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In this article, a method is presented to estimate a new local quality measure for

3D cryoEMmaps that adopts the form of a ‘local resolution’ type of information.

The algorithm (DeepRes) is based on deep-learning 3D feature detection.

DeepRes is fully automatic and parameter-free, and avoids the issues of most

current methods, such as their insensitivity to enhancements owing to B-factor

sharpening (unless the 3Dmask is changed), among others, which is an issue that

has been virtually neglected in the cryoEM field until now. In this way, DeepRes

can be applied to any map, detecting subtle changes in local quality after

applying enhancement processes such as isotropic filters or substantially more

complex procedures, such as model-based local sharpening, non-model-based

methods or denoising, that may be very difficult to follow using current methods.

It performs as a human observer expects. The comparison with traditional local

resolution indicators is also addressed.

1. Introduction

Single-particle cryo-electron microscopy (cryoEM) has become

a powerful technique for the three-dimensional (3D) structure

determination of biological molecules. Recently, advances in

instrumentation and software have dramatically improved the

potential of single-particle cryoEM, generating density maps

with a high level of detail. The quality of the map thus

obtained is usually evaluated in terms of resolution. Different

measures have been proposed to determine map resolution in

cryoEM (Sorzano et al., 2017). Currently, the most-used defi-

nition is based on the Fourier shell correlation (FSC) curve

(Saxton & Baumeister, 1982; Saxton, 1978; Harauz & van

Heel, 1986). However, resolution is not a concept that can be

uniquely defined. From the point of view of the microscope,

we may define the resolution based on optics considerations

(for instance, the Rayleigh criterion determines the minimum

spatial separation between two points so that the two points

can still be separated). From the point of view of signal

processing, we may define the resolution in terms of some

form of signal and noise comparison [for instance, the

frequency at which there is more signal than noise; this is used

in both the ResMap (Kucukelbir et al., 2014) and MonoRes

(Vilas et al., 2018) approaches]. From the algorithmic repro-

ducibility point of view, we may define the resolution as the

maximum frequency at which the correlation between two

bandpass-filtered versions of two reconstructions performed

with the same algorithm but applied to two independent data

sets is above a given threshold (this is the definition of the
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Fourier shell correlation). Or, from the point of view of the

nature of the objects being visualized, for instance, we may

define the resolution as the maximum frequency at which the

features in the reconstructed object are consistent with the

features observed in biological macromolecules filtered at that

frequency. All of these definitions make sense and they all

assess the quality of the reconstruction by attending to

different aspects of the problem. In addition to this ambiguity,

all of the methods described above require the choice of a

threshold for the measured quantity (cross-correlation, signal-

to-noise ratio etc.), which has also caused long debates on the

issue. Additionally, it is already well known that the quality of

a reconstruction depends on the region of the macromolecule

(some regions are better resolved than others; Cardone et al.,

2013; Kucukelbir et al., 2014; Vilas et al., 2018) and even on the

direction (some directions are better resolved than others

owing to an uneven angular distribution; Sorzano et al., 2001;

Unser et al., 2005), although we will not consider directional

effects in this work.

One of the first methods for considering the local char-

acteristics of the map for calculation of the resolution was

BlocRes (Cardone et al., 2013). This method calculates the

resolution based on the FSC but using a moving window on

the maps. In addition to having the limitations that are

inherent to use of the FSC (focused on reproducibility only,

lack of sensitivity to isotropic, nonvanishing filters etc.),

BlocRes incorporates the variable of the window size.

The most-used method to date for local resolution estima-

tion is ResMap (Kucukelbir et al., 2014), which is based on the

detection of a sinusoidal wave above the noise level for each

point on the map. Based on a similar principle, of detecting

energy at different frequencies above noise, but on a totally

different signal-processing approach, MonoRes (Vilas et al.,

2018) was proposed. MonoRes is based on the use of mono-

genic signals, extracting the monogenic amplitude at different

frequencies and comparing it with the monogenic amplitude of

the noise at the corresponding frequency; a directional local

resolution extension of MonoRes has also been proposed

(manuscript under review). The main limitation of these two

latter methods is that they require an estimate of the noise

variance.

On the other hand, it is very common to introduce some

form of map enhancement, from global B-factor correction to

more complex post-processing operations such as model-

based or non-model-based sharpening [as in LocScale (Jakobi

et al., 2017) and LocalDeblur (Ramı́rez-Aportela et al., 2019),

respectively] or the introduction of nonlinear noise-suppression

operations, as in Xmipp Highres (Sorzano et al., 2018). In all of

these cases, our current resolution indicators lose effectivity:

in the former case (B-factor correction) because they are

insensitive to this operation (see the supporting information

and Supplementary Fig. S1) and in the latter case because the

estimation of the level of noise in the map is also affected by

these operations, impacting on the very basic mathematical

framework on which they are based (operationally; if still used

in this way this weakness translates into an overestimation of

resolution).

However, it is certainly non-intuitive that our current

resolution estimations are insensitive to operations that are

aimed to increase the quality of our maps, even if sometimes

these enhancements are mostly targeted to help the modeling

task. Indeed, visibly different maps can present the same

resolution as estimated by methods based either on the FSC

or on some form of signal-to-noise ratio (SNR; see the

supporting information and Supplementary Fig. S1). There-

fore, we wanted to derive another ‘local quality measure’,

formally of the type of a local resolution, that could be used in

these cases and that indeed could ‘follow’ the results of these

enhancing operations (i.e. it produces a better value when the

map is supposed to be better by the application of some post-

processing). Therefore, our primary motivation in developing

DeepRes was to reconcile ‘what you see’ when working with a

map with ‘what you get’ in terms of the calculated value of

local resolution. Note that currently two maps, one sharpened

and the other unsharpened, may have the same local resolu-

tion estimation but are certainly not judged as being the same

by a human observer. An additional, more technical, moti-

vation for our work on DeepRes was to have a way to calculate

local resolution in those situations in which we did not have a

proper noise estimation (as could be the case, for instance,

when the reconstruction algorithm incorporates some noise-

suppression prior, as in Xmipp Highres; Sorzano et al., 2018).

Naturally, a logical question for the cryoEM practioner is

‘and which is the true, final, local resolution?’. We will present

our work in this area, which clearly indicates that some

general consensus can indeed be achieved, even when working

with very different ‘definitions’ of what resolution is.

In brief, in this work we introduce a new algorithm

(DeepRes) for measuring the local resolution of biological

macromolecules reconstructed by cryoEM. It is based on the

comparison of the features of biological macromolecules

observed at a particular resolution with the features observed

in the map under evaluation. Our proposal makes use of deep

learning. Deep learning is a new area of artificial intelligence

that has recently emerged (Bengio, 2009) and that has already

been successfully applied in cryoEM with excellent results

(Wagner et al., 2018; Su et al., 2018). Avramov and coworkers

have demonstrated that deep-learning models can learn

resolution patterns from cryoEM density maps (Avramov et

al., 2019). Our newly proposed method, DeepRes, overcomes

some of the limitations of current local resolution methods

such as their counter-intuitive insensitivity to isotropic, non-

vanishing filters (B-factor correction) and many sharpening

algorithms (for example LocalDeblur), and their inability to

estimate the resolution when there is no region to estimate the

noise distribution (a single masked reconstruction) or when

the reconstruction method strongly suppresses noise in the

reconstruction (for example Xmipp Highres; Sorzano et al.,

2018).

2. Methods

The DeepRes algorithm is based on a convolutional neural

network (CNN). The idea of our method is ‘to teach’ a neural
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network the characteristics of density maps filtered at

different frequencies, creating a general network that can be

used to estimate the local resolution of cryoEM maps.

2.1. Training data set

A set of 15 000 3D nonredundant macromolecule structures

(including proteins and nucleic acids; Levy et al., 2006) was

selected for the training of our 3D convolutional neural

networks (CNNs). Each atomic model was simulated as a 3D

density map, calling the function xmipp_volume_from_pdb

from the Xmipp package (de la Rosa-Trevı́n et al., 2013;

Sorzano et al., 2015), which uses electron atomic scattering

factors. Two data sets were prepared with the aim of studying

different resolution ranges: (i) 3D density maps simulated with

a sampling rate of 1.0 Å per voxel (data set 1) and (ii) simu-

lated maps with a sampling rate of 0.5 Å per voxel (data set 2).

A description in more concrete terms is given below.

Data set 1. For each 3D map, a filter bank was created so

that it was low-pass filtered to frequencies of between 2.5 and

13.0 Å (every 0.1 Å) with a raised cosine of 0.02 (in normal-

ized units) using the xmipp_transform_filter function.

Data set 2. As data set 1, but in this case maps were low-pass

filtered to frequencies of between 1.5 and 6.0 Å (every 0.1 Å)

with a raised cosine of 0.02 (normalized units). The reason for

creating this second data set was to analyze maps at very high

resolution.

In order to locally study these maps, each filtered map was

divided into boxes of 13� 13� 13 voxels, which correspond to

edge lengths of 13 and 6.5 Å for data set 1 and data set 2,

respectively. The density values of each box were normalized

to have a unit norm and guarantee uniform intensity ranges of

all filtered maps. Millions of simulated map boxes and their

corresponding resolution labels were then used to train the

neural network.

2.2. Training of the DeepRes network

DeepRes trains a convolutional neural network (CNN) for

the automatic estimation of local quality. The CNN was

implemented using the Keras 2.0.2 (http://keras.io) Python

deep-learning library with the TensorFlow (Abadi et al., 2016)

backend. Our CNN contained a convolutional layer that

applied 32 13 � 13 � 13 filters (many other architectures were

tested with similar results, but this was the simplest one tested,

which was why we selected it), followed by a dense layer with

512 neurons and the output dense layer with just one neuron

reporting the local quality label (note that we are addressing

DeepRes as a regression analysis, rather than as a classifica-

tion). We used the rectified linear unit (RELU) as an activa-

tion function. The padding ‘same’ was used following each

layer to preserve the map dimensions. Dropout with a prob-

ability of 0.25 was applied to the convolutional layer output to

regularize the network and avoid overfitting. To optimize the

network parameters, we used the Adam optimizer (Kingma &

Ba, 2014), which is an improved version of stochastic gradient

descent. The optimizer determines how the gradient of the loss

function is used to update the network parameters. In DeepRes,

the loss function that is minimized is ‘mean_squared_error’.

2.3. DeepRes input and output

The algorithm requires as input a 3D cryoEM density map

and a mask enclosing the macromolecule. These input maps

are rescaled to a pixel size of 1.0 or 0.5, depending on the CNN

that is going to be used. The map is then sampled in a sliding

window of 13� 13� 13 voxels. Finally, the resolution estimate

is assigned to the voxel located at the center of the cube.

2.4. Code availability

DeepRes is publicly available from Xmipp (de la Rosa-

Trevı́n et al., 2013; http://xmipp.cnb.csic.es) in the develop-

ment branches https://github.com/I2PC/xmipp/ and https://

github.com/I2PC/scipion-em-xmipp/ (these branches will

eventually become the next release of Xmipp), and is inte-

grated into the image-processing framework Scipion (de la

Rosa-Trevı́n et al., 2016; http://scipion.cnb.csic.es). A tutorial

on how to use DeepRes can be found at https://github.com/

I2PC/scipion-em-xmipp/wiki/DeepRes-local-resolution.

3. Results

Different visualization options have been implemented into

Scipion (de la Rosa-Trevı́n et al., 2013) to analyze the results

[for example, the local resolution map, a resolution histogram,

colored slices of the resolution map and the display of the

original map in UCSF Chimera (Pettersen et al., 2004) colored

according to the obtained resolution values]. The validation of

DeepRes was initially carried out through simulated maps for

different scenarios. This exercise allows us to evaluate the

method using maps for which the local resolution values are

known a priori. The method was subsequently applied to

different experimental maps and the results were compared

using current methods of estimating local resolution (ResMap,

MonoRes and BlocRes). For all methods, the same mask and

default parameters were used. In ResMap, manual pre-

whitening was performed to the best of our knowledge.

3.1. Tests with simulated data

In a first step to test the performance of DeepRes, the

method was applied to two simulated maps that were not

employed for training and for which local resolutions were

known. For the first case we used the atomic model of the

39 kDa human cartilage glycoprotein tetramer (HCGP39;

PDB entry 1hjv; Houston et al., 2003). For this structure, we

generated a map with a sampling rate of 1.0 Å per pixel using

xmipp_volume_from_pdb (Sorzano et al., 2015). Each

monomer in the structure was selected and low-pass filtered at

different frequencies of 3, 5, 7 and 9 Å with a raised cosine of

0.02 (in normalized units). After this, Gaussian noise with zero

mean and a standard deviation (SD) of 0.08 was added.

The results of the DeepRes application in this test are shown

in Fig. 1(a). Our method is capable of capturing the different

characteristics within the map and provides a resolution map
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with values that match the cutoff frequencies. In particular, the

median values obtained with DeepRes were 3.2, 5.0, 7.1 and

8.9 Å, with SDs of 0.2, 0.3, 0.5 and 0.5 Å, respectively.

The second simulated test considered the crystal structure

of the ’29 pRNA prohead-binding domain (PDB entry 3r4f;

Ding et al., 2011). This case also allows us to check whether the

method works well for nucleotides. As before, the atomic

model was converted into a density volume with a sampling

rate of 0.5 Å per pixel. Two low-pass-filtered maps were then

generated at frequencies of 2 and 4 Å with a raised cosine of

0.02. Noise was added as in the previous case.

Fig. 1(b) shows that DeepRes produces quality measures

close to the expected resolution values. For the map filtered at

2 Å the median resolution value estimated was 2.3 Å with a

standard deviation (SD) of 0.3 Å [Fig. 1(b), blue], while for the

map filtered at 4 Å the median resolution was 4.0 Å with an

SD of 0.3 Å [Fig. 1(b), yellow].

The results obtained for the simulated data confirm that

DeepRes estimates local resolutions that are very close to the

expected theoretical values and validate the applicability of

our method for macromolecules that contain both amino acids

and nucleotides.

Additionally, the second simulated map (’29 pRNA) was

also used to investigate the basis of our method. Both

MonoRes and ResMap are based on a comparison between the

energy of the signal and the energy of

the noise. To study whether DeepRes

was only taking into account the

frequential energy of the map, without

any further connection to the under-

lying macromolecular structure, a test

based on Fourier phase randomization

was carried out. Thus, in the map

filtered at 2 Å, the phases were rando-

mized beyond 4 Å. The results of

DeepRes for the original map and the

phase-randomized map are shown in

Supplementary Fig. S2. Clearly, when

randomization is applied, DeepRes

shifts the resolution values to 4 Å. These results show that

DeepRes not only takes into account the energy but also

detects the difference in texture in the analyzed maps.

3.2. Results on experimental maps

Once the effectiveness of our method for estimating local

resolution with simulated maps had been proven, we applied

DeepRes to five cryoEM maps and the results were compared

using MonoRes, ResMap and BlocRes (Fig. 2 and Supple-

mentary Fig. S3). The five analyzed maps (enterovirus D68,

the PolIII�–clamp–exonuclease–� DNA complex, capsaicin

receptor TRPV1, HSP104DWB and CMG helicase) were

obtained from the EMDB (EMDB entries EMD-9631, EMD-

4141, EMD-5778, EMD-0376 and EMD-3320, respectively)

and correspond to maps that had been subjected to global

B-factor (Rosenthal & Henderson, 2003) post-processing in

RELION (Scheres, 2012).

3.2.1. Enterovirus D68. The first experimental case

analyzed the map of enterovirus D68 (EMDB entry EMD-

9631; Zheng et al., 2019) with a resolution of 4.0 Å as reported

by the gold-standard FSC of 0.143. The resolution histograms

obtained using DeepRes, MonoRes and ResMap are shown in

Fig. 2(a). BlocRes was not applied in this test because the half

maps were not deposited in the EMDB. DeepRes [red square

in Fig. 2(a)] estimated the resolution

values in a narrow range from 3.4 to

4.6 Å, with the median at 4.0 Å and an

SD of 0.2 Å. This median resolution is in

total agreement with the reported

resolution of 4.0 Å (Table 1). The

resolution map obtained with DeepRes

is represented using UCSF Chimera

in Fig. 2(a). The distribution with

MonoRes ranges from 4.0 to 6.0 Å, with

the median at 4.5 Å and an SD of 0.6 Å.

Using ResMap a peak of resolution was

obtained at 4.4 Å and values extended

up to 7.0 Å, presenting a median reso-

lution of 4.4 Å and an SD of 0.8 Å.

3.2.2. PolIIIa–clamp–exonuclease–h
DNA. The second case corresponds to

the PolIII�–clamp–exonuclease–� DNA
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Figure 1
DeepRes results for simulated maps. (a) DeepRes resolution map from the simulated map of the
39 kDa human cartilage glycoprotein tetramer filtered at 3, 5, 7 and 9 Å (PDB entry 1hjv). (b)
DeepRes resolutions maps from two simulated maps of ’29 pRNA (PDB entry 3r4f) filtered at 2 and
4 Å.

Table 1
Summary of median resolution for the experimental cases.

EMDB code FSC (Å)
MonoRes
median (Å)

ResMap
median (Å)

BlocRes
median (Å)

DeepRes
sharpened
median (Å)

DeepRes
unsharpened
median (Å)

EMD-9631 4.0 4.5 � 0.6 4.4 � 0.8 — 4.0 � 0.2 —
EMD-4141 6.7 7.5 � 1.1 7.4 � 0.6 7.0 � 0.7 6.5 � 0.4 —
EMD-5778 3.4 4.3 � 1.1 4.0 � 1.0 3.7 � 0.5 4.1 � 0.14 —
EMD-0376 9.3 11.7 � 2.3 10.2 � 0.8 — 9.3 � 1.2 —
EMD-3320 10.2 — — — 10.1 � 1.7 —
EMD-3407 3.3 4.0 � 1.1 3.8 � 1.5 — 3.5 � 0.4 5.0 � 0.8
EMD-9235 3.8 4.5 � 1.8 4.9 � 1.8 4.0 � 1.0 4.4 � 0.4 7.4 � 1.0
EMD-2660 3.2 4.0 � 2.7 4.6 � 1.7 3.6 � 1.1 3.8 � 0.9 6.3 � 1.3
EMD-0258 4.0 — — — 4.0 � 0.3 5.5 � 0.5
EMD-7550 2.4 — — — 2.6 � 0.4 3.2 � 0.3
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complex (EMDB entry EMD-4141;

Fernandez-Leiro et al., 2017). The

reported resolution for this map was

6.7 Å (gold-standard FSC of 0.143). The

results obtained using the different

methods are shown in Fig. 2(b). With

MonoRes, the resolution range obtained

ranges from 6.6 to 11 Å, with a median

of 7.5 Å and an SD of 1.1 Å, although

the highest peak in the distribution is

between 6.6 and 7.4 Å. ResMap esti-

mated a resolution peak at 7.4 Åwith an

SD of 0.6 Å, while the histogram of

resolutions calculated with BlocRes is

centered at 7.0 Å with an SD of 0.7 Å.

The histogram representing the resolu-

tion values obtained using DeepRes is

centered at 6.7 Å, with a median of

6.5 Å and an SD of 0.4 Å. As in the

previous case, the median resolution of

DeepRes is close to the reported FSC

resolution (Table 1).

3.2.3. Capsaicin receptor TRPV1.
The third experimental map used

corresponds to the well known

membrane protein TRPV1 (EMDB

entry EMD-5778; Liao et al., 2013). The

reported resolution for this density map

was 3.4 Å at the gold-standard FSC of

0.143. This is an interesting case of a

membrane protein with a wide range of

local resolutions. We took special care

to mask out the membrane and work

only with the macromolecular complex,

which is certainly a general procedure,

but in our case it was especially impor-

tant since DeepRes was only trained

with proteins. The results and the

comparison with current methods are

shown in Fig. 2(c). DeepRes reported a

median resolution of 4.1 Å with an SD

of 0.4 Å, while these values were 4.3 �
1.1, 4.0 � 1.0 and 3.7 � 0.5 Å for

MonoRes, ResMap and BlocRes,

respectively. As expected, DeepRes

detected a high-resolution area

corresponding to the center of the
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Figure 2
Local resolution results for experimental maps.
The resolution histograms obtained by the
different methods (MonoRes, ResMap,
BlocRes and DeepRes) and the resolution
map determined with DeepRes are shown for
(a) enterovirus D68 (EMDB entry EMD-
9631), (b) the PolIII�–clamp–exonuclease–�
DNA complex (EMDB entry EMD-4141) and
(c) capsaicin receptor TRPV1 (EMDB entry
EMD-5778).
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transmembrane region (<3.8 Å) and a lower resolution area

on the ankyrin motif (>4.7 Å).

3.2.4. Low-resolution maps: HSP104DWB and CMG heli-
case. Two cases were used to validate the use of DeepRes with

low-resolution maps. The first corresponds to the HSP104DWB

map (EMDB entry EMD-0376; Lee et al., 2019) with a

reported resolution of 9.3 Å at the gold-standard FSC of 0.143

[Supplementary Fig. S3(a)]. The histogram obtained with

MonoRes shows resolutions above 8 Å, with a maximum at

9.6 Å and a median of 11.7 Å (Table 1), while the resolutions

obtained with ResMap are above 10 Å

with a median of 10.2 Å. The highest

number of values obtained with

DeepRes are between 8 and 11 Å reso-

lution, with a median resolution of 9.3 Å

and an SD of 1.2 Å (Table 1), which

matches the FSC resolution reported

for the map.

The second case corresponds to the

CMG helicase map (EMDB entry

EMD-3320; Abid Ali et al., 2016) with a

reported resolution of 10.2 Å at the

gold-standard FSC of 0.143 [Supple-

mentary Fig. S3(b)]. In this case, the

current methods could not be applied

because the deposited map was masked

and free of noise. The median resolution

obtained by DeepRes is 10.1 Å with an

SD of 1.7 Å (Table 1), which is in

agreement with the resolution reported

by the authors.

3.3. Local resolutions from
unsharpened and sharpened maps

One of the main limitations of the

current methods is that they are not

able to cope with situations such as

differentiating between unsharpened

and sharpened maps. Indeed, both the

FSC as well as the local resolution

determined by the monogenic signal

(Vilas et al., 2018) and the local sinu-

soids versus noise (Kucukelbir et al.,

2014) are insensitive to isotropic, non-

vanishing filters (Unser et al., 2005;

Sorzano et al., 2017; see Supplementary

Fig. S1). In particular, when a global

B-factor-based sharpening is applied, all

spectral components at a given radial

frequency are modified proportionally

(Unser et al., 2005) and therefore the

statistically detected frequency above

the noise level will remain invariant.

However, resolution changes after

applying B-factor sharpening can be

detected using DeepRes. Other maps

that will benefit from DeepRes are those

obtained with methods that modify the

signal or minimize the noise level

[for example, LocalDeblur (Ramı́rez-

Aportela et al., 2019) or Xmipp Highres
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Figure 3
Changes in local resolution between unsharpened maps and sharpened maps detected with
DeepRes. Histograms determined with MonoRes, ResMap and BlocRes for unsharpened maps
(left), the histograms determined for unsharpened and sharpened maps (center) with DeepRes and
the resolution maps for unsharpened and sharpened maps (right) of (a) E. coli GroEL (EMDB
entry EMD-3407) and (b) the rabbit 80S ribosome (EMDB entry EMD-9235). The sharpened maps
were obtained with LocalDeblur and RELION post-processing for GroEL and ribosome,
respectively. Note that the color scales of the resolution maps of the different specimens have been
modified for better visualization.
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(Sorzano et al., 2018)]. Resolution changes determined with

DeepRes before and after map sharpening are exemplified in

Fig. 3 and Supplementary Fig. S4 with three different experi-

mental cases, Escherichia coli GroEL, rabbit 80S ribosome

and Plasmodium 80S ribosome maps, and in Fig. 4 with both

the KdpFABC complex and rabbit muscle aldolase.

3.3.1. E. coli GroEL. The first case is based on the E. coli

GroEL map in the apo form (EMDB entry EMD-3407; Joseph

et al., 2016) reconstructed at 3.3 Å resolution (gold-standard

FSC of 0.143); in this case the unsharpened map was deposited

and will be the map used in our first set of analyses. For the

unsharpened map, MonoRes and ResMap estimated resolu-

tion ranges from 2.25 to 8.0 and 2.3 to 8.0 Å, with medians of

4.0 and 3.8 Å, respectively [Fig. 3(a) and Table 1]. However,

the results with our method are markedly different. DeepRes

detected resolutions ranging from 3.3 to 7.0 Å, with a median

resolution of 5.0 Å. That is, when applied to the unsharpened

map DeepRes reported resolutions that were lower than with

any other methods.

We then proceed to sharpen the map using LocalDeblur

(Ramı́rez-Aportela et al., 2019) and to determine the local

resolution of GroEL using DeepRes [Fig. 3(a)]. Note that, as

previously indicated, the use of algorithms such as MonoRes

or ResMap on these modified maps is not mathematically

justified (see the supporting information). Interestingly,

DeepRes shows a clear increase in resolution with respect to

the unsharpened map, estimating the resolution to be in the

range 2.5–4.5 Å, with a median resolution of 3.5 Å. In general,

DeepRes reports an average resolution gain for each domain

of greater than 1.0 Å with respect to the unsharpened map.

Note that the results obtained for the sharpened map using

DeepRes are of the same order as the results obtained by the

other methods for the unsharpened map (this observation will

be further commented on in Section 4 and in the supporting

information). Consequently, the results of DeepRes are very

intuitive, which is not the case for the other approaches.

3.3.2. Rabbit 80S ribosome and Plasmodium 80S ribosome.
The second case corresponds to the rabbit 80S ribosome map

(EMDB entry EMD-9235; Brown et al., 2018), with a reported

overall resolution of 3.8 Å (gold-standard FSC of 0.143). Note

that in this case the original deposition contained the two half

maps, so that BlocRes could also be applied. The results for

this unsharpened density map also showed clear discrepancies

between DeepRes and the current methods [Fig. 3(b)]. While

MonoRes, ResMap and BlocRes estimated median resolutions

of 4.5, 4.9 and 4.0 Å, respectively, DeepRes estimated a median

resolution of 7.4 Å (Table 1).

When we determined the local resolution with DeepRes for

the deposited map (Brown et al., 2018) post-processed with

RELION, an increase in the resolution with respect to the

unsharpened map was detected [Fig. 3(b)]. The histogram

shows a resolution range from 3.1 to 6.0 Å, with a median of

4.4 Å and an SD of 0.4 Å. As for the GroEL maps, DeepRes

detected a noticeable change in resolution after post-proces-

sing, so that the DeepRes-estimated local resolution values of

the sharpened map are in the range of the resolutions esti-

mated by the other methods.

A similar behavior is shown for the Plasmodium 80S ribo-

some map (EMDB entry EMD-2660; Wong et al., 2014;

Supplementary Fig. S4). The unsharpened map presents a

resolution range lower than those determined by the current

methods, with a median resolution of 6.3 Å and an SD of 1.3 Å

(Table 1). Moreover, the DeepRes histogram for the shar-

pened map with Autosharpen (Terwilliger et al., 2018) presents

a resolution range similar to the other methods, with a median
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Figure 4
DeepRes results from unsharpened and sharpened maps. Histograms
(left) and resolution maps (right) for sharpened and unsharpened maps of
(a) the KdpFABC complex (EMDB entry EMD-0258) and (b) rabbit
muscle aldolase (EMDB entry EMD-7550). The sharpened maps were
obtained with RELION post-processing and Autosharpen for KdpFABC
and muscle aldolase, respectively.
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resolution of 3.8 Å and an SD of 0.9 Å. Both the sharpened

and the unsharpened maps have a low resolution for the head

region of the small 40S subunit owing to its inherent flexibility,

as reported by the authors (Wong et al., 2014).

These changes are related to the capacity of DeepRes to

detect increments in local resolution after sharpening, which

the other approaches cannot detect. We will particularize the

conceptually simple case of a global B-factor correction.

Indeed, FSC, ResMap and MonoRes are intrinsically insensi-

tive to quasi-flattening the spectrum of the map, since it affects

the noise and signal equally. These methods are designed to

extract correlations or SNRs irrespective of this enhancement;

in a way, they already provide the best value that any simul-

taneous enhancement of signal and noise per frequency can

obtain (see the detailed analysis presented in Supplementary

Fig. S1 and its respective section). On the contrary, DeepRes is

sensitive to these changes, so that when sharpening is applied

the resolution improves and it then becomes very similar to

the results of all other methods.

3.3.3. Other maps: the KdpFABC complex and rabbit
muscle aldolase. Two other cases were taken into account to

evaluate the resolution when sharpening is applied (Fig. 4).

One of the cases tested was the KdpFABC complex (EMDB

entry EMD-0258; Stock et al., 2018). The original publication

reported a resolution of 4.0 Å (gold-standard FSC of 0.143).

Our DeepRes resolution estimates are between 4.0 and 7.0 Å

for the unsharpened map and between 3.0 and 5.0 Å for the

post-processed map [Fig. 4(a)]. The median resolution varied

from 5.5 to 4.0 Å with post-processing, with the latter value

being similar to that reported by the FSC (Table 1). In both

maps, a better resolution zone (belonging to the KdpA

domain) is observed with resolutions between 4.4 and 5.5 Å

for the original map and between 3.0 and 4.0 Å for the shar-

pened map, and a lower resolution zone (belonging to KdpC

and the N, P and A cytoplasmatic domains of KdpB) with

resolutions between 6.2 and 7.0 Å for the original map and 4.3

and 5.0 Å for the sharpened map.

Finally, we analyzed a rabbit muscle aldolase reconstruction

(EMDB entry EMD-7550; Kim et al., 2018). The original

publication estimated a resolution of 2.4 Å (gold-standard

FSC of 0.143). In this case, a comparison of our method was

made with the unsharpened map and the map after having

applied Autosharpen [Fig. 4(b)]. Both maps show resolutions

that vary between 2.0 and 4.0 Å, but the median changed from

3.2 to 2.6 Å on the application of Autosharpen.

3.4. Oversharpening detection

The current methods (all of which are based on different

ways of estimating the SNR) report the higher resolution of

the map without detecting the degree of blurring, which

results in a downweighting of the high-frequency components.

Indeed, the choice of the applied B factor modifies the

appearance of the map, but this change is not detected by the

current methods because it is a radially symmetric operation.

On the other hand, if a map is oversharpened then the reso-

lution measures based on the SNR are not affected either.

Unlike these methods, DeepRes is capable of detecting

differences in resolution between the unsharpened and shar-

pened maps, which allow the sharpening quality to be eval-

uated. In the case of oversharpening, DeepRes would report

an overestimation of the resolution. Consequently, a good

strategy to detect and avoid oversharpening the maps is the

combination of both kinds of methods, as exemplified in Fig. 5

and Supplementary Figs. S5 and S6. If the resolution reported

by DeepRes is higher than the resolution reported by an SNR-

based method then this is an indicator of oversharpening.

One of the monomers in the structure of the 39 kDa human

cartilage glycoprotein tetramer (HCGP39; PDB entry 1hjv,

chain A) was used to generate a map with a sampling rate of

1.0 Å per pixel. This map was low-pass filtered at a frequency

of 3.5 Å with a raised cosine of 0.02. Gaussian noise with zero

mean and an SD of 0.08 was added. The map was then shar-

pened using negative B factors of �60 and �100 Å2 and the

resolution of the maps was determined using MonoRes and

DeepRes (Supplementary Fig. S5). With MonoRes the reso-

lution remained practically invariant, while with DeepRes the

detected resolution increased and exceeded the limit deter-

mined by MonoRes (based on the SNR). This example

demonstrates that the combination of methods is useful for

detecting the oversharpening of density maps.

This strategy to detect oversharpening was applied to the

20S proteasome map (EMDB entry EMD-6287; Campbell et

al., 2015; Fig. 5 and Supplementary Fig. S6). Several B factors

were applied to the unsharpened map, and the correlations of

each map and the generated map from the deposited atomic

model (PDB entry 6bdf) were calculated using PHENIX

(Afonine et al., 2018). Among the filtered maps, the maximum

correlation was obtained for the sharpened map with a B

factor of �60 Å2. The local resolution of the sharpened maps

was then determined with DeepRes and compared with the

local resolution obtained by BlocRes from the two halves of

the unsharpened map. Without the atomic model, it would be

impossible in a real experiment to know which is a global B

factor that does not cause oversharpening. Using DeepRes, we

have heuristically observed that a good B factor is one such

that the 20% percentile of the local resolution distribution of

BlocRes or MonoRes (unsharpened) and DeepRes (shar-

pened) coincide, as illustrated in Fig. 5 for BlocRes and in

Supplementary Figs. S6 for MonoRes. In the example shown,

the heuristic non-oversharpening B factor is�60 Å2 according

to BlocRes and MonoRes.

4. Discussion

In this work, we have introduced a new approach aimed at

estimating the local quality of a map using principles totally

different from any other method previously used in the field,

in which we have used deep learning. Our motivation to

propose ‘still another’ local quality measure (another ‘local

resolution’) is very simple and stems from the fact that most

resolution-estimation methods currently used are intrinsically

insensitive to isotropic, nonvanishing Fourier filters (by non-

vanishing we mean that they do not set to zero-frequency
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components). Interestingly, this characteristic has been very

little treated in the cryoEM literature [with exceptions, such as

Unser et al. (2005) and Sorzano et al. (2017)], but effectively it

means that transformations that change the spectrum of a

macromolecule (for instance, by enhancing the amplitude of

its Fourier components) are not detected by current methods

or, in other words, the resolution values that they report will

be the same before and after this enhancement. This result is

totally counterintuitive, but it is rigorously demonstrated in

depth in the supporting information, together with an illus-

trative example (Supplementary Fig. S1). Note that the

comments above refer to the use of filters only, not to the

combination of filters with other operations such as, for

example, changing the mask (for example, making a mask

tighter). We wanted to develop an approach that naturally

renders lower quality values when maps have not been

‘enhanced’ and higher ones after ‘enhancement’, without any

change of parameters or masks or any other operation.

We have used deep-learning technology to ‘teach’ a neural

network the characteristics of filtered maps at different reso-

lutions. Initially, our approach was tested with simulated maps

in which the resolution values were known a priori. In these

tests different scenarios were studied: maps with different

resolutions and different types of macromolecules (amino

acids and nucleotides). The results of DeepRes were excellent

for the cases tested, assigning resolutions very similar to the

expected values and validating the use of our method to

estimate the local resolution in density maps.

However, the resolution values obtained with DeepRes for

known experimental unsharpened maps were much more

conservative than those estimated using the current methods.

Still, when sharpening was applied to these maps, the DeepRes

resolutions were in accordance with the current methods. The

resolution medians obtained by DeepRes for the tested shar-

pened maps were also close to the resolutions reported by

FSC.

As previously indicated, the current methods are insensitive

to the application of a B factor, which means that different

modifications of the map by the application of different

B-factor values will not be reflected by a change in resolution.

In this sense, our method offers a solution. With DeepRes, the

changes that occur with an applied B factor are indeed

detected. The results obtained indicate that the resolutions

estimated by the current methods correspond to the resolu-

tions that the map would have after restoration. However, our

method reports the resolution as the similarity to biological

macromolecules filtered at a given resolution, which is closer

to the user observation that sharpening facilitates the atomic

modeling of the macromolecule. We have also shown that

comparison of the current methods (based on SNR) and

DeepRes allows detection of the oversharpening of cryoEM

maps.

Another advantage of DeepRes is that it does not depend

on map noise estimations. Therefore, DeepRes can be used for

maps with masks applied, with a low noise level owing to the

processing technique or to locally enhanced signal using

algorithms such as LocScale and LocalDeblur.
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Figure 5
Oversharpening detection. Comparison of BlocRes applied to the
unsharpened map (top of the figure) and DeepRes applied to each
B-factor sharpened map. The correlation (CC) of each sharpened map
and the generated map from the deposited atomic model (PDB entry
6bdf) was calculated using PHENIX. The red line corresponds to the 20%
percentile of the local resolution distribution of BlocRes.
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