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A B S T R A C T

Cryo-EM Single Particle Analysis workflows require tens of thousands of high-quality particle projections to
unveil the three-dimensional structure of macromolecules. Conventional methods for automatic particle picking
tend to suffer from high false-positive rates, hampering the reconstruction process. One common cause of this
problem is the presence of carbon and different types of high-contrast contaminations. In order to overcome this
limitation, we have developed MicrographCleaner, a deep learning package designed to discriminate, in an
automated fashion, between regions of micrographs which are suitable for particle picking, and those which are
not. MicrographCleaner implements a U-net-like deep learning model trained on a manually curated dataset
compiled from over five hundred micrographs. The benchmarking, carried out on approximately one hundred
independent micrographs, shows that MicrographCleaner is a very efficient approach for micrograph pre-
processing. MicrographCleaner (micrograph_cleaner_em) package is available at PyPI and Anaconda Cloud and
also as a Scipion/Xmipp protocol. Source code is available at https://github.com/rsanchezgarc/micrograph_
cleaner_em.

1. Introduction

Cryogenic-Electron Microscopy (cryo-EM) Single Particle Analysis
(SPA) has recently become a powerful technique for the determination
of macromolecular structures achieving, in many cases, atomic resolu-
tions. SPA consists of a set of complex and variable operations that
starting from thousands of particle projections, leads to the re-
construction of density maps of macromolecules. The massive number
of particles that are needed for SPA has made automatic particle picking
one of the most important steps in virtually all reconstruction work-
flows. However, problems intrinsic to the cryo-EM pipelines, such as
low signal-to-noise ratio and the presence of high contrast artifacts and
contaminants in the micrographs, degrades the performance of particle
picking algorithms (Vargas et al., 2013; Zhu et al., 2004) and leads to
the addition of false positive particles in SPA workflows. This problem
can be mitigated through the use of different algorithms which clean
and remove incorrectly selected particles after automatic picking
(Sanchez-Garcia et al., 2018; Vargas et al., 2013).

One of the most common shortcomings observed during automatic
picking is the attraction of these methods to select grid carbon spots,
especially at the hole edges. Due to its relevance, some algorithms have
been designed to prevent particle selection in those regions. For

example, the em_hole_finder program, included in the Appion package
(Lander et al., 2009), is based on morphological image processing op-
erations to compute masks around carbon holes. Similarly, EMHP
(Berndsen et al., 2017) was designed to perform a similar task through
image filtering and thresholding operations followed by a circle fitting
procedure. Although very useful when grid edges are clearly visible,
both approaches struggle in those cases where high contrast con-
taminations are present in micrographs. Furthermore, both require
human supervision in order to determine the presence of carbon in the
micrographs and to set some user-defined parameters. As a result, its
applicability is limited to supervised scenarios.

More recently, deep learning particle pickers have been developed
with the aim of improving picking accuracy. (Bepler et al., 2019;
Wagner et al., 2019; Wang et al., 2016; Zhang et al., 2019; Zhu et al.,
2017). These new particle pickers are more robust to false positives and
most of them have been explicitly or implicitly designed to avoid
carbon areas and large contaminants. One such explicitly designed
particle picker is included in the Warp package (Tegunov and Cramer,
2019). Thus, the Warp picking algorithm approaches the problem of
particle picking by performing a pixel-wise classification (segmenta-
tion) of the micrographs in which one of the possible categories is the
undesirable region.
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In spite of these developments, conventional particle pickers are still
the preferred choice in recent publications (Gilman et al., 2019;
Hiraizumi et al., 2019; Jain et al., 2019; Molina et al., 2019; Stone et al.,
2019; Yan et al., 2019). Although it is likely that deep learning particle
pickers will become increasingly popular, they are not perfect, with
different situations requiring different approaches, thus conventional
particle pickers, especially those based on templates, will likely remain
popular.

In response to these challenges, and with the aim of improving
classical particle pickers and complementing deep-learning-based ones,
we have developed MicrographCleaner, a fully automatic, easy-to-in-
stall and easy-to-use deep learning solution that performs a pixel-wise
classification of micrographs, separating them into two categories, de-
sirable and undesirable regions for picking. Like Warp particle picker,
MicrographCleaner relies upon one of the most extended network ar-
chitectures (Ronneberger et al., 2015), the U-net. However, the dif-
ferent choices in important parameters result, in turn, in quite different
levels of performance. Thus, according to our benchmark, Micro-
graphCleaner is not only able to provide a more robust and accurate
solution for carbon detection than previous methods, but it is also able
to improve the detection of other types of contaminants, such as ice
crystals or ethane bubbles.

2. Material and methods

2.1. Algorithm

MicrographCleaner computes binary segmentation of micrographs
with the aim of delineating optimal regions for particle picking and
isolating those areas containing high-contrast contaminants and other
artifacts. To that end, MicrographCleaner implements a U-net-like ar-
chitecture (Ronneberger et al., 2015). Our model, carefully selected
after a cross-validation process, consists of 5 downsampling blocks
followed by 5 upsampling blocks with 32, 64, 128, 256, and 512 kernels
per block respectively. Further details are described in Supplementary
Material S1 and S4.

Neural network training was carried out during 200 epochs using
the Adam optimizer and a combination of perceptual loss (Johnson
et al., 2016) and weighted binary cross-entropy (Falk et al., 2019). Data
augmentation was performed during training. See Supplementary
Material S2 and S4 for more details.

2.2. Dataset and preprocessing

MicrographCleaner was trained on a dataset of 539 manually seg-
mented micrographs collected from 16 different EMPIAR (Iudin et al.,
2016) entries. The evaluation was performed on an independent set of
97 micrographs compiled from two EMPIAR projects and another two
in-house projects (see Supplementary Material S5). Both training and
testing set micrographs include examples of clean, carbon-containing,
contamination-containing and aggregation-containing areas as well as
mixed ones that were labeled by an expert.

Before micrographs are fed to the network, a previous normalization
step is required to adjust the different intensity scales and sizes of mi-
crographs. Thus, all micrographs are normalized in both intensity and
size using a robust scaling strategy and a constant particle size donw-
sampling (see Supplementary Material S3). Finally, due to GPU memory
limitations, the full downsampled micrograph is processed in chunks
using a sliding window approach of overlapping patches of size 256 ×
256.

2.3. Evaluation metrics

As evaluation criterium, we computed the Intersection over Union
(IoU) metric between the network predictions and the manually curated
masks and averaged it for all micrographs in the testing set (mIoU).
Consequently, mIoU is defined as:
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where i is the testing micrograph index, N the number of testing mi-
crographs and Pi and Li are, respectively, the predicted mask and the
manually curated mask for testing micrograph i.

2.4. Package

MicrographCleaner was implemented as an easy-to-install and easy-
to-employ Python 3.x package. Thus, the command line tool could be
automatically installed from Anaconda Cloud and PyPI repositories
whereas the GUI version could be installed through the Scipion (de la
Rosa-Trevín et al., 2016) plugin manager. The neural network was
implemented using Keras (Chollet, 2015) package and Tensorflow
(Abadi et al., 2016) backend. Micrograph preprocessing is carried out
using the scikit-image (van der Walt et al., 2014) package.

Table 1
MicrographCleaner performance for carbon detection compared to other
methods.

Algorithm mIoU stdIoU

MicrographCleaner 0.78833 0.22939
EMHP 0.19805 0.21147
em_hole_finder 0.05691 0.04691
Warp Particle Picker 0.57297 0.23095

Notes: mIoU: mean Intersection over Union (mean fraction of agreement be-
tween predictions and ground truth); stdIoU: standard deviation Intersection
over Union.

Fig. 1. MicrographCleaner identifies non-suitable regions. Red shadowed re-
gions correspond to micrograph areas labeled as “non-suitable” with 50% or
greater confidence. Top images show MicrographCleaner capability to detect
carbon in the presence of contaminants. Bottom images show
MicrographCleaner capability to detect a wide variety of different con-
taminants.
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3. Results

3.1. Carbon detection

In order to estimate carbon detection capability, we took the subset
of the testing set micrographs in which all contain some carbon and
executed MicrographCleaner on them, achieving a mIoU of 0.78833,
which indicated a good agreement between the carbon areas manually
curated and the predicted ones. Additionally, we compared
MicrographCleaner with several carbon finder programs: em_hole_-
finder, EMHP and the Warp particle picker (WPP) (see Supplementary
Material S6 for more details). Before entering into these comparisons, it
is important to highlight that both MicrographCleaner and the WPP, in
comparison to the other programs, are fast (in the order of seconds),
parameter-free and they do not require manual intervention in order to
determine whether or not carbon is present in a micrograph. Conse-
quently, they can be employed in automatic pipelines and, thus, they
are suitable for automatic Cryo-EM analysis at facilities. As can be seen
in Table 1 and in Supplementary Material SM1, deep learning-based
methods are very well suited to this problem, both Warp and Micro-
graphCleaner stand out from the others. Moreover, MicrographCleaner
achieves the best performance of all them by a wide margin, improving

upon the results of the second best, WPP, by more than 20% in terms of
agreement between masks predictions and ground truth.

3.2. Undesirable regions and contaminants detection

MicrographCleaner evaluation for undesirable regions and small
contaminants detection was performed comparing the predicted masks
with the ground truth for all the testing micrographs. Under this test,
MicrographCleaner achieved a mIoU value of 0.544. This score, al-
though lower than the score for carbon detection, implies a good
agreement between ground truth and predicted masks, especially when
taking into account that the testing set contains clean micrographs
examples together with carbon-containing and contaminated micro-
graphs. Fig. 1 shows the predictions for four different micrographs, il-
lustrating that MicrographCleaner is capable of successfully detecting
both contaminants and carbon.

Additionally, we have also evaluated the global performance of
WPP on the whole testing set, showing a mIoU of 0.331 and performing
worse than MicrographCleaner for 77% of the micrographs. This sup-
poses that the 20% better performance of MicrographCleaner over WPP
for carbon detection is also maintained when contaminants detection is
also considered. The predictions for some micrographs using both

Fig. 2. MicrographCleaner improves particle picking on EMPIAR-10156 dataset. Coordinates selected with Cryolo pretrained general model (CG), Cryolo manually
trained model (CM), Topaz (T) and Relion autopicker (R) are respectively displayed in columns one to four. Top row images correspond to the remaining particles
after applying MicrographCleaner mask (MC) to the low threshold Topaz, Cryolo general and Cryolo manual solutions and the Relion autopicker outcome. As it can
be seen, MicrographCleaner removes the particles selected in the carbon area and its edge while preserving many more true positive particles than using stricter
thresholds. Red box represents the lowest confidence particle according the picking algorithm.
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MicrographCleaner and WPP are shown in Supplementary Material
Figure SM2.

3.3. Use cases

In this section we present two examples, not included in the training
and testing sets, in which both traditional particle pickers and deep-
learning-based pickers struggle discerning problematic regions and
contaminants from clean regions, and thus they both could benefit from
MicrographCleaner. As deep learning representatives, we chose Topaz
(Bepler et al., 2019) and the Cryolo (Wagner et al., 2019) particle
pickers. Both Cryolo and Topaz algorithms were trained using ten
manually curated micrographs. Additionally, the Cryolo general model,
which does not require any training, was also employed. Relion au-
topicker (Scheres, 2015) was chosen as the representative of traditional
particle pickers. Further details can be found in Supplementary Material
S8.

3.3.1. Empiar-10156
The main difficulties for particle pickers that EMPIAR-10156 da-

taset (von Loeffelholz et al., 2018) presents is that it contains large
areas of carbon (greater than 50% of the micrograph) and that the

intensity of these areas is not uniform, either within an individual mi-
crograph or across the whole dataset. Thus, as it is illustrated in Fig. 2,
both the Relion and the Cryolo particle pickers (using a general model
and a trained one) tend to pick particles located at the carbon region,
whereas Topaz particle picker is able to avoid most of the carbon re-
gion, although it still selects many false positives at the edge.

It is interesting to note that, although the number of particles picked
at the carbon area/edge can easily be decreased using stricter thresh-
olds, it comes at the cost of ruling out true positive particles. Thus, as it
is shown in Fig. 2, large enough thresholds for discarding most of the
false positive particles would cause the rejection of some true positive
particles. Ultimately, this translates to the precision/recall tradeoff in
which most people favor the latter option aiming to remove false po-
sitives in successive steps. On the other hand, MicrographCleaner is
able to mask out those false positive particles while not affecting the
true positive ones, hence it can be used as a complement for any particle
picker independently of threshold decisions. This behavior is illustrated
in Fig. 2, in which MicrographCleaner proposed solutions were better
than the solutions obtained directly by using the other methods at
different thresholds. For more details see Supplementary Material S8.

Fig. 3. MicrographCleaner improves particle picking on EMPIAR-10265 dataset. Coordinates selected with Cryolo pretrained general model (CG), Cryolo manually
trained model (CM), Topaz (T) and Relion autopicker (R) are respectively displayed in columns one to four. Top row images correspond to the remaining particles
after applying MicrographCleaner mask (MC) to the low threshold Topaz, Cryolo general and Cryolo manual solutions and the Relion autopicker outcome. As it can
be seen, MicrographCleaner removes many of the contaminants incorrectly selected as particles while preserving much more true positive particles than using stricter
thresholds. Red box represents the lowest confidence particle according the picking algorithm.
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3.3.2. Empiar-10265
The EMPIAR-10265 dataset (Lee et al., 2019) is extremely chal-

lenging. In this dataset, the particles of most micrographs are difficult to
visualize, whereas in some others they are easily recognizable (see
Figs. 3 and 4 respectively). Due to this profound disparity, the perfor-
mance of the employed deep-learning-based methods is worse than in
other datasets, and although they are able to avoid large contaminated
regions, they still incorrectly select many small contaminants as parti-
cles, as it is illustrated in Figs. 3 and 4. Again, as per the previous ex-
ample, the number of selected contaminants can be reduced by in-
creasing the threshold but, as a result, the total number of particles
would be severely reduced.

Thus, the process of threshold selection for this dataset is not trivial,
as micrographs differ enormously and thresholds that detect most of the
particles in some micrographs discard many particles in others. As a
consequence, manual inspection for each micrograph should be per-
formed to obtain the best balance between the number of removed
contaminants and total number of recovered particles. Alternatively,
although it remains costly, more micrographs could be picked manually
in order to further train some of the methods.

On the other hand, when MicrographCleaner was applied to the
particles that had been selected using a conservative threshold, more

true positive particles were recovered while ruling out most of the small
contaminants that were incorrectly selected (see Figs. 3 and 4). This
ultimately improved the quality of the set of picked particles and also
simplified threshold selection, which can be set to more conservative
values with the confidence that contaminants will be equally removed.
See Supplementary Material S8 for additional information.

3.4. MicrographCleaner complements 2D-classification

Although the previous section demonstrates that
MicrographCleaner is able to reduce false positive levels for many
particle pickers, it could also be argued that this reduction is not of
enormous impact as such a reduction could equally be achieved via
subsequent steps of the image processing workflow, particularly at the
2D-classification step. With the aim of testing this hypothesis, we
conducted one 2D classification analysis for each of the particle sets
picked by the four particle pickers considered in Section 3.3.1 and we
compared the outcome of all of them with the particle sets processed
with MicrographCleaner. Fig. 5 illustrates the experiment for one of the
picked sets of particles (see Supplementary Material S9 for additional
information and other examples).

Roughly speaking, our results point out that 2D-clustering is a much

Fig. 4. MicrographCleaner improves particle picking on EMPIAR-10265 dataset. Coordinates selected with Cryolo pretrained general model (CG), Cryolo manually
trained model (CM), Topaz (T) and Relion autopicker (R) are respectively displayed in columns one to four. Top row images correspond to the remaining particles
after applying MicrographCleaner mask (MC) to the low threshold Topaz, Cryolo general and Cryolo manual solutions as well as the Relion autopicker outcome. As it
can be seen, MicrographCleaner removes many of the contaminants incorrectly selected as particles while preserving much more true positive particles than using
stricter thresholds. Red box represents the lowest confidence particle according to the respective picking algorithm.
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more aggressive strategy which removes many more particles than
MicrographCleaner (between 20% and 40% compared to 9% to 25%).
Obviously, these results should not be surprising as MicrographCleaner
was not designed to remove some types of false positive cases (e.g.
background) which 2D-classification can.

However, the most interesting conclusions can be drawn when
counting the number of particles removed by MicrographCleaner but
not ruled out after 2D-classification (we acknowledged that particle
pruning through 2D classification has a certain subjectivity, difficult to
reproduce precisely). Thus, we have measured that between 19% and
29% of the particles discarded by MicrographCleaner survived to the
2D-classification process. Even more interestingly, when a second step
2D-classification is performed, the number of particles not removed,
although fewer, is still considerable (between 10% and 20%, see
Supplementary Material S9). These numbers suggest that Micro-
graphCleaner and 2D-classification should better be regarded as com-
plementary options rather than competitors.

4. Discussion

Deep learning particle pickers are increasingly gaining popularity.
Their ability to avoid contaminated regions and their reported superior
accuracies compared with traditional approaches explains this trend.
Yet, traditional particle pickers are still the preferred option, as seen in
recent publications. Irrespective of the particular method that a re-
searcher considers appropriate for a specific case, we introduce here an

approach that is specifically tailored to detect those particles that are
located in problematic areas of the micrograph. In other words, rather
than concentrating on reporting specimen-like images, we focus on
detecting those areas of the micrograph that are likely to contribute
with lower quality particles. Thus, we can select from any picking
method only those particles found in the best areas of the micrograph.
Our evaluations have also shown how this contextual approach can
provide an excellent complement to other traditional particles selection
procedures. For example, we see that in pruning by 2D classification,
quite a substantial percentage of incorrect particles tended to be ac-
cepted by 2D classification cleaning, which in contrast, were detected
and discarded using our methodology. Thus, following the general
trend in the machine learning field in which top performing solutions
are based on ensembles of methods, it is very likely (indeed, it is our
vision) that top performing image processing or preprocessing work-
flows will likely be constructed by combining different approaches,
MicrographCleaner included, especially when facing difficult samples.

5. Conclusions

MicrographCleaner is an easy-to-install and easy-to-use python
package that allows efficient and automatic micrograph segmentation
with the aim of preventing particle pickers from selecting inappropriate
regions on the micrograph. To that end, MicrographCleaner relies on a
U-net-like model that has being trained on approximately 500 micro-
graphs. When compared to other methodologies, MicrographCleaner

Fig. 5. MicrographCleaner complements 2D-classification. A: Gallery of 2D averages obtained from the set of particles collected by Cryolo manually trained on
EMPIAR-10265 dataset. B, from left to right: (left) Particles originally picked by Cryolo and used as input for 2D-classification; (middle) the previous set of particles
after cleaning by a round of 2D classification (note that discarded particles correspond to those ones belonging to rejected 2D classes, which are marked with a red
cross in A); (right) Cryolo original set of particles after application of MicrographCleaner. It can be seen that MicrographCleaner removed all particles picked on
carbon area but 2D-classification did not.
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has proven more robust, achieving results closer to the human criterion
than other methods for both carbon and contaminant detection. In
conclusion, we consider MicrographCleaner to be a powerful approach
which can be applied at the very beginning of cryo-EM workflows, even
within on-the-fly/streaming processing pipelines, leading to cleaner
sets of input particle and, consequently, to a better processing perfor-
mance.
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    SUPPLEMENTARY MATERIAL 
 

 

 

S1. Neural Network Architecture. 
 

A U-net-like (Ronneberger et al., 2015) architecture was employed in this work. Several architectural 

variations were considered and compared through cross-validation (see S4). The main difference 

between the classical configuration and ours is that our convolution blocks are indeed residual blocks 

(Wu et al., 2017) and that we do not perform the crop operation. Other changes are the depth, measured 

in terms of downsampling operations, which is five instead of four and the size of the input images, 

which is 256x256 instead 572x572. The number of filters in each convolution operation for each block 

is 32, 64, 128, 256 and 512 respectively and the filter size is 5x5, except for the first layer, which is 

7x7. As activation function, we employed leakyRelu with α=0.05. Batch normalization is also 

employed. Finally, dropout is added after each residual block of the downsampling part of the network. 

An scheme of the network architecture can be found in 

http://campins.cnb.csic.es/micrograph_cleaner/architecture.png and it is summarized in table TS1.1 and 

TS1.2. The total number of parameters contained in our network is 35,479,712. 

 

Table TS1.1. Neural network architecture of downsampling block number i: 

 

Layer Type Parents # kernels Kernel size 

1 Conv2d+BN+LeakyRelu Previous_block 2i+4 5x5 (7x7 if i=1) 

2 Conv2d+BN 1 2i+4 5x5 (7x7 if i=1) 

3 Conv2d+BN Previous_block 2i+4 1x1 

4 Add+LeakyRelu+Dropout 2, 3 None None 

5 MaxPooling 4 None 2x2 

 

 

Table TS1.2. Neural network architecture of upsampling block number i: 

 

Layer Type Parents # kernels Kernel size 

1 Upsampling2D Previous_block None None 

2 Concatenation 1, dowmsampling_block_i_l4 None None 

3 Conv2d+BN+LeakyRelu 2 2N-i+5 5x5 

4 Conv2d+BN 3 2N-i+5 5x5 

5 Conv2d+BN 2 2N-i+5 1x1 

6 Add+LeakyRelu 4, 5 None None 

 

S2. Neural Network Training. 
 

We have employed as loss function the sum of perceptual loss (Johnson et al., 2016) and weighted 

binary cross-entropy (Falk et al., 2019) at 1:1 proportion. Other alternatives were ruled out after cross-

http://campins.cnb.csic.es/micrograph_cleaner/architecture.png


validation (see Section S4). The rationale behind the addition of the perceptual loss term is that for the 

particular task of contaminants detection, we are not really concerned about the perfect matching of all 

the pixels, which in large contaminated regions tend to be homogeneous, but about the detection of 

informative, and thus, more abstract features such as edges that can help the network to better identify 

the boundaries of the regions. 

In order to obtain the perceptual loss estimator, we have trained a classical VGG-Net-16 (Simonyan 

and Zisserman, 2014) on a grayscale version of the ImageNet dataset  (Deng et al., 2009). The VGG-

Net-16 trained network is available at http://campins.cnb.csic.es/imagenet_grayscale). Although it is 

true that the images contained in the ImageNet dataset are of quite different nature compared to 

micrographs, it is also true that the purpose of the network is to identify carbon and contaminated areas, 

which are more similar to natural images in terms of signal to noise ratio. Moreover, it is common in 

the field of deep learning to use networks trained on ImageNet for fine tuning or feature extraction in 

other domains such as medical imaging (Bar et al., 2015). 

Regarding our U-net-like model, Adam optimizer was employed on batches of size 12. L1 and L2 

regularization was added to all kernels weights with strength 1e-4. The network was trained until no 

improvement in validation loss was detected once two learning rate decays on plateau were performed. 

Initial learning rate was 1e-2. 

Severe data augmentation has been performed at a ratio 1:4 using as transformations translations, 

rotations, contrast and brightness alterations, local blurring and small zooming in/out (with the aim of 

dealing with slightly different particle size estimations).  

 

S3. Micrograph preprocessing. 
 

Each micrograph is normalized in intensity by subtracting the median value of its pixels and dividing 

by the percentile 5-95 range. 

 

𝐼𝑛𝑜𝑟𝑚 =
𝐼 − 𝑚𝑒𝑑𝑖𝑎𝑛(𝐼)

𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒95(𝐼) − 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒5(𝐼)
 

 

Then, micrographs are downsampled with the aim of normalizing the particle size to 16 pixels. The 

idea behind this size normalization is that if we are interested in detecting contaminants while 

preserving particles, having always particles of the same size will simplify the problem. Thus, we apply 

the following downsampling factor: 

 

𝑑𝑜𝑤𝑛𝐹𝑎𝑐𝑡𝑜𝑟 =
16

𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑𝑃𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑊𝑖𝑑𝑡ℎ𝐼𝑛𝑃𝑖𝑥𝑒𝑙𝑠
 

 

Thus, the final size of the micrograph is: 

 

𝑚𝑖𝑐𝑟𝑜𝑔𝑟𝑎𝑝ℎ𝑆𝑖𝑧𝑒 = 𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙𝑀𝑖𝑐𝑟𝑜𝑔𝑟𝑎𝑝ℎ𝑆𝑖𝑧𝑒 ∙  𝑑𝑜𝑤𝑛𝐹𝑎𝑐𝑡𝑜𝑟 

 

When users do not provide an estimation of the particle size, the Scipion “particle boxsize” protocol 

can be employed to obtain such estimation. 

 

 

 

 

 

http://campins.cnb.csic.es/grayscale_imagenet/


S4. Architectural decision based on cross-validation 
In order to perform cross-validation, the training set was divided into training and validations splits at a 

proportion 10:1. The following tables summarize the most relevant trials regarding the architecture and 

other hyperparameters. Metrics included in this table are computed per patch (256x256), contrary to 

metrics reported in the main text that are computed using the whole micrographs. 

 

Table S4.1. Cross-validation results with respect different numbers of blocks 

Model number Training mIoU Validation mIoU Depth 

1 0.6272 0.5312 4 

2 0.6341 0.5498 5 

3 0.6661 0.5305 6 

4 0.6832 0.4721 7 

 

Table S4.2. Cross-validation results with respect different losses 

Model number Training mIoU Validation mIoU Loss 

5 0.5991 0.4165 BCE 

6 0.6523 0.5212 WBCE 

7 0.6221 0.4782 PL 

8 0.6341 0.5498 PL+ WBCE 

Notes: BCE: binary cross-entropy; WBCE: weighted binary cross-entropy; PL: perceptual loss. 

 

Table S4.1. Cross-validation results with respect downsampling factor 

Model number Training mIoU Validation mIoU Particle size 

9 0.6001 0.4799 8 

10 0.6341 0.5498 16 

11 0.6279 0.4812 32 

 
Fig SM1. MicrographCleaner learning curve for the final model. 



 

S5. Datasets 
 

Evaluation datasets 

 

EMPIAR-10205. Cowpea mosaic virus 

EMPIAR-10217. Bovine liver glutamate dehydrogenase 

In-home dataset1. Phage T7 tails 

In-home dataset2. Phage T7 ejection machinery 

 

Training datasets 

 

EMPIAR-10005. TRPV1 

EMPIAR-10028. Ribosome 

EMPIAR-10033. Picornavirus 

EMPIAR-10049. RAG1-RAG2 Complex 

EMPIAR-10061. β-galactosidase 

EMPIAR-10075. Phage MS2 

EMPIAR-10077. Elongation factor SelB 

EMPIAR-10081. HCN1 ion channel 

EMPIAR-10090. AAA-ATPase in 26S proteasome 

EMPIAR-10093. Ion channel in nano disc 

EMPIAR-10097. Influenza Hemagglutinin Trimer 

EMPIAR-10099. Hrd1 and Hrd3 complex 

EMPIAR-10168. RNA Polymerase III pre-initializ 

EMPIAR-10175. Hemagglutinin 

EMPIAR-10190. RNA Polymerase III transcribing 

EMPIAR-10203. Nodavirus

 

S6. Carbon detection capability comparison 
 

In order to compare MicrographCleaner carbon detection capability with em_hole_finder, EMHP and 

the Warp particle picker (WPP) BoxNet2Mask_20180918 model, we have executed the four software 

packages on the same testing dataset consisting of a subset of 60 micrographs, all them containing 

carbon. Contrary to MicrographCleaner and WPP, EMHP and em_hole_finder require from the user to 

set certain parameters. For this comparison, we have set those parameters to default values. While 

custom tuning of them should improve results, we have adopted this approach because of two reasons. 

First, we have tried different parameters settings and we have not observed too important performance 

differences on average, since some settings caused some inputs to improve at the cost of worsening 

others. Secondly, we believe that solutions that require considerable human intervention are in danger 

of extinction as the cryo-EM field is moving towards streaming and automatic processing and thus, 

default parameters should perform decently for most cases. Other methods used in computer vision (k-

mean clustering and SLIC), where initially considered for comparison purposes, but were discarded for 

the reasons presents above, particularly, because of the difficulty of setting parameters and thresholds 

that could be valid for all the elements of the dataset. 

The quality of the predicted masks has been assessed by comparing them to ground truth masks 

manually compiled. In the case of MicrographCleaner and WPP, as they also find contaminated 

regions, we have only considered the predicted patches that overlapped with the ground truth carbon 

masks (if they exist), ignoring predictions for contaminated regions. As shown in Main Text Table 1, 

MicrographCleaner is able to produce predictions much more similar to the ground truth masks than 

the other methods, with a mean Intersection over Union (mIoU) value close to 0.8. The second-best 

performing algorithm is WPP, which does a much better job than EMHP and em_hole_finder, although 

still far from MicrographCleaner performance. The small mean mIoU obtained by EMHP and, 

especially, by em_hole_finder, can be explained by the lower quality masks they produced when 

compared with MicrographCleaner and, mainly, by the number of total failure cases that both methods 

suffers, that is, cases in which the overlapping between the ground truth and the predicted mask is 0 



(see Figure SM1 E). Figure SM1 shows and example of success in which all the four algorithms are 

able to detect, to an acceptable extend, the carbon present in the micrographs (superior row images) and 

an example of failure, in which only MicrographCleaner and WPP have been able to detect the carbon. 

 

  
Figure SM2. Images A-D display the predicted masks (red shadowed areas) obtained with 

MicrographCleaner, em_hole_finder, EMHP and WPP, respectively, on the same micrograph. Image E 

shows the manually curated mask used to evaluate carbon detection. In this case, all algorithms have 

been able to obtain acceptable solutions. Images F-I display the predicted masks (red shadowed areas) 

obtained with MicrographCleaner, em_hole_finder, EMHP and WPP respectively, on another 

micrograph. Similarly, image J displays the manually curated mask for evaluation. Figure G represents 

an example of total failure in which not even a single carbon pixel was detected. 

 

 

S7. Undesirable regions detection 
 

Additionally, we have compared MicrographCleaner and WPP segmentation capability, measuring the 

mIoU of the predictions of both algorithms for all the micrographs contained in the testing set. Thus, 

MicrographCleaner has being able to obtain better predictions than WPP for 77.66% of the 

micrographs used for evaluation and, over all, it has achieved a mIoU of 0.544 as compared to the 

0.331 value measured for WPP. Figure SM2 shows the predictions obtained for four different 

micrographs using MicrographCleaner (bottom) and WPP (top). As it can be appreciated in these 

results, MicrographCleaner predictions are, generally speaking, better fitted to the actual contaminants 

present in the micrographs. Nevertheless, WPP is able to perform better than MicrographCleaner for 

22.33% of the evaluated cases (as illustrated in SM2 D) and thus, both approaches could be jointly 

considered to obtain better results. 



 
Figure SM3. Four different examples (A-D) computed using MicrographCleaner (bottom row) and the 

Warp particle picker (top row). Predictions for the examples A and B are clearly favorable to 

MicrographCleaner, whereas example C predictions are comparable for both algorithms. Example D 

compares favorably to Warp particle picking algorithm. 

 

 
Figure SM4. Performance of MicrographCleaner and the Warp particle picker over the micrographs of 

the testing set for different threshold options. As it can be appreciated, both approaches are quite robust 

to threshold selection. 



 

S8. Use cases 
 

The use cases included in this publication aim to illustrate how MicrographCleaner can boost particle 

picking no matter the type of used algorithm. The fundament behind this claim is the “No Free Launch” 

theorem (Wolpert, 1996; Wolpert and Macready, 1997) which implies that there is no better algorithm 

for all [optimization] problems. Although, generally speaking, deep-learning particle pickers tend to 

outperform classical ones, these examples show some cases in which their performance is not 

extraordinary and it may be comparable to classical particle pickers. We also show that using an 

orthogonal method to the pickers (a segmentation method instead a detection/classification one) we can 

improve their results. This strategy of employing a blend of different algorithms to improve 

performance is widely used in the field of machine learning, in which real life solutions tend to be 

based on boosting and stacking of models and it may be a wise strategy for the cryo-EM specimens that 

are hard to pick. 

In both examples, we have employed the Cryolo particle picker using the general model provided by 

the authors (version gmodel_phosnet_201910) and also, we have trained a custom model using 10 

micrographs manually picked. The Topaz particle picker was also trained using the same micrographs. 

On the contrary, the Relion autopicker was executed using default parameters. Topaz and Cryolo 

solutions were manually examined in order to select an adequate global threshold. An alternative 

stricter threshold was also manually selected with the aim of removing most of the detected particles in 

the carbon area/edges as well as the contaminants picked as particles. 

 

S.8.1. EMPIAR-10156 
 

None of the particle pickers studied was able to perfectly avoid the carbon regions/edges at reasonable 

thresholds. Main Text Figure 2 is one of the many examples in which a non-negligible number of false 

positive particles are selected independently of the algorithm and the threshold. Generally speaking, all 

the particle pickers are able to select most of the true positive particles but the carbon areas are not 

being avoided by the Relion particle picker and Cryolo is also missing some of them. On the contrary, 

the Topaz algorithm is able to better avoid the carbon regions, although it is strongly attracted by the 

carbon edges, which are equally if not more dangerous. 

When comparing the total number of picked particles (Table S.8.1), it can be appreciated that the 

Cryolo particle picker solution is the one which is less modified by MicrographCleaner and thus it 

seems to be the cleaner set of particles. On the contrary, the Relion autopicker is the one that is more 

affected by MicrographCleaner, which supports the idea that traditional particle pickers are more 

affected by false positives than deep-learning-based solutions. However, after MicrographCleaning 

usage, all the different approaches contain a similar number of particles, which suggests that the quality 

of the datasets might be comparable. This should not be so surprising as the picking of the particles in 

this example is not complicate leaving aside the problem of the carbon areas/edges. 
 

Table S.8.1. Number of picked particles using different algorithms and thresholds. 

Algorithm Threshold #particles 

Cryolo general model 0.1 13916 

Cryolo general model + MicrographCleaner 0.1 12620 

Cryolo general model  0.3 9801 

Cryolo trained 0.4 14262 

Cryolo trained+ MicrographCleaner 0.4 13211 

Cryolo trained 0.5 10013 

Topaz 2 17981 



Topaz + MicrographCleaner 2 15321 

Topaz 4 13592 

Relion auto Default 19616 

Relion auto + MicrographCleaner Default 14852 
 

 

 

S.8.2. EMPIAR-10265 

 

In this example, and contrary to the previous one, the Cryolo solutions, specially the one obtained from 

the manually trained model is substantially better that the others. Yet, it is still not perfect as illustrated 

by the small contaminants displayed in Main Text Figure 3 and 4 and by the fact that 

MicrographCleaner is still able to remove more than 2000 false positive particles from them. Hence, 

and likewise the previous case, if most of the contaminants that can visually be identified are discarded 

using a higher threshold, there is still an important number of true positive particles that are also 

removed, as it can be derived from the numbers exposed in Table S.8.2. However, these effects are less 

pronounced that for the other methods. 

Regarding the Topaz and the Relion solutions, it is important to notice that in this case, the number of 

discarded particles, 6% and 15% respectively, is of importance. It might seem surprising that a 

relatively small set of discarded images make a difference in the quality of downstream analysis of 

cryEM particles, but we should note that there is a very profound statistical difference between adding 

or removing “randomly” a set of particles, and adding or removing a totally biased set of particles 

(those in bad micrograph areas). This is an area in which we anticipate substantial developments in the 

cryoEM area be coming: Being aware of bias in the calculation of cryoEM maps, and introducing the 

appropriate state of correction, as we are doing here wih MicrographCleaner. 

 
Table S.8.2. Number of picked particles using different algorithms and thresholds. 

Algorithm Threshold #particles 

Cryolo general model 0.1 168820 

Cryolo general model + MicrographCleaner 0.1 165070 

Cryolo general model  0.3 97085 

Cryolo trained 0.5 203131 

Cryolo trained+ MicrographCleaner 0.5 198383 

Cryolo trained 0.7 104121 

Topaz 3 140204 

Topaz + MicrographCleaner 3 131572 

Topaz 5 63843 

Relion auto Default 177029 

Relion auto + MicrographCleaner Default 149720 

 

 

S9. MicrographCleaner complementes 2D-classification 

 
In order to study the effectiveness of MicrographCleaner when 2D-classification is considered, we have 

run Relion 2D-classification (Kimanius et al., 2016; Scheres, 2012) algorithm on the sets of particles 

that were presented in Main Text section 3.3.1 and Supplementary Material S8.1. Then, we have ruled 

out all the particles that belonged to “bad classes” and we have counted the number of particles that 

remained. Additionally, we have computed the intersection between the sets of particles that remained 



after 2D-classification processing and the particles removed by MicrographCleaner. As the number of 

particles discarded by MicrographCleaner that are not removed by 2D-classification was large (19% to 

29%), we performed a second round of 2D-classification in order to clean further the sets of particles. 

Yet, the number of particles ruled out by MicrographCleaner that survived after two rounds of 

classification, as illustrated in table S.9. is important, between 10% to 19%. 

The next pages, we present the same example than Main Text Figure 5 when the remaining particle 

pickers are considered instead. In all them, the situation is similar to Main Text Figure 5, as 

MicrographCleaner is able to remove the particles that lay on the carbon/edges while the 2D-

classification algorithm is not able to fully remove them. 

 
Table S.9. Number of remaining particles after 2D classification and MicrocraphCleaner in EMPIAR-10156 

Algorithm Threshold initial 2D-classes1 micClean 2D-classes1 & 

micClean removed 

2D-

classes2 

2D-classes1 & 

micClean removed 

Cryolo 

general  

0.1 13916 11045 12620 377 6776 205 

Cryolo 

trained 

0.4 14626 8873 13211 329 7021 273 

Topaz 2 17981 12046 15321 498 6876 253 

Relion auto NA 19616 12554 14852 1055 7941 608 
NOTE: initial: Number of particles that were selected by the particle picker; 2D-classes1: Number of particles that survived first step 2D-

classifaction; micClean: Number of particles that survived to MicrographCleaner execution; 2D-classes1 & micClean removed: number of 

particles that survived to the first step of 2D-classification but are false positives according MicrographC 

 

 

 
Figure SM5. MicrographCleaner complements 2D-classification. Top: 2D averages obtained from the 

set of particles collected with Cryolo general model on EMPIAR-10265 dataset. Bottom, from left to 



right: Particles originally picked by Cryolo and used as input for 2D-classification; particles that 

correspond to the 2D-classes that were not discarded (not marked with red cross); particles not 

discarded by MicrographCleaner. It can be appreciated that MicrographCleaner removed all particles 

picked in carbon but 2D-classification did not. 

 

 

 
Figure SM6. MicrographCleaner complements 2D-classification. Top: 2D averages obtained from the 

set of particles collected with Topaz on EMPIAR-10265 dataset. Bottom, from left to right: Particles 

originally picked by Topaz and used as input for 2D-classification; particles that correspond to the 2D-

classes that were not discarded (not marked with red cross); particles not discarded by 

MicrographCleaner. It can be appreciated that MicrographCleaner removed all particles picked in 

carbon but 2D-classification did not 

 

 



 
Figure SM7. MicrographCleaner complements 2D-classification. Top: 2D averages obtained from the 

set of particles collected with Relion autopicker on EMPIAR-10265 dataset. Bottom, from left to right: 

Particles originally picked by Relion and used as input for 2D-classification; particles that correspond 

to the 2D-classes that were not discarded (not marked with red cross); particles not discarded by 

MicrographCleaner. It can be appreciated that MicrographCleaner removed all particles picked in 

carbon but 2D-classification did not 

 

 

S10. Usage guide 

 
A complete installation and command line execution guide can be found in 

https://github.com/rsanchezgarc/micrograph_cleaner_em/tree/master.  

 

In order to compute masks from micrographs, just two commands are needed to be employed once the 

package is installed. 

 

First, with the aim of downloading an updated version of the deep learning model, the following 

command should be executed: 

 
cleanMics --download 

 

Then, in order to compute masks for a given set of micrographs, the following command should be 

executed: 

 

https://github.com/rsanchezgarc/carbon_cleaner_em/tree/master


cleanMics -b $BOX_SIXE -i /path/to/micrographs/ --predictedMaskDir path/to/store/masks 

 

Additionally, MicrographCleaner can also be executed within the cryo-EM framework Scipion (de la 

Rosa-Trevín et al., 2016) through the protocol deepMicrographScreen. An illustration of the form is 

depicted in Figure SM2. 

 

 
Figure SM8. MicrographCleaner GUI illustration within Scipion. 

 

As it can be appreciated in SM2, the only two parameters required for the execution of 

MicrographCleaner scipion protocol are the batch size, that only has impact over the GPU computation 

efficiency and the threshold, that can be manually set or leaved as default. 

 

Additionally, MicrographCleaner can be programmatically executed, and thus, integrated with other 

tools, using a simple API documented in 

https://github.com/rsanchezgarc/micrograph_cleaner_em/tree/master. 

 

 

 

 

https://github.com/rsanchezgarc/carbon_cleaner_em/tree/master
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