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Abstract—This paper presents an algorithm that permits the
identification of apneas – cessations in the sleeping patient’s
respiratory flow – in the respiratory airflow signal and relates
them to the drops in blood oxyhemoglobin saturation that they
produce. The structural nature of the algorithm allows us to
perform a detailed characterization of the identified events and to
easily modify the morphological detection criteria. This proposal
is based on the fuzzy set theory for the representation and
manipulation of the vagueness of the medical knowledge on which
it is based, and on the constraint satisfaction problem formalism
to provide a computable support to medical knowledge.

Index Terms—Sleep Apnea Syndrome, Biosignal Processing,
Structural Pattern Recognition, Fuzzy Constraints.

I. INTRODUCTION

Sleep Apnea Syndrome (SAS) is a very frequent sleep-
breathing disorder. Its prevalence is especially high in adult
males with obesity problems and is recognized as an important
public health issue [1]. This disorder is characterized by
interruptions of the respiratory airflow whilst the patient is
sleeping – apneas – caused by obstructions of the upper
airway. As a consequence, they produce a drop in blood
oxyhemoglobin saturation (SpO2) and cause micro-awakens
(arousals) that fracture the patients’ sleep. The global result is
a decrease in the refreshing effects of sleep and a consequent
diurnal somnolence and cognitive deficit that increases the risk
of accidents.

Polysomnography is a fundamental test for the diagnosis of
SAS. It is performed in a hospital Sleep Unit and consists of
the registration of a wide range of physiological parameters
whilst the patient is asleep. An algorithm is presented in
this paper that permits the identification and characterization
of apneas and the desaturations that these cause, using two
of these parameters: the respiratory airflow and the SpO2.
The algorithm is based on the Multivariable Fuzzy Temporal
Profile model (MFTP) [6], a structural model that permits
the projection onto a computable representation of a signal
pattern made up by a set of morphologies defined over the
temporal evolution of the physiological parameters of a patient
and a series of relationships between these morphologies. The
pattern is obtained directly from a human expert by means of
a graphic tool developed for this purpose [5].

In the following section, the MFTP model is presented and
how it can be used to represent an apnea and the corresponding

desaturation is also shown. In Section III, the algorithm
that permits the identification and characterization of both
events is shown and Section IV includes a validation of the
aforementioned algorithm. In Section VI the results obtained
are discussed and, finally, a series of conclusions on the paper
are given and possible lines of extension are commented.

II. APNEA REPRESENTATION

An apnea is defined as a decrease in the respiratory airflow
of a patient to at least 10% of its basal value, maintained for at
least 10 seconds. This hypoventilation usually produces a drop
in the SpO2. The standard polysomnographic criteria consider
a drop in the SpO2 to be relevant only when this drop is of 4%
or higher. The drop in the SpO2 begins approximately from
10 to 30 seconds after the start of apnea. Shortly after the
hypoventilation ceases, the SpO2 should begin to recover (see
Fig. 1). In this section, how to represent this pattern using the
MFTP model is shown.

A. The MFTP model

The MFTP model [6] makes it possible to represent signal
patterns, comprising a set of morphologies defined over the
evolution of a set of physiological variables and temporal
and magnitude relations between these morphologies. The
MFTP model is based on the constraint satisfaction problem
formalism [3] and on fuzzy set theory. An MFTP allows a
pattern to be represented by means of a network of fuzzy
constraints between a set of significant points.

We shall introduce some basic concepts of the fuzzy set
theory on which the MFTP model is based. Given as discourse
universe the set of real numbers R, a fuzzy number C is a
normal (∃ v ∈ R, µC(v) = 1) and convex (∀v, v′, v′′ ∈ R, v′ ∈
[v, v′′], µC(v′) ≥ min {µC(v), µC(v′′)}) fuzzy subset of R.
We obtain a fuzzy number C from a flexible constraint given
by a possibility distribution πC , which defines a mapping from
R to the real interval [0, 1]. Given a precise number v ∈ R,
πC(v) ∈ [0, 1] represents the possibility of C being precisely
v. By means of πC we define a fuzzy subset C of R, which
contains the possible values of C.

We shall represent possibility distributions by means of a
trapezoidal representation. In this way, C = (α, β, γ, δ), α ≤
β ≤ γ ≤ δ, where [β, γ] represents the core, core(C) = {v ∈
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Fig. 1. Graph of the apnea MFTP drawn over a real apnea occurrence.

R| πC(v) = 1}, and ]α, δ[ represents the support, supp(C) =
{v ∈ R|πC(v) > 0}. We have opted for this representation on
the basis of its computational efficiency and the intuitiveness
of its semantics for the medical users.

We shall consider time as being projected onto a one-
dimensional discrete axis τ = {t0, t1, ..., ts, ...}, where ts rep-
resents a precise instant and for every i ∈ N, ts+1 − ts = ∆t.
We will denote as P = {P 1, ..., Pm} the set of physiological
variables obtained from the monitoring of a patient. In this case
P = {PRa, PSpO2} where PRa is the respiratory airflow and
PSpO2 the SpO2. Each of the physiological variables P p ∈ P
is obtained by a signal sampling process, in the form of a
temporal series P p = {(vp

[s], t
p
[s]); s ∈ N}, where vp

[s] is the
value of P p at the instant tp[s].

We define significant point on a physiological parameter P p,
Xp

i , as the pair formed by a variable from the domain V p
i and

a temporal variable T p
i . A significant point Xp

i = {V p
i , T p

i }
represents an unknown value for P p at an unknown temporal
instant. In the absence of constraints, V p

i and T p
i may take

any precise value vp
i and tpi , respectively, where (vp

i , tpi ) ∈ P p.
By Ap

i we denote the assignment of precise values from the
evolution P p to the variables of Xp

i ; i.e., Ap
i = (vp

i , tpi ).
A constraint Lpq

ij between two significant points Xp
i and Xq

j

is defined by means of a normal, convex possibility distribution
µLpq

ij (Xp
i ,Xq

j ) = πLpq
ij (h), h ∈ τ , which represents the

possibility of the fuzzy temporal extension between Xp
i and Xq

j

being h. The assignments T p
i = tpi and T q

j = tqj are possible

if πLpq
ij (tqj − tpi ) > 0. In Fig. 1 LRa

12 models the linguistic
description “more than approximately 10 seconds”.

A constraint Dpq
ij between a pair of significant points

Xp
i and Xq

j is defined by means of a normal and convex

possibility distribution µDpq
ij (Xp

i ,Xq
j ) = πDpq

ij (d), d ∈ R,
which represents the possibility of the fuzzy increase between
Xp

i and Xq
j being d. The assignments V p

i = vp
i and V q

j = vq
j

are possible if πDpq
ij (vq

j − vp
i ) > 0. In Fig. 1 DSp

12 models the
description “decrease of 4% or more”.

Following the bibliography on constraint networks [3], and
with the aim of obtaining a more compact notation, we define
the origin significant point Xp

0 = < V p
0 , T p

0 > which will
make it possible to represent value constraints (e.g. “approxi-
mately 20 units”) as increase constraints relating to the origin
significant point. Any arbitrary value can be assigned to Xp

0 ,
although it is habitually assigned the value V p

0 = basal(P p),
T p

0 = 0 where basal(P p) represents the value of the parameter
P p under normal conditions. In Fig. 1 DRa

01 and DRa
02 model

the linguistic description “less than approximately 10% of the
basal value”.

A constraint Mp
ij between a pair of significant points Xp

i

and Xp
j , defined over the same parameter P p, is defined

by means of a normal and convex possibility distribution
µMp

ij (Xp
i ,Xp

j ) = πMp
ij (m), m ∈ R, which represents the

possibility of the fuzzy slope between Xp
i and Xp

j being m.
The assignments V p

i = vp
i , V p

j = vp
j , T p

i = tpi and T p
j = tpj are

possible if πMp
ij (mp

ji) > 0, where mp
ji = (vp

j − vp
i )/(tpj − tpi ).

In Fig. 1 MRa
12 models the description “...sustained...”, where

“sustained” is modelled by means of an approximately zero
slope value.

We define a Multivariable Fuzzy Temporal Profile (MFTP)
M =< WM,XM,RM > as a finite set of MFTPs WM =
{MM

1 , ...,MM
s }, a finite set of significant points XM =

{Xp1
i1

,Xp2
i2

, ...,X
pg

ig
} and a finite set of constraints RM =

{R1, ..., Rf} amongst the points of WM and XM.
The recursive structure of the MFTP model is based in the

way that humans define patterns; a complex pattern is often
made up of a set of findings and a set of relations between
them. Each of the findings of the pattern may also be a pattern,
and may comprise a set of findings and relations between
them, and so on, successively.

An MFTP can be represented by a graph in which nodes
correspond to significant points, and arcs correspond to con-
straints (see Fig. 1). The MFTP model also enables us to
restrict the evolution of a parameter P p between each pair
of significant points Xp

i and Xp
j by means of a constraint Sp

ij

represented by a membership function µSp
ij (Ap

i ,Ap
j ) which

defines a fuzzy course (see Fig. 1) within which the temporal
evolution of the parameter must remain in order to satisfy the
constraint [6].

B. Apnea pattern modelling

A decrease in the respiratory airflow corresponding to an
apnea is projected in an MFTP that represents a straight
section with an almost constant value. The magnitude of the
significant points that delimit the extremes, XRa

1 and XRa
2 ,

should be less than approximately 10% of the basal value of
the respiratory airflow (i.e. DRa

01 = DRa
02 =“less than approx-

imately 10% of the basal value”). The temporal relationship
between both points should be LRa

12 =“at least approximately
10 seconds”, the variation in magnitude DRa

12 =“approximately
zero” and, consequently, the slope between them should be
MRa

12 =“approximately zero”. The magnitude of the samples of
the signal section between both points should also be lower
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than approximately 10% of the basal value. Therefore, the
section samples should satisfy the constraint SRa

12 defined as:

SRa
12 (ARa

1 , ARa
2 ) = min

(vRa
[s] ,tRa

[s] );tRa
1 ≤tRa

[s] ≤tRa
2

πDRa
12 (vRa

[s] ),

where ARa
1 = (vRa

1 , tRa
1 ) and ARa

2 = (vRa
2 , tRa

2 ) are the as-
signments performed to XRa

1 and XRa
2 . Therefore, the MFTP

that represents an apnea would be: MAp
Ra =< ∅, {XRa

0 ,XRa
1 ,

XRa
2 }, {DRa

01 ,DRa
02 , LRa

12 , DRa
12 ,MRa

12 , SRa
12 } >.

Similarly, the drop in the SpO2 produced by the apnea
could be represented by MAp

Sp =< ∅, {XSp
1 ,XSp

2 ,XSp
3 },

{LSp
12 ,DSp

12 ,MSp
12 , SSp

12 , LSp
23 ,DSp

23 ,MSp
23 , SSp

23 } > where the
constraints between XSp

1 and XSp
2 forces a drop of at least

4% between them, and the constraints between XSp
2 and XSp

3

model the recovery of the parameter value. In this case, the
samples of each section should verify a determined change
rate: those between ASp

1 and ASp
2 should show compatibility

with MSp
12 taking assignment ASp

1 as a reference (see Fig. 1);
and those between ASp

2 and ASp
3 should show compatibility

with MSp
23 taking assignment a ASp

2 as reference (see Fig. 1).
Therefore, SSp

12 would be given by:

SSp
12 (ASp

1 , ASp
2 ) = min

(v
Sp
[s] ,t

Sp
[s] );t

Sp
1 ≤t

Sp
[s] ≤t

Sp
2

max
u

{µ(vSp
[s] −vSp

1 )∩MSp
12 ⊗(tSp

[s]−tSp
1 )(u)},

where ⊗ represents the fuzzy product. SSp
23 is given by an

analogous expression.
Given that we want to associate each apnea with its cor-

responding desaturation, we consider that both events form
a part of the pattern to be identified. The temporal relation-
ship between the beginning of the apnea and the beginning
of the drop in SpO2 is LRa Sp

11 =“approximately between
10 and 30 seconds afterwards”, and the recovery in the
SpO2 should be subsequent to the end of the apnea (i.e.
LRa Sp

22 =“afterwards”). Therefore, the pattern that models
an apnea and its corresponding desaturation, which we de-
note by MAp, would be: MAp =< {MAp

Ra, MAp
Sp}, ∅,

{LRa Sp
11 , LRa Sp

22 } >.

III. APNEA RECOGNITION AND CHARACTERIZATION

The MFTP definition allows the matching task to be
structured hierarchically, where a pattern M constitutes a
processing level that incorporates a set of findings detected
in the previous processing level. Identifying the pattern MAp

over P = {PRa, PSpO2} is equivalent to finding a solution to
the fuzzy constraint network defined by MAp [3]. A network
solution is built by means of the assignment of a sample of the
evolution of P to each significant point of MAp. A solution
AAp to the MFTP MAp is defined as a set of assignments
AAp = {ARa

1 , ARa
2 , ASp

1 , ASp
2 , ASp

3 } that satisfy the set of
constraints that make up M, with a degree higher than zero.

In order to match MAp we start by searching for oc-
currences of the two findings that make it up. In order to

Fig. 2. TRACE showing the detection for the apnea and desaturation pattern.

calculate the degree of compatibility of MAp
Ra with AMAp

Ra =
{ARa

1 , ARa
2 } the following expression is used:

πMAp
Ra(AMAp

Ra) = min{πDRa
01 (vRa

1 ), πDRa
02 (vRa

2 ), πLRa
12 (tRa

2

−tRa
1 ), πDRa

12 (vRa
2 − vRa

1 ), πMRa
12 (mRa

21 ),SRa
12 (ARa

1 , ARa
2 )},

where the assignments ARa
1 and ARa

2 are taken from the
values registered for the respiratory airflow and mRa

21 =
(vRa

2 − vRa
1 )/(tRa

2 − tRa
1 ). A similar expression applies for

MAp
Sp . Solutions are then searched for MAp over the previ-

ously found occurrences for MAp
Ra and MAp

Sp . The degree of
compatibility of MAp with AAp = {AAp

Ra, AAp
Sp} is given by:

πMAp

(AAp) = min{πMAp
Ra(AAp

Ra), πMAp
Sp (AAp

Sp ),

πLRa Sp
11 (tSp

1 − tRa
1 ), πLRa Sp

22 (tSp
2 − tRa

2 )}.
After it has been identified, the pattern is characterized using

the structural information contained in MAp. From AAp it is
possible to calculate the duration of the apnea (tRa

2 − tRa
1 );

the duration and slope of the drop section (tSp
2 − tSp

1 and
mSp

21 , respectively) and of the recovery section (tSp
3 − tSp

2 and
mSp

32 , respectively) of the desaturation; the time elapsed from
the beginning of the apnea to the beginning of the drop in
SpO2 (tSp

1 − tRa
1 ); and the time elapsed from the end of the

apnea until the SpO2 begins to recover (tSp
2 − tRa

2 ) and until
it has fully recovered (tSp

3 − tRa
2 ). Also, the energy of the

respiratory airflow signal is calculated for the interval of apnea,
normalized by the number of samples of this interval, and the
maximum, minimum and average values of the SpO2 during
the desaturation episode.

IV. EXPERIMENTAL RESULTS

Based on the MFTP model we have constructed the Tool
foR anAlyzing and disCovering pattErns, TRACE, a tool for
creating, editing and validating MFTPs [5]. The tool makes
use of the very graph that represents the MFTP, whose shape
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resembles the pattern it represents, as a visual metaphor to
assist in editing knowledge relating to signal patterns. This
editing can be carried out in an entirely visual manner, using
only a mouse. The tool also allows the matching procedures
for the MFTP model to be executed, and its results viewed.
Each detection emphasizes the fragments of each physiological
parameter that has demonstrated compatibility with the mor-
phology defined over it, and adds a signal to the environment
called detection, which represents the compatibility of the
global pattern (see Fig. 2).

Using TRACE, 28 hours of polysomnographic registers
from 5 different patients subjected to a sleep study were
processed. Of the 787 apneas present in the registers, 741
apneas were correctly identified (94%), 46 false negatives
(5.8%) and 11 false positives (1.5%) were produced.

V. DISCUSSION

The results of the preliminary evaluation presented here
allow us to be optimistic with regard to the potential of
our proposal as a support to the diagnosis of SAS. The
very low number of false positives (1.5%), obtained as a
result of the integration of information from two different
parameters (respiratory airflow and SpO2) in the detection
process, should be noted. This high specificity increases the
value of the characterization of the apnea episodes, as the
presentation of a high rate of false positives could contaminate
the characterization information and so decrease its value.

On the other hand, during the validation process, the
metaphors employed by TRACE to show the results of the
detection process have demonstrated that they are sufficiently
intuitive for the pneumologist to understand the detection
results without assistance, which endorses the viability of
employing TRACE in the clinical routine.

In the bibliography there are several proposals which pro-
vide a diagnostic test to determine automatically whether or
not a patient suffers from SAS [7]. However, there are very
few proposals that include algorithms capable of individually
identifying each apnea [2], [4] and, to the best of our knowl-
edge, none propose mechanisms for their characterization.

The set of descriptors that our algorithms employ to char-
acterize the apneas were selected with the collaboration of a
medical team. Their purpose is to serve as a basis for carrying
out a detailed study of the physiopathological processes that
are subjacent in SAS and, thereby achieve a more profound
knowledge of this disorder. Thus, for example, the sections
between the end of the apnea and the beginning and ending
of the recovery in the SpO2, together with the slope of this
recuperation, reflect the capacity of the patient to recover
from the hypoxia. It is well known that patients with chronic
obstructive pulmonary disease who suffer SAS recover more
slowly from the hypoxia, due to their problems of ventilation.
However, there are no detailed studies on how the capacity for
recovery reflects the different degrees of the seriousness of the
illness or if this should have some impact on the therapy.

The structural character of the algorithm, together with the
availability of a graphical tool -TRACE- that permits edition of

the morphological criteria of the apnea pattern, supplies sup-
port for analyzing polysomnographic registers using criteria
different to the standard ones. For example, the medical team
with which we work believes that flow limitations of only five
or six seconds can have repercussions on the architecture of the
patients’ sleep although, if standard polysomnographic criteria
were employed, these would not be considered as apneas.

VI. CONCLUSION AND FUTURE WORK

This paper presents an algorithm of a structural character
that permits the identification of apneas and relates them to
the drops in the SpO2 that these produce. The algorithm takes,
as a starting point, medical knowledge of the morphology of
these manifestations and is based on the fuzzy set theory for
the representation and manipulation of the vagueness charac-
teristic of this knowledge. Using a graphic tool, TRACE, the
clinical staff can edit the morphological criteria of the pattern
to be identified, which provides support for the employment
of customized criteria in the analysis of a polysomnographic
register.

The algorithm calculates a set of descriptors that permit the
characterization of the apnea, the desaturation and the temporal
relationships between them. This characterization can serve
as a basis for obtaining a more profound knowledge of the
subjacent physiopathological processes in SAS. One of our
future lines of research is directed towards this end: we hope
to process a database of polysomnographic registers with the
algorithm and apply data-mining techniques to the information
that is generated to discover new medical knowledge. We also
hope to develop algorithms based on the MFTP model to iden-
tify other events that are registered during a polysomnography
and that are relevant for cardiopulmonary sleep disorders.
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