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Resumen

La mayoría de la información biomédica se encuentra presente como texto libre y
existe un aumento constante de la creación de los documentos relacionados al área
médica. El problema principal trata de que el texto libre mencionado se encuen-
tra disponible pero en diferentes fuentes, puesto que no está unificado en un único
corpus. Si bien es cierto que la lengua inglesa es el idioma preferido para escribir
esos documentos, y existen varios corpus consolidando cierta información, terceros
idiomas (como por ejemplo, español) que presentan una amplia información médica,
aún necesitan desarrollar un corpus.

Las tecnologías emergentes de Aprendizaje Automático crean y procesan diferentes
métodos constantemente y aunque las técnicas matemáticas complejas son rele-
vantes, los corpus de textos son la base del estudio del lenguaje natural.

En ésta tesis de Máster, presentamos un nuevo corpus médico en español denomi-
nado COpenMed Corpus. El listado original de las páginas web (URLs) empleadas
para construir el corpus alcanza la cantidad de 19.571 recursos relacionados con un
total de 9.099 entidades. Una función especial de relleno de recursos relacionados a
una misma identidad también se ha añadido: la función de relleno se emplea para
establecer un valor N referente al mínimo número de referencias por entidad. Para la
construcción del corpus se ha empleado N = 10 alcanzando un total de 90.990 pági-
nas web descargadas. Para ésta descarga, se ha desarrollado un método que hace
uso de técnicas Webscraping para descargar y procesar las páginas web obtenidas
del listado.

Como preparativos para un posible futuro trabajo y futuros pasos de uso del cor-
pus creado, se ha pre-entrando dos modelos diferentes de Procesamiento Natural del
Lenguaje. Los modelos empleados han sido RoBERTa y XLNet, ambos pre-entrenados
con COpenMed corpus.
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Abstract

The majority of biomedical information is present as free text and there is a constant
augment of documents created in a daily basis for this medical field. The main prob-
lem is that all of the free text is available but located at different sources, since it is
not unified in a single corpus. Although English is the preferred language for writing
documents, and has several corpus consolidating the information, another languages
with vast amount of information has yet to develop a large corpus.

Emerging Machine Learning technologies are appealing and different methods and
processes are tested in a constant basis. Even though these complex mathematical
techniques are relevant, text corpora are the basis of natural language studying.

In this Master thesis we present a new large Spanish medical corpus: COpenMed
Corpus. Original pool of URLs employed for constructing the corpus reaches the
amount of 19.571 resources related to a total of 9.099 entities. A padding method
for resources referred to a same entity was also added, the padding is employed by
establishing a N value for minimum number of resources per entity. We employed
N = 10 reaching a total of 90.990 URLs scraped. For this goal, we develop a method
that employs Webscraping techniques for downloading and processing a substantial
amount of URLs from a given pool of URLs.

As preparations for further steps and future work, pre-training of two different Nat-
ural Language Processing models was also done in this Master thesis. Models em-
ployed are RoBERTa and XLNet, both of them pre-trained with COpenMed corpus.

Keywords: Medicine Corpus, Corpus Linguistic, Spanish Language Model.
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Chapter 1

Introduction

1.1 Motivation

What is the relation between different illnesses/symptoms? Is a question that may
be answered by medical hypotheses. In reality, how inherent relations between terms
and words in the medical field is yet to be thoroughly studied. In the last two decades,
medical research has evolved from manual discovery of medical term relationship to
automatised processes by different emerging techniques such as machine learning.
Although this field has been rapidly progressing and different and more complex
processes (e.g. neural networks, deep learning, etc.) has gained popularity, there is
still to create an extensive medical corpora.

Abundant techniques such as language engineering, human-speech language recog-
nizer models or text analyzers have been improving. Results not only improve day by
day but also become more efficient. Although, even if the previous statement is true,
no matter what technique is employed, and no matter what technique is developed,
all of them depend on the data extracted and engaged in the training process. The
corpus is a fundamental part of the mechanism and without it Artificial Intelligence
results can not be leveraged.

This Project was created to tackle the need for a useful tool for researchers, scholars
and students that allows them to extract, analyze and compare medical information
across a wide range of valid medical sources.

1.2 Objectives

In order to enhance current research on medical issues and symptom classification,
a solution may be building a language model for easier and faster results. One of
the main scientific complications behind this line of research is that the classification
and extraction of relations is done by hand which is a tedious and can be a subjective
task.

As a starting point towards the goal of creating a Spanish language model for multi-
tasking (e.g. Question and Answer, Disease and Symptom classification ...), creating
an extensive medical corpora with different topics can be the baseline for employing
different modern techniques.
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1.3. Thesis structure

This Master’s Thesis aims to (1) download and process the content of different web
pages from a pool of URLs, (2) create a medical related topics corpus with the URLs
scraped and (3) create two different spanish medical topics trained models. These
general goals are translated into the following technical objectives:

• Create a method for automatic webscraping of any URL and employ its tech-
niques for downloading the text.

• Make a cleaning process pipeline for the downloaded text and store it.

• Analyze the Natural Language Processing models to be employed and explain
step by step the training process.

All processed and stored data was provided previously by the Association COpenMed,
the excel file contains a pool of URLs. Information was displayed in an excel file under
a Creative Commons CC-BY-SA 4.0 license available at https://sites.google.
com/view/copenmed/descargas.

1.3 Thesis structure

Chapter 2 presents the state of the art of the COpenMed Project, Spanish Medical
Corpora and explains the Machine Learning Models that will be employed in the
present project.

Chapter 3 describes the materials and methods used in this Thesis. It thoroughly
details how the work pipeline was structured and programmed as well as all its func-
tionalities. It also presents the webscraping process employed, the cleaning texts
method and the final training process of the models.

Chapter 4 shows the results and a brief discussion.

Chapter 5 concludes this work and presents possible future research lines. Finally,
a detailed referenced literature is provided at the end of the document.
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Chapter 2

State of the Art

2.1 COpenMed Association

COpenMed is an nonprofit association with a main objective of offering quality biomed-
ical information. The association origin comes from an idea of creating an automatic
reasoner that aids for obtaining a list of possible illnesses given some compatible
observed symptoms. COpenMed’s work is mainly produced by volunteers and stu-
dents from different universities such as CEU San Pablo, International University of
Valencia, Polytechnic university of Madrid and more.

Information offered is structured in a knowledge graph and internal organization can
be understood in the following way:

• Activity is composed of subgroups called entities. There are 20 different activ-
ities present in the graph: Activity. anatomy, cause, condition, disease, func-
tion, groupOfDiseases, groupOfSubstances, groupOfTests, groupOfTreatments,
instrument/Device, pathogen, physiological feature, population, risk, specialty,
substance, symptom, test, testResult, treatment.

• Entity is the subgroup of activity. It can be understood as a principal concept
of an specific medical term. Last version from July 2021 has 9099 identified
entities.

• Resource is each search done or source to complete information about each
entity. Las version from July 2021 has 19571 identifies resources.

This structure is also present in an Excel file with a pool of URLs containing the
different resources.

2.2 Spanish Medical Corpora

We can distinguish corpus from data set, being the first concept a representative
sample with relevant text of a topic and with general purpose, and the second con-
cept as a sample of the corpus with restricted area and annotations involved with a
research question.

In the following segments we will explain both of the concepts as well as the most
popular datasets/corpus, the available medical datasets/corpus and finally the ones
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2.2. Spanish Medical Corpora

that are in Spanish.

2.2.1 Non-medical and Medical Datasets comparison

There are a lot of data sets for specific topics, still, the most popular and extensive
are not related to the medical area. We have extracted the relevant information such
as the name, the language and general purpose as well as the extension. They will be
shown below:

• RACE is an english language dataset [20] for benchmarking evaluation of meth-
ods in reading comprehension. The contents include 28,000 texts and 100,000
questions generated by human experts for evaluating the students’ ability in
understanding and reasoning.

• SQuAD (Stanford Question Answering Dataset) is an english language dataset
[35] for Question and Answer task. It was created for reading comprehension
and it consists of over 100,000 questions followed by the answer, which is a
Wikipedia article passage.

• IMDB (Large Movie Review Dataset) is an english language dataset [24] for the
task of binary sentiment classification. It contains a set of 25,000 highly dif-
ferentiated movie reviews for training, and 25,000 for testing (total of 50,000
reviews).

• Yelp dataset [3] is an english language subset of businesses, reviews, and user
data from the webpage with its same name. It is mainly employed to teach
students or to learn and test different Natural Language Processing models. It is
one of the largest datasets available containing over 6 million reviews.

• DBpedia is a community [4] that extracts structured information from Wikipedia
allowing sophisticated queries. According to the 2016-04 release, it is composed
of 6.0 million entities. 5.2 million of them are classified in a consistent ontol-
ogy, being the highest amount related to persons (1.5 million) and the lowest to
diseases (5 thousand).

• Amazon Customer Reviews consist of the contribution of millions of customers
by expressing their opinions and description of their experiences regarding pur-
chased products. It contains over a hundred million reviews.

• GLUE [45] (General Language Understanding Evaluation) is an english language
benchmark consisting of nine diverse Natural Language Understanding (NLU )
tasks, which are a collection of different datasets for training specific tasks.

Although we have presented the most popular data sets used, we can observe that
the majority of them are related to other expertise areas. The only one that shows
medical related topics is DBpedia [4], but it presents a fairly low amount of medical
information compared to its highest entity (5 thousand versus 1.5 million).

In order to know if the proposed extension of COpenMED corpus is enough, we have
to make another analysis concerning medical knowledge existing corpora. Following
the same schema as before, we will extracted the relevant information such as the
name, the language and general purpose as well as the extension:

• GECCO (German Corona Consensus Dataset) is an English language uniform

4



State of the Art

dataset [39] that uses international and health IT standards to establish inter-
operability of COVID-19 data. It was created to provide comparability between
researches and projects of different institutions. It is composed of 81 data
elements with 281 response options (demography, medical history, symptoms,
therapy, medications or laboratory values).

• National Library of Medicine Database (NLM ) is an image database [41] for
correctly identifying pills. This image database consists of 2,000 high quality
reference images and 3,000 lower quality consumer images.

• IgG4-Related Disease Dataset [14] was created since on most studies only a
few patients with a particular organ manifestation were analysed. The study
was conducted on 235 patients diagnosed in 8 general hospitals in the same
medical district.

• Personalized medicine dataset presented by Kadi et al. [15] was created for
the conception of a medical decision-making model. Based on different illnesses
included and analyzed, database information reaches up to 500 patients.

• fastMRI dataset [47] is a large-scale collection of images of raw MR measure-
ments and clinical MR, that can be used for training and evaluation of machine-
learning approaches to MR image reconstruction. It is a freely-accessible dataset
composed by more than 1,500 fully sampled knee MRIs and 6,970 fully sampled
brain MRIs. This dataset is only accessible for internal research or educational
purposes.

• Taiwan’s National Health Insurance Dataset [7] is a study aimed to analyze
and evaluate the frequency and patterns of Chinese Herbal Medicine used in
treating osteoarthritis. The database is composed of 22,520,776 outpatients.

• The Utrecht dataset [18] is composed of pulmonary function reference data
collected from underage children. It is contains different measurements such
as measurements of interrupter resistance with 877 instances, spirometry with
1042 instances, body plethysmography with 723 instances and carbon monoxide
diffusion/helium dilution with 543 instances.

We can see that non large-medical database resources presents Spanish as the lan-
guage. The largest database is the Taiwan’s National Health Insurance Dataset [7].
It is relevant to pinpoint that many of the medical databases are prepared for image
recognition.

Regarding to all of the datasets explained before, we can observe that the largest and
most used are not related to the medical field. We can also underline that all of them
are in English language. About medical data sets, a big amount work on medical
images or related to information extracted from different patient measurements or
for specific illness diagnose or treatment.

2.2.2 Medical Corpus

As presented by Aguilar et al. in 2014 [1], we will consider corpus as the articu-
late disposition of different documents with an investigation-related finality. These
documents shall be denaturalized from its previous structure and restructured in a

5



2.2. Spanish Medical Corpora

new form that can be used as an input to a system employed to test a proposed
hypotheses.

We will now present the medical corpus found. Let us remember that the corpus to
be created must be in Spanish language, although we will show different languages
corpus just to be aware of the different languages found, the extension and if they are
specific for a task. We will briefly compare the different existing corpus and explain
in what topic they revolve:

• The Quaero French medical corpus [29] as it name implies, it is a French
language corpus. Authors report the development of the corpus in French anno-
tated at the entity and concept level. They encompass a total of 103,056 words
with a total of 26,409 entity annotations mapped to 5,797 unique UMLS concepts.

• ChiMed (Chinese Medical Corpus for Question Answering) [40] is corpus in Chi-
nese language for the challenging task in NLP of QandA. Authors have collected
a large-scale Chinese medical information leading to approximately 17.6 million
QA pages. The project has 145 thousand physicians for answering questions in
the forum.

• UKRMED is a collection and processing project of a medical corpus [8] in Ukrainian
language. This corpus contains a variety of medical text originated from clinical
protocols, blogs or Wikipedia). The UKRainian MEDicine text corpus, combines
the following amount of medical texts:

– Complex texts (from clinical protocols) = 26,730 sentences.

– Simple texts (from medicine forums) = 25,395 sentences.

– Moderate texts (from Wikipedia) = 27,081 sentences.

• Medical Concept Normalization (MCN ) is an English language comprehensive
corpus [23] that links different formal definitions to the same concept in stan-
dardized vocabulary. The resulting corpus consists of 10,919 concepts.

• emrQA is a Large Corpus in English [30] for Question Answering on Electronic
Medical Records. The resulting corpus has 1 million questions and 400,000+
question-answer pairs.

• A corpus-based syntactic study of medical research article titles was created
by Wang et al. in 2007 [42]. It analyzes the relationship between English titles
of medical research articles and their impact. A total of 417 titles were studied
structurally.

• CLEAR is a Corpus for Medical French Availability [44]. The corpus is described
for the French medical language. It contains texts from three sources: ency-
clopedia, drug leaflets and scientific summaries. The manual processed subset
contains 663 pairs with parallel sentences.

• COPOS (Corpus Of Patient Opinions in Spanish) [2] is a Sentiment Analysis cen-
tered corpus in Spanish language. The corpus is composed of 743 reviews, each
review contains information about the patient, the medical entity and a numer-
ical value of the opinion expressed,

• MEDDOCAN (Automatic De-Identification of Medical Texts in Spanish) [26] is a
corpus composed of clinical cases. It contains 1,000 clinical case studies, which
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are divided into a train set (500 clinical cases), development set (250 clinical
cases) and the test set (250 clinical cases).

• IULA Spanish Clinical Record Corpus [25] is a Spanish language corpus with
3,194 sentences extracted from clinical records. The corpus was conceived as a
resource to support clinical text-mining systems, but it is also a useful resource
for other Natural Language Processing systems handling clinical texts: auto-
matic encoding of clinical records, diagnosis support, term extraction, among
others, as well as for the study of clinical texts.

In this section we have presented the most recent and complete medical corpus avail-
able. It is exciting to see that different groups awareness of the lack of corpora in
other languages. We can observe that the biggest corpus is ChiMed [40], which is
reasonable, since due to the large chinese population, higher amount of data will be
available. Regarding with Spanish language, we can find COPOS [2], MEDDOCAN
[26] and IULA [25]. After analyzing the contents and the aim of these corpus, we can
observe that none of them present the same goal as COpenMed, since one of them is
extracted from reviews (for Sentiment Analysis) and the other two work over clinical
cases. We can then state that COpenMed corpus would be similar to MCN corpus [23]
(Medical Concept Normalization) since it extracts information from different resources
in order to link its contents to the same concept (entity).

Our proposed a corpus will be composed of 9099 different entities and 19.571 re-
sources. Meaning that the final corpus will be formed by 19.571 documents. This
amount already surpasses existing available corpora except for ChiMed [40] and MCN
[23]. This corpus will have the possibility of padding the amount of resources to a
default amount N for each entity. We employed N = 10, so COpenMed corpus first
version will be composed of a possible 90.990 documents surpassing any spanish
medical corpus created to the date.

2.3 Machine Learning Models

After presenting the different existing corpora, since another assignment of this
Project is to pre-train two different language models with the created corpus, let us
now present the context of Machine Learning Models. Afterwards a brief presentation
of the two different models chosen will also be done.

The dominant approach of Machine Learning systems is to employ large datasets of
training examples and supervise its learning process to demonstrate the behavior for
an individual desired task [19], after training the system, the behavior is tested on
independent and identically distributed (IID) datasets. This process works fairly well
for narrow experts, but the problem is that these systems need a prepared dataset
since slight changes in the data may tweak results due to the high sensitivity and
task specification [36, 16].

In order to resolve these task specification and sensitivity flaws, new methods were
built. For example, word vectors were used as inputs [17, 9], then contextual repre-
sentations of recurrent networks [10, 31], and recent work suggests that task-specific
architectures may not be necessary anymore.

We can observe in Figure 2.1 the schema proposed for a Single Task Model. It is
specific for Natural Language Processing since the input is Text. Since the input text

7



2.3. Machine Learning Models

Figure 2.1: Single Task Model example schema. Figure adapted from GLUE original
paper [43].

is a unique and individual input, it can be understood that the model is created to
provide results for a specific task.

Although the best performing models had specialized architectures the just men-
tioned sensitivity problem decreases the performing value to non acceptable values.
To avoid this problems, progress heads for robust systems. These systems present
architectures compatible with different tasks, but requires training and measuring
performance on a large of tasks.

We can consider this movement towards robust systems as a new movement of pref-
erence towards more general systems (can perform many tasks). The problem ap-
pears when considering whether in practice, optimization of the model with reach
convergence or not. It is confirmed that large language models are able to perform
multitask learning but learning process is much slower. Another problem is the la-
beling process. Labeling manually the same or several datasets for different tasks
is an arduous assignment. Since current Machine Learning Systems need a vast
amount of examples for a well generalization. This suggests that multitask training
may need as much training examples as a single-task model for each task. This
fact motivated for the creation of benchmarks for multitask learning by employing
pre-training or/and supervised fine-tuning. Nowadays, GLUE [43] and decaNLP [28]
benchmarks appeared and are the most used to aid this training and measuring
process.
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Unlike single task models that trains end-to-end a specific task, multitask models
extensively train on a generalized language understanding task. This is based on an
extensive generalized pre-training of the model, this process helps to obtain gener-
alized “understanding” that proceeds with model adjustment to approach a specific
task.

Figure 2.2: GLUE Benchmark schema. It is composed of 9 tasks, so N = 9. Figure
adapted from GLUE original paper [43].

We can observe in Figure 2.2 the general structure of GLUE. GLUE [43] is a collection
of tasks for evaluating a model. It is composed of 9 tasks and the resulting average
score of the 9 tasks is the model’s final score. GLUE is structured in a way that the
architecture of the model is not relevant, but the only requirement is that input and
output prediction are accommodated to each GLUE task. We will briefly show the
different tasks so that the reader can see what kind of tasks are the most relevant
ones.

• CoLA dataset: Trains for recognition if a sentence grammar is correct.

• SST-2 dataset: Trains Sentiment Analysis.

• MRPC dataset: Trains if sentence B is paraphrase of sentence A.

• STS-B dataset: Trains for recognition of the similarity between two sentences.

• QQP dataset: Trains for recognition of the similarity of two questions.

• MNLI-mm dataset: Trains for the recognition if a sentence B entails or contra-
dicts sentence A.

• QNLI dataset: Trains for a Question and Answer system.

• RTE dataset: Trains for the entailment of a sentence.

• WNLI dataset: Trains for the correct pronoun replacement.

9



2.3. Machine Learning Models

After explaining briefly how multitask models are structured, we are now prepared
to present multilingual models. The multilingual model approach is quite similar
to multitask approach. The model is trained on a text corpus composed of many
languages. Since amount of documents imbalance is not impossible, it is preferred
that in case a lack of texts in certain language is present, the imbalance is regulated
with the input of extra articles. This occurs for certain small languages. This way,
small languages are oversampled and large languages are undersampled.

Language model pre-training has been proven to improve Natural Language Process-
ing tasks [10, 34]. Some of these tasks are present in the GLUE benchmark, and
were just mentioned before for example, paraphrasing [13] and question answering
[38, 35].

There are two existing strategies for applying pre-trained language models to down-
stream tasks: feature-based and fine-tuning.

• Feature-based approach uses task-specific architectures that include the pre-
trained representations as additional features. One example is ELMo [31]

• Fine-tuning approach needs minimum task-specific parameters, and is trained
simply by fine-tuning all pretrained parameters. One example is the GPT (Gen-
erative Pre-trained Transformer) [33].

The major limitation of these two approaches is the unidirectionality of standard
language models. This restrictions can be very harmful in the fine-tuning process for
token-level tasks (e.g. question answering).

To improve the fine-tuning approach, Bidirectional Encoder Representations from Trans-
formers (BERT) model [12] was proposed.

Previous work on model probing has shown that the induced language model is able
to encode syntactic and named entity information [31]. Auto-regressive (AR) language
modeling and AutoEncoding (AE) have been the two most successful pretraining ob-
jectives. Inspired by AR language modeling, XLNet model [46] was also proposed.

These two models mentioned will be the ones employed in this Master thesis. Al-
though we will not use the original flavour of BERT, it will explained since their
architectures and functionalities are almost the same.

2.3.1 BERT: Bidirectional Encoder Representations from Transformers

For resolving the unidirectionality constraint, BERT model employs a “masked lan-
guage model” (MLM ) pre-training objective. This masked language model, randomly
masks some of the tokens from the input and it tries to predict the original vocabulary
based on the context.

By using MLM, the model must take the text surrounding (left and right) the masked
word, allowing to pre-train a deep bidirectional Transformer. When BERT was pub-
lished, it achieved state-of-the-art performance outperforming many task-specific ar-
chitectures.

We can observe the two steps of BERT in Figure 2.3. The two steps in their framework
are pre-training and fine-tuning.
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Figure 2.3: BERT structure. We can observe Pre-training step on the left and Fine-
tuning step on the right. Figure adapted from BERT original paper [12].

During the pre-training process, the model is trained on unlabeled data over differ-
ent pre-training tasks. Afterwards, the model will go through a fine-tuning process.
BERT model is firstly initialized with the parameters from the pre-training step and
those parameters will be fine-tuned with labeled data.

BERT model also presents a multilingual model release (M-BERT). It is trained on
pooled data from 104 languages. M-BERT has been shown realistic results generaliz-
ing across the 104 languages [32], but monolingual BERT models easily outperform
M-BERT. For example the French BERT model [27], the German BERT model [37]
and the Spanish BERT [6].

Another smaller multilingual BERT mode composed of 15 languages [21] augmented
the results obtained from M-BERT.

Aside from multilingual models, some studies focus on pre-training a BERT model on
particular subdomains such as BioBERT [22] or SciBERT [5] which are trained with
biomedical publications and scientific texts.

2.3.2 XLNet: Generalized Autoregressive Pretraining for Language Un-
derstanding

XLNet is proposed to leverage by extracting the best of both Auto-regressive (AR)
language modeling and Auto-encoding (AE). Given a text sequence x = [x1, ...xT ] Auro-
regressive maximizes the likelihood under the forward autoregressive factorization:

log pθ(x) =

T∑
t=1

log pθ(xt|x<t) =
T∑
t=1

log
exp (hθ(x1:t−1)

T e(xt))∑
x′ exp((hθ(x1:t−1)

T e(x′)))

where

• hθ(x1:t−1) is a context representation produced by neural models
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• e(x) is the embedding of x

Auto-regressive language model is only trained to encode a uni-directional context
and is not effective for modeling bidirectional contexts (on the contrary to BERT).
In comparison, pre-training aims to reconstruct original data by replacing a certain
portion of tokens by a special symbol [MASK]. The model is then trained to recover
the original tokens from the corrupted version.

XLNet has three different improvement over BERT:

• Maximizes the expected log likelihood of a sequence. Also, it implements a
permutation operation, allowing tokens to use contextual information from all
positions.

• XLNet does not suffer from the pretrain-finetune discrepancy.

• XLNet is inspired by the Auto-regressive language and is based on Transformer-
XL [11], improving the performance.

In the following section we will show the comparison presented by Yang et al. for
XLNET and BERT and BERT-like model. This comparison will be useful to decide if
these two models will be implemented.

2.3.3 BERT vs XLNet: Empirical performing results

Under comparable experiment environment, XLNet [46] outperforms BERT [12]. In-
cluding GLUE, BERT and XLNet were evaluated in language understanding tasks.
Let us present Table 2.1 results of evaluating both models of different tasks.

Model MNLI QNLI QQP RTE SST-2 MRPC CoLA STS-B WNLI

ST: BERT 86.6 92.3 91.3 70.4 93.2 88.0 60.6 90.0 -
ST: RoBERTa 90.2 94.7 92.2 86.6 96.4 90.9 68.0 92.4 -

ST: XLNet 90.8 94.9 92.3 85.9 97.0 90.8 69.0 92.5 -
MT: RoBERTa 90.8 98.9 90.2 88.2 96.7 92.3 67.8 92.2 89.0

MT: XLNet 90.9 99.0 90.4 88.5 97.1 92.9 70.2 93.0 92.5

Table 2.1: Empirical performing accuracy results of BERT, RoBERTa and XLNet. ST
= Single Task, MT = Multitask. Table adapted from Yang et al. [46].

After analysing Table 2.1 we can observe that XLNET’s accuracy results exceeds
BERT’s. Also, RoBERTa’s accuracy values seem better and higher than BERT’s.
Hence, we have decided to employ RoBERTa for one of the models instead of BERT
due to the values shown on the table above.
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Chapter 3

Materials and Methods

Let us remember three objectives that we want to achieve in this Master’s Thesis:

• Create a method for automatic webscraping of any URL and employ its tech-
niques for downloading the text.

• Make a cleaning process pipeline for the downloaded text and store it to create
the corpus.

• Analyze the Natural Language Processing models to be employed and explain
step by step the training process.

In the following sections, point 3.2 will cover objectives 1 and 2 by explaining the
process in which the raw corpus is created. The pipeline employed and a brief expla-
nation of the different input methods will also be presented in this step. Additionally,
it also explains the installation and usage process in order to use the program.

Section 3.3 will cover objective 3 by not only presenting the two different pretraining
methods for Natural Language Processing (NLP) but also a brief analysis on how to
create the pre-training of the model.

Before explaining all the steps, let us present figure 3.1 as the proposed pipeline in
this Master’s thesis.

Figure 3.1 clearly differentiates and shows the separation established for the different
tasks to be done in this project. Three different tasks were found when structuring
the whole program: downloading and creating the corpus, creation of the input files
for the model and pre-training of the models. These tasks are separated into different
steps (from 1 to 3) and explained in detail in the following sections.

As a note to the reader, all scripts were written in Python version 3.8.10 on a dual
boot Windows 10 and Linux 20.04.2 LTS. GPU computations were run on a 16GB
memory GeForce GTX 1660 SUPER. Some calculations were run on Google Collab
since training time were exponentially high.

3.1 Folders internal structure

This section will present the different scripts created for the correct functioning of
the project and a brief explanation of their contents. This will allow the reader to
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Figure 3.1: General schema for the project. We can observe that the proposed pipeline
shows 3 different steps, which are the same explained above on the objectives.

know how the code was structured and separated. If the reader wants to know the
specific usage of a script, it will be explained below in the following sections.

This project is separated into 3 different folders: webscraping, dir and training. Let
us now explain in detail the files contained.

webscraping folder

• url_searcher.py: python file that contains the code involved in reading an excel
file with specific structure. It extracts the entities names and the URLs to be
searched.

• searcher.py: python file that contains the code involved in searching a word in
the search engine (www.google.es) and storing the URLs related to the entity into
a plain text file (url_list.txt).

• downloader.py: python file that contains the code involved in downloading the
content of the URLs which can be read from a plain text file (url_list.txt) It pro-
cesses the text and selects the most relevant paragraphs to be stored in a new
plain text file (content.txt from dir folder).

• check_resource.py: python file that contains the code involved in checking if
an entity folder has been created, if the URL to be searched has been searched
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o not and modifies the status of each search in order to optimize time search if
future additions to the database are done.

• preprocessing.py: python file that contains the code involved in preprocessing
the raw text (NLP cleaning text methods) in order to further computations for
extraction of relevant text.

• url_list.txt: plain text file that contains in each line the URL to be searched
followed by the entity name. Both terms separated by a blank space.

• temporal.pdf: file for temporal storage of a pdf file downloaded from and URL.
It will be deleted after it is converted into a plain text file.

dir folder

• entity folder: entities are integer numbers (id’s) that have a medical term
mapped. The relation between both of then can be found in the URLs excel
(for more information about the excel see section 3.2.1). Each folder will be
named with its entity id.

– status.txt: plain text file contains for each entity, the status of the URLs
(searched, not searched or blacklist).

– search folder: each folder’s name goes from 1 to N. It represents the num-
ber of URLs searched for a single entity.

* content.txt: plain text file that contains the plain cleaned final text.

* url.txt: plain text file that contains the URL from where the text has
been scraped.

training folder

• spm_input.py: python file that contains the code involved in writing in the same
plain text file the 20 % of the whole data set. It extracts resources 1 and 2 of
each entity into the same document with each sentence in a row.

• glob_input.py: python file that contains the code involved in writing in the same
plain text file the 100 % of the whole data set. It extracts all the resources of each
entity into the same document with each sentence in a row and each resource
separated by an empty row.

• spm_input.txt: plain text file that contains the 20% of the complete data set.

• glob.input.txt: plain text file that contains the 100% of the complete data set.

– RoBERTa folder: folder containing tokenizer and training model for RoBERTa
model.

* merges.txt: plain text file that contains merged tokenized sub-string
for RoBERTa model.

* vocab.json: json file which contains the indices of the tokenized sub-
strings for RoBERTa model.

· runs: folder where different runs of RoBERTa model and their re-
sults are stored.
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– XLNet folder: folder containing tokenizer and training model for XLNet
model.

* merges.txt: plain text file that contains merged tokenized sub-string
for XLNet model.

* vocab.json: json file which contains the indices of the tokenized sub-
strings for XLNet model.

· runs: folder where different runs of XLNet model and their results
are stored.

3.2 Step 1: Raw corpus creation

In this section we will thoroughly explain the process of creation of the corpus. As we
can observe in Figure 3.2 the program reads and obtains a list of URLs and entities
related to them. Afterwards it automatically searches those URLs on a google search
engine.

After that, the downloaded text will be filtered according to 14 different filters created
for the most numerous URLs in the excel where the URLs will be read. The following
step is a typical simple relevance ranking problem in which we store the test with
relevance above a certain threshold.

Figure 3.2: Raw corpus creation schema. We can observe the workflows: the intput
URL is an html or the input is a PDF file.

16



Materials and Methods

3.2.1 Expected input file

As mentioned before, there are two different type of input files:

• Batch search by inputting an excel file with the URLs to be downloaded.

• Individual search by inputting a single entity name and downloading N URLs
related to that entity (where N is a modifiable value).

Despite having different inputs, both batch search and individual search dump the
input data into a plain text file (url_list.txt). We can see below some psudo code lines
about the functionality: the program checks the status of the URL, and depending on
the value read (0, 1,−1) the decision of ignoring or adding the URL to the search list
will be taken.

1 for line in xml:
2 read URL, entity_name
3

4 if entity_name_file exists:
5 read URL_status in status.txt:
6 if URL_status == 0:
7 write in url_list.txt:
8 URL + " " + entity_name
9 if URL_status == 1:

10 pass
11 if URL_status == -1:
12 pass
13 if URL_status not in status.txt:
14 append URL + " " URL_status = 0
15 write in url_list.txt:
16 URL + " " + entity_name
17 else:
18 write in url_list.txt:
19 URL + " " + entity_name
20

21 after webscraping process is over
22 delete url_list.txt

For further information on how to use the commands to differentiate batch search
and individual search modalities please see section 3.2.6.

3.2.1.1 Online vs Offline

The program supports online and offline usage.

• Online mode can be used on batch search and on individual search. When
using online mode with batch search, only the URL will be provided and its
contents will be retrieved. When using the individual search either entity name
or directly an URL can be provided to the program.

• Offline mode can only be used from batch search. The content of the URL must
be the partial path (starting from the working directory). The file must be a PDF
file and the program will convert it into a plain text file with the most relevant
information according to the entity.

We can observe in Table 3.1 an example of the data needed for batch search (either
online and offline modes).

Following the schema in Table 3.1 and reading the pseudo code below, we can un-
derstand that online mode and offline mode will be automatically differentiated.
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Neccesary data in the excel input file
Entity Id Entity Name Resource URL
1 Entity_Name1 URL1

2 Entity_Name2 URL2

... Entity_Name... URL...
N Entity_NameN URLN

Table 3.1: Necessary information in the excel input. The excel at least needs to have
Entity Id, Entity name and the Resource URL in the information.

Since the code will read the document by analyzing line by line and since the analysis
of each line is independent from the one above or below, both modes can be used in
the same document since the program will know what mode to rise.

1 for each line in excel:
2 URL = read resource_URL
3 if URL starts_with https:
4 do: online mode
5 else:
6 if check_pdf_path_exists URL:
7 do: offline mode
8 else:
9 raise URL_status = 0

3.2.1.2 html vs PDF

Some PDFs are published online and, although, they present URLs for the content
extraction, text from them can’t be obtained as the rest of the URLs since they do not
present a html structure. The distinction point is the URL extension: if it ends
with .pdf it will be analysed and extracted as a PDF file and if not, as html. Both of
these methods will be explained below:

For html scraping, a general and simple scraping process was implemented (down-
loading all the div content), but since results were lousy, specific filters for each web-
page were created. To create a good filter, at least 5 different pages from the same
domain were checked by hand. After that a filter that accepts the highest amount of
relevant information and rejects the highest amount of irrelevant information such
as menu options and references present in the majority of the URLs was created.

We can see in Table 3.2 the different filters employed. For the 13 webpages that have
specific filters, the data extracted is fairly clean and the majority of non relevant lines
are rejected. Filter number 14 is the most defective since it is a standard filter that
accepts almost all text.

14 different filters employed for webscraping
Filter Id Filtered web-

page
Location of relevant information

1 Medlineplus <div>
<p> Relevant text </p>
<li> Relevant text </li>

</div>
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2 Wikipedia <p class = "" id = ""> Relevant text </p>
<li class = "" id = ""> Relevant text </li>

3 Mayoclinic <div id = "main-content">
<p class = "" id = ""> Relevant text </p>
<ul class = "" id = ""> Relevant text </ul>

</div>
<article id = "main-content">

<p class = "" id = ""> Relevant text </p>
<ul class = "" id = ""> Relevant text </ul>

</article>
4 Elsevier <section id = "texto-completo">

<p> Relevant text </p>
</section>

5 Radiologyinfo <div class = "sectiondiv">
<p> Relevant text </p>
<li> Relevant text </li>

</div>
6 Normon <div class = "col-md-9 nota-blog">

<p> Relevant text </p>
<ul>

<li> Relevant text </li>
</ul>

</div>
7 Msdmanuals <div class = "topic__accordion">

<p> Relevant text </p>
</div>

8 Fbbva <div class = "Marco-de-texto-b-sico">
<h3> Relevant text </h3>
<p class = "TEXTO-SIN-SANGRIA"> Relevant

text </p>
<p class = "TEXTO-SANGRADO"> Relevant

text </p>
<li> Relevant text </li>

</div>
9 Cdc <div class = "col content">

<p> Relevant text </p>
<li> Relevant text </li>

</div>
10 Europeanlung <div class = "cell factsheet_hero_content">

<p> Relevant text </p>
<li> Relevant text </li>

</div>
<div class = "cell medium-8">

<p> Relevant text </p>
<li> Relevant text </li>

</div>
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11 Seaic <div class = "wrapper-subcontent ml-auto mr-
auto">

<p> Relevant text </p>
<ul>

<li> Relevant text </li>
</ul>

</div>
12 Hormone <div class = "rich-text">

<p> Relevant text </p>
<li> Relevant text </li>

</div>
13 Vademecum <div id = "fichaATC">

<p> Relevant text </p>
<li> Relevant text </li>

</div>
14 Default <div>

<p> Relevant text </p>
<li> Relevant text </li>

</div>
Table 3.2: Filters employed for an optimized cleaning
of the URLs content. Since the structure of the data is
so diverse from each webpage, a special cleaning was
indispensable.

For PDF scraping, a third party python package called tika was employed. This
package allows the user to extract all the text from a PDF file as plain text. Although
it is unquestionable easier than html scraping process, it loads all the text, including
index, references, editorial notes... which are not relevant for the program.

3.2.2 Webscraping

Extracting the content of multiple webpages can be an arduous task since the ma-
jority of their structures present different complexity. Also, if the scraping process
does not follow a human-like behaviour, such as spending some time in a webpage
(humans do not click on different webpages in less than a second, or send multiple
requests within milliseconds) it can rise suspicions on the scraped webpage. Dif-
ferent strategies can be employed so as not to raise suspicions of the information
extracting process. The created program offers the user two different options in order
to successfully scrape different webpages:

• Scraping process with credential.

• Scraping process without credential.

3.2.2.1 With credential

The program is compatible with some external applications (e.g. Scraping bee) that
offer certain services such as header rotation, IP rotation, VPN... These functionalities
allows the user to freely scrape any webpage without the blacklist concern. Secure
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scraping applications provides the user with a set of values that have to be included
in the code when downloading the information.

Instead of writing the values directly in the code, which is an extremely non-safe
approach, the program only needs the user to include a file named credentials.txt
inside the webscraping directory. The code automatically detects the file and will
employ the credentials if present in the folder. This file must include the provided
values as a python dictionary-like structure as shown below.

{"api_key": "the_api_key","url": "the_url_from_the_api",}

3.2.2.2 Without credential

Considering that the majority of safe scraping applications charges an usage fee,
some users may not be willing to pay the cost (e.g. individual users). For this reason,
the program is also prepared for this situation.

Different scenarios were tested:

• Header rotation: The computer and search engine version and model were
extracted randomly from a pool for each search. Although it seemed like a
feasible solution, each webpage presents different headers (different orders and
requirements) and they rejected the majority of the requests since the modified
header seemed suspicious to them.

• IP rotation: Another possible solution was to make requests with different IPs.
The IPs employed for the test were the ones freely available at:...BUSCAR PAG-
INA. This solution was not viable since those IPs are publicy located, and thus
are constantly used for testing, making the majority of them already in the
blacklist of a lot of webpages.

• Waiting some time: The easiest but not optimal solution was implemented.
A human takes around half a minute to do a superficial reading of the text
and consider if it is interesting or relevant. This characteristic was the one
implemented in the code.

3.2.2.3 Webscraping dependencies

For Webscraping, two third party python packages called requests and Beautiful-
Soup were employed. These packages allows conjunct usage for extracting all the
text from an URL.

• Requests v. 2.25.1: Standard library for making HTTP requests in Python.
Allowing the user to customize the request’s headers and data and inspect data
from the requests and the responses.

• BeautifulSoup v. 4.9.3: Library for making easier the scraping process. It sits
atop an HTML or XML parser, providing functions for iterating, searching, and
modifying the parse tree.

3.2.3 Natural Language Texts Processing method

A large amount of text is scraped from each webpage and it is clear that non relevant
text will also be downloaded. To solve this problem, a simple Information Retrieval
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Ranking method can be implemented.

We can observe in Figure 3.3 a basic schema for a Ranking Information Retrieval
System. In this process, a ranking algorithm will compute the query against all
documents and extract a relevance parameter. This relevance parameter expresses
the importance of each document regarding the query inserted. The higher the value,
the higher the relevance, and viceversa. We will plan on our information filtering
system on this Information Retrieval System schema.

Figure 3.3: Basic schema for a Ranking Information Retrieval System.

Figure 3.4 represents the specific structure to be employed in this project. As ex-
plained before it is an adjusted version of Figure 3.3. For this specific case, the query
is equivalent to the entity name, and each document is equivalent to a paragraph in
a document. After the application of the Ranking Algorithm, instead of ranking the
paragraphs, we will filter the paragraphs by a dynamic threshold.

For the Ranking Algorithm we will employ basic Natural Language Processing (NLP)
Operations. We can observe the cleaning process in Figure 3.5. The raw text will go
through six different operations:

• Tokenization

• Stemming(*)

• Conversion to lower case.

• Removal of stop words.

• Removal of words with 2 or less characters.

• Removal of non alphanumeric.

(*) The goal of both stemming and lemmatization is to reduce inflectional forms to a
common base form. Although both operations are feasible and valid, lemmalization’s
results are normally better for retrieving the base or dictionary form of a word, since
stemming normally chops off the end of words. For this program, we have chosen to
employ stemming over lemmalization due to stemming faster processing time.
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Figure 3.4: Adapted version of a schema for a Ranking Information Retrieval System
for our particular problem.

Figure 3.5: Natural Language Processing (NLP) Operations applied to the text.

3.2.4 Ranking Algorithm

Since we need to compute an easy and fast algorithm, Cosine similarity was imple-
mented. Cosine similarity measures the similarity between two vectors by obtain-
ing the cosine of the angle between the two vectors.

It is one of the most widely used and it is present in multiple applications such as
finding similar documents in NLP, information retrieval or detecting plagiarism.

For this step, the third party python package employed is scikit-learn. Since we
have documents instead of vectors (and cosine similarity functions parameters are
a pair of vectors). Please see Figure 3.6 for the schema. We firstly employ TfidfVec-
torizer function to convert the collection of paragraphs and the entity name to two
different matrices of TF-IDF features. After obtaining the features, we can employ the
cosine_similarity function.

We can observe in Figure 3.7 the cosine vector operation applied to a scraped text.
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Figure 3.6: Ranking Algorithm employed.

Each numerical value refers to the cosine between entity name and paragraph. Thresh-
old value is set to 0.1 ∗max(value), if the cosine value is lower that than number, the
paragraph will not be stored. Let us pinpoint that the saved text will the original text
(raw) and this processing process is only employed to know which parts are the most
relevant ones.

Figure 3.7: Output of applying cosine similarity operation on entity name vector and
paragraphs-vectors in a document.

3.2.5 Output files

The program stores in two different plain text files the final raw content and the URL
from where the information was scraped. In Figure 3.8 we can clearly observe the
followed schema for the output files: each entity is separated in a different folder
and each resource corresponding to one entity is stored inside such folder. The func-
tionality of knowing what URLs have been searched successfully and unsuccessfully
has also been added by the presence of status.txt file inside each entity (1 and -1,
respectively).

This process of storing the content of each URL and the URL searched is done after
each web page is scraped. After all of the URLs in the list of URLs to be searched have
been processed, the program will go through the list again, but instead of searching
for the contents again, it searches if the URL inside the list is present or not in a
status.txt file. If it isn’t present, this means that there was an error when reading
the URL or the search process terminated unexpectedly, meaning that the web page
contents were not downloaded. Thus, the URL shall be added to the corresponding
status.txt with a status = 0.

The program created needs to receive the working directory as an input argument.
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Figure 3.8: Schema of the directory distribution.

This input parameter needs to be where the directory dir is located or the user wants
it to be located. The code automatically detects if the dir folder exists or not as well
as entity and resource folders. In order to have an homogeneous folder style, entity
folder name will be the entity id instead of the entity name, as well as the resource
folder name, it will be a number from 1 to N where N is the number of folders inside
entity directory. We can see below the pseudocode employed for a resource storing
process.

1 # If the dir folder does not exist, create it
2 if not dir_folder.exists:
3 mkdir dir_folder
4

5 # Enter the dir folder
6 enter dir_folder
7

8 # If the entity folder does not exist, create it
9 if not entity_folder.exists:

10 mkdir entity_folder
11

12 #Enter the entity folder
13 enter entity_folder
14

15 # Create the resource folder
16 mkdir resource_folder_(enumeration+1)
17

18 # Create the content and the URL texts files
19 write content.txt
20 write url.txt
21

22 # Finally change the status to 1, or add the URL with status 1 if successfull
23 change url_status in status.txt
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3.2.6 User manual

In this section, we will explain how to use correctly the program for both batch search
and individual search modalities.

Individual search modality usage is the following:

searcher.py [-h] [-w WORD] [-u URL] [-n N] [-s SEARCH] [-o OUTPUT]

• The argument -w is the word or short phrase to be queried in the search engine.
If a short phrase is inserted, spaces must be exchanged for underscores (_). The
program does not differentiate between lower caps and upper caps (a lower()
function is implemented) but the presence of accent marks influences on the
retrieved results. Parameter w has no predefined value.

• The argument -u is the URL to be scraped. This will fetch a single search, so no
N argument is needed, and it is present, it will be ignored. Parameter u has no
predefined value.

• The argument -n is the number of URLs to be retrieved for a single search. The
program is structured so that if the proposed URL by the search engine has been
stored before, it will ignore it and process the next proposed URL. By default the
value of n is 10.

• The argument -s is the search engine to be employed. Although the user can
choose a preferred one, it is recommended to not no modify this parameter. By
default the value of s is google search engine.

• The argument -o is the output directory to be employed. It must be the global
path to where the corpus will be downloaded. By default the value of o is the
working directory.

The user can’t use WORD argument and URL argument at the same time. Even if both
parameters are sent to the program, it will prioritize the URL search and will ignore
the number present at the N argument (since the retrieval of a specific URL will only
receive one single search).

Batch search modality usage is the following:

url_searcher.py [-h] [-d DOCUMENT] [-m MIN_SEARCHES] [-c
CREDENTIALS] [-o OUTPUT]↪→

• The argument -d is the excel file with entity names and URLs to be searched.
It is a mandatory parameter and does not have by default values.

• The argument -m is the minimum number of retrievals done by entity. This
means that after adding all the URLs in the excel document to the plain text file,
the program will pad the number of resources present in each entity if it has
less than m (see Figure 3.9). By default the value of m is 10.

• The argument -c is the global path to the credential text file for safe webscrap-
ing. It is not a mandatory parameter and if the user does not specify it by default
the program will search the file in the working directory.

• The argument -o is the output directory to be employed. It must be the global
path to where the corpus will be downloaded. By default the value of o is the
working directory.
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Figure 3.9: Padding process related to url_searcher.py m argument. M is the number
input by the user and L is the actual number of resources in an entity.

3.3 Step 2: Creation of documents for pre-training the mod-
els

In this section, we will explain the process followed for pre-training two different
models from scratch. As explained before, since we want the models to be focused
on the medical area, no pre-trained tokenizers or models will be used. We will focus
on building a transformer model built from Hugging Face’s modules. Usage of the
Transformers library features was preferred over training separately directly with the
models raw scripts due to the unified pipeline for all the models available in their
interface.

Figure 3.10: General schema employed for the model creation.

Figure 3.10 shows the general schema employed from the whole dataset to the final
training process. We will explain separately Tokenizer (yellow box) and Model (green
box) steps, since is where RoBERTa and XLNet have their main differences.

3.3.0.1 Loading of the dataset

In the previous section (3.2) we created a cleaned corpus, which we will need to
separate for the tokenizer and for the training process.
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3.3. Step 2: Creation of documents for pre-training the models

Since is not ideal that the tokenizer is biased by any medical topic (we understand a
medical topic as each entity), pre-training of the tokenizer shall be done over a small
corpus with at least one document from each entity. For this, we call spm_input.py.
The program will read resources 1 and 2 from each entity and write them in a plain
text file called spm_input.txt. As shown below, each sentence will be in a separate
line without character differentiation between documents.

line1 of document1
line2 of document1
line1 of document2
line2 of document2
line3 of document2
...
lineN of documentM

For the training process document, we will call glob_input.py. The program will
read all the resources from all the entities and write them in a plain text file called
glob_input.txt. As shown below, each sentence will be in a separate line and a new
line character between documents.

line1 of document1
line2 of document1

line1 of document2
line2 of document2
line3 of document2
...
lineN of documentM

3.3.1 Transformer for RoBERTa

RoBERTa (A Robustly Optimized BERT Pretraining Approach) model, as it name
indicates, is one of the numerous BERT-like descendant models. This model is
based on BERT’s architecture and modifies key hyperparameters, removes the next-
sentence pretraining objective and optimizes larger mini-batches training and learn-
ing rates. Meaning that it has improved the pretraining process.

This segment will explain step by step the schema for the pretraining of the model. It
will follow the next points:

1. Training a tokenizer from scratch.

2. Initializing a model from scratch.

3. Build of the database.

4. Define of the Data Collator.

5. Initializing the trainer.

6. Pretraining the model.

Let us now explain step by step the building of our RoBERTa model:
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3.3.1.1 Training a tokenizer from scratch

In contrast to the original BERT, which uses Word Piece tokenization, RoBERTa
uses Byte Pair Encoding (BPE), which means that it descends to a byte-level tok-
enization. The parematers employed for training the tokenizer will be the following:

• files = spm_input.txt

• vocab_size = 52000

• min_frequency = 2

• special_tokens = [ ]

– <s> = start token.

– <pad> = padding token.

– </s> = end token.

– <unk> = unknown token.

– <mask> = mask token for language modeling.

The code employed is the following:

1 from tokenizers import ByteLevelBPETokenizer
2

3 path = '/PATH/TO/SPM/INPUT/spm_input.txt'
4

5 # Initialize Byte Pain Encoding (BPE) tokenizer
6 tokenizer = ByteLevelBPETokenizer()
7

8 # Train tokenizer with file and parameters
9 tokenizer.train(files=path, vocab_size=30_522, min_frequency=2,

10 special_tokens=['<s>', '<pad>', '</s>', '<unk>', '<mask>'])
11

12 # Create model folder if necessary
13 # os.mkdir('/PATH/TO/MODEL/ModelName')
14

15 # Save the created tokenizer (files vocab.json and merges.txt will be created and stored in
this folder and step)

16 tokenizer.save_model('/PATH/TO/MODEL/ModelName')

3.3.1.2 Initializing a model from scratch

The first step before initializing a model is to define the parameters for the configura-
tion of the model. We can observe the parameters chosen and the code below: The
parameters employed for training the tokenizer will be the following:

• vocab_size = 52000

• max_position_embeddings = 512

• num_attention_heads = 12

• num_hidden_layers = 6

• type_vocab_size = 1

1 from tokenizers import RobertaTokenizerFast, RobertaConfig
2

29



3.3. Step 2: Creation of documents for pre-training the models

3 # Establish the configuration parameters
4 config = RobertaConfig(
5 vocab_size = 52000,
6 max_position_embeddings = 512,
7 num_attention_heads = 12,
8 num_hidden_layers = 6,
9 type_vocab_size = 1,

10 )
11

12 # Initialize a RoBERTa model with the configuration parameters
13 model = RobertaForMaskedLM(config=config)

3.3.1.3 Build of the database

The raw data cannot enter the training process, this means that we have to encode
the texts with the pre-trained tokenizer we just created. As we explained before,
RoBERTa uses Byte Pair Encoding (BPE), which means that it descends to a byte-
level tokenization. This tokenizer has been trained to treat spaces like parts of the
tokens.

The post-processor will add a start (<s>) and an end token (</s>) as well as other
encoding parameters. Below we can observe the code employed for this step:

1 from transformers import RobertaTokenizerFast, LineByLineTextDataset
2

3 # Load the tokenizer we created in the previous step
4 tokenizer = RobertaTokenizerFast.from_pretrained('/PATH/TO/MODEL/ModelName')
5

6 #Encode line by line out dataset with the loaded tokenizer
7 dataset = LineByLineTextDataset(
8 tokenizer=tokenizer,
9 file_path='/PATH/TO/SPM/INPUT/glob_input.txt',block_size=128

10 )

3.3.1.4 Define of the Data Collator

Data Collator is an object to for back-propagation, it is created before initializing the
trainer and its function is to assemble samples from the dataset into batches, creat-
ing dictionary-like objects. Since our model is called RobertaForMaskedLM (Masked
Language Modeling) we must set mlm property to True.

Below we can observe the code employed for this step:

1 from transformers import DataCollatorForLanguageModeling
2

3 # Data Collator with the tokenizer, MLM and masked tokens to 15%
4 data_collator = DataCollatorForLanguageModeling(
5 tokenizer = tokenizer,
6 mlm = True,
7 mlm_probability = 0.15
8 )

3.3.1.5 Initializing the trainer

After doing of all the preparations from before, the trainer is now ready to be initial-
ized. We just need to establish the training arguments, which will be below, as well as
the code:
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• output_dir = Path to out model directory

• overwrite_output_dir = True

• num_train_epochs = 2

• per_device_train_batch_size = 64

• save_steps = 10000

• save_total_limit = 2

1 from transformers import Trainer, TrainingArguments
2

3 # Establish the training parameters
4 training_args = TrainingArguments(
5 output_dir = '/PATH/TO/MODEL/ModelName',
6 overwrite_output_dir = True,
7 num_train_epochs = 1,
8 per_device_train_batch_size = 64,
9 save_steps= 10000,

10 save_total_limit = 2,
11 )
12

13 # Trainer needs a model, the arguments, the data collator and the encoded dataset
14 trainer = Trainer(
15 model = model,
16 args = training_args,
17 data_collator = data_collator,
18 train_dataset = dataset,
19 )

To reach this step we had to create and structure a wide amount of methods. Let us
remember what we needed: the Trainer needs as input the RoBERTa model created
in step 3.3.1.2, the training arguments we created in this step (3.3.1.5), the data
collator initialized in step 3.3.1.4 and finally the encoded dataset from step 3.3.1.3.

3.3.1.6 Pretraining the model

Finally we are ready for pretraining the model. The trainer is launched with the
following line:

1 # Launch the trainer
2 %%time
3 trainer.train()
4

5 # Save the trainer in the model file
6 trainer.save_model('/PATH/TO/MODEL/ModelName')

The output of this training process shows the batch size per device, the optimization
steps, the loss, learning rate and epoch and the employed time.

3.3.2 Transformer for XLNet

XLNet is aunsupervised language representation learning method. It is an extension
of the Transformer-XL (thus, implementing it as well). It is based on Transformer-
XL model architecture and employs an autoregressive method to learn bidirectional
contexts by maximizing the expected likelihood on the input sequence.
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3.3. Step 2: Creation of documents for pre-training the models

XLNet implementation on this project was decided since under comparable exper-
iments settings, it outranks BERT base in 20 tasks language tasks (e.g. question
answering, sentiment analysis, document ranking...)

This segment will explain step by step the schema for the pretraining of the model. It
will follow the next points:

1. Training a tokenizer from scratch.

2. Initializing a model from scratch.

3. Build of the database.

4. Define of the Data Collator.

5. Initializing the trainer.

6. Pretraining the model.

Let us now explain step by step the building of our XLNet model:

3.3.2.1 Training a tokenizer from scratch

In contrast to the previously pre-trained RoBERTa model, XLNet employs a tokenizer
based on SentencePiece. XLNet uses Unigram, which, in contrast to BPE or Word-
Piece, it initializes its base vocabulary (all pre-tokenized words and most common
substrings) to a large number of symbols and progressively trims down to obtain a
smaller vocabulary. Unigram is normally used in conjunction with SentencePiece (we
will implement it in a conjunctive way as well).

At each training step, the algorithm computes the possible loss if a symbol was to be
removed from the vocabulary and removes the one with the lowest value. The Unigram
algorithm always keeps the base characters so that any word can be tokenized.

The paramaters employed for training the tokenizer will be the following:

• files = spm_input.txt

• vocab_size = 52000

• special_tokens = [ ]

– <s> = start token.

– <pad> = padding token.

– </s> = end token.

– <unk> = unknown token.

– <mask> = mask token for language modeling.

The code employed is the following:

1 from tokenizers import SentencePieceUnigramTokenizer
2

3 path = '/PATH/TO/SPM/INPUT/spm_input.txt'
4

5 # Initialize SentencePiece's Unigram tokenizer
6 tokenizer = SentencePieceUnigramTokenizer()
7
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8 # Train tokenizer with file and parameters
9 tokenizer.train(

10 files=path,
11 vocab_size=52000,
12 special_tokens=['<s>', '<pad>', '</s>', '<unk>', '<mask>']
13 )
14

15 # Create model folder if necessary
16 # os.mkdir('/PATH/TO/MODEL/ModelName')
17

18 # Save the created tokenizer (files vocab.json and merges.txt will be created and stored in
this folder and step)

19 tokenizer.save_model('/PATH/TO/MODEL/ModelName')

3.3.2.2 Initializing a model from scratch

The first step before initializing a model is to define the parameters for the configura-
tion of the model. We can observe the parameters chosen and the code below: The
parameters employed for training the tokenizer will be the following:

• vocab_size = 52000

• n_head = 12

• n_layers = 6

1 from tokenizers import XLNetTokenizerFast, XLNetConfig
2

3 # Establish the configuration parameters
4 config = XLNetConfig(
5 vocab_size = 52000,
6 n_head = 12,
7 n_layer = 6,
8 )
9

10 # Initialize a XLNet model with the configuration parameters
11 model = XLNetModel(config=config)

3.3.2.3 Build of the database

The raw data cannot enter the training process, this means that we have to encode the
texts with the pre-trained tokenizer we just created. As we explained before, XLNet
uses a SentencePiece inspired Unigram implementation. It is a fairly simple process
since the input text is treated as a sequence of Unicode characters. Whitespace is
also handled as a normal symbol and is replaced with a meta symbol, underscore
(U+2581).

The post-processor will add an underscore at each whitespace which will be appended
to the word behind. Below we can observe the code employed for this step:

1 from transformers import XLNetTokenizerFast, LineByLineTextDataset
2

3 # Load the tokenizer we created in the previous step
4 tokenizer = XLNetTokenizerFast.from_pretrained('/PATH/TO/MODEL/ModelName')
5

6 #Encode line by line out dataset with the loaded tokenizer
7 dataset = LineByLineTextDataset(
8 tokenizer=tokenizer,
9 file_path='/PATH/TO/SPM/INPUT/glob_input.txt',block_size=128

10 )
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3.3. Step 2: Creation of documents for pre-training the models

3.3.2.4 Define of the Data Collator

Data Collator is an object to for back-propagation, it is created before initializing
the trainer and its function is to assemble samples from the dataset into batches,
creating dictionary-like objects. Since our model is called XLNetModel we must set
mlm property to False.

Below we can observe the code employed for this step:

1 from transformers import DataCollatorForLanguageModeling
2

3 # Data Collator with the tokenizer, MLM set to false and masked tokens to 15%
4 data_collator = DataCollatorForLanguageModeling(
5 tokenizer = tokenizer,
6 mlm = False,
7 )

3.3.2.5 Initializing the trainer

After doing of all the preparations from before, the trainer is now ready to be initial-
ized. We just need to establish the training arguments, which will be below, as well as
the code:

• output_dir = Path to out model directory

• overwrite_output_dir = True

• num_train_epochs = 2

• per_device_train_batch_size = 64

• save_steps = 10000

• save_total_limit = 2

• learning_rate = 5e-5,

1 from transformers import Trainer, TrainingArguments
2

3 # Establish the training parameters
4 training_args = TrainingArguments(
5 output_dir = '/PATH/TO/MODEL/ModelName',
6 overwrite_output_dir = True,
7 num_train_epochs = 1,
8 per_device_train_batch_size = 64,
9 save_steps= 10000,

10 save_total_limit = 2,
11 learning_rate = 5e-5,
12 )
13

14 # Trainer needs a model, the arguments, the data collator and the encoded dataset
15 trainer = Trainer(
16 model = model,
17 args = training_args,
18 data_collator = data_collator,
19 train_dataset = dataset,
20 )
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To reach this step we had to create and structure a wide amount of methods. Let us
remember what we needed: the Trainer needs as input the RoBERTa model created
in step 3.3.2.2, the training arguments we created in this step (3.3.2.5), the data
collator initialized in step 3.3.2.4 and finally the encoded dataset from step 3.3.2.3.

3.3.2.6 Pretraining the model

Finally we are aready for pretraining the model. The trainer is launched with the
following line:

1 # Launch the trainer
2 %%time
3 trainer.train()
4

5 # Save the trainer in the model file
6 trainer.save_model('/PATH/TO/MODEL/ModelName')

The output of this training process shows the batch size per device, the optimization
steps, the loss, learning rate and epoch and the employed time.

3.3.2.7 Extracting model embeddings

Embeddings are useful for tasks such as clustering or semantic textual similarity.
The process followed for embedding is the following:

First, we need the model created at the beginning which will be the word embedding
model, which will map tokens in a sentence to the output embeddings. The next
layer in the model is called Pooled model, which, will perform a mean-pooling oper-
ation since we need to have a fixed size sentence vector (the mean of all the pool of
sentences). After that, by the use of the SentenceTransformer function we store the
final model with the embedding model and the pool.

1 # Load our model
2 word_embedding_model = models.Transformer('/PATH/TO/MODEL/ModelName')
3

4 # Since there should be a fixed sized sentence vector, we apply a mean pool
5 pooling_model = models.Pooling(word_embedding_model.get_word_embedding_dimension(),
6 pooling_mode_mean_tokens=True,
7 pooling_mode_cls_token=False,
8 pooling_mode_max_tokens=False)
9

10 model = SentenceTransformer(modules=[word_embedding_model, pooling_model])

NLIDataReader is employed to load the dataset and generate a dataloader for training
the SentenceTransformer model. For train loss any function is available, such as
Softmax Classifier,

1 nli_reader = NLIDataReader('/PATH/TO/NLI/DataSet')
2

3 train_data = SentencesDataset(nli_reader.get_examples('train.gz'), model=model)
4 train_dataloader = DataLoader(train_data, shuffle=True, batch_size=batch_size)
5 train_loss = losses.SoftmaxLoss(model=model, sentence_embedding_dimension=model.

get_sentence_embedding_dimension(), num_labels=train_num_labels)

Finally, the training of the model will be the following:

35



3.3. Step 2: Creation of documents for pre-training the models

1 model.fit(train_objectives=[(train_dataloader, train_loss)],
2 epochs=num_epochs,
3 evaluation_steps=1000,
4 warmup_steps=warmup_steps,
5 output_path=model_save_path
6 )
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Chapter 4

Results and Discussion

The achievement of our three objectives is assessed in the next sections. We will
explain each step and the results obtained at each phase of the process.

Section 4.0.1 will thoroughly show the input and output obtained for the achievement
of the first and second objective, section 4.0.2 will explain and show the results of
the models results (covering objective 3).

4.0.1 Webscraping results

4.0.1.1 Load URLs into URL list text file

The first step the user does, is to download the text from the URLs. The program will
automatically load into the URL list text file all the URLs present in the excel file that
have to match (that have not been downloaded before). We can see in Figure 4.1 the
output of the program. It shows the user the URLs to be inspected, the number of
elements in the present excel and the element in which the program is.

Figure 4.1: Output of the program when loading the URLs into the URL list text file.

After that, the program will take each line of the URL list file in order to search
for the content. We can see the content of the file called url_list.txt in Figure 4.2.
As expected, the content of this file is the URL followed by the entity name. Let
us take into account that the entity name contains non ASCII characters (such as
accent marks), when proceeding to the cosine similarity step, the entity name to be
introduced as the query shall also contain the same non ASCII characters for higher
numerical value of the cosine.

Let us also explain that inside the file, if the entity name is composed of more than 1
word (which is the norm), it will separated by a blank space. The internal code will
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automatically differentiate between the URL and the entity.

Figure 4.2: url_list.txt content. URL is followed by the entity name.

4.0.1.2 Scraping Process of URLs

The next step will be the scraping process which can be seen in Figure 4.3. At the
beginning, the program will inform the user basic information about the scraping
process to be done.

• Usage of credential or not. Let us remember that this credential is given by an
external program. If a non-working credential is employed the program will be
blocked until the credential is modified or the file is removed from the working
directory.

• Response HTTP Status Code shows if the downloading process was done suc-
cessfully or not. If the result is 200, everything has been scraped correctly.

• Encoding of the webpage and confidence of the encoding. This is an important
step since Spanish language presents characters such as accents, which may
have decoding errors if they are not treated correctly.

• Filter employed for the scraping process. This filter reads the beginning of the
URL to be scraped and decides which filter to employ.

Figure 4.3: Output before the webscraping process. The program informs the user if
a credential is being used, the response HTTP status code, the encoding type and the
filter to be employed.

4.0.1.3 Cleaning of the text and Cosine Similarity Result

Afterwards, the program automatically downloads the texts following the chosen filter
instructions. Separates the full text into paragraphs and chooses which paragraph to
maintain and which to drop regarding to the cosine similarity result. We can see an
example in Figure 4.4. We can see the cosine similarity result (the first line containing
4 numbers). The program takes the maximum value of the cosine similarity and sets
the threshold to the 10% of that value. As seen in Figure 4.4 the maximum value is
0.12284648, thus the threshold employed is 0.012284648. By employing this threshold,
paragraphs one, two and four will be stored and paragraph three will be dropped
since the cosine value is smaller than the threshold.
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Figure 4.4: Output for cosine similarity results and the threshold employed for a
document.

4.0.1.4 Output of the Process: content.txt and url.txt content

Finally, the text is stored in a context text file (as shown in Figure 4.5). We can
observe that the text is written as raw text and special characters are kept.

Figure 4.5: Example of the text in content and in url text files.

We just presented the results for the webscraping process, then, in the next section,
we will present the results for the training of the models.
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4.0.2 Training of the models

We will follow the same fashion as the previous section for presenting the results.

4.0.2.1 GPU requirements

Although a local GPU was employed, processing time was exponential and GPU was
always out of memory. We can observe in Figure 4.6 the high RAM GPU from Google
Collab employed for calculations.

Figure 4.6: High RAM GPU from Google Collab. This is shown when running nvidia-
smi

4.0.2.2 Initialization of the models

After checking and preparing the GPU requirements for training the models, let us
show the model created in Figure 4.7. We can observe that it is a BERT (RoBERTa)
model with 6 layers and 12 heads.

Figure 4.7: Print of the model. We can clearly see that it is a RoBERTa Model
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4.0.2.3 Pre-Training Process

The next step is the training process. We can observe in Figure 4.8 the training
parameters employed for both training processes. The number of examples, equals
the number of sentences employed in the training, which is over 1 million. The batch
size was selected to 64 to avoid RAM out of memory errors.

Figure 4.8: Training parameters for the training process

4.0.2.4 Training times

We can see in Figures 4.9 and 4.10 the time employed by the models for the training
process in a high RAM GPU. RoBERTa trained for half the time XLNet needed.

Figure 4.9: Training time needed for RoBERTa Model.

Figure 4.10: Training time needed for XLNet Model.

For a GeForce GTX 1600 SUPER, the run time for both models exceeded one week of
computing.

4.0.2.5 Training Loss

In Figure 4.11 and in Table 4.1 we can observe the Training Loss of the models.

The shape of the learning curve and the training loss curve can be used to diagnose
the behavior of a machine learning model. This behavior can suggest the application
of some possible changes that may improve performance. There are three dynamics
in learning curves:

• Underfit refers to a model that cannot learn the training dataset.

• Overfit refers to a model that has learned the training dataset too well.
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• Good fit exists between an overfit and underfit model and is identified by a
training and validation loss decreased to a stable point between the two final
loss values.

If we take a closer look at Figure 4.11 we can tell clearly that both models show
underfitting. An underfit model can be identified from the learning curve of the
training loss only: RoBERTa model shows a flat line and XLNet presents a decreasing
training loss that continues to decrease until the end of training.

Figure 4.11: Training Loss for RoBERTa (Blue) and XLNet (Pink). We can observe
that both models present underfitting.

This underfitting problem can be solved by increasing the model complexity. Both
models may be underfitting simply because they are not complex enough to learn all
the data. Both models employed were composed of 6 hidden layers and 12 heads,
with a total number of parameters of 84095008. These amount of parameters is
actually related to a small model.

4.0.2.6 Output from the Training Process

Finally, let us present the output file of the models. Each folder (test_RoBERTa and
test_XLNet) contains the necessary files to recreate the process. Each folder should
contain the vocabulary file and the merge file with the vocabulary. The remaining
folders contain the runs and the stop points from previous processings.
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Figure 4.12: Folder distribution for training output process.



Step RoBERTa:Training Loss XLNet:Training Loss

500 4.035 4.456
1000 3.979 4.298
1500 3.932 4.011
2000 3.881 3.878
2500 3.823 3.701
3000 3.770 3.599
3500 3.742 3.476
4000 3.738 3.353
4500 3.727 3.266
5000 3.627 3.190
5500 3.628 3.075
6000 3.595 2.998
6500 3.601 2.879
7000 3.580 2.801
7500 3.552 2.722
8000 3.553 2.651
8500 3.528 2.589
9000 3.534 2.513
9500 3.516 2.461
10000 3.464 2.397
10500 3.453 2.403
11000 3.431 2.321
11500 3.416 2.265
12000 3.404 2.213
12500 3.370 2.154
13000 3.365 2.099
13500 3.352 2.037
14000 3.311 1.966
14500 3.303 1.884
15000 3.270 1.837
15500 3.252 1.792
16000 3.231 1.737
16500 3.221 1.712
17000 3.231 1.680
17500 3.207 1.634
18000 3.195 1.601
18500 3.210 1.633
19000 3.153 1.597
19500 3.158 1.594
20000 3.136 1.563
20500 3.132 1.536
21000 3.123 1.539
21500 3.147 1.503
22000 3.122 1.477
22500 3.126 1.461
23000 3.121 1.445

Table 4.1: Training Loss and Step for both models.
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Chapter 5

Conclusions

This Masters’s Thesis has created a new large-medical corpus. The corpus has the
proposed size (over 1 million lines and a total of 90.990 documents). These docu-
ments are present in two different formats:

• As different plain text files separated in entity and resource folder and,

• as a single plain text file with all of the previous mentioned filed loaded and
distincted with a new line character between them.

Afterwards, an analysis of two different models was done and the decision of employ-
ing RoBERTa over BERT and also using XLNet was taken. The schema followed for
training these models was also created and we finally obtained two complete and but
underfitted pre-trained models with a medical topic related corpus.

Finally, all developed code has been commented and documented for future use by
researchers or students who want to continue this line of research.

5.0.1 Limitation of the current work

Main limitations of this work are related with time and SARS-CoV-2 pandemic lock-
down. Talking and establishment process of objectives and main process of this
Master Thesis followed an asynchronous communication, interfering with a smooth
transmission of ideas.

Another limitation was the hardware limitations. Processes run over the computer
were not feasible in the employed GPU since it always ran of memory. If the training
process parameters were reduced so that this error does not rise, training process
can go up to 2 months of computing. For this, the student had to use external high
RAM GPU’s available at Google Collab.

Finally, last limitation is related to the downloading of the corpus process. Since a
lot of webpages do "not like" to be scraped, we had to insert a waiting time between
different scrapings. Due to this, the time employed for downloading all of the corpus
took over 2 weeks to download.
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5.0.2 Future work

This Master Thesis has planted the necessary basis for the generation of different
bio-related machine learning models. Although it opens a variety of work lines that
will be written below, a lot of work and processing is still needed.

We will distinguish the proposed future work regarding the Webscraping process and
regarding the model training process. Let us start with the first one mentioned:

• More and optimized filtering methods for URLs: Actual filtering process is done
manually. The majority of webs were analysed one by one in order to extract
where the highest amount of relevant information was present. This is quite a
tedious and slow process, which is not optimal. A lot of URLs have a certain
structure, and the author of that online article may follow a structure (informa-
tion in the same tags with the same attribute names), but some pages with large
databases may be built by different people who do not follow the same format,
leading to scraping errors. Also, 14 different filters were made and retrieve fairly
good results. But the ideal would be a scraping filter that matches perfectly
each webpage, which is a almost impossible task due to the large amount of
sources.

• Inspecting process for the padding webs: Webpages present in the original pool
of URLs are read beforehand and checked by a professional. Those webpages are
certain to contain relevant information, but padded webpages from the process
are not verified. Although the padding process takes advantage of google engine
crawling process and it assures that the retrieved webpage is one of the most
useful, we are trusting an external process without internal error resolution
system. For example, we may search for Penicilin and the retrieved webpage
may be selling penicilin products, which contains the entity but not what we
were searching for. FOr this, it may be beneficial to create a method that checks
if the padded page will contain relevant information or not.

• and more...

After presenting these 2 different possible future work, let us enumerate and de-
scribe briefly another three proposed points for future work, but related to the model
training process.

• Test and evaluate properly the model: Models created (RoBERTa and XLNet)
were not properly evaluated, just trained. So accuracy values can’t be extracted.
It is preferable that the models are tested so that we know they were correctly
created.

• Employ embeddings for semantic distance between medical terms: This is the
main interest of COpenMed project. This thesis initial aim was centered in
obtaining the embeddings and employing them but due to the complexity of the
corpus creation and the need of perfecting the baseline of all the future work, it
was preferred to reduce the goal.

• Different tasks: Corpus created was simply plain text. We have seen before a
multitasking benchmark called GLUE. It is interesting to use GLUE as a base
for creating a similar benchmark for biomedical-related tasks, such as question
answer task.
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