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Abstract – This work presents a proposal for creating intelligent
alarms that offer more efficient support to medical staff than the
threshold alarms currently available in commercial monitors. Our
alarms make it possible to handle the uncertainty and imprecision
that are characteristic of the medical domain, reason over the
temporal evolution of physiological variables, and incorporate
information from a number of variables into one single alarm.

The proposal is based on a structural pattern recognition model
(the MFTP model) which allows certain monitoring criteria in a
computational representation to be captured and identified over the
evolution of patients’ physiological variables. The description of
the criteria is carried out using a graphical tool (TRACE), which is
sufficiently intuitive to be used by physicians without the need for
assistance.

Keywords – Cognitive Overload, Intelligent Alarms, Fuzzy Con-
straint Satisfaction Problems, Patient Monitoring.

I. INTRODUCTION

Advances made in electronic monitoring devices, and in
the information and communications technologies, place an
increasing amount of data on patients at the disposal of health-
care personnel. In the bibliography it is a recognized fact that
if the volume of data available exceeds the cognitive capabilities
of medical staff, this situation may indeed be counter-productive
[1], [2], [3], [4], as they may be forced to ignore some of the data
in the decision-making process. Of all the information available
on patients (x-rays, ultrasound scans, laboratory analyses,
data from examinations, etc.) that which places the greatest
burden on health-care staff is information from the analysis
of physiological variables: electrocardiogram, heart rate (HR),
oxyhemoglobin saturation (SatO2), respiratory rate (RR), blood
pressure (BP), ST deviation, etc. These variables evolve over
time, and often physiopathological variables appear over them,
requiring rapid intervention to reduce or avoid life-threatening
situations for the patient. Thus they require continuous attention.

The only support health-care staff have for monitoring the
physiological variables are threshold alarms in commercial
monitors; these are triggered each time the value of a parameter

leaves a preestablished range. The signals usually have high
levels of artifacts, often due to the movement of patients,
resulting in a high number of false positives. Consequently,
health-care staff may lose faith in threshold alarms, and not
respond as quickly as they could in situations where intervention
is really required and, in extreme situations, they may ignore
and even disconnect the alarms [5], [6]. On the other hand,
establishing the ranges entails searching for a balance between
sensitivity and specificity, which would keep the number of false
positives within reasonable limits. With these ranges it is often
not possible to monitor all events that may be indicative of
possible life-threatening situations for the patient; hence, the
limitations of these alarms must be offset by the continuous
supervision of the health-care staff.

This situation results in an increasing imbalance between the
volume of data available on patients and improvements in health
care quality that these data produce. There is an increasing
need for a new generation of intelligent alarms, supplying more
efficient support in the task of monitoring pathological signs over
the physiological variables of patients and, of course, allowing
the increase in the volume of data to come to fruition in the form
of improved health care.

In the following section we analyze the characteristics
required by this new generation of alarms, and, in Section 3 we
describe a proposal (comprising the MFTP model [7] and the
tool TRACE [8]) for creating alarms with these characteristics.
Section 4 presents the results obtained when various alarms
created with our proposal were applied over a total of 175 hours
of recordings of parameters from 71 patients. Finally, we present
the salient conclusions from this work.

II. A NEW GENERATION OF INTELLIGENT ALARMS

The enhancements presented below are based on the experi-
ence accumulated over 20 years of solving patient-monitoring
problems. They supply two main benefits: reducing the number
of false positives in threshold alarms, and supplying a greater
amount of diagnostic evidence on the illness being monitored.
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A. Supplying a degree of certainty

The threshold alarms currently in use have an all-or-nothing
behaviour. This contrasts with the nature of illnesses in
the clinical domain: often their presence or absence cannot
be considered as a binary problem, rather as a question of
degree [10]. The alarms, which aim to automatically identify
manifestations of pathologies, must show the degrees between
the maximum certainty of the absence of a given sign, and the
maximum certainty of its presence. Using certain artificially
precise criteria in alarm definition can lead us to commit
important errors when evaluating a set of findings that are on
the borderline between values that are clearly normal and those
which are not.

The alarms must make it possible to handle the uncertainty
and imprecision that are characteristic of the medical domain,
reflecting the gradual transition between those states considered
to be normal, and those considered to be abnormal. To this
end, they should be based on imprecise criteria and, using
visual metaphors that are intuitive for health-care personnel,
they should supply a measurement of the certainty of the
presence of the signs that they monitor. Given that definitions
of normality and abnormality often rely on experience-based
heuristic knowledge, fuzzy set theory - a tool which has proved
its value for suitably representing and handling this type of
knowledge - would seem to be one of the most suitable solutions
for the construction of these alarms [5], [6], [7], [10], [11], [12].

B. Reasoning over the temporal evolution of parameters

One of the principal limitations of the alarms that are
currently available, and which gives rise to a great number
of false positives, is that of restricting their activation to the
instantaneous value of a determined physiological parameter,
and to the membership or not of a range of normality. Thus,
any artifacts producing a value outside the range will trigger
the alarm. By employing knowledge on the dynamics of the
parameters and reasoning over their temporal evolution, it would
be possible to identify any inconceivable rates of change in
the corresponding physiological variables and identify them as
artifacts. By way of example, for certain parameters, such as
SatO2, a very sharp fall from a normal value to a null or very
low one is not possible. The values of others may not exceed a
given rate of change; e.g. certain increases in the heart rate are
impossible due to them being sharper than the heart’s response
capacity.

On the other hand, the literature on Medical Informatics
highlights the interest of medical personnel in alarms capable of
identifying findings over the temporal evolution of physiological
parameters, such as, for example, “sustained increase in the
HR of at least 15 beats over approximately half a minute”
[13]. Among the solutions appearing in the bibliography which
tackle this problem, those that indicate the compatibility of the
evolution of a physiological variable with a fuzzy trajectory are
considered to be of special interest [7], [11], [12].

C. Integrating information from different parameters

The capacity for integrating information originating from
various parameters allows alarms to be generated on the basis
of findings which, taken in isolation, are irrelevant, but which
may endorse the hypothesis of the occurrence of pathological
processes of clinical interest if they can be related with other
findings over other variables, which on their own may also be
irrelevant. This also makes it possible to reduce the margins
of the abnormality values monitored over each physiological
variable, keeping the number of false positives within reasonable
levels thanks to the merging of information originating from
more than one parameter. Furthermore, these alarms supply
strong diagnostic evidence on the pathology that they monitor,
given the large quantity of information that they contain.

Our experience in the medical domain has shown us that
physicians, especially the most experienced, use monitoring
criteria based on multiparametric patterns, allowing pathologies
to be identified in the early stages, while still not life-threatening,
and their effect on the physiological variables is too subtle to be
identified by means of threshold of alarms. The lack of devices
capable of monitoring these patterns means that the burden of
this task falls squarely on the shoulders of health-care staff.
Nevertheless, the overwhelming nature of this task means that
monitoring is only carried out in those scenarios were they are
more likely to arise, and not in all those where it would be
desirable.

One example of this type of scenario is hemodialysis, a
therapy requiring the introduction of a catheter, via the femoral
route, into the patient’s body. When the patient’s blood
starts flowing through the tubes and filters of the hemodialysis
machine, the reduction of blood in the body may result in
hypovolemia. In its early stages this pathology is evident in the
parameters that are commonly monitored in the Medical Unit
in the form of a slight but sustained increase in heart rate that
is simultaneous with a light, sustained increase in the systolic
blood pressure. This and other similar patterns are constantly
monitored by the physician in charge of the hemodialysis,
especially during the initial minutes.

On the other hand, reasoning simultaneously over the
evolution of more than one parameter makes it possible to
identify artifacts when the behaviour of one or more of them
is not consistent with the rest. For example, a null or extremely
low value for systolic blood pressure is an artifact if the mean
and diastolic blood pressure values are normal, or if the heart
continues to beat at a normal rate.

D. Editing of the monitoring criteria

The physiological variability among human beings prevents
the definition of generic monitoring criteria that can be applied
to any patient. To complicate the situation even further, the
physical state of patients in the medical unit differs radically
from that of healthy patients, and often they are under the
effects of drugs. Thus, any proposal attempting to solve the



problem of the cognitive overload must take into consideration
the monitoring context associated with each patient.

Proposals in the literature habitually tackle this problem
by incorporating contextual information, which modifies the
monitoring criteria [14]. This was the path that we followed
for many years in our monitoring techniques. With the passing
of time, we came to realize that there are no monitoring criteria
that are unique to a given pathology: two physicians may use
different threshold criteria to monitor the same patient without it
being possible to assert that the criteria of one is more suitable
than that of the other. It is simply the case that each physician
wishes to be alerted on different deviations from normality.

Our research has led us to resolve the problem of context
in our proposal by supplying the physician with certain
“template”monitoring patterns which the physician understands
and may edit in a simple way in order to represent the criteria
that he/she may consider opportune. The solution we propose
does not differ greatly from the current situation: when patients
are admitted to a medical unit, the first thing medical personnel
do is adjust the ranges of the threshold alarms on the basis of
their state and the monitoring objectives.

Enabling the physician to edit the monitoring criteria of an
alarm imposes certain constraints on the monitoring techniques
that can be used. On one hand, there must be a computable
representation of the monitoring criteria that is understandable
for medical personnel, and which they must be able to edit
in a simple manner. On the other hand, it must be possible
to generate detection procedures for certain criteria without
the need to carry out any implementation task, and without a
learning process. Thus, the technique employed must separate
the representation of monitoring criteria from the matching
procedures that make it possible to identify them.

Thus, structural pattern recognition techniques [15] would
seem to be the most suitable for this new generation of alarms.
Unlike statistical or connectionist ones, these techniques work
directly on the input data, and not on a properties space that
is created on the basis of them. Hence, in this technique the
representation of the monitoring criteria is close to a physician’s
mental representation of the criteria. On the other hand, in
structural techniques, input data are compared with a set of
primitives, which combine with each other through a series of
relations to give rise to more complex patterns. This comparison
is carried out by segmenting the input data, which allows
explanations to be given on the matching results and means
that there is no need for training: the matching algorithms only
require a definition of of the primitives, and this is obtained
directly from the medical staff.

III. REPRESENTATION OF MONITORING CRITERIA

We shall start by introducing certain prior concepts on which
the MFTP model is based.
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Fig. 1. GRAPH OF THE HYPOVOLEMIA MFTP DRAWN OVER A REAL
OCCURRENCE OF THE PATTERN.

A. Fuzzy fundamentals

We shall consider time as being projected onto a one-
dimensional discrete axis τ = {t0, t1, ..., ti, ...}, where ti
represents a precise instant. We consider that for every i ∈ N,
ti+1 − ti = ∆t, where the constant ∆t is the minimum step of
the temporal axis.

Given as discourse universe the set of real numbers R, a
fuzzy number A is a normal (∃ v ∈ R, µA(v) = 1) and convex
(∀v, v′, v′′ ∈ R, v′ ∈ [v, v′′], µA(v′) ≥ min {µA(v), µA(v′′)})
fuzzy subset of R. We obtain a fuzzy number A from a flexible
constraint given by a possibility distribution πA, which defines
a mapping from R to the real interval [0, 1]. Given a precise
number v ∈ R, πA(v) ∈ [0, 1] represents the possibility of A
being precisely v. By means of πA we define a fuzzy subset A
of R, which contains the possible values of A.

B. The MFTP model

The MFTP model [7] makes it possible to represent
monitoring criteria, comprising a set of morphologies defined
over the evolution of a set of physiological variables P =
{P 1, ..., P s}, where each variable P p is obtained by means
of an acquisition and sampling process: P p = {(vp

1 , tp1), ...,
(vp

i , tpi ), ...}, and temporal and magnitude relations between
these morphologies. The MFTP model is based on the CSP
formalism and on fuzzy set theory. An MFTP allows a pattern
to be represented by means of a network of fuzzy constraints
between a set of significant points.

We define significant point on a physiological parameter P p,
Xp

i , as the pair formed by a variable from the domain V p
i and

a temporal variable T p
i . A significant point Xp

i = < V p
i , T p

i >



represents an unknown value for P p at an unknown temporal
instant. In the absence of constraints, V p

i and T p
i may take

any precise value vp
i and tpi , respectively, where (vp

i , tpi ) ∈ P p.
By Ap

i we denote the assignment of precise values from the
evolution P p to the variables of Xp

i ; i.e., Ap
i = (vp

i , tpi ).
In principle, nothing restricts the form of the constraints

that make up a MFTP. However, experience has shown that a
set of constraints limiting the fuzzy increment, fuzzy temporal
extension and fuzzy slope between a pair of significant points
is able to capture the majority of monitoring criteria habitually
used by medical staff. Thus we define a constraint Lpq

ij between
two significant points Xp

i and Xq
j by means of a normal,

convex possibility distribution µLpq
ij (Xp

i ,Xq
j ) = πLpq

ij (h), h ∈ τ ,
which represents the possibility of the fuzzy temporal extension
between Xp

i and Xq
j being h. The assignations T p

i = tpi and

T q
j = tqj are possible if πLpq

ij (tqj − tpi ) > 0. In Fig. 1 LHR
12

models the linguistic description “approximately more than half
a minute”.

A constraint Dpq
ij between a pair of significant points Xp

i

and Xq
j is defined by means of a normal and convex possibility

distribution µDpq
ij (Xp

i ,Xq
j ) = πDpq

ij (d), d ∈ R, which represents
the possibility of the fuzzy increase between Xp

i and Xq
j being

d. The assignations V p
i = vp

i and V q
j = vq

j are possible if

πDpq
ij (vq

j − vp
i ) > 0. In Fig. 1 DHR

12 models the description
“increase of more than approximately 15”.

A constraint Mp
ij between a pair of significant points Xp

i and
Xp

j , defined over the same parameter P p, is defined by means of

a normal and convex possibility distribution µMp
ij (Xp

i ,Xp
j ) =

πMp
ij (m), m ∈ R, which represents the possibility of the fuzzy

slope between Xp
i and Xp

j being m. The assignations V p
i = vp

i ,

V p
j = vp

j , T p
i = tpi and T p

j = tpj are possible if πMp
ij ((vp

j −
vp

i )/(tpj − tpi )) > 0. In Fig. 1 MHR
12 models the description

“...sustained...”, where “sustained” is modelled by means of an
approximately constant slope value.

We define a Multivariable Fuzzy Temporal Profile (MFTP)
M =< WM,XM,RM > as a finite set of MFTPs WM =
{MM

1 , ..., MM
s }, a finite set of significant points XM =

{Xp1
i1

, Xp2
i2

, ..., X
pg

ig
} and a finite set of constraints RM =

{R1, ...,Rf} amongst the points of WM and XM.
The recursive structure of the MFTP model is based in the

way that humans define patterns; a complex pattern is often
made up of a set of findings and a set of relations between
them. Each of the findings of the pattern may also be a pattern,
and may comprise a set of findings and relations between them,
and so on, successively. Thus, for example, the hypovolemia
pattern (see Section II C) is made up of two findings for
which certain temporal relations between them must be satis-
fied: MHypovolemia =< {MHypovolemia

HR , MHypovolemia
BP }, ∅,

{LHR BP
11 } >. Each of the findings is in turn an MFTP that is de-

fined over its corresponding parameter; thus MHypovolemia
HR =<

∅,{XHR
1 , XHR

2 },{LHR
12 ,DHR

12 ,MHR
12 } >, and MHypovolemia

BP

=< ∅,{XBP
1 ,XBP

2 }, {LBP
12 ,DBP

12 ,MBP
12 } >.

An MFTP can be represented by a graph in which nodes
correspond to significant points, and arcs correspond to
constraints (see Fig. 1). The MFTP model also enables us
to restrict the evolution of a parameter P p between each pair
of significant points Xp

i and Xp
j (see Fig. 1) by means of

a membership function µSp
ij (Ap

i ,Ap
j ) which defines a fuzzy

course within which the temporal evolution of the parameter
must remain in order to satisfy the constraint [16].

C. Pattern recognition procedures

The MFTP definition allows the matching task to be
structured hierarchically, where a pattern M constitutes a
processing level that incorporates a set of findings detected in
the previous processing level. Identifying a pattern M over
the evolution P = {P 1, ..., P s} of the patient’s physiological
variables is equivalent to finding a solution to the fuzzy
constraint network defined by M [17]. A network solution is
built by means of the assignment Ap

i of a sample of the evolution
of P p to each significant point Xp

i . A solution of M is defined
as a set of assignments A = {A0,A1, ...,An} that satisfy the set
of constraints that make up M, with a degree higher than zero.
The degree of satisfaction of A is given by the minimum degree
of satisfaction of all the constraints of M, that is:

πM(A) = min{min
MM

h ∈WM
{πMM

h (AMM
h )}, min

Rk∈RM
{πRk(ARk)}}

where AMM
h is the projection of A over the set of significant

points involved in MM
h , and ARk is the projection of A over

the set of significant points that are involved in Rk. πRk is the
degree of satisfaction of Rk ∈ RM, and πMM

h is the degree of
satisfaction of MM

h ∈ WM. The solutions to each MM
h , and

hence πMM
h , are calculated in a previous recognition stage and

then assembled to find a solution for M. πM(A) represents the
compatibility between a fragment of the evolution of patient’s
physiological variables with the description made in M of a
given association between findings of physiological interest.

For example, in order to match the hypovolemia pattern, we
start by searching for occurrences of the two findings that make
it up. In order to calculate the degree of compatibility of MHR

with AMHR

= {AHR
1 ,AHR

2 } the following expression is used:

πMHR

(AMHR

) = min{πLHR
12 (tHR

2 − tHR
1 ),

πDHR
12 (vHR

2 − vHR
1 ),πMHR

12 ((vHR
2 − vHR

1 )/(tHR
2 − tHR

1 ))}
where the assignations AHR

1 and AHR
2 are taken from the

values registered for the heart rate. A similar expression
applies for MBP . Solutions are then sought searched for
M Hypovolemia over the previously found occurrences for MHR

and MBP . In order to calculate the degree of membership of
AHypovolemia the following expression is used:

πM Hypovolemia

(AHypovolemia) = min{πMHR

(AHR),

πMBP

(ABP ),πLHR BP
11 (tBP

1 − tHR
1 )}



Fig. 2. TRACE SHOWING THE PATTERN DETECTION FOR HYPOVOLEMIA
OVER A RECORDING TAKEN DURING DIALYSIS.

where AHR and ABP ⊂AHypovolemia.
Despite the theoretically high computational complexity of

matching an MFTP, the modular breakdown of the problem
along with a small number of heuristics that exploit the conti-
nuity properties of real signals allow the real-time requirements
of the medical domain to be fully satisfied [7].

D. Knowledge acquisition: TRACE

Based on the MFTP model we have constructed the Tool foR
anAlyzing and disCovering pattErns, TRACE [8], [9], a tool
for creating, editing and validating alarms based on the MFTP
model. The tool makes use of the very graph that represents
the MFTP (the form of which is reminiscent of that of the
monitoring pattern it represents) as a visual metaphor to assist in
editing knowledge relating to alarms. This editing can be carried
out in an entirely visual manner, using only the mouse.

The tool also allows the matching procedures for the MFTP
model to be executed, and its results viewed. Each detection
colours the fragments of each physiological variable that has
demonstrated compatibility with the morphology defined over
it, and adds a signal to the environment called detection, which
represents the compatibility of the global pattern. TRACE has
proved to be sufficiently intuitive for use by medical teams
without the need for assistance [8].

IV. EXPERIMENTAL RESULTS

Through the use of TRACE, and with the support of a
medical team, we have defined a set of alarms that check
monitoring criteria that cannot be suitably represented by means
of thresholds. Alarms do not necessarily correspond with

TABLE I.

RESULTS OF THE DETECTION.

Alarm C FP FN %C %FP %FN

LV SatO2 35 2 3 95 5.7 7.9
LV HR 35 2 0 95 5.7 0
LV BP 32 1 3 97 3.1 8.6
HV HR 62 1 0 98 1.6 0
I BP 74 1 0 99 1.4 0
I RR 48 4 1 92 8.3 2.0
D RR 19 2 0 90 10 0
I HR-D BP 31 1 0 97 3.2 0
I HR-D SatO2 20 2 0 91 10 0
I HR-I SatO2 32 3 2 91 9.4 5.9
I HR-I BP 64 3 3 96 4.7 4.5
I RR-D SatO2 13 0 0 100 0 0
Total 465 22 12 97 4.7 2.5

C: Correct; FP: False Positive; FN: False Negative.

a manifestation of a pathology, although they all identify
occurrences of events that are of interest to the physician.

A number of these alarms supervise the occurrence of
episodes, of at least four minutes, with moderately abnormal
values in a physiological variable: an abnormally low (1) blood
oxygen level (LV SatO2), (2) heart rate (LV HR) and (3) blood
pressure (LV BP) values; and an abnormally high heart rate
value (HV HR). Others supervise trends in a parameter; i.e.
sustained moderate increases/decreases for at least 45 seconds:
rise in (1) blood pressure (I BP) and (2) respiratory rate (I RR);
and a fall in the respiratory rate (D RR).

Some alarms incorporate information originating from two
parameters: a rise in the heart rate which is approximately
simultaneous with (1) a drop in blood pressure (I HR-D BP),
(2) a drop in the blood oxygen level (I HR-D SatO2), (3) an
increase in the blood oxygen level (I HR-I SatO2) and (4) and
increase in blood pressure (I HR-I BP); and an increase in the
respiratory rate which is approximately simultaneous with a
decrease in the blood oxygen level (I RR-D SatO2). In this case
there is a reduction in the abnormality values that are supervised
over each parameter with respect to alarms that only consider
information from one parameter.

Approximately 175 hours of recordings of physiological
parameters from 71 different patients admitted to the Intensive
Care Unit were used to validate the alarms. Recordings varied
in length (from barely 20 minutes to over 12 hours) and not all
of them contained the same parameters. TRACE was used to
run the matching procedures, and the results of the validation
are given in Table I. The generation of an alarm in a context
which physicians “would not have wished to be alerted” due
to their considering a more detailed examination of the patient
unnecessary is taken as a false positive. A false negative is taken
to be a situation in which the physician would have carried out a
more detailed examination and it was not reported as an alarm.
A correct detection is taken to be the generation of an alarm in a
context in which physicians would have wished to be alerted due
to their considering a more detailed examination of the patient
necessary.



The manner in which the tests were carried out, defining
certain unique monitoring criteria and employing them on 71
different patients, differs from the way in which MFTP-based
alarms will most likely be used in the medical domain routine.
Ideally, before commencing with monitoring, physicians should
use TRACE to define the criteria they wish to supervise for each
patient on the basis of a template MFTP. Tests were carried out
in this manner as, with the exception of the signal recording, no
information with which to contextualize the monitoring criteria
was available on the vast majority of the 71 patients.

The number of false positives generated was excellent
compared with those appearing with threshold alarms. The false
negatives were due to exceptionally sharp rates of change in
the values of patients’ physiological variables. Our monitoring
criteria avoid reporting certain rates of change as alarms by
considering that they are too high, and must must thus be
artifacts. Although this was crucial in obtaining a low number of
false positives, in the medical domain a false negative results in
disregarding an alert of a possible life-threatening situation for
the patient, with potentially disastrous results. By relaxing the
rates of change admissible for the parameters, the false negatives
could be eliminated, even though the number of false positives
would probably increase; nevertheless, these would foreseeably
remain within an acceptable range, and would be much lower
than for threshold alarms.

V. CONCLUSIONS

In this work we have presented a proposal for constructing
alarms that mitigate the cognitive overload on medical staff
arising due to the large quantities of physiological variables
monitored over each patient and the rudimentary nature of the
alarms available in commercial monitoring devices. These
alarms (1) show the different degrees between the maximum
certainty of the presence of manifestations of pathologies that
they monitor and the maximum certainty of their absence;
(2) they allow reasoning over the temporal evolution of the
physiological variables; (3) they can integrate information
originating from more than one variable into a single parameter;
and, in spite of their high semantic content, (4) they can be edited
by physicians in a simple manner without the need for assistance
thanks to the use of visual metaphors in their definition.

Currently, further research still needs to be carried out to
ensure that these alarms permit the supervision of all situations
of abnormality that can be identified with threshold alarms.
Nevertheless, the results obtained to date are highly promising:
the alarms proposed herein show a significant reduction in
the production of false positives; the diagnostic evidence they
supply on the pathologies they supervise is significantly superior
than that supplied by threshold alarms; and they are capable of
identifying situations of abnormality that cannot be supervised
using thresholds. Thus we believe that the coexistence of the
alarms proposed in the present study with those currently in
use in medical units would result in a significant increase in the
quality of health care.

One problem that we have encountered in this work has
been the lack of a catalogue of monitoring criteria based on
patterns of the temporal evolution of physiological variables or
in the combination of multiparametric information - in spite of
the fact that health care staff habitually employ these types of
criteria. The most likely reason for this is the lack of tools
for automatically identifying these criteria, making it difficult
to carry out rigorous studies on them.

Our future work will be aimed at continuing to evaluate the
alarms dealt with herein, along with any others that may be
of interest for health care staff, and with them to construct
a monitoring criteria catalogue. In a pilot experiment, this
catalogue will be applied to the routine of an ICU, employing
an intelligent patient supervision system in which alarms will be
configured using TRACE’s pattern editor.
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