
Chapter 1
Soft X-ray Tomography Imaging for Biological
Samples

J. Otón, C.O.S. Sorzano, F.J. Chichón, J.L. Carrascosa, J.M. Carazo and R.
Marabini

Abstract Soft X-ray Tomographic (TomoX) microscopy is becoming a valuable
technique for the analysis of the organization of cellular structures, filling a reso-
lution gap between electron and confocal microscopy. TomoX is based on the possi-
bility of imaging three-dimensional fully hydrated cells under cryo conditions with-
out any chemical pre-treatment using soft X-rays. Unfortunately, from an image
formation point of view, TomoX projections suffers from inaccuracies due to the
limited depth of field (DOF) of the objective lens. Thus, modeling the image forma-
tion process is decisive to understanding how TomoX projections are formed and
to mitigating the effect of these DOF inaccuracies. A review of the state of the art
regarding image modeling is presented in this chapter.

1.1 Introduction

One of the most recent tools used to understand the mechanisms that take place
within the cell is Cellular soft X-ray Tomography (TomoX) (Schneider, 1998). This
technique is able to visualize whole cells in cryo conditions with a resolution be-
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tween 50 and 10 nm (Rehbein et al, 2009). Many studies have presented 3D recon-
structions generated by X-ray microscopy (Weiss et al, 2000; Thieme et al, 2003;
Larabell, 2004; Gros et al, 2005; Gu et al, 2007; Parkinson and McDermott, 2008;
Uchida et al, 2009; Carrascosa et al, 2009; Hanssen and Knoechel, 2012; McDer-
mott et al, 2012; Chichón et al, 2012).

Usually, tomograms are reconstructed by processing the data using software de-
veloped for electron microscopy (EM) data (as can be SPIDER (Frank et al, 1996),
BSOFT (Heymann et al, 2008), IMOD (Kremer et al, 1996) or XMIPP (Sorzano
et al, 2004)). Because the reconstruction algorithms in these packages do not take
into account the specific features of image formation in TomoX, the obtained results
are not as optimal as if the reconstruction process were tuned to compensate for the
effects of the microscope optical system. In this chapter, we introduce an image for-
mation model under an incoherent illumination condition. Moreover, we analyze the
effects of the image formation process into reconstructed data as a first step toward
the development of specific reconstruction algorithms.

1.2 Interaction of soft X-rays with matter

There are different ways X-rays interact with matter, namely, absorption, elastic
scattering and inelastic scattering (or Compton scattering). In the case of soft X-rays
(from approximately 250 eV to several thousand eV (Attwood, 2007)), because the
cross section for elastic scattering is a factor of 103–104 smaller than the photo-
electric effect and because inelastic scattering is basically negligible, the dominant
effect is the photoelectric absorption (Kirz et al, 1995).

To describe the interaction of matter with X-ray radiation, we suppose a non-
magnetic medium, where the complex refractive index ñ relates to the complex
scattering factor f̃ = f1 + i f2 as

ñ = 1− nareλ 2

2π
( f1 + i f2) , (1.1)

where na is the number of atoms per unit volume, re is the classical electron radius
and λ is the illumination wavelength (Kirz et al, 1995).

Because the complex refractive index can be also defined in terms of absorption
and phase shift as ñ= 1−δ− iβ , the electric field of a plane wave along the medium
is:

U(x,y,z) = U0,0(x,y)exp(−ikñz)

= U0,0(x,y)exp(−ikz)exp(ikδ z)exp(−kβ z)

= U0(x,y,z)exp(−ikz) , (1.2)
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where U0,0(x,y) is the field amplitude for the reference plane z = 0, i =
√
−1, k =

2π/λ is the wave number in the vacuum and U0(x,y,z)=U0,0(x,y)exp(ikδ z)exp(−kβ z)
is the field amplitude along the propagation direction z.

If we define the complex absorption coefficient as µ̃ , µ̃R + iµ̃ I , k(β − iδ ) to
implicitly include the wave number dependence in µ̃ , then the intensity amplitude
becomes

I0(x,y,z) = |U0(x,y,z)|2

= |U0,0(x,y)|2 exp(−2kβ z)

= |U0,0(x,y)|2 exp
(
−2µ̃

Rz
)
, (1.3)

which is the well-known expression of the Beer-Lambert law (Howells et al, 2007).
In both cases, for the electric and intensity fields, Eqs. 1.2 and 1.3 can be rewritten

in their derivative expressions as:

dU0(x,y,z)
dz

= −µ̃(x,y,z)U0(x,y,z)

dI0(x,y,z)
dz

= −2µ̃
R(x,y,z)I0(x,y,z). (1.4)

This assumption is only valid for plane waves propagating through a homo-
geneous medium. However, because scattering effects are negligible, an extended
Beer-Lambert law is often used to describe the light attenuation inside specimens
with slowly varying absorption coefficients (a quasi-isotropic medium) (Howells
et al, 2007).

In this chapter, we will work in the spectral region called water window, between
the K-absorption edges of carbon (284 eV) and oxygen (543 eV) (Wolter, 1952).
In this range, because water (oxygen) is relatively transparent, protein (carbon) and
other elements found in biological specimens are much more absorbing. Therefore,
proteins are imaged with high contrast and it is possible to visualize hydrated bio-
logical specimens near their native state without chemical staining.

1.3 Diffraction theory

To fully understand how the process of wave propagation contributes to image for-
mation, we will make use of the diffraction theory. Although similar developments
can be found in many optical textbooks (see Goodman (1996) Chapter 5 as an ex-
ample), for the sake of clarity we present here the complete development. We begin
using the expression of the Fresnel approximation in the Huygens-Fresnel principle,
which describes the electric field U z in the plane z as a function of the electric field
U0 in the reference plane z = 0 as
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Fig. 1.1 Schematic representation of a standard optical microscope. Plane zo defines the best-
focused plane imaged onto plane zi, fulfilling 1/zo +1/zi = 1/ f . A source point at Po is imaged at
P′o. If the source point is shifted to P at plane z, then its image P′ is also shifted to a different plane,
but in zi plane P′ projects a blob given by the cone limited by the red rays

U z(x,y) =
exp(ikz)

iλ z

∫∫
U0(ξ ,η)exp

(
i

k
2z

[
(x−ξ )2 +(y−η)2

])
dξ dη , (1.5)

where (ξ ,η) and (x,y) are the point coordinates at planes z = 0 and z, respectively.
Now, let us suppose the basic scheme of a geometrical optical system (Fig. 1.1),

where for an object placed on a plane at a distance zo from the lens, with a focal
length f and complex transmission function L(xl ,yl), we find a scaled image of the
object in a plane at zi distance from the lens. Theses distances are related by the
well-known expression of geometrical optics 1/zo + 1/zi = 1/ f . Therefore, for a
field distribution Uo(x,y) placed in some plane z, we can obtain the field distribution
U i(xi,yi) in the image plane zi by applying Eq. 1.5 twice: between the z plane and
the lens and between the lens and the zi plane. After eliminating some global phase
factors we obtain:

U i(xi,yi) =
1

λ 2zzi

∫∫ [∫∫
Uo (x,y)exp

(
iπ
λ z

[
(xl− x)2 +(yl− y)2

])
dxdy

]
×L(xl ,yl)exp

(
iπ
λ zi

[
(xi− xl)

2 +(yi− yl)
2
])

dxldyl . (1.6)

Then, we expand the quadratic phase factors as:
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U i(xi,yi) =
exp
(

iπ
λ zi

[
x2

i + y2
i
])

λ 2zzi

∫∫ [∫∫
Uo (x,y)exp

(
iπ
λ z

[
x2 + y2])

× exp
(
−i2π

λ z
[xxl + yyl ]

)
dxdy

]
L(xl ,yl)exp

(
iπ
λ

[
1
z
+

1
zi

][
x2

l + y2
l
])

×exp
(
−i2π

λ zi
[xixl + yiyl ]

)
dxldyl . (1.7)

If the contribution to an image point (xi,yi) were given by a small region of
the object around the point (xi/M,yi/M), as predicted by geometrical optics (M
being the magnification of the optical system defined as M =−zi/z), we could then
approximate exp

(
iπ
λ z

[
x2 + y2

])
≈ exp

(
iπ
λ z

[
(xi/M)2 +(yi/M)2

])
so that this term

could be extracted from the integral (see Goodman (1996) Chapter 5 for a complete
explanation). However, we are also interested in planes beyond the DOF where this
condition is not fulfilled, and therefore, the previously referenced term cannot be
extracted.

For the sake of clarity, let us define Uo′ (x,y) =Uo (x,y)exp
(

iπ
λ z

[
x2 + y2

])
; then,

Eq. 1.7 becomes

U i(xi,yi) ≈
exp
(

iπ
λ zi

[
x2

i + y2
i
])

λ 2zzi

×
∫∫ [∫∫

Uo′ (x,y)exp
(
−i2π

λ z
[xxl + yyl ]

)
dxdy

]
L(xl ,yl)

×exp
(

iπ
λ

[
1
z
+

1
zi

][
x2

l + y2
l
])

exp
(
−i2π

λ zi
[xixl + yiyl ]

)
dxldyl ,

(1.8)

where we have gathered exponential terms. Moreover, because we are interested
in the acquired intensity image in plane zi, the quadratic phase factors outside the
integral do not contribute to the final intensity distribution, so they can be dropped.

If we define the Fourier transform function F and its inverse function F−1 as

F ( f (x)) ≡ f̃ (u),
∫

f (x)exp(−2πixu)dx

F−1
(

f̃ (u)
)
≡ f (x) =

∫
f̃ (u)exp(2πixu)du, (1.9)

then Eq. 1.8 leads to
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U i(xi,yi) =
1

λ 2zzi

∫∫
Ũo′
(

xl
λ z ,

yl
λ z

)
L(xl ,yl)exp

(
iπ
λ

[
1
z
+

1
zi

][
x2

l + y2
l
])

×exp
(
−i2π

λ zi
[xixl + yiyl ]

)
dxldyl , (1.10)

where Ũo′( fx, fy) is the Fourier transform of the field distribution Uo′(x,y) evaluated
at ( fx =

xl
λ z , fy =

yl
λ z ).

If we analyze Eq. 1.10 in Fourier space, we see that

Ũ i( fxi , fyi) =
1

λ 2zzi
Ũo′ (M fxi ,M fyi)(λ zi)

2

×L(−λ zi fxi ,−λ zi fyi)exp
(

iπ
λ

[
1
z
+

1
zi

][
(λ zi fxi)

2 +(λ zi fyi)
2]) ,

(1.11)

that is, the Fourier transform of the field distribution at the sensor plane zi is a scaled
version of the Fourier transform of the field distribution at plane z in object space
multiplied by the lens function and a quadratic phase factor, evaluated at frequencies(

fxi =
−xl
λ zi

, fyi =
−yl
λ zi

)
. Eq. 1.11 can also be expressed as a convolution in real space.

To do so, we have to reduce the object-image relation to a convolution equation by
normalizing the object coordinates of the Fourier transforms to remove inversion
and magnification:

U i(xi,yi) =
1

λ 2zzi

∫∫ 1

|M|2
Uo′
(

ξ

M , η

M

)
(λ zi)

2F−1
fxi , fyi

{
L(−λ zi fxi ,−λ zi fyi)

exp
(

iπ
λ

[
1
z
+

1
zi

][
(λ zi fxi)

2 +(λ zi fyi)
2])exp(−i2π( fxiξ + fyiη))

}
dξ dη ,

(1.12)

where F−1
fxi , fyi

denotes the inverse Fourier transform operation in plane ( fxi , fyi).

Because L(x,y) is zero outside the lens aperture, the F−1
fxi , fyi
{·} argument in

Eq. 1.12 is an integrable continuous function. Then, applying the Fourier inver-
sion theorem Fx,y { f (x,y)} = F−1

x,y { f (−x,−y)} (Folland, 1992), U i(xi,yi) can be
expressed as the convolution

U i(xi,yi) =
1
|M|

Uo′ ( xi
M , yi

M

)
⊗

xi,yi

F fxi , fyi

{
L(λ zi fxi ,λ zi fyi)exp

(
iπ
λ

[
1
z
+

1
zi

][
(λ zi fxi)

2 +(λ zi fxi)
2])} , (1.13)

where ⊗
xi,yi

is the symbol to denote the convolution operation in the (xi,yi) plane.

Let us rewrite the field distribution in plane zi as the following object-image
relationship:
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U i(x,y) =Ug(x,y)⊗
x,y

h̃(x,y,z), (1.14)

where Ug(x,y) is the ideal image predicted by geometrical optics, and h̃(x,y,z) is the
impulse response, also called the point spread function (PSF), of the lens related to
an imaged object placed in plane z and imaged in plane zi. Then, comparing Eq. 1.13
and Eq. 1.14, we set the following definitions:

Ug(x,y) =
1
|M|

Uo′ ( x
M , y

M

)
,

h̃(x,y,z) = F fx, fy

{
L(λ zi fx,λ zi fy)exp

(
iπ
λ

[
1
z
+

1
zi

][
(λ zi fx)

2 +(λ zi fy)
2])} ,

(1.15)

and the intensity measured in the sensor plane is

Ii(x,y) =
∣∣∣∣Ug(x,y)⊗

x,y
h̃(x,y,z)

∣∣∣∣2 . (1.16)

In the case of totally incoherent illumination, the intensity given by Eq. 1.16 is
well-known to become (Goodman, 1996)

Ii(x,y) = Ig(x,y)⊗
x,y

∣∣h̃(x,y,z)∣∣2 . (1.17)

where Ig(x,y) =
∣∣Ug(x,y)

∣∣2 = 1
|M|2

∣∣Uo( x
M , y

M )
∣∣2 is the ideal intensity distribution

given by geometrical optics and is directly related to the intensity distribution at
the object plane where the quadratic phase factor in the definition of Uo′ has been
canceled.

In summary, the intensity distribution in the image plane is the one we would
measure if we had an infinite ideal lens convolved with the Fraunhofer diffraction
pattern of the lens aperture combined with a quadratic phase factor that takes into
account the effect of the object being in a plane different from the focused plane zo.

1.4 Image forming systems

In a first-order approximation, there is an agreement to model full-field transmission
X-ray microscopes as systems formed by a single ideal lens illuminated by a parallel
wave (Weiss et al, 2000). Therefore, within this approximation, the only source of
aberration is the limited size of the lens, i.e., the aperture of the objective lens.
Because the microscope imaging system collects only a fraction of the light emitted
by a given point, it cannot focus the light into a perfect three-dimensional image
of the point. Instead, the point appears widened and spread out by the previously
introduced three-dimensional PSF.
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1.4.1 Ideal lens

The complex transmission function of a finite lens of focal distance f is defined as

L(x,y) = T (x,y)exp
(
− ik

2 f

[
x2 + y2]) , (1.18)

where T (x,y) is the function that defines the aperture of the lens, which, in most
cases, is usually a circular aperture of radius R, defined by the circ function

circ
( x

R
,

y
R

)
=

{
1

√
x2 + y2 ≤ R

0
√

x2 + y2 > R.
(1.19)

If we substitute Eq. 1.18 into Eq. 1.15, we obtain

h̃(x,y,z) = F fx, fy

{
circ
(

λ zi fx

R
,

λ zi fy

R

)
exp
(

iπ
λ

D(z)
[
(λ zi fx)

2 +(λ zi fy)
2])} ,

(1.20)
where we have defined the Defocus of the optical system as

D(z) =
1
z
+

1
zi
− 1

f
=

1
z
− 1

zo
. (1.21)

Substituting Eq. 1.20 into Eq. 1.17 and defining the point spread function for the
totally incoherent case as

h ,
∣∣h̃∣∣2 , (1.22)

we easily see that the PSF of an ideal lens for the incoherent case is

h(x,y,z) =

∣∣∣∣∣∣π
(

R
λ zi

)2 J1

(
2πR
λ zi

r
)

πR
λ zi

r
⊗
x,y

i
D(z)λ z2

i
exp

(
− iπλ

D(z)

[(
x

λ zi

)2

+

(
y

λ zi

)2
])∣∣∣∣∣

2

, (1.23)

where r =
√

x2 + y2 and J1 is a Bessel function of the first kind. This Eq. 1.23 is a
well-known expression (see Mielenz (1999) and Weiss et al (2000)), and in the case
of no defocus (D(z) = 0) it is known as the Airy disk pattern. As an example, the
3D PSF of the ideal lens used in Section 1.7 is shown in Fig. 1.2.

If we define the amplitude transfer function H of an optical system as

H( fx, fy,z) = Fx,y
{

h̃(x,y,z)
}
, (1.24)

then, analyzing the expression of Eq. 1.20 in Fourier space, we arrive at
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Fig. 1.2 3D intensity point spread function of an ideal lens of 1.47 mm focal length, 44.8 µm
radius and 48.8 nm maximum resolution (lens equivalent to a Fresnel zone plate of 560 zones and
a 40 nm outer zone width), with an illumination wavelength of 2.43 nm. Each column represents
the values of a PSF profile according to the defocus D(z), where ∆z = z− zo. The dependence in y
is the same as in x

H( fx, fy,z) = circ
(

λ zi fx

R
,

λ zi fy

R

)
exp
(

iπ
λ

D(z)
[
(λ zi fx)

2 +(λ zi fy)
2]) . (1.25)

Furthermore, the equivalent in a totally incoherent illumination system is H ,
known as the optical transfer function, and is related to H( fx, fy,z) by Eq. 1.22,
resulting in:

H ( fx, fy,z) = Fx,y {h(x,y,z)}= H( fx, fy,z) ?
x,y

H( fx, fy,z), (1.26)

where ?
x,y

denotes the autocorrelation symbol in the plane (x,y). Fig. 1.3 shows the

amplitude of H for the PSF introduced in Fig. 1.2 for several values of defocus ∆z
from the plane zo.

1.4.2 Fresnel zone plate lens

Thus far, we have assumed that the PSF of an X-ray microscope is properly ap-
proximated by the PSF of a perfect system computed at the focal point. In this
subsection, we discuss how similar the PSF of a perfect system is to the one pro-
vided by a Fresnel zone plate (FZP), which is the imaging lens actually used in an
X-ray microscope.

A Fresnel zone plate is a diffractive optical element formed by concentric rings
whose width decreases as the radius increases in such a way that light focuses at
points where there is a constructive interference. In fact, an FZP is considered a
transmission grating in terms of the radius squared. Therefore, the function that de-
fines this grating can be represented by a Fourier series expansion (Attwood, 2007).
Then, the transmission complex function of a Fresnel zone plate in the aperture of



10 J. Otón et al.

−0.03 −0.02 −0.01 0 0.01 0.02 0.03

0

0.2

0.4

0.6

0.8

1

O
T

F

f
x
 (nm−1)

 

 

0

1

2

3

4

5

∆z (µm)

Fig. 1.3 Profiles of the optical transfer function corresponding to the ideal lens PSF of Fig. 1.2 for
several values of ∆z (Defocus)

the optical system can be written as an infinite series of ideal lenses multiplied by
the aperture function:

LFZP(x,y) = circ
( x

R
,

y
R

) ∞

∑
m=−∞

√
ηm exp

(
− iπ

λ fm

[
x2 + y2]) , (1.27)

where fm = f/m are the focal lengths for each diffracted order m, and the coeffi-
cients ηm are the diffractive efficiencies given by

ηm =


1/4 m = 0
1/m2π2 m odd
0 m even

. (1.28)

Therefore, if we set the microscope to focus the image given by the first order
of diffraction of the Fresnel zone plate, we will also be acquiring the unfocused
images for the rest of the orders. Thus far, we have assumed that these contributions
are negligible. To validate this assumption, we use the numerical method given by
Mendoza-Yero et al (2010):

h̃FZP(r,z) ∝

∫
∞

0
T (ρ)exp

(
iπ
λ

[
1
z
+

1
zi

]
ρ

2
)

J0

(
k
zi

ρr
)

ρdρ

≈ 1
2π (z+ zi)

N/2

∑
n=1

exp
(

iπ
λ

[
1
z
+

1
zi

]
ρ

2
)

J0

(
k
zi

ρr
)∣∣∣∣∣

ρ=rout
n

ρ=rin
n

(1.29)

where h̃FZP(r,z) is the point spread function in cylindrical coordinates, J0 denotes
the Bessel function of zero order and rin

n and rout
n are the inner and outer radius of
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the n zone of the Fresnel plate. In that work, several point spread functions were
computed using an illumination wavelength of λ = 2.43 nm and a zone plate with
560 zones, a radius of 44.8 µm and an outer zone width of 40 nm (these parameters
correspond to a typical setup of the X-ray microscopes at the Bessy II and ALBA
synchrotrons). Fig. 1.4(a) compares the PSF functions obtained by Mendoza-Yero
et al (2010) with the corresponding profiles extracted from Fig. 1.2. For the sake of
comparison, the PSF profiles for the Fresnel zone plate have been intensity normal-
ized to the in-focus profile, as the height of the Fresnel zone plate profiles would
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Fig. 1.4 Comparison of the PSF for the ideal lens used in Fig. 1.2 and a numerical simulation of
the corresponding Fresnel zone plate with an outer zone width of 40 nm and 560 zones. (a) Profiles
in planes (x,y) for different defocus (∆z) values; (b) Profiles along the optical axis z centered on
the “best focusing plane” zo
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be much lower because the efficiency for the first-order lens is only approximately
10% (see Eq. 1.28). As shown, the general aspect and behavior (for example, max-
ima and minima localization) are very similar, although the actual values differ.
These differences are understood when analyzing Fig. 1.4(b).

In Fig. 1.4(b), we further analyze the intensity distributions measured in the sen-
sor for test points placed along the optical axis. We see that both profiles have the
same shape, but the profile of the Fresnel zone plate is shifted approximately 300
nm, suggesting an apodizing effect responsible for the mismatching of the peak in-
tensity values at both sides in Fig. 1.4(a) for different ∆z values.

1.4.2.1 Off-axis image formation

PSFs of real optical systems depend on the distance from the observed point of
the sample to the optical axis. The diffraction pattern that arises from an off-axis
point is not symmetrically truncated by the aperture of the lens, introducing a cer-
tain amount of coma aberration. In this chapter, the diffractive optics calculations
between the sample plane and the lens we present are based on the Fresnel approx-
imation, i.e., X-rays propagate with a small divergence angle. Under these condi-
tions, we have assumed that the PSF is independent of the position of the sample
point to be convolved with. The validity of these assumptions has been proven in
the work of Sypek et al (2010). In that work, using numerical computation, several
PSFs were simulated for several points at different (i) distances from the optical axis
and (ii) defocuses (Figure 1.5). The simulated conditions are identical to those de-
scribed in Section 1.4.2. The results prove that the PSF does not change significantly

Fig. 1.5 PSF distributions for different distances r from the optical axis and defocusing z simulated
for a Fresnel zone plate of 560 zones and a 40 nm outer zone width (Reproduced with permission
from Sypek et al (2010))
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for points closer than 15 µm to the optical axis, and significant aberrations appear
only for points located far from the optical axis. Therefore, to assume a constant 3D
PSF seems to be reasonable in soft X-ray tomography.

Therefore, to assume that the PSF of an ideal lens is, indeed, the experimental
PSF is a good first-order approximation. However, further quantitative works in
TomoX may require working with PSF calculations in a numerical manner.

1.5 Depth of field

The term depth of field refers to the region around plane zo in the object space
that renders an acceptably sharp image into the sensor plane zi, whereas depth
of focus applies to the conjugated region around plane zi in the image space
where an object placed in plane zo is acceptably imaged. Although in the
literature depth of focus is widely used indistinctly of depth of field, in this
chapter we favor the use of the latter term (Jacobson et al, 2001).

In the previous section, we showed the plot of the measured intensities for points
around the best focus plane obtained from numerical calculations. In this section,
we report an analytical description of the intensity in the field region based on the
development carried out by Martı́nez-Corral and Zapata-Rodrı́guez (1998).

Let us start by propagating an ideal point source placed in the optical axis
Uo(x,y) = δ (0,0) for z values around zo using Eq. 1.10 evaluated at (xi = 0,yi = 0),
where the lens function L(xl ,xl) has been substituted by the expression of the ideal
lens described in Eq. 1.18:

U i
0,0(z)≡U i(0,0,z) =

exp(ik (z+ zi))

λ 2zzi

∫∫
T (xl ,yl)exp

(
iπ
λ

(
x2

l + y2
l
)

D
)

dxldyl ,

(1.30)
where the aperture T is the circ function.

Then, changing to polar coordinates, we have:

T (xl ,yl)→T (rl ,θ) = T (rl) = circ
(rl

R

)
=

{
1 rl ≤ R
0 rl > R

U i
0,0(z) =

exp(ik (z+ zi))

λ 2zzi

∫
∞

0

∫ 2π

0
T (rl)exp

(
iπ
λ

r2D
)

rldrldθ , (1.31)

followed by a variable change:
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ζ = r2; dζ = 2rdr

T (r)→ t(ζ ) =
{

1 ζ ≤ R2

0 ζ > R2.

(1.32)

In this way, we arrive at the following expression for the field amplitude:

U i
0,0(z) =

exp(ik (z+ zi))

λ 2zzi
π

∫
∞

0
t(ζ )exp

(
i2π

D
2λ

ζ

)
dζ

=
exp(ik (z+ zi))

λ 2zzi
π exp

(
iπR2 D

2λ

)
R2 sinc

(
R2 D

2λ

)
. (1.33)

where sinc(x) = sin(πx)/πx.
Eq. 1.33 shows that the field amplitude for the point source along the z axis is

proportional to the Fourier transform of the aperture evaluated at frequency (u =
R2D/2λ ). Hence, the intensity distribution normalized at plane z = zo is

Ii,N
0,0 (z) =

(
zo

z

)2

sinc
(

R2

2λ
D
)2

. (1.34)

Let us use the definition of depth of field given by Born and Wolf (1999), which is
described as the distance where 20% of the maximum axial intensity is lost. Because
the sinc(R2D/2λ )2 term decreases much faster than (zo/z)2, we can approximate
the intensity distribution to

Ii,N
0,0 (z)≈ sinc

(
R2

2λ
D
)2

, (1.35)

and let us define α0.8 as the sinc argument, which fulfills sinc(±α0.8)
2 = 0.8. There-

fore, the values of z for this condition are given by

R2

2λ
D =

R2

2λ

[
1
z
− 1

zo

]
=±α0.8

z±α0.8 =
zoR2

R2±2λ z0α0.8
.

(1.36)

Taking into account the definition of depth of field, we arrive at

∆zdo f = z−α0.8 − z+α0.8 =
4z2

oR2λα0.8

R4− (2zoλα0.8)2 . (1.37)

In a typical experimental setting, such as the ideal lens used in Fig. 1.2, λ ≈ 10−9

m, f = 1.43 mm, R≈ 50 µm, and z0 ≈ 1.5 mm. Due to α0.8 ≈ 0.25, the denominator
can be approximated to R4, and
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∆zdo f ≈
z2

oλ

R2 . (1.38)

Substituting the values of our test ideal lens from Fig. 1.2, we obtain ∆zdo f =
2.63 µm.

Eq. 1.34 analytically describes the shape of the axial distribution numerically
calculated for an ideal lens (plotted in Fig. 1.4(b)). Eq. 1.38 shows that the theoreti-
cal depth of field for an ideal lens depends only on the distance from the lens to the
best focusing plane, the illumination wavelength and the radius of the lens. These
results agree with the studies that aimed to obtain an analytical expression based
on the Debye integral through the Lommel functions (see Born and Wolf (1999)
Section 8.8.1). However, the formulation we introduce here also includes the factor
(zo/z)2, which introduces a shift on the plane z, whose intensity measured in the
sensor plane is maximum in the case of low numerical aperture lenses, while the
equivalent formula in terms of Lommel functions is not.

1.6 Image formation in an X-ray microscope

The general field of X-ray microscopy is large, with quite different instruments
tuned to particular applications. We find different lens-based microscopes, such as
those used in full-field transmission X-ray microscopy (TXM), scanning transmis-
sion X-ray microscopy (STXM), scanning photoelectron microscopy, micro-X-ray
fluorescence (µ-XRF) spectroscopy, and synchrotron radiation X-ray tomographic
microscopy (SRXTM). These devices are based on the use of Fresnel zone plates,
multilayer Laue lens, multilayer coated Schwarschild reflective optics or elliptically
bent mirrors as imaging systems (Sakdinawat and Attwood, 2010). Moreover, there
are schemes where no lenses are used to form images, with the information recov-
ered by holographic and phase retrieval methods (Chapman and Nugent, 2010; Nel-
son et al, 2010). These microscopes use synchrotron radiation as source of illumina-
tion, but today we can also find an increasing number of X-ray microscopes in labo-
ratories that are based on plasma sources (Legall et al, 2012; Bertilson et al, 2011).
In our case, the image model proposed is based on the scheme of the TXM. Fur-
thermore, this model considers the sample illuminated by a plane wavefront without
taking into account the characteristics of the collimator lens. This is essentially true
because the sample is usually placed in the plane where the image of the source is
focused. Moreover, we consider that the illumination that arrives at the specimen is
totally incoherent, independently of the numerical apertures matching. Today, there
are operative X-ray microscopes for cellular biology at Alba (Barcelona), Bessy II
(Berlin) and ALS (Berkeley). Their specifications and design vary, with the MIS-
TRAL microscope at ALBA and XM-2 at ALS probably conforming more closely
to our modeling considerations.

The image formation process we are introducing assumes that the specimen di-
mensions are on the order of the DOF of the optical system, leading to an expression
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that relates the measured projection to the absorption coefficients of the sample and
the PSF of the microscope. Furthermore, we analyze the approximations when the
specimen is much smaller —in which case the PSF is assumed constant— and when
the PSF can be neglected, arriving at well-known expressions.

1.6.1 Image formation model with z-dependent point spread
function

To understand how the intensity image acquired by the camera in the sensor plane
zi is formed, we need to find an expression that connects it to the complex absorp-
tion coefficients µ̃ , which define the 3D information of the sample. We begin from
Eq. 1.14, which relates the electromagnetic field at planes z = zi and z = z′ in the
absence of any specimen, with z′ a plane in the object space before the lens. Note
that it is not assumed that planes z′ and zi fulfill the lens equation 1/zo−1/zi = 1/ f ,
that is, that plane z′ may be out of focus, so the equation remains valid even in that
case.

In Fig. 1.6, we show the schema of the microscope. Let us assume that the sam-
ple is truncated by the plane at z′. By conceptually removing the piece of sample
between plane z′ and the lens, we can measure the field distribution U zi(x,y,z′) in
plane zi related to the field distribution in plane z′ by Eq. 1.14 as

Fig. 1.6 Schematic representation of an X-ray microscope where a specimen is placed in object
space. The plane at z′ defines the integration variable and allows calculation of how the specimen
contributes to the projection (Reproduced with permission from Oton et al (2012))
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U zi(x,y,z′) =U zi
g (x,y,z′)⊗

x,y
h̃(x,y,z′). (1.39)

For a specimen that fulfills the conditions described in Section 1.2, the field in
the outgoing plane for any slice of the specimen is defined as a function of the field
in the incoming plane by Eq. 1.4 as

Uo(x,y,z′+∆z′)≈ (1− µ̃(x,y,z′)∆z′)Uo(x,y,z′). (1.40)

The electric field distribution Uo in the backplane z′+∆z′ of a slice z′ leads to
calculating the field distribution in the sensor plane U zi for this z′+∆z′ value by
substituting Eq. 1.40 into Eq. 1.39 through the definition of U zi

g in Eq. 1.15:

U zi(x,y,z′+∆z′) = U zi
g (x,y,z′+∆z′)⊗

x,y
h̃(x,y,z′+∆z′))

=
[
(1− µ̃g(x,y,z′)∆z′)U zi

g (x,y,z′)
]
⊗
x,y

h̃(x,y,z′+∆z′), (1.41)

where µ̃g(x,y,z′) = µ̃( x
M , y

M ,z′).
By definition, the intensity measured by the photodetector is

Izi(x,y,z′+∆z′) =
〈
U zi(x,y,z′+∆z′)U zi∗(x,y,z′+∆z′)

〉
(1.42)

where 〈 f (t)〉 = 1
T
∫ T

0 f (t)dt is the time-average operator. Although not explicitly
shown here, all waves have a time dependence given by a factor exp(−i2π f t),
where f is the frequency of the wave.

If we combine Eqs. 1.41 and 1.42, taking into account the totally incoherent
illumination case, we obtain that

Izi(x,y,z′+∆z′) =
[∣∣1− µ̃g(x,y,z′)∆z′

∣∣2 Izi
g (x,y,z

′)
]
⊗
x,y

∣∣h̃(x,y,z′+∆z′)
∣∣2

=
[(

1−
[
µ̃

R
g (x,y,z

′)− iµ̃ I
g(x,y,z

′)
]

∆z′
)

(
1−
[
µ̃

R
g (x,y,z

′)+ iµ̃ I
g(x,y,z

′)
]

∆z′
)

Izi
g (x,y,z

′)
]

⊗
x,y

∣∣h̃(x,y,z′+∆z′)
∣∣2

=
[(

1−2µ̃
R
g (x,y,z

′)∆z′+O
(
∆z′2

))
Izi
g (x,y,z

′)
]

⊗
x,y

∣∣h̃(x,y,z′+∆z′)
∣∣2 (1.43)

where O(x2) refers to second-order terms (the derivation of Eq. 1.43 is detailed
in the Appendix). In the case of the water window, O(∆z′2) can be neglected, be-
ing the only component of µ̃ that remains its real part. This means that soft X-ray
microscope projections under totally incoherent illumination are only produced by
absorption, and therefore, any phase shift is negligible.

Defining the intensity absorption coefficient as µ , 2µ̃R
g , Eq. 1.43 leads to
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Izi(x,y,z′+∆z′) ≈
[
(1−µ(x,y,z′)∆z′)

]
Izi
g (x,y,z

′)⊗
x,y

∣∣h̃(x,y,z′+∆z′)
∣∣2

= Izi
g (x,y,z

′)⊗
x,y

∣∣h̃(x,y,z′+∆z′)
∣∣2

−µ(x,y,z′)Izi
g (x,y,z

′)⊗
x,y

∣∣h̃(x,y,z′+∆z′)
∣∣2 ∆z′. (1.44)

Let us apply the definition of the intensity PSF h given in Eq. 1.22. If we assume h
is a slowly varying function along z, then h(x,y,z′+∆z′)≈ h(x,y,z′), and identifying
the expression of Izi(x,y,z′) described by Eq. 1.16, we arrive at

Izi(x,y,z′+∆z′) = Izi(x,y,z′)−µ(x,y,z′)Izi
g (x,y,z

′)⊗
x,y

h(x,y,z′+∆z′)∆z′, (1.45)

therefore, after rearranging some factors,

Izi(x,y,z′+∆z′)− Izi(x,y,z′)
∆z′

=−µ(x,y,z′)Izi
g (x,y,z

′)⊗
x,y

h(x,y,z′+∆z′) (1.46)

and taking the limit when ∆z′→ 0

dIzi(x,y,z′)
dz′

=−µ(x,y,z′)Izi
g (x,y,z

′)⊗
x,y

h(x,y,z′). (1.47)

This equation can be rewritten in integral form:

Izi(x,y,zA) = Izi(x,y,zB)−
∫ zA

zB

[
µ(x,y,z′)Izi

g (x,y,z
′)
]
⊗
x,y

h(x,y,z′)dz′

= Izi(x,y,zB)

−
∫ zA

zB

[
µ(x,y,z′)Izi

g (x,y,zB)e
−
∫ z′

zB
µ(x,y,ξ )dξ

]
⊗
x,y

h(x,y,z′)dz′

(1.48)

where zB is a point before the specimen and zA is a point after the specimen but
before the lens.

In the following, we will simplify Eq. 1.48 for those cases in which either the
specimen is fully in focus (electron microscopy) or the PSF can be ignored (Com-
puterized Axial Tomography in Biomedicine).
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1.6.2 The EM tomography case: Image formation model with
z-constant point spread function

For the case where the specimen is fully in focus, which is a common assumption
in the related field of Electron Tomography, the PSF is considered independent of
plane z. Therefore, in Eq. 1.48 h can be extracted from the integral and then solved
analytically using the Second Fundamental Theorem of Calculus (F(x) =

∫ x
a f (s)ds

then dF(x)/dx = f (x)), writing Eq. 1.48 as

Izi(x,y,zA) =

[
Izi
g (x,y,zB)

(
1−

∫ zA

zB

µ(x,y,z)e−
∫ z

zB
µ(x,y,ξ )dξ dz

)]
⊗
x,y

h(x,y)

=
[
Izi
g (x,y,zB)e−

∫ zA
zB µ(x,y,ξ )dξ

]
⊗
x,y

h(x,y) (1.49)

Recalling that µ is the 3D distribution of the intensity absorption coefficients we
are interested in recovering, and operating in the previous formula, we arrive at:

∫ zA

zB

µ(x,y,ξ )dξ =− ln

 Izi(x,y,zA)⊗
x,y

h−1(x,y))

Izi(x,y,zB)⊗
x,y

h−1(x,y)

 (1.50)

where h−1(x,y) is a function such that h(x,y)⊗
x,y

h−1(x,y) = δ (x,y). Eq. 1.50 indi-

cates that in Fourier space the intensity distributions measured with and without a
specimen, Izi(x,y,zA) and Izi(x,y,zB), respectively, are being corrected with the in-
verse of the optical transfer function H−1( fx, fy) = Fx,y

{
h−1(x,y)

}
. Naturally, in

practical terms the direct inversion by h−1 may be difficult to implement directly,
and several methods, such Wiener filtration (Frank, 2006), may be used instead.

1.6.3 The CT case: Image formation model with δ-like point spread
function

In those cases in which the PSF can be ignored —for instance, in Computerized
Axial Tomography in Biomedicine— then h can be substituted by a Dirac’s δ in
Eq. 1.49, leading to

Izi(x,y,zA) =
[
Izi
g (x,y,zB)e−

∫ zA
zB µ(x,y,ξ )dξ

]
⊗
x,y

δ (x,y)

= Izi
g (x,y,zB)e−

∫ zA
zB µ(x,y,ξ )dξ . (1.51)

Therefore, the absorption coefficients of the specimen are directly related to the
intensity images by
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zB

µ(x,y,ξ )dξ =− ln
(

Izi(x,y,zA)

Izi(x,y,zB)

)
. (1.52)

If we compare Eqs. 1.50 and 1.52, we immediately realize that the effect of a
non-varying PSF (as is the case in Electron Microscopy) is equivalent to a low-pass
filtration of the results with the filter given by the optical transfer function of the
microscope.

1.6.4 Comparison between EM and X-ray Tomography in Fourier
space

In the field of X-ray crystallography, it is well-known that the diffraction pattern
that arises from an object is described in the reciprocal space (Fourier space) of
the object by the Ewald sphere, which is the geometrical construct that defines the
points that are in a constructive interference condition (Cowley, 1995).

In a similar way, this Ewald construction is also used in the field of cryo-electron
microscopy, as an approximation, to analyze how projections are related to the
Fourier transform of the sample (Wan et al, 2004). Let us take from Wan et al
(2004) the equation that describes the projection in cryo-EM in Fourier space:

p̂( fx, fy) =
∫

v̂z( fx, fy)cz( fx, fy)dz

=
∫

v̂( fx, fy, fz)ĉ( fx, fy,− fz)d fz, (1.53)

where p̂ is the 2D Fourier transform of the projection p, v̂z is the 2D Fourier trans-
form in plane (x,y) of the volume slice in the plane z, cz is the contrast transfer
function at position z, v̂ is the 3D Fourier transform of the volume v and ĉ is the 1D
Fourier transform in the variable z of cz.

In the case of electron microscopy, the CTF may be written as (Wan et al, 2004)

cz =−k cos(2πasz+bs) , (1.54)

where as = 1/2λ s2 and bs =−2π
(
Csλ

3s4/4− z0λ s2/2
)
−cos−1 Q and s=

√
f 2
x + f 2

y ,
being, then, its 1D Fourier transform in z:

ĉ( fx, fy, fz) =−
k
2

[
eibs δ ( fz−as)+ e−ibs δ ( fz +as)

]
. (1.55)

Therefore, Eq. 1.53 is simplified for the EM case as

p̂( fx, fy) =−
k
2

[
eibs v̂( fx, fy,−as)+ e−ibs v̂( fx, fy,as)

]
. (1.56)
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Because as is a quadratic function of s, Eq. 1.56 shows that in Fourier space, the
points that contribute to the projection are placed along two parabolic surfaces in-
stead of the expected horizontal plane crossing the coordinates’ origin (figure 1.7),
that is, the values experimentally measured and corresponding to the Fourier trans-
form of the projection are A′ and B′, while the values we are mainly interested in
for 3D reconstruction are those corresponding to the 3D Fourier transform of the
specimen (A1,A2,B1,B2), with their relationships being

A′ = A1 +A2

B′ = B1 +B2.

Although the introduced image formation model for X-rays differs from the def-
inition of projection for EM in Eq. 1.53 due to the combined effect of the PSF and
the absorption, if we define

p′(x,y) = Izi(x,y,zB)− Izi(x,y,zA)

v′(x,y,z) = µ(x,y,z′)Izi
g (x,y,zB)exp

(
−
∫ z′

zB

µ(x,y,ξ )dξ

)
, (1.57)

and substitute on Eq. 1.48, then the behavior of X-ray projections in Fourier space
can also be analyzed by Eq. 1.53. In this case, because the EM CTF cz defined for
a plane z is equivalent to the Fourier transform of the TomoX PSF h, and using the
definition in Eq. 1.26, we arrive at
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Fig. 1.7 Schematic representation in 2D Fourier space of a projection in an electron microscope
under an illumination of 200 keV. Color lines define the Fourier coefficients that contribute to the
projection in the integration along fz. The A′,B′ points along axis fx are the expected places for the
frequential coefficients of p̂, while they actually correspond to the summation of points A1,2,B1,2
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Fig. 1.8 Schematic representation in 2D Fourier space of a projection in an X-ray microscope.
The central plane ( fx, fz) of Fx,y,z{h} for the typical lens from Fig. 1.2 is shown. Note that all the
coefficients on fz along a column at frequency fx contribute to that projection frequency fx

ĉ( fx, fy, fz) = Fz
{
H ( fx, fy,z)

}
= Fz

{
Fx,y {h(x,y,z)}

}
= Fx,y,z {h(x,y,z)} , (1.58)

where Fz and Fx,y,z denote the Fourier transforms 1D in direction z and 3D in
(x,y,z), respectively.

For the ideal lens case, the 3D Fourier transform of the PSF described in Eq. 1.23
has no analytical solution, although under some approximations Erhardt et al (1985)
arrived at an analytical expression. In our case, from the simulated h for the typi-
cal lens shown in Fig. 1.2, we numerically calculated the 3D distribution of ĉ and
plotted it in Fig. 1.8. It is shown that there is no discrete distribution as in EM, but
a continuous shape around the horizontal axis. Therefore, a frequency coefficient of
a TomoX projection in plane ( fx, fy) is obtained by the addition of many different
coefficients of the Fourier transform of the 3D absorption distribution along fz.

1.7 Computer simulations

We have implemented two phantoms to analyze and understand how the effect of
the depth of field affects tomographic projection and 3D reconstruction in TomoX.

In the first simulation, we defined a test phantom made of fringe structures, which
is depicted in Fig. 1.9. From this phantom, we can clearly detect the artifacts that
are related to the characteristic TomoX depth of field. Moreover, to also have a “bi-
ologically inspired” phantom, we designed a 3D structure inspired by the Candida
albicans reconstruction published by Uchida et al (2009), where experimental val-
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ues of absorption coefficients for the different organelles were also presented (see
Fig. 1.10 for details).

To simulate an X-ray microscope, we have implemented in the XMIPP image
processing package (Sorzano et al, 2004; Scheres et al, 2008) a projection algorithm
following the expression described by Eq. 1.48, using the 3D PSF of an a ideal lens
with the same focal length and diameter of a Fresnel zone plate of 560 zones and
an outer zone width of 40 nm (see Fig. 1.2), whose resolution and depth of field are
48.8 nm and 2.63 µm, respectively. The collection geometry is a single tilt axis with
one-degree steps, with the y axis the tilt axis. According to each simulation, the data
sets were generated either for a whole tilt angular range ±90° without a missing
wedge or with a missing wedge between ±65°.

The reconstructed tomograms from the different projections have been obtained
by standard 3D software used in electron microscopy tomography, tomo3d (Ag-
ulleiro et al, 2010; Agulleiro and Fernandez, 2011; Agulleiro and Fernández, 2012),
where no 3D CTF/PSF is considered.

1.7.1 Fringe test

The structure of the reference phantom is shown in Fig. 1.9(a). The structure is char-
acterized by a set of paired fringes placed at different distances from the tilt axis y,
which is on the left-hand side of the figure. The separation of the paired fringes
varies along the vertical axis. The phantom has been projected under three differ-
ent conditions and then reconstructed using EM-like algorithms (that is, the X-ray
specific image formation process has not been taken into account). The first con-
dition corresponds to the simplified situation in Electron Microscopy —simplified
because in EM there is a PSF, although its dependence in z is small compared with
TomoX— with a limited tilt angular range. In the two other cases, the projections
have been obtained by considering the X-ray PSF for the whole set of projections
without and with a missing wedge, respectively.

To analyze the resulting effects in the reconstruction along the z axis, we show in
Fig. 1.9(b) the (x,z) planes corresponding to a fringe separation of 40 nm from: the
phantom (top); the reconstructed volume from ideal EM projections with a 50° miss-
ing wedge (second); and the reconstructed volumes from X-ray projections without
and with a 50° missing wedge (third and bottom rows, respectively). To quantify the
effects in the tomogram due to the DOF, from the slices shown in Figs. 1.9(b) we
have calculated the elongation along axis z of the reconstructed fringes and plotted
in Fig. 1.9(c). Elongation is defined as half the distance between the points before
and after a fringe in the z axis, where the maximum intensity of the fringe has de-
cayed 1/e. For the ideal projection case, because there is no z-dependent PSF, the
elongation of the fringes along the z axis is approximately constant for any radial po-
sition of the fringes (the changes basically correspond to the limited precision of the
elongation measurements for very small objects). In the cases where a z-dependent
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Fig. 1.9 (a) Central (x,y) slice of the fringe phantom perpendicular to the z axis (optical axis);
because the phantom is symmetric along the x = 0 plane, only a half slice is shown (with y the
tilt axis). (b) Composition of (x,z) slices from the phantom and reconstructed volumes for a fringe
separation of 40 nm (red line in (a)). The images correspond to the following: phantom (top);
reconstruction from ideal projections where no PSF has been considered for a limited tilt series
with a 50° missing wedge (second); and reconstructions from X-ray projections for the cases of a
complete projection set without a missing wedge (third) and with a missing wedge (bottom). (c)
Comparison of the elongation along z for the different conditions shown in (b) (Reproduced with
permission from Oton et al (2012))

PSF has been considered, the fringes become more elongated as they are located
farther away from the tilt axis (higher x).

From Fig. 1.9(c), we note that there are no noticeable differences in elongation
for the case where the X-ray PSF has been considered with and without a missing
wedge, and the elongations in both cases are substantially greater than the elonga-
tion for the ideal EM projection case. Therefore, the effects due to the limited depth
of field are much more important than those associated with missing wedge effects,
which clearly illustrates the severity of the depth of field limitation.
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1.7.2 Biologically inspired test

In the case of the phantom test inspired by the Candida albicans cell experimental
3D reconstruction (Uchida et al, 2009), a unit cell has been designed considering
the yeast-like phenotype, where we have included different organelles such as a nu-
cleus, nucleolus, mitochondria, vacuoles and lipid bodies, taking the experimentally
determined linear absorption coefficients (LACs) into account to numerically eval-
uate the µ(x,y,z) distribution of the phantom (Fig. 1.10(a)). A pseudo cell is in the
center of the phantom with the major axis lying parallel to the optical axis z, while
two cell halves are placed at opposite sides of the central cell along the optical axis.
The total phantom is 11 µm long, with the background value the LAC for water and
the tilt axis being selected parallel to the y axis (perpendicular to the shown slices)
crossing the center of the phantom.

The first set of simulations was performed supposing that the specimen embed-
ded in water was inside a capillary, taking a full set of projections without a missing
wedge. We calculated the projections ignoring the PSF (Eq. 1.51), which corre-
sponds to the “simplified EM” case introduced before. For reconstruction, the data
collection strategy considered a full set of projections —that is, no missing wedge—
(Fig. 1.10(b)) and a limited range ±65° as of a missing wedge effect (Fig. 1.10(c)).
Both reconstructed volumes were bandpass filtered to the cut-off frequency of the
Fresnel zone plate from Fig. 1.2 (48.8 nm). Fig. 1.10(b) shows the best possible re-
construction, while Fig. 1.10(c) shows the best reconstruction considering the me-
chanical constraints producing the missing wedge.

We then introduced the combined absorption and 3D PSF effects that character-
ize TomoX, generating the results shown in Fig. 1.11. Figure 1.11(a) shows a sec-
tion along the optical axis of the 3D PSF used in the calculations (same plot as in
Fig. 1.2), while Fig. 1.11(b) shows a section along the optical axis of the reconstruc-
tion obtained considering the full TomoX image formation model from Eq. 1.48 for
the case of a data collection geometry with no missing wedge.

In all reconstructions shown in Figs. 1.10, 1.11 and 1.12, the incoming beam at
0° tilting angle crosses the phantom from left to right along the z direction. The most
distant elements at both sides of the phantom are only in focus when the tilt angle is
approximately±90°. Moreover, the contribution of each (x,y) slice to the projection
is proportional to the absorbed intensity in that slice, and the intensity decays along
z. Therefore, it is clear that the contribution to the final image of slices facing the
incoming beam is far greater than from those at the opposite side, producing a more
detailed reconstruction of the half facing the beam. When the 3D PSF is considered,
it introduces an inversion of contrast in the regions farther away from the center of
the phantom at both sides. This effect leads to the appearance of a double layer arti-
fact in the membrane-like cell feature located at the opposite end along the direction
of the incoming beam at 0° (x axis in our reconstructions), as shown in Fig. 1.11(b),
being more noticeable in the half facing the beam than in the opposite half.

To compare reconstructions from simulated projections to reconstructions from
experimental tomograms, we calculated the tomograms for two different lens set-
tings. The first simulated tomogram was calculated using the ideal lens of Fig. 1.2
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Fig. 1.10 Candida test phan-
tom created using two copies
of a “pseudo Candida albi-
cans” cell placed along the
optical axis z. (a) central slice
of the reference phantom de-
fined by the plane y = 0, (b)
and (c) reconstructions from
ideal projections assuming the
specimen is inside a capillary
with and without a 50° miss-
ing wedge, respectively, both
filtered to the X-ray micro-
scope cut-off frequency

(560 zones, 40 nm outer zone width, 44.8 µm radius, 48.8 nm resolution and 2.63
µm depth of field) for a limited tilt angular range of ±65°. The second tomogram
considered projections obtained for the 3D PSF of an ideal lens equivalent to an FZP
of 900 zones with a 45 µm radius and a 25 nm outer zone width for the same limited
tilt angular range. This latter lens is one of the standard FZP settings in Bessy II,
and is characterized by a focal length of 0.926 mm, a 30 nm resolution and a 1.03
µm depth of field. In Figs. 1.12(a) and (b), we show the center slice from the recon-
structed volumes using lenses of 48.8 and 30 nm resolution, respectively, where we
can see the combination of the artifacts due to the missing wedge and the depth of
field. The central pseudo cell is well defined, except for the effects of the missing
wedge on the left and right extremes of the cell membrane. The cell halves at both
sides show a contrast inversion at the cell membrane produced by the limited depth
of field of the lenses, which is more noticeable for the lens with the greatest resolu-
tion (Fig. 1.12(b)). Moreover, the details at the beam facing-half (left-hand side) are
brighter and better defined than those at the opposite half, which is a consequence
of the strong absorption.
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Fig. 1.11 Comparison be-
tween (a) the shape of the
PSF in Fig. 1.2 and (b) the re-
constructed center slice from
X-ray projections, where
the PSF in (a) was used.
Projections were calculated
assuming the specimen was
inside a capillary without a
missing wedge. Both images
are at the same scale along
the z axis, while the x axis in
(a) was rescaled and reduced
for the sake of visibility by a
factor of 5.5

As an experimental case, we selected a reconstructed volume from a tomogram
of a vaccinia virus-infected PtK2 cell on an Au-HZB2 quantifoil R 2/2 grid, which
was acquired in X-ray microscope beamline U41 of Bessy II using an FZP with the
same parameters as the 48.8 nm resolution lens used in the previous simulations.
An (x,z) plane of the experimental reconstruction corresponding to a section of the
PtK2 cell nucleus is shown in Fig. 1.12(c) at the same scale as the reconstructions
shown in Figs. 1.12(a) and (b). It is clear that the central part of the tomogram, cor-
responding to approximately half the total depth, shows a well-delineated nuclear
membrane, where the sections on the far left and far right (along the optical axis)
are blurred due to the missing wedge. Past this central part, the features are far less
defined. There is an invagination of the cell on the top right corner whose membrane
is blurred and even contrast inverted. We also note that the features on the left-hand
side of Fig. 1.12(c) are brighter than on the right-hand side. If we compare these
characteristics to those shown by the simulation in Fig. 1.12(a), we note similar ef-
fects. Indeed, the “central” pseudo cell is generally well reconstructed, while the
cell halves on the left and right sides are more blurred. Moreover, the half pseudo
cell on the left-hand side of Fig. 1.12(c) is brighter than the corresponding one
on the right-hand side. These results confirm a good agreement between the recon-
structions from experimental projections and the reconstructions from the simulated
projections using our proposed image formation model.
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Fig. 1.12 Comparison of re-
constructions from simulated
and experimental tomograms
with a tilt angular range of
±65°. Central slices of the
reconstruction from simu-
lated projections using (a) the
48.8 nm resolution lens (2.63
µm DOF) shown in Fig. 1.2
and (b) a 30 nm resolution
lens (1.03 µm DOF). (c) re-
construction of a vaccinia
virus-infected PtK2 cell from
experimental projections us-
ing the 48.8-nm-resolution
lens in the U41 beamline at
Bessy II

1.8 Conclusions

In this chapter, we proposed an image formation model based on the approximation
of incoherent illumination. This model allows a better understanding of the imaging
process in TomoX of thick specimens and will be, in a future study, modified to
include the coherent illumination case. Within its limitations, this model is a first
step toward the development of reconstruction algorithms specific to TomoX.

Compared with EM tomography and analyzing the situation in Fourier space,
the first obvious difference is that while a projection coefficient in EM is related to
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only two points (voxels) in the specimen, in soft X-rays a projection coefficient is
related to a whole line of voxels. This effect is a consequence of the different optical
processes governing the image formation in both types of microscopes. Therefore,
reconstruction methods used in EM that correct the position of Fourier coefficients
along the parabolic surface defined by EM CTFs cannot be applied in the X-ray
tomography field.

The analysis of our simulations indicates that the deformations (elongations)
caused by the limited depth of field of TomoX are much more important than the
missing wedge-related deformations. However, they mainly happen, as expected,
outside the depth of field of X-ray lenses. Furthermore, we note that the part of the
specimen facing the X-ray beam is brighter than the part farther away. This result is
a consequence of the exponential decay in the number of absorbed photons. Finally,
we quantitatively compared simulations with experimental observations and found a
good correlation, which indicates that the image formation model described in this
chapter represents an important step forward in the quantitative understanding of
TomoX images.

As a closing remark, we note that most TomoX reconstructions are currently
performed with the low-resolution Fresnel zone plate. However, our natural quest
for higher resolution reconstructions will require the use of Fresnel zone plates
with higher resolution and, concomitantly, smaller depth of field, which will lead
to an increase of artifacts in 3D reconstructions —as very clearly illustrated in
Fig. 1.12(c)— unless new TomoX-specific 3D reconstruction methods are devel-
oped.
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Appendix

In this appendix, we demonstrate a more detailed derivation of Eq. 1.43 from
Eq. 1.42. We begin from the expression of the electric field in plane z given in
Eq. 1.39, described as a convolution following the general guide-lines provided by
Goodman (1996) Section 6.1.3.
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Izi(x,y,z′+∆z′) =
〈
U zi(x,y,z′+∆z′)U zi∗(x,y,z′+∆z′)

〉
=
〈∫∫∫∫

U zi
g (ξ ,η ,z′+∆z′)h̃(x−ξ ,y−η ,z′+∆z′)dξ dη

U zi∗
g (ξ ′,η ′,z′+∆z′)h̃∗(x−ξ

′,y−η
′,z′+∆z′)dξ

′dη
′〉

=
〈∫∫∫∫ (

1− µ̃
R(ξ ,η ,z′)∆z′− iµ̃ I(ξ ,η ,z′)∆z′

)
U zi

g (ξ ,η ,z′)h̃(x−ξ ,y−η ,z′+∆z′)(
1− µ̃

R(ξ ′,η ′,z′)∆z′+ iµ̃ I(ξ ′,η ′,z′)∆z′
)

U zi∗
g (ξ ′,η ′,z′)h̃∗(x−ξ

′,y−η
′,z′+∆z′)

dξ dηdξ
′dη
′〉

=
〈∫∫∫∫ (

1− µ̃
R(ξ ,η ,z′)∆z′− iµ̃ I(ξ ,η ,z′)∆z′

)
(
1− µ̃

R(ξ ′,η ′,z′)∆z′+ iµ̃ I(ξ ′,η ′,z′)∆z′
)

U zi
g (ξ ,η ,z′)U zi∗

g (ξ ′,η ′,z′)

h̃(x−ξ ,y−η ,z′+∆z′)h̃∗(x−ξ
′,y−η

′,z′+∆z′)

dξ dηdξ
′dη
′〉 (1.59)

To calculate the image intensity, we must time average the instantaneous inten-
sity. Because the detector integration time is long compared with the period of the
wave, and because of the case of totally incoherent illumination (Goodman (1996)
Eqs. 6.7 to 6.15)〈

U zi
g (ξ ,η ,z′)U zi∗

g (ξ ′,η ′,z′)
〉

∝ Izi
g (ξ ,η ,z′)δ (ξ −ξ

′,η−η
′), (1.60)

then Eq. 1.59 simplifies to

Izi(x,y,z′+∆z′) =
∫∫ (

1− µ̃
R(ξ ,η ,z′)∆z′− iµ̃ I(ξ ,η ,z′)∆z′

)
(
1− µ̃

R(ξ ,η ,z′)∆z′+ iµ̃ I(ξ ,η ,z′)∆z′
)

Izi
g (ξ ,η ,z′)

h̃(x−ξ ,y−η ,z′+∆z′)h̃∗(x−ξ ,y−η ,z′+∆z′)dξ dη

=
∫∫ (

1−2µ̃
R(ξ ,η ,z′)∆z′+[

µ̃
R(ξ ,η ,z′)2 + µ̃

I(ξ ,η ,z′)2](
∆z′
)2
)

Izi
g (ξ ,η ,z′)

∣∣h̃(x−ξ ,y−η ,z′+∆z′)
∣∣2 dξ dη

=
[(

1−2µ̃
R(ξ ,η ,z′)∆z′+O(∆z′2)

)
Izi
g (x,y,z

′)
]
⊗
x,y∣∣h̃(x,y,z′+∆z′)

∣∣2 . (1.61)
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tiken für Röntgenstrahlen. Annalen der Physik 445:94–114, DOI
10.1002/andp.19524450108



Index

Airy disk, 8
amplitude transfer function, 8

Beer-Lambert law, 3

Candida albicans, 25
complex absorption coefficient, 3
complex refractive index, 2

depth of
field, 13
focus, 13

diffraction, 3

Ewald sphere, 20

Fourier space, 20
Fresnel zone plate, 9

ideal lens, 8
image formation model, 15

δ-like psf, 19
z-constant psf, 19
z-dependent psf, 16

impulse response, 7
incoherent illumination, 7

off-axis, 12
optical transfer function, 9

point spread function, 7

test
biological, 25
fringe, 23

water window, 3

35


