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Summary

The use of bioinformatics tools has become a major accelerator in our understanding of microRNAs function. Many algorithms have been created to predict where microRNAs are encoded, as well as
what genes they regulate. Unfortunately, due to the popularity of the field, it is not always clear which of the available computational methods is best suited for determining which transcripts targets are
regulated by which microRNAs. We propose a straightforward way to combine the tens of currently available prediction algorithms, and assign them a credibility measure based on their previous
performance to simplify the task of experimental validation. Using some additional assumptions, we have created a new database, which provides a confidence score for each predicted interaction. This
score is computed taking into account the number of databases where the interaction appears, the quality of these databases in terms of their predictive accuracy, and the ranking that each database
assigns to its predictions. Using cross-validation, we show that this database outperforms in terms of quantity (number of interactions) and quality (ability to predict experimentally validated
interactions) any of the previous ones. No algorithm makes perfect predictions under every condition. Because of the multi-faceted nature of miRNA targeting, and the lack of consensus among existing
predictions, it makes sense to combine them in a way that maximizes the number of validated predicted results. There have been previous attempts to combine the predictions of several algorithms by
first taking their union or intersection as a way to improve coverage or accuracy respectively, balancing out their sensitivity and specificity, and then choosing the most likely candidates by consensus.
Most of these algorithms give the user the ability to choose which combination of databases should be used. The problem with this approach is that in a significant proportion of cases we do not have
the necessary information about each database’s performance to make an informed decision. Our approach presents an alternative solution that assigns confidence scores to each database’s predictions.

This solves the problem introduced by choosing candidates by consensus; mainly, that several low-confidence predictions for the same interaction can erroneously appear as more credible than a single
high-confidence prediction.
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Integration of prediction algorithms
Question: which one to use? Answer: Combine them!
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