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Abstract: Soft X-ray tomography (SXT) is becoming a powerful imaging
technique to analyze eukaryotic whole cells close to their native state. Cen-
tral to the analysis of the quality of SXT 3D reconstruction is the estimation
of the spatial resolution and Depth of Field of the X-ray microscope. In
turn, the characterization of the Modulation Transfer Function (MTF) of
the optical system is key to calculate both parameters. Consequently, in this
work we introduce a fully automated technique to accurately estimate the
transfer function of such an optical system. Our proposal is based on the
preprocessing of the experimental images to obtain an estimate of the input
pattern, followed by the analysis in Fourier space of multiple orders of a
Siemens Star test sample, extending in this way its measured frequency
range.
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1. Introduction

The characterization of the key magnitudes of an optical system, such as the transfer function
or the depth of field (DOF) [1], is a key process both to perform the appropriate processing on
the experimental images and to, ultimately, understand the limits of the so obtained results.

Several methods to measure the MTF can be found in the literature. One of the best known
techniques is the so-called knife-edge method, where a straight-edged test plate is imaged in the
microscope. The measured 1D intensity profile normal to the edge is the edge spread function
(ESF). From this profile the most common method to obtain the MTF is the analysis of the
line spread function through the differentiation of the ESF [2, 3]. However, the use of discrete
approximations of the derivative function introduces a bandpass filter, an effect that can be
minimized by analyzing directly the ESF [4–6]. Moreover, the application of this approach
to SXT requires the very accurate fabrication of a microscopically straight-edged test plate, a
process that has not proven to be easy.

An alternative method, where the specific fabrication of a test plate is not necessary, is the
one known as beam blocker method, where the own beam stopper of the microscope can be
used [7,8]. A good estimation of the input binary image of the blocker, used for deconvolution,
can be obtained setting a threshold in the measured image, subsequently deriving the MTF as a
combination of several Gaussian functions by an iterative process.

In this work we propose a method based on a new analysis of another well-known test pattern,
a Siemens star (SS) (Fig. 1(a)), in which we greatly minimize any possible division by small
numbers, as it may be the case in a deconvolution process, as well as avoid iterative approaches.
This test pattern is characterized by an angular periodic structure where the frequency of the
fringes depends on the radius. This pattern is usually analyzed along constant radial profiles to
obtain the angular mean contrast value for the corresponding resolution, known as the contrast
transfer function [9–11]. Other authors have analyzed the visibility of the fringes to establish
a qualitative cut-off frequency [12]. However, the range of frequencies related to the different
crowns of the SS does not directly cover all the frequential domain of the optical system of the
microscope. Consequently, in this paper we introduce a new direct method to measure the MTF
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by analyzing the Fourier transform of the SS angular profiles. The two key concepts supporting
our approach are: (1) The experimental estimation of the input image through a preprocessing
of the measured images, avoiding to consider the SS as a perfectly symmetric rectangle shaped
periodic function, as in previous works [13], (2) The use of multiple Fourier orders of the
Fourier transform of the SS, extending the frequential range of our estimations.

2. Modulation transfer function

In optics, the concept of transfer function allows for a conceptually easy way to understand
the relationship between input and output in a given system, particularly important for linear
systems. In fact, related to the concrete magnitude used to establish the linear relationship, we
find appropriate definitions for amplitude transfer function for coherent systems and optical
transfer function for totally incoherent systems, with well-known relationships between them
[14]. The case of partially coherent systems is more complex. On the one hand, in this case
the linearity applies to the propagation of the mutual intensity [15, 16], and it is related to the
numerical aperture of both the imaging and condenser lenses. On the other hand, being the
mutual intensity a 4 dimensional function, it is not possible to plot the real transfer function as
in the case of totally incoherent/coherent illumination. Actually, what is usually considered in
the literature is the apparent transfer function (ATF) [17], defined as

HA( fx, fy) =
Ĩout( fx, fy)

Ĩin( fx, fy)
, (1)

where Ĩin( fx, fy) and Ĩout( fx, fy) are the Fourier transforms of the input and output intensity
distributions, respectively. The ATF allows to compare systems’ response independently of
the coherence of the illumination system. Thus, for the sake of simplicity while referring to
correctly defined magnitudes, in this work we will refer to the modulation transfer function as
MT F = |HA|, that is, the modulus of the ATF. In the case of rotational symmetric systems we
will define HA(u), being u = ‖( fx, fy)‖.

3. Measurement methodology

Ideally, each angular profile of the SS pattern can be understood as a rect function repeated pe-
riodically. Therefore, this periodic structure could be represented as a Fourier series expansion

f (θ) =
∞

∑
m=−∞

Cm cos
(

2πmθ

Λ

)
, (2)

where the series coefficients are defined as Cm =
sin
(mπα

Λ

)
mπ

, α is the angular width of the trans-
missive sectors of SS and Λ is the angular period.

From this definition, we can represent the intensity of the polar transformed SS pattern either
in angular or spatial coordinates as

Ir
SS(θ) =

∞

∑
m=−∞

Cm cos
(

2πmθ

Λ

)
=

∞

∑
m=−∞

Cm cos
(

2πml
P(r)

)
= ISS(l,r), (3)

where P(r) = rΛ is the period of the fringes at each radius r and l = θr is the arc length.
Applying the one dimensional Fourier transform along the angular variable θ we obtain

Ĩr
SS(ω) =

∞

∑
m=−∞

Cm

2

[
δ

(
ω− m

Λ

)
+δ

(
ω +

m
Λ

)]
, (4)

#227116 - $15.00 USD Received 25 Nov 2014; revised 23 Jan 2015; accepted 27 Jan 2015; published 6 Apr 2015 
(C) 2015 OSA 20 Apr 2015 | Vol. 23, No. 8 | DOI:10.1364/OE.23.009567 | OPTICS EXPRESS 9569 



where ω is the angular frequency variable. The angular position of the different diffraction
orders ωm = m

Λ
is independent of the radius value. However, if we represent ĨSS as a function of

the spatial frequency variable u = ω

r , it becomes

ĨSS(u,r) =
1
|r|

∞

∑
m=−∞

Cm

2

[
δ

(
u− m

Λr

)
+δ

(
u+

m
Λr

)]
, (5)

where the position of the diffraction orders depend on the radius of the angular profile. Com-
bining Eqs. (1) and (5) we obtain an expression to fulfill the values of HA(u) in a range of
frequencies given by the minimum and maximum reliable radius of the SS pattern for each m
diffraction order:

HA

(
u =

m
Λr

)
=

Ĩr
SS

(
ω = m

Λ

)
Ĩr
SS,re f

(
ω = m

Λ

) . (6)

In practical terms, however, there are imperfections in the manufacturing of any SS, so that
we cannot expect to have an ideal symmetric periodic structure. Therefore, the first task to do is
to estimate the image of the experimental SS before degradations introduced by the optical sys-
tem. The way to achieve this estimation is based on the notion that manufacturing Ir

SS,re f should
indeed produce a close to binary pattern, although not perfect. With this simple idea, Ir

SS,re f is
computed by thresholding Ir

SS in such a way that the minimum and maximum zones correspond
to the mean of the minimum and maximum zones of the profile at the largest radius. We note
that proceeding in this way produces a sharper edge, while preserving possible differences in
width for clear and dark sections (as a drawback, it tends to produce too symmetric edges).

The workflow presented above is shown in Fig. 1. Figure 1(a) presents the experimentally
acquired image of the SS, while Fig. 1(b) shows its representation in polar coordinates Ir

SS. The
a posteriori estimation of Ir

SS,re f is described in Figs. 1(c) and 1(d). Figure 1(c) corresponds
to a cross-cut section through Fig. 1(b) at a given radius and angular range indicated by the
red line, where the intensity values are shown as dots; note, also, the binary profile (straight
lines) obtained after preprocessing. Figure 1(d) shows Ir

SS,re f , where we have kept the same red
line mentioned previously. Finally, the 1D Fourier transform of the profile at largest radius of
Fig. 1(d) is shown in Fig. 1(e). Note that Fourier series coefficients Cm for even order are not
zero, as would be the case if clear and dark areas were equally spaced (as opposed to [13]),
although the magnitude of the third order is clearly higher than the one of the second order,
which turns out into a higher SNR. Consequently, in the following we will only consider odd
order coefficients because of their greater SNR.

In Fig. 2(a) we show the profiles of the Fourier coefficients corresponding to m= 1 and m= 3
for both Ir

SS and Ir
SS,re f at the corresponding spatial frequency u = m/(Λr) for each radius. If

we calculate |HA| for m = 1 and m = 3 (Fig. 2(b)), we observe that the curves overlap except
for both the inverted peaks and the frequency range that correspond to the inner fringe ring of
the SS pattern. The inverted peaks in the profiles correspond to the void rings of the SS pattern,
while the inner ring is irregular enough to be considered unreliable. Since the position of the
SS rings is a design parameter, it is easy to replace the values of the non-reliable ranges by
interpolation, subsequently merging the |HA| profiles at each m by averaging the overlapped
range, leading to the final curve of the MTF (Fig. 2(c)).

To assure that the proximity to the Nyquist’s limit is not influencing the measurement of
each coefficient value of |HA(u)|, it is enough to select the proper angular resolution in the
polar coordinates conversion such as the angular Nyquist’s limit is far from the low orders.

4. Experimental results

We applied the proposed technique to calculate the MTF of one of the objective lens of the soft
X-ray transmission microscope MISTRAL at ALBA synchrotron in Barcelone (Spain) [18].

#227116 - $15.00 USD Received 25 Nov 2014; revised 23 Jan 2015; accepted 27 Jan 2015; published 6 Apr 2015 
(C) 2015 OSA 20 Apr 2015 | Vol. 23, No. 8 | DOI:10.1364/OE.23.009567 | OPTICS EXPRESS 9570 



(a) θ (rad)

R
ad

iu
s 

(µ
m

)

0 1 2 3 4 5 6

1

2

3

4

5

6

(b)

3.4 3.6 3.8 4

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

θ (rad)

In
te

ns
ity

 (
A

.U
.)

 

 

Ir
SS

Ir
SS,ref

(c)
θ (rad)

R
ad

iu
s 

(µ
m

)

0 1 2 3 4 5 6

1

2

3

4

5

6

(d)

0 1 2 3

x 10
−4

0

50

100

150

200

ω (rad−1)

C
oe

f. 
V

al
ue

 (
A

.U
.)

m=1 m=2 m=3 m=4 m=5

(e)

Fig. 1. (a) Siemens star test pattern; (b) Polar decomposition of (a); (c) Ir
SS,re f profile cal-

culated from the binarization of Ir
SS by thresholding, remarked by red lines in (d) and (b),

respectively; (d) Ir
SS,re f image in polar coordinates; (e) 1D Fourier transform of profile at

largest radius from (d).

This is a Fresnel zone plate (FZP) characterized by an outermost zone width drN = 25 nm,
1500 zones and an illumination energy of 520 eV. The SS used in the experiments had 30 nm
smallest features. Both the FZP and SS have been manufactured by Xradia Inc., now Zeiss.
In Fig. 2(d) we show the calculated profiles of the MTF at different defocus distances. To
compare, we have also calculated the theoretical profiles considering the numerical apertures
of both the condenser and objective lenses (NAcondenser = 0.029 and NAob jective = 0.0476) as
well as the one of the direct beam stop (NAbs = 0.0083). We see in the case of the best focusing
plane (∆z = 0 µm) that the cut-off frequency is around 0.022 nm−1, slightly lower than the
theoretical value of 0.032 nm−1 with lower contrast for the intermediate frequencies. However,
when we observe the behavior against the defocus distances, we see that the experimental MTF
width profiles decrease more slowly tan the theoretical ones. This can also be understood as the
point spread function enlarges more slowly than in the theoretical case, being the experimental
DOF greater than the expected one. We can also observe in the experimental profiles the valleys
related to contrast inversion, as expected.
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Fig. 2. (a) Plot of the Fourier coefficient values for 1st and 3rd diffraction orders for Ir
SS

and Ir
SS,re f against the corresponding spatial frequency; (b) |HA| curves obtained from

plots in (a); (c) Final experimental |HA| curve obtained by combining curves in (b); (d)
Comparison of simulated and measured MTF profiles for ZP with drN = 25 nm at different
defocus distances.

5. Conclusions

We have introduced a method to calculate the MTF that is robust and can accommodate current
manufacturing errors in the generation of test patterns, since the input reference pattern is esti-
mated from the experimental image through a preprocessing step. We use a Siemens star pattern
combining different Fourier orders in its polar decomposition, extending previous works that
used a more limited frequency range. Finally, we applied the method to characterize the Mistral
X-ray microscope MTF at different defoci, in order to evaluate the depth of field of the optics.
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