 3D maps. 

The quality of structures determined by cryo-EM SPA can continue to 
improve by introducing novel image processing methods hand in hand 
with more robust validation tools that can identify small differences in 
high-resolution 3D maps and permit the application of SPA to more 
complex or heterogeneous specimens (Rosenthal and Rubinstein, 2015; 
Rosenthal, 2016). Certainly, these computational tools need to work 
conjointly with other SPA processes such as specimen preparation and 
projection acquisition. 
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